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Stability of self-similar solutions for van der Waals driven thin film rupture
Thomas P. Witelski
Department of Mathematics, Duke University, Durham, North Carolina 27708

Andrew J. Bernoff
Department of Mathematics, Harvey Mudd College, Claremont, California 91711

~Received 1 March 1999; accepted 14 May 1999!

Recent studies of pinch-off of filaments and rupture in thin films have found infinite sets of first-type
similarity solutions. Of these, the dynamically stable similarity solutions produce observable rupture
behavior as localized, finite-time singularities in the models of the flow. In this letter we describe a
systematic technique for calculating such solutions and determining their linear stability. For the
problem of axisymmetric van der Waals driven rupture~recently studied by Zhang and Lister!, we
identify the unique stable similarity solution for point rupture of a thin film and an alternative mode
of singularity formation corresponding to annular ‘‘ring rupture.’’ ©1999 American Institute of
Physics.@S1070-6631~99!03609-0#

Several recent studies have found infinite sets of similar-
ity solutions to problems involving pinch-off and rupture.1–4

Here we study a model described in a recent paper of Zhang
and Lister,2 who examine the rupture of a thin liquid film on
a substrate due to van der Waals forces. The evolution of the
thickness of the viscous film,h5h(x,t), under the influence
of van der Waals forces and surface tension is given by the
lubrication equation,

]h

]t
52¹•~h21¹h!2¹•~h3¹¹2h!. ~1!

Similar fourth-order nonlinear diffusion equations describing
thin films with surface tension have been studied
extensively.5–8 Zhang and Lister address the problem of rup-
ture in this equation, associated with a singularity forming
with h˜0 at a finite time,tc . As rupture is approached,
some of the assumptions used to derive~1! from the Navier–
Stokes equations may break down, but within this model,
formation of the singularity is self-consistent. From dimen-
sional analysis, Zhang and Lister show that first-type simi-
larity solutions exist for rupture withh5O((tc2t)1/5) and
x5O((tc2t)2/5) as t˜tc for both planar line rupture and
axisymmetric point rupture. Using these scalings, they re-
duce ~1! to a fourth-order nonlinear ordinary differential
equation~ODE! for the self-similar profiles. The beginnings
of a discrete, countably infinite set of these solutions was
found using a numerical shooting method.1,3 The first of
these profiles was also observed in direct simulations of the
partial differential equation~PDE! ~1!. Here, we present an
alternative numerical approach for calculating the self-
similar profiles, as solutions of a nonlinear two-point bound-
ary value problem, using Newton’s method. This approach

has the advantage of yielding the linear stability of these
solutions. We show that only the fundamental point rupture
solution is linearly stable to axisymmetric perturbations; we
also show that it is stable to non-axisymmetric perturbations.

As in Zhang and Lister,2 we consider both the problems
of planar,h5h(x,t), and axisymmetric,h5h(r ,t), rupture.
Motivated by dimensional analysis, we write the solution in
terms of similarity variables as

h~r ,t !5t1/5H~h,s!, ~2!

wheret5tc2t is the time until rupture, and the new spatial
and temporal similarity variables are

h5r /t2/5, s52 ln t. ~3!

Then ~1! is written as a similarity PDE,

]H

]s
5T~H !1V~H !1S~H !, ~4!

where

T~H ![ 1
5~H22hHh! ~5!

is a linear operator resulting from the transformation of the
time derivative,ht , and

V~H ![2h12d~hd21H21Hh!h ~6!

is the axisymmetric (d52) or planar (d51) form of the van
der Waals term,2¹•(h21¹h), and

S~H ![2h12d~hd21H3@h12d$hd21Hh%h#h!h ~7!

corresponds to the surface tension term,2¹•(h3¹¹2h).
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In this notation, self-similar profiles are steady,
s-independent solutions,H5H̄(h), of the fourth-order non-
linear ODE

N4~H̄ ![T~H̄ !1V~H̄ !1S~H̄ !50. ~8!

To describe localized self-similar behavior, solutions of~8!
must also satisfy far-field boundary conditions allowing
asymptotic matching to a slowly varying outer solution. The
structure of the solution away from a localized singularity is
independent of the evolution of the singularity as the critical
time is approached,t˜tc .2,4 For the rupture problem this
means thatht must remain bounded~independent oft! at any
fixed distance inr from the rupture point. In similarity vari-
ables, this restriction transforms into a far-field Robin bound-
ary condition for the self-similar solutions,

T~H̄ !5 1
5~H̄22hH̄h!˜0 as uhu˜`. ~9!

These far-field asymptotics force the similarity solutions to
have the structure

H̄;Ah1/2 as uhu˜`, ~10!

where the positive matching constantA provides a measur-
able global parameter for comparison of different solutions
of ~1!. As described by Zhang and Lister,2 specifying this
asymptotic behavior as the far-field boundary yields locally
unique solutions to~8!.

Due to the high order and nonlinearity of~8!, analytic
results are severely limited and numerical methods must be
used to obtain solutions. Like other studies of similarity so-
lutions for thin film problems,1,3 Zhang and Lister used a
two-parameter shooting method to search for solutions satis-
fying ~10! starting from given values forH̄(0), H̄hh(0) at
h50. In contrast, we obtained uniformly accurate solutions
of ~8! from a finite difference scheme, on a finite but large
domain of lengthL, with boundary conditions~9!, solved via
an under-relaxed Newton’s method. The boundary condi-
tions are imposed at each edge,4 and the domain is increased
until the numerical solution is independent ofL. Such itera-
tive methods are only locally convergent in solution space
and therefore need well-chosen starting estimates.

For our initial estimate of the solution, we construct a
longwave approximation,H̃(h), to ~8! and ~9! in which the
fourth-order term,S(H), is assumed to be subdominant. The
resulting second-order problem is more analytically and nu-
merically tractable. Let H̃(h)5H̃ (0)(h)1H̃ (1)(h)1¯ ,
whereH̃ (0)(h) is given by

N2~H̃ (0)![T~H̃ (0)!1V~H̃ (0)!50. ~11!

Equation~11! has a unique solution for every positive value
of A in the asymptotic boundary conditions~10!. Subse-
quently, H̃ (1)(h) is given by the solution of the linear
second-order problem

L2~H̃ (0)!H̃ (1)52S~H̃ (0)!, ~12!

whereL2[dN2 is the linearized second-order operator. The
longwave approximations,H̃(h), generated by this approach
are parametrized by the far-field constantA in ~10!.

For almost every value ofA.0, the iterative scheme for
solving ~8! and~9! starting with the two-term approximation
to H̃(h) converges to one of the discrete self-similar solu-
tions H̄m(h), m51,2, . . . @see Fig. 1~a!#, the first six of
which were found by Zhang and Lister.2 Each of theseH̄m

solutions has a distinct value ofA5Am , with a finite basin
of attraction for the iterative scheme forA in a neighborhood
of Am . Having found the first 25 solutions for both the pla-
nar and axisymmetric cases, we note that theAm constants
closely follow power law scalings,Am'0.60/m0.43 for d
52 andAm'0.75/m0.46 for d51. In addition to the values of
Am , Zhang and Lister distinguished the different solutions
they found by tabulatingH̄(0) and H̄hh(0) and plotting
H̄hhh(h) for each. An alternative criterion for differentiating
these solutions is to examine the residual between the exact
solution and longwave approximation,H̄m

R(h)5H̄m(h)
2H̃m(h) @see Fig. 1~b!#. The residuals reveal small ampli-
tude oscillatory corrections localized to a neighborhood of
h50, a contribution to the solution missed by the longwave
expansion. They are eigenstates of a fourth-order boundary
value problem with the values ofAm serving the role of
eigenvalues. Observe that each successiveH̄m

R(h) gains an
extra pair of zeroes, yielding a well-defined method for
counting of theH̄m(h) solutions, independent of, and con-
sistent with, theAm values. Note that in the limitA˜0,
S(H̃) is indeed subdominant, justifying our longwave expan-
sion. Using the first two terms in this expansion was suffi-
ciently accurate to yield convergence of Newton’s method.

We will now use linear stability analysis to show that
only the fundamental self-similar solutionH̄1(h), for d
51,2, is stable, verifying the observations of the direct PDE
simulations.2 Considers time-dependent similarity solutions
of ~4! given by infinitesimal perturbations of the self-similar
solutions,

H~h,s!5H̄m~h!1Ĥ~h!els. ~13!

Substituting ~13! into ~4! yields the linearized eigenvalue
problem

lĤ5L4~H̄m!Ĥ, ~14!

FIG. 1. ~a! The first ten solution profiles for finite-time self-similar axisym-

metric point rupture,H̄m(h), m51,2,...,10. ~b! The longwave residuals,

H̄m
R(h), scaled byO(Am

8 ), showing the fine-scale differences between the

H̄m(h) solutions for the first four profiles.
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where the fourth-order linearized operator is given byL4

5dN4 . The far-field boundary conditions,T(Ĥ)5lĤ as
uhu˜`, again follow from the spatial localization of the
singularity.4 The numerical solution of this problem follows
directly from our use of Newton’s method to obtain the non-
linear solutionsH̄m(h). The converged Jacobian matrix is
the numerical representation of the linearized operator
L4(H̄m); its eigenmodes are calculated via inverse iteration.
For the axisymmetric problem (d52) we also calculated
stability of the H̄m(h) solutions with respect to non-
axisymmetric perturbations,Ĥ(h)einuels, by retaining the
original u dependence of the gradients in~1!.

The symmetries of PDE~1! must be examined to cor-
rectly interpret the spectrum of the linear stability problem.4

A continuous one-parameter family of rupture solutions of
~1! exists under time translations of the rupture time,tc

˜tc1e. Linearizing the action of this symmetry yields an
eigenmode associated with time translation,ĤT(h)5T(H̄)
with lT51. Similarly in the planar case (d51), invariance
under spatial translation,x˜x1e, yields an additional
eigenmode,ĤX(h)5H̄h with lX5 2

5. For axisymmetric point
rupture (d52), this spatial translation mode describes shift-
ing the rupture point in the (x,y) plane and yields ann51
non-axisymmetric eigenmode. We note that while these sym-
metry modes have positive eigenvalues, they do not repre-
sent genuine instabilities. They reflect the fact that solutions
with different rupture positions or critical times appear to be
exponentially diverging in the similarity variables, (h,s).

Our calculations have shown that, apart from the sym-
metry modes, only the fundamental solution,H̄1(h), for
bothd51,2, has no positive eigenvalues and hence is stable
to linear perturbations. Thus, theH̄1(h) solutions describe
stable finite-time self-similar rupture. The dynamical stabil-
ity of these solutions was verified by numerical simulations
of the full PDE ~1! in both planar and axisymmetric geom-
etries. Our calculations also show that axisymmetric rupture
given by H̄1(h) is also stable with respect to non-
axisymmetric perturbations forn51,2,. . . .

While the higher-order solutions,H̄m(h) are unstable for
m.1, this does not mean that they do not play a role in the
dynamics of rupture. In Fig. 2, we show a direct numerical
solution of the axisymmetric PDE~1! starting from initial
data given byH̄4(r ), which reveals a new scenario for rup-
ture. The similarity solution soon destabilizes and rupture
does not take place at the origin,r 50, but in an annular ring
with a finite radiusr c.0. In Fig. 3, the solutions of the PDE
are rescaled in the neighborhood of the ring rupture radius,
r c . They converge to the stable planar (d51) rupture simi-
larity solution,H̄1(h); this reflects the fact that the influence
of the ring curvature can be neglected in the localized neigh-
borhood ofr c ast˜tc . In a full simulation of~1!, we expect
ring rupture to be unstable to non-axisymmetric perturba-
tions, leading to a set of isolated point ruptures; further in-
vestigation of these phenomena awaits forthcoming work.
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FIG. 2. Solution of the axisymmetric problem for~1! showing destabiliza-

tion of theH̄4(h) solution yielding ring rupture withr c'0.71.

FIG. 3. Rescaled solutions from Fig. 2 showing convergence to the planar

(d51) similarity solution,H̄1(h), in terms of the ring-centered similarity
variableh5(r 2r c)/t

2/5.
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