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Abstract The application of rotorcraft to autonomous load

carrying and transport is a new frontier for Unmanned Aerial

Vehicles (UAVs). This task requires that hovering vehicles

remain stable and balanced in flight as payload mass is

added to the vehicle. If payload is not loaded centered or

the vehicle properly trimmed for offset loads, the robot will

experience bias forces that must be rejected. In this paper,

we explore the effect of dynamic load disturbances intro-

duced by instantaneously increased payload mass and how

those affect helicopters and quadrotors under Proportional-

Integral-Derivative flight control. We determine stability

bounds within which the changing mass-inertia parameters

of the system due to the acquired object will not destabilize

these aircraft with this standard flight controller. Addition-

ally, we demonstrate experimentally the stability behavior of

a helicopter undergoing a range of instantaneous step pay-

load changes.

A preliminary version of this work was presented at International

Conference on Robotics and Automation 2011 (Pounds et al. 2011).
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1 Introduction

Unmanned Aerial Vehicles (UAVs) have rapidly evolved

into capable mobility platforms able to maneuver, navi-

gate and survey with a high degree of autonomy. A nat-

ural progression is to advance beyond simple locomotion

and observation to physical interaction with objects and the

fixed environment. Of specific interest is grasping and re-

trieving objects while hovering, combining terrestrial robot

manipulation capabilities with the range, speed and verti-

cal workspace of flying vehicles. This could make possible

novel applications for UAVs, such as search and retrieval in

rough or inaccessible terrain, or networked aerial logistical

supply chains over large areas.

Along these lines, there is growing interest in the re-

search community towards the development of aerial robotic

systems capable of acquiring external payloads or other-

wise physically interacting with objects in the environ-

ment (Bernard and Kondak 2009; Mammarella et al. 2008;

Scott et al. 2007; Bisgaard et al. 2009; Raz et al. 1988;

Michael et al. 2009; Amidi et al. 1998; Kuntz and Oh 2008;

Borenstein 1992). In our own lab, we have developed the

Yale Aerial Manipulator and have demonstrated generalized

object retrieval and transport of unstructured objects through

the use of a highly adaptive compliant grasper mounted ven-

trally on the helicopter airframe (Pounds et al. 2011) (see

Figs. 1 and 2). This enables the aircraft to acquire a variety

of target objects, even in the presence of large positioning

errors due to aerodynamic disturbances.

While there are a number of substantial challenges and

open research questions related to this application, this pa-
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Fig. 1 Yale Aerial Manipulator carrying a 1.5 kg toolcase in hover

Fig. 2 Yale Aerial Manipulator with gripper and fixed gear

per focuses on aircraft stability in the presence of large ac-

quired payload objects that cannot be precisely positioned

at the center of mass of the vehicle. Unlike full-scale heli-

copters, a robot vehicle cannot rely on a human to account

for instantaneously applied load imbalances and altered trim

offsets. The limited intelligence of the aircraft must be suf-

ficient to maintain the stability and desired flight trajectory.

Furthermore, most robot vehicles used in research are very

small and may be more sensitive to the effects of loads than

their larger brethren.

Of particular interest are off-the-shelf Proportional-

Integral-Derivative (PID) flight stabilizers that are increas-

ingly available for small-scale helicopter UAVs. It is desir-

able to employ this class of control system without resort

to more complex and expensive custom solutions. Thus it is

important to ascertain the suitability and limitations of PID

regulators, and show that they will be robust to the dynamic

changes and disturbances introduced by adding unbalanced

payload to a small helicopter in flight.

We begin the paper by presenting the dynamic model

of the longitudinal and pitch dynamics of a helicopter with

a PID attitude controller, along with the analytical bounds

for object mass and placement for closed-loop stability and

cyclic control saturation. In Sect. 3, we provide the numer-

ical results of these bounds for two real helicopters and ex-

amine the sensitivity of safe loading distributions for vari-

ations in control parameters and scaling of the robot air-

craft. In Sect. 4, we experimentally demonstrate that a PID-

stabilized helicopter is robust to a wide range of payload

mass and position step disturbances. Finally, in Sect. 5, we

analyze the loading bounds of PID-stabilized quadrotor plat-

forms and compare to those of traditional helicopters.

2 Helicopter stability with added payload

Adding payload mass to a helicopter changes the dynamic

response of the system. The aircraft’s flight control system

must continue to maintain stability with altered attitude dy-

namics and must also reject any bias torque induced by

a shifted center of mass. If the controller does not main-

tain stability with changed mass parameters, or cannot re-

ject the step disturbances due to added torque bias from un-

balanced loading, the system will be destabilized whenever

an object is grasped. This is especially important where a

linear commercial off-the-shelf system is used, which may

not be adaptable to a changing plant mid-flight. Adding

mass to the vehicle slows the natural frequency of the atti-

tude dynamics—this has the advantage of filtering out high-

frequency disturbances, but makes it harder to affect fast

course corrections.

While several autonomous helicopters have flown with

tethered loads (Bernard and Kondak 2009; Bisgaard et al.

2009; Michael et al. 2009), the slung configuration is specif-

ically designed to decouple the motion of the load from the

helicopter, and separate the timescales of the attitude and

tether-pendulum dynamics (Raz et al. 1988). In the case of

grasped and rigidly affixed loads, the payload is directly

coupled to vehicle pitch and lateral motions—the closed-

loop system must be shown to remain stable in the expected

range of system mass and inertia.

2.1 Helicopter dynamic model

Much work has been done to control autonomous rotorcraft

flight attitude, and the dynamics of helicopters in hover are

well understood (Amidi et al. 1998; Pounds et al. 2010;

Mettler 2003). Due to the largely decoupled lateral and lon-

gitudinal dynamics of helicopters around hover, a planar lin-

ear model is useful for analyzing the stability of both the

free-air and ground-coupled systems. In this paper, longitu-

dinal dynamics are considered, but the analysis is equally

applicable to lateral flight near hover.

The rigid-body dynamics of the linearized planar heli-

copter in hover are1 (Fig. 3):

mẍ = −mgβ − mgθ − mgu (1)

Iθ̈ = mghβ + mghu + w (2)

1Rotor thrust is taken as constant, exactly canceling helicopter weight.
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Fig. 3 Planar aircraft dynamics free body diagram

where m is the mass of the helicopter, I is the rotational in-

ertia in pitch, g is acceleration due to gravity, x, z and θ are

the longitudinal, vertical and angular position of the CoG

with respect to the inertial frame, h is the rotor height above

the CoG, β is the first harmonic longitudinal rotor flapping

angle, u is the cyclic pitch control input, and w is the pitch

moment applied by the payload.

All helicopters exhibit rotor flapping (Prouty 2002); we

consider a teetering rotor free to pivot at the center like a

see-saw. In horizontal motion, the on-coming wind causes

an imbalance in lift between the blades on either side of

the rotor disc. This causes the rotor plane to pitch upward,

changing the angle of attack of each blade until a new equi-

librium is reached.

The angled rotor directs some of its thrust aft, slowing

the helicopter and producing a pitching moment. Flapping

dynamics are a crucial part of helicopter stability analysis,

even at low speeds (Pounds et al. 2010). The rotor pitch re-

sponse time is extremely fast, and so it can be represented

analytically, without need for additional states.

At low speeds, the flapping angle produced by a ‘see-

saw’ teetering rotor head is an approximately linear combi-

nation of the longitudinal translation and pitch velocities:

β = q1ẋ − q2θ̇ (3)

where q1 and q2 are constant parameters of the rotor

(Pounds et al. 2010).

In the case of rotor heads with Bell-Hiller stabilizer bars,

the flapping angle is augmented by that of the sub-rotor,

multiplied by the mechanical advantage of the stabilizer

linkage transmission K (Mettler 2003):

β ′
= β + K(q1s ẋ − q2s θ̇ ) (4)

where q1s and q2s are the stabilizer flapping parameters. To-

gether, the stabilized rotor dynamics are homologous to that

of a conventional rotor with slower time constants:

β ′
= (q1 + Kq1s)ẋ − (q2 + Kq2s)θ̇ (5)

Thus, we need not distinguish between the two in this anal-

ysis.

Helicopter pitch and longitudinal motion are strongly

interdependent, but vertical motion is effectively decou-

pled from these around hover. Solving the longitudinal

translation-pitch equations together produces a single-input-

single-output transfer function between the cyclic control in-

put and the pitch angle in free flight:

H =
m2ghs

IGs2 + mghq2Gs − m2g2hq1(q2s − 1)
(6)

where G = (ms + q1mg), the dynamics associated with

translation due to pitch.

2.2 Flight stability with payload mass

Level flight of helicopters is regulated by an onboard flight

controller, maintaining θ = 0. A common architecture used

in UAV rotorcraft is Proportional-Integral-Derivative con-

trol. The transfer function for a PID controller has the form:

C = k

(

1 + ki

1

s
+ kds

)

(7)

where k is the control gain, and ki and kd are the integral

and differential control parameters.

The stability of the closed-loop system can be assessed

by examining the transfer function characteristic polyno-

mial. The polynomial is the sum of the products of the nu-

merators (subscript n) and denominators (subscript d) of C

and H :

CnHn + CdHd (8)

Substituting (6) and (7), this becomes:

s3
+

(

mgh

I
(q2 + kkd) + q1g

)

s2
+ k

mgh

I
s

+
mgh

I
(kki + q1g) (9)

As the unladen helicopter is stable in free air, this polyno-

mial is known to be stable.

Adding payload to the aircraft changes three key param-

eters: m, the mass of the helicopter, I , the rotational inertia

of the helicopter, and h, the height of the rotor plane above

the CoG. Changes to these values depend on three attributes

of the acquired load: n, the mass of the payload, and dx and

dz, the longitudinal and vertical offsets of the payload mass

from the vehicle CoG. The adjusted parameters are calcu-

lated by:

m′
= m + n (10)

I′ = I + In + n
(

d2
x + d2

z

)

(11)

h′
= h +

n

n + m
dz (12)

where In is the rotational inertia of the added payload.2

2Note that all rotations are considered to occur around the unloaded

CoG of the helicopter; offset mass effects are accounted for in the load

bias torque.
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Fig. 4 Stability region for offset loads isometric with mass isoclines

The continued stability of the characteristic polynomial

can be assessed using the Routh-Hurwitz criterion (Pounds

and Dollar 2010). The criterion states that for a dynami-

cal system to be stable, its characteristic polynomial must

have all positive coefficients, and that leading entries in the

Routh-Hurwitz array derived from those coefficients must

be positive. In the case of a third order polynomial:

s3
+ a1s

2
+ a2s + a3 (13)

The lead elements of the array are given by:

b1 = (a1a2 − a3)/a1 (14)

c1 = a3 (15)

Mass added to the helicopter is always positive. While in

principle dz may be arbitrarily positive or negative, the struc-

ture of most helicopters precludes adding mass sufficiently

far above their centers of gravity such that h′ < 0. Thus, the

characteristic polynomial coefficients are always positive.

Therefore, as c1 = a3, only array element b1 can change

signs. From (14) the stability condition becomes:

a1a2 − a3 > 0 (16)

Substituting the characteristic polynomial coefficients

and (10)–(12) and rearranging, this can be expressed as:

m′gh′

I′
>

q1g − q1gk + kki

(q2 + kkd)k
(17)

Note that the right-hand side of the inequality consists only

of constant terms of the aerodynamics and controller; we de-

note this constant P . All mass and inertial parameters mod-

ified by changing payload appear on the left-hand side of

Fig. 5 Stability region for offset loads position-mass, height map

the inequality; we denote this variable Q. Thus, any load-

ing configuration will be stable provided that Q > P . This

stability criterion Q is a physical characteristic of the ve-

hicle relating rotor cyclic torque to rotational acceleration,

and has units of s−2. It appears in (2) as the open-loop pitch

transfer function gain:

θ(s)

β(s)
= Q

1

s2
(18)

Stability criterion (17) can be directly transformed into a

relation between the three load attributes:

(m + n)g(h +
n

m+n
dz)

I + n(d2
x + d2

z )
> P (19)

The rotational inertia of the load, In, is considered to be

very small and is treated as zero. This relation can be solved

to compute the range of permissible offsets, given a known

payload mass, or conversely for maximum load given a pay-

load position envelope.

The surface of the stability bound Q = P is a hyperbolic

cylindrical funnel (Figs. 4 and 5); loading configurations un-

der this surface are stable. The funnel is centered around

dz = g/2P with a circular asymptote (Fig. 5) of radius:
√

4Ph + g2

4P 2
(20)

Within this circle, no amount of added mass will destabi-

lize the vehicle. Note that the numerical values in Figs. 4,

5, and 6 are from the T-Rex 600 helicopter and the standard

controller described in Sect. 3 below, but the general shape

holds for a wide range of helicopters and controllers.

In practice, the distribution of payload on a helicopter

with a ventral gripper has much less variation in dz than dx

due to the fixed height of the gripper below the helicopter.



Auton Robot (2012) 33:129–142 133

Fig. 6 Stability region for offset loads vertical position-mass, eleva-

tion

Fig. 7 Stability metric position-mass isoclines, dz = 0.2 m

The boundary of the cross-section through the stable config-

uration region can be determined by holding dz fixed:

d2
x <

(

mgh − P I

P

)

1

n
+

gh + gdz − Pd2
z

P
(21)

Correspondingly, the hyperbolic asymptote (Fig. 7) is

given by:

dx =

√

h + dz − Pd2
z

P
(22)

Similarly to (20), any mass (up to the capacity of the vehicle)

may be added without destabilizing the aircraft.

Beyond predicting stability, the Q metric provides an in-

dication of the robustness of the system. The value of Q

decreases monotonically as dx and n approach the stability

bound at Q = P (Fig. 7).

Fig. 8 System disturbance block diagram

2.3 Load offset bias torque rejection

Given loading conditions known not to compromise the dy-

namic stability of the vehicle in flight, it can be shown that

the steady-state bias torque accompanying payloads offset

from the CoG will be rejected by the controller. Solving the

linearized equations in the s-domain, the aircraft pitch an-

gle can be written as a sum of the open loop system transfer

function and a filtered load disturbance (Fig. 8):

θ(s) =
m2ghsu(s) + Gw(s)

IGs2 + mghq2Gs − m2g2hq1(q2s − 1)
(23)

where G = (ms + q1mg). This can be rewritten as:

θ(s) =
Hn

Hd

u(s) +
G

Hd

w(s) (24)

As the system is linear, the two transfer functions can

be considered separately. In closed-loop control with lin-

ear compensator C, the transfer function between the dis-

turbance and the output is:

θ(s)

w(s)
=

G

Hd + CHn

(25)

The denominator is identical to that of the stabilized closed

loop transfer function between reference, r , and the output:

θ(s)

r(s)
=

CHn

Hd + CHn

(26)

Thus, the stability of the disturbance response is not depen-

dent upon G. Given a compensator that successfully regu-

lates the attitude dynamics around hover, small torque bias

disturbances that do not take the system into the nonlinear

regime or saturate the cyclic control margin will be rejected.

As G contains the non-zero constant q1mg, the numer-

ator of the disturbance transfer function (after a pole-zero

cancellation at the origin) will not act as a pure zero:

θ(s)

w(s)
= m(s + q1g)

×
(

(m2g2hq1 + Ims2(s + q1q) + m2ghq2s
2)

+ m2gh(kkds2
+ ks + kki)

)

(27)

Consequently, the response to a bias disturbance, while sta-

ble, will not decay to zero. This has substantial implications

for robot aircraft adding and removing payload.
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Fig. 9 Cyclic control limits of a helicopter: center of mass inside (a)

and outside (b) cyclic range

2.4 Flight trim with offset payload

Conventional helicopter balancing places the payload’s cen-

ter of mass coaxial with the rotor shaft so that the thrust force

is aligned with the load. Due to the positioning error inher-

ent with aerial grasping, the payload may be significantly

off-center when captured. An offset load weight force and

the rotor thrust produce a torque couple that acts to destabi-

lize the aircraft (Raz et al. 1988).

In flight, small imbalances can be trimmed out by adjust-

ing the cyclic blade pitch inputs so that the thrust vector is

tilted to pass through the true center of mass. One degree of

cyclic blade pitch results in one degree of thrust angle de-

flection (Leishman 2006, p. 182). A typical small helicopter

has a useful blade pitch range of 20 degrees (Prouty 2002),

which requires that the center of mass of the helicopter-

gripper-object system fall within a cone of approximately 10

degrees from the rotor axis (Fig. 9a). However, utilizing the

full range of cyclic control to actively trim out load offsets

comes at the expense of limited maneuvering control.

An unbalanced helicopter has less ‘maneuvering margin,’

the available cyclic range to affect maneuvers (Leishman

2006). If the payload is sufficiently imbalanced, its center

of mass may be so far from the rotor axis that cyclic rotor

trim cannot compensate; if the combined center of mass of

the system lies outside of the cyclic cone, no degree of ap-

plied control will stabilize the vehicle in flight (Fig. 9b).

When an unbalanced load is added to the helicopter, the

trim position during hover is affected. From (2), by inspec-

tion the equilibrium condition occurs when:

m′gβ + m′gu =
w

h′
(28)

Substituting into (1), the lateral acceleration becomes:

m′ẍ = −
w

h′
− m′gθ (29)

As the onboard controller seeks to return θ to zero in equi-

librium, this will result in constant longitudinal acceleration.

Human pilots trim for this imbalance by allowing non-zero

values of θ in hover.

Fig. 10 Cyclic trim balance angle

For simple weight load torque w = ngdx , this gives the

trim condition:

mgθ = ng
dx

h′
(30)

which yields:

θ =
dx

hm
n

+ h + dz

(31)

This is the angle subtended by the rotor axis and the com-

bined CoG—the trim condition where the net mass is sus-

pended directly below the rotor hub in hover (Fig. 10).

If the mass and attachment position of the payload is

known a priori or actively sensed, the flight controller can

be instructed to maintain this pitch angle and so avoid un-

bounded position drift.

For level hover, u = −θ , and this trim angle must always

be within the helicopter’s cyclic control range. If the cyclic

control saturates, the helicopter will be uncontrollable. Typi-

cal cyclic range for a small scale helicopter is ±10◦ (Prouty

2002). The cyclic range places a static load bound on the

allowable mass distribution, with an asymptote at:

dx = θ(h + dz) (32)

where dz < h.

2.5 Cyclic range dynamic saturation

Sections 2.3 and 2.4 showed that the step disturbance intro-

duced by instantaneously adding an imbalance load will be

rejected provided the cyclic range of the helicopter is not sat-

urated by the control response. When the system combined

center of mass lies exactly on the edge of the cyclic cone, the

steady-state control input u will equal the maximum cyclic

deflection angle.

However, the oscillatory response of the controller to

adding a mass near this limit can lead to transient u satu-

ration, during which the guarantees of linear systems theory

do not hold. The response of u to an applied load is:

u(s)

w(s)
= −

CnG

(CdHd + CnHn)
(33)
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The load response is a fourth order system, comprising a

pure integrator derived from C and Hn, a near-origin zero, a

fast pole and closely matched oscillatory pole-zero pair. The

fast pole dominates the early response of the system, with

the oscillatory dynamics contributing relatively little—less

by an order of magnitude.

The initial response is approximately:

u(s)

w(s)
≈

kkd

I(s + p)
(34)

where p is the single real pole of (CdHd +CnHn), found by

transforming the system in the form s(s3 + b1s
2 + b2s + b3)

into s(s + p)(s2 + 2ζωns + ω2
n). Solving gives:

p =
1

3
b1 +

1

6
X − 6

(

1

3
b2 −

1

9
b2

1

)

1

X
(35)

where

X =
[

12
(

12b3
2 − 3b2

2b
2
1 − 54b2b1b3 + 81b2

3 + 12b3b
3
1

)
1
2

− 36b2b1 + 108b3 + 8b3
1

]
1
3 (36)

for

b1 = q1g + (q2 + kkd)Q (37)

b2 = kQ (38)

b3 = (kki + q1g)Q (39)

Provided that (kkd/Ip)w is within the cyclic range, the sys-

tem will not experience dangerous saturation. Within the

range of permissible dynamic bound payload configurations,

this is satisfied everywhere the cyclic trim bound is satisfied.

The uncanceled integrator is a consequence of the trans-

lational instability of x due the constant torque imbalance.

Adjustment of flight trim as described in Sect. 2.4 counters

this effect. If left unchecked, the vehicle would accelerate,

leading to increasing flapping countered by more cyclic, un-

til higher-order effects such as fuselage drag restore equilib-

rium, or the cyclic saturates.

3 Numerical results and sensitivity analysis

In order to provide greater insight into analytic solutions

described above, in this section we examine the stability

bounds for two real helicopter UAVs and controllers. The

mechanical and control parameters for the Align T-Rex 600

(used as the base platform for the Yale Aerial Manipulator

(Pounds et al. 2011)) and the Yamaha R-50 (which is more

than 10 times larger in mass) are given in Tables 1 and 2.

In the subsections below, we consider at the numerical

dynamic and cyclic trim stability bounds for the T-Rex 600

(Sect. 3.1), and examine the sensitivity of those bounds to

changing controller parameters (Sect. 3.2). Finally, we com-

pare the results for the T-Rex 600 to the much larger R-50

(Sect. 3.3).

Table 1 T-Rex 600 parameters

Aerodynamics and mass parameters

g 9.81 m s−2 m 4 kg

h 0.2 m I 0.1909 kg m

q1 0.0039 dz 0.275 m

q2 0.0266

PID control parameters

k 0.24 kd 1.7

ki 0.7

Fig. 11 Longitudinal position-mass stability bounds for dz = 0.2 m

3.1 T-Rex 600 stability bounds

As described earlier, the dynamic bounds of the T-Rex 600

(with the physical parameters and controller gains given in

Table 1) are shown in Figs. 4, 5, and 6, with the stability

metric Q, plotted as a function of payload mass and longi-

tudinal position, shown in Fig. 7.

However, the cyclic trim bounds must also be taken into

account. Combined with (22), the cyclic trim bound of (31)

describes the range of allowable payload mass and position

parameters (Fig. 11). Of the two bounds, the cyclic trim ap-

plies a much stricter limit on payload position than the dy-

namic stability bounds (Fig. 12). With limited cyclic control

authority, the range of allowable payload positions, and the

effect on dynamics stability, is expected to be small.

3.2 Sensitivity to control gains

The P boundary is dependent on both physical helicopter

parameters and gains of its flight controller. Mechanical con-

stants of the aircraft, such as rotor parameters q1 and q2, and

the height of the rotor hub h, do not vary significantly in op-

eration. Control gains, however, are subject to variation as

the controller is adjusted between missions (and some con-

trollers may also permit adjustment during flight).
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Fig. 12 Position stability bound isoclines for 0.25 and 2 kg loads

Fig. 13 1 kg payload bounds with changing proportional flight control

gain

A range of helicopter flight controller gains can be chosen

depending upon the desired performance of the vehicle for a

given task or loading condition. Figures 13, 14 and 15 show

how variations in the proportional, integral, and derivative

controller gains affect the dynamic payload stability bounds,

respectively. Sensitivity of a helicopter’s stable loading con-

figuration to parameter adjustment is generally low. How-

ever, it can be seen that, in terms of the controller gains

tuned to give good performance of the T-Rex 600, variations

in the proportional and derivative gains have a much greater

effect on the stability bounds than the integral term. Only

extremely small gain values will produce dynamic stabil-

ity bounds more stringent than those imposed by the cyclic

pitch limit, which does not change with varying control pa-

rameters, and these may be unstable in free flight.

3.3 Mass scaling

Scaling up to a larger aircraft increases the amount of pay-

load that can be carried. For payloads of a fixed propor-

tion of aircraft mass, the Q metric remains constant with

changing weight. However, required rotor height increases

quadratically with increase in payload offset; the bound due

Fig. 14 1 kg payload bounds with changing integral flight control gain

Fig. 15 1 kg payload bounds with changing derivative flight control

gain

to cyclic limit is linear. Consequently, although a larger he-

licopter will have a smaller dynamic bound, it will have a

larger cyclic bound.

To make a comparison between differently sized aircraft,

a vehicle with a similar main rotor speed (and thus Froude

Number) is chosen: the Yamaha R-50 industrial UAV. The

R-50 weighs 44 kg, approximately 10 times the mass of the

T-Rex 600, with rotor speed of 86 rad s−1. Parameters of the

R-50 taken from Mettler (Mettler 2003) and Enns and Ke-

viczky (Enns and Keviczky 2006) are given in Table 2. No

information on the cyclic range of the R-50 was available,

but it is expected to be approximately 10◦, like the majority

of helicopters. The control parameters of the two systems are

similar, with the exception of slightly greater system gain of

the R-50.3

In the case where the T-Rex 600 and R-50 are loaded with

payload 25 per cent of their unladen mass (1 kg and 11 kg,

3The R-50 control structure does not use a pure integral term—its in-

tegral action is derived from position. The value of ki used is inferred.
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Table 2 R-50 parameters

Aerodynamics and mass parameters

g 9.81 m s−2 m 44 kg

h 0.573 m I 9.99 kg m

q1 0.002 dz NA m

q2 0.0151

PID control parameters

k 0.29 kd 1.5

ki 0.75

Fig. 16 R-50 and T-Rex 600 loading bounds for payloads 25 per cent

of vehicle mass

respectively), it can be seen that the R-50’s useful horizontal

payload offset is approximately 50 per cent wider than that

of the T-Rex 600 (see Fig. 16). Simple linear scaling would

predict a 67 per cent increase; the slightly lower value is due

to differences in rotor and gain values.

4 Stability to payload offset experiments

Validation of the analysis warrants experimental verifica-

tion of changing helicopter stability under PID control after

payload capture. However, probing stability bounds is both

challenging and potentially unrecoverable. In the case of a

real helicopter in free flight, it is generally not possible to

recover the system after going unstable, naturally prevent-

ing operation in unsafe regions. Furthermore, as even small

wind drafts will disturb small vehicles, it is nearly impossi-

ble to establish constraints desirable for experimental analy-

sis, and even the best sensory suites for unstructured outdoor

environments (where systems such as Vicon are unavailable)

have a relatively slow response and low sensitivity.

Consequently, we have taken the approach of showing

basic validation of the analytical results by performing nu-

Fig. 17 Yale Aerial Manipulator with payload rail and fixed gear

merous experimental trials in real, unstructured environ-

ments. These demonstrate aircraft stability and bias rejec-

tion for predicted stable configurations. Identified system

responses of the vehicle for a range of loadings is shown

to follow the trend expected as the system moves towards

instability, within the bounds of what is reasonably tractable

in unstructured outdoor environments.

Two experiments were performed: the first to demon-

strate robustness of the flight controller to changing step

loads (with fixed position) and the second to assess stabil-

ity of the controller with changing payload positions (and

fixed mass).

4.1 Experimental platform

Our experimental platform is the 4 kg, 1.5 m rotor, T-Rex 600

ESP radio control helicopter (Align, Taiwan) (see Fig. 17).

The helicopter is fitted with a Helicommand Profi flight sta-

bility system that employs a PID attitude controller, with

known parameters. It also controls height above ground and

position drift using optical feedback, but this function is

turned off during experiments to avoid interference with dy-

namic response measurements. Flight attitude is measured

by a 3DM-GX3-25 inertial measurement unit (Microstrain,

Vermont USA) and transmitted via Bluetooth to an off-board

laptop.

A 0.48 m long aluminum rail is mounted ventrally be-

tween the helicopter’s skids, 0.2 m below the unladen air-

craft CoG, aligned with the aircraft x axis (see Fig. 17). The

rail has mounting holes every 25.4 mm to which a fixed mass

or remote-triggered electromagnet may be secured, allowing

loads to be shifted between tests, or dropped mid-test.

4.2 Induced load bias test

In the first experiment, a 0.125 kg test mass was dropped

from a range of mounting positions under the helicopter to
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Fig. 18 Normalized unit load bias step responses

Fig. 19 Normalized shifted mass drop step responses

produce a step load disturbance. From (28), rotor cyclic con-

trol is analogous to applied torque—by trimming the aircraft

in flight with the test mass in place and then releasing it, the

pitch dynamics will emulate the effect of instantaneously ap-

plying an unbalanced payload.

Prior to the drop, the helicopter is autonomously held sta-

tionary out of ground effect, at a pitch angle that cancels the

moment of the test mass. As the drop is triggered, the hor-

izontal position control of the flight stabilizer is simultane-

ously disabled.

The resulting pitch motion of the aircraft shows that the

system successfully rejects step biases (see Fig. 18). Five

trials were performed, with the test mass 50.8 mm forward

of rotor axis and moved 50.8 mm further from the rotor axis

each time. As expected from (29), however, the lateral mo-

tion of the aircraft was unbounded and experiment settling

time was limited by available flight space.

4.3 Added mass flight stability test

In the second experiment, an offset payload is added to the

helicopter to assess stability of the controller with changing

payload configurations. The payload is fixed at a range of

locations on the mounting rail, and the helicopter is trimmed

for the added weight, along with a smaller test mass at a

Fig. 20 Shifted mass step response pole positions

fixed location. The experiment setup is as previously: the

aircraft is kept stationary under autonomous control until the

test mass is released to induce a step response. In total, 24

trials were performed, with the fixed mass moved 25.4 mm

further from the rotor axis, every third trial.

From (25), the expected disturbance step response is a

one zero, three pole system with a decaying oscillation pe-

riod of 7.6 s. Due to limited airspace for testing, not all tests

could be allowed to continue to complete settling.

In outdoor flight, the pitch motion of the aircraft is

noisy, making estimation of the system poles difficult. Some

cross-coupling between pitch and roll was observed; a least-

squared regression on roll measurements identified a linear

coupling factor and phase lag that was used to remove its

influence in the pitch measurement.

The aggregate dynamics tracked the predicted step re-

sponse of the system (see Fig. 19), with a slightly shorter

oscillation period than predicted (∼5 s). Given the noise in

the measurements, the oscillatory poles of the step responses

were widely spaced; they are shown in super imposed on the

root locus with respect to changing Q in Fig. 20. As Q de-

creases, the system is expected to become more oscillatory,

crossing the axis when Q = P . However, the limitation im-

posed by (31), prevented the mass from being displaced far

enough to discern any trend towards incipient instability.

5 Quadrotor stability with changing payload

The stability analyses presented in Sect. 2 can be straight-

forwardly extended to quadrotors, which are popular exper-

imental platforms for UAV researchers. Unlike conventional

helicopters, quadrotors do not use a cyclic blade pitch con-

trol to effect manoeuvres, but rather use speed changes be-

tween pairs of rotors to induce control torques. Also, the

small, high-speed rotors of quadrotors induce proportionally

less flapping than full-scale helicopters. Consequently, the
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Table 3 X-4 Flyer parameters

Aerodynamics and mass parameters

g 9.81 m s−2 m 4.34 kg

h −0.007 m I 0.084 kg m

d 0.32 m umax 2.95 N m

PID control parameters

k 4.6 kd 0.3

ki 0.2

dynamics of a quadrotor with changing load conditions are

distinctive.

While numerous techniques have been developed for

controlling quadrotor flight angle, standard PID controllers

are popular and effective (Pounds et al. 2010; Bouabdallah

et al. 2004). By choosing a quadrotor of similar size, pay-

load capacity, and controller architecture to the T-Rex 600

analyzed above, the differences in the stability bounds for

the two platform architectures can be compared.4

For our purposes, we will consider the ANU X-4 Flyer,

an unusually large 4 kg quadrotor with similar payload ca-

pacity to the T-Rex 600; although the X-4 is fitted with ex-

plicit mechanical flapping hinges, its flapping coefficients

are much smaller (q1 = 0.0015 and q2 = 0.013) and can be

effectively ignored. Its parameters are given in Table 3.

5.1 Quadrotor dynamic model

Dynamic modeling and control of quadrotors is a well-

studied problem (Borenstein 1992; Pounds et al. 2010;

Bouabdallah et al. 2004; Hamel et al. 2002). While the

core mechanics of quadrotors are very similar to helicopters,

there are two key differences. Firstly, the tip-path plane of a

rotor is largely constant for small quadrotors in low-speed

flight. The direction of rotor thrust always remains perpen-

dicular to the rotor shaft—no off-axis forces are applied

to the vehicle. This separates the cross-coupling between

cyclic control input and translation, and between transla-

tional velocity and pitch, greatly simplifying the dynamics

(see Fig. 21).

Secondly, the horizontal displacement of pairs of rotors

from the center of gravity of the aircraft causes the rotors to

move vertically through the rotor air stream as the vehicle

pitches and rolls (Pounds et al. 2010). This vertical motion

relative to the vertical wind changes the local observed an-

gle of attack of the blade airfoils. A rotor moving upwards

4Compared with helicopters of the same mass, quadrotors have signif-

icantly smaller rotors with faster blade tip speeds, making the Froude

Numbers very different. Furthermore, unlike small platforms, larger

quadrotors more strongly exhibit flapping, complicating the compari-

son.

Fig. 21 Quadrotor free body diagram

experiences a decrease in thrust, while a rotor moving down-

wards experiences an increase in thrust—the resulting thrust

differential opposes the direction of rotation, damping the

motion. This damping effect can be an order of magnitude

greater than the similar effect from rotor flapping due to

pitch and roll.

The rigid-body dynamics of a simplified linearized planar

quadrotor in hover are:

mẍ = −mgθ (40)

Iθ̈ = −q3θ̇ + u + w (41)

where q3 is a rotor inflow damping constant, and in this

case u is the pitch torque control input. Flapping effects are

treated as negligible and ignored.

The longitudinal transfer function between torque input

and pitch angle is straightforward to compute, as horizontal

translation is decoupled:

H =
1

Is2 + q3s
(42)

5.2 Flight stability with payload mass

Like conventional helicopters, quadrotors are regularly sta-

bilized in attitude with PID flight controllers. As before,

the stability of the resulting system can be demonstrated

with linear systems analysis. Unlike cyclic-controlled heli-

copter, quadrotors do not exhibit flapping term cancellation

that reduces their dynamics to third order. If flapping me-

chanics are excluded, pitch dynamics are naturally second

order. Consequently, stability analysis is much simpler, and

has no dependency on mass or the height of the rotor above

the CoG.

The characteristic polynomial for a quadrotor with PID

stabilization is:

s3
+

1

I
(q3 + kkd)s2

+
k

I
s +

kki

I
(43)

Stable third order polynomials of the form s3 +a1s
2 +a2s +

a3 require that all coefficients be positive and that a1a2 −
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Fig. 22 X-4 Flyer dynamic stability isoclines and T-Rex 600 dynamic

stability surface (shaded)

a3 > 0. This produces a stability criterion in the form similar

to that of (17):

1

I′
>

ki

q3 + kkd

(44)

Unlike (17) quadrotors are not sensitive to change in

cyclic control torque scaling due to vertical shift of the cen-

ter of mass. Consequently, the surface of the stability bound

is centered around the unladen vehicle’s center of mass,

rather than below it (see Fig. 22). This makes quadrotors

more suitable than helicopters for conditions where the air-

craft must be loaded high in the airframe. A related case for

raising the center of mass of quadrotors to improve control

performance was described previously (Pounds et al. 2010).

For the same reasons, quadrotors have a pure hyperbolic

asymptote at the CoG; there is no circular region of insensi-

tivity to load mass, making them more sensitive to the dis-

placement of heavy loads. However, the inflection of the sta-

bility surface is less than that for helicopters and so quadro-

tors like the X-4 Flyer are less sensitive in the range of loads

that are typically carried. At the X-4 Flyer’s 1 kg payload

capacity, the permissible offset range is similarly sized with

the T-Rex 600 (see Fig. 23).

5.3 Load offset bias torque rejection

The disturbance transfer function is similarly derived as per

conventional helicopters. The linearized system is of the

form:

θ(s) =
1

Hd

u(s) +
1

Hd

w(s) (45)

where control input and load disturbance have the same unit

numerator. In closed loop, the sensitivity function is:

θ(s)

w(s)
=

1

1 + CHd

(46)

which once again has the same denominator of the closed-

loop pitch dynamics, and is thus stable. Unlike the case of

Fig. 23 X-4 Flyer and T-Rex 600 dynamic stability isoclines

Fig. 24 Quadrotor force balance in trim

helicopter, the lack of quadrotor flapping5 results in the dis-

turbance step response decaying to zero:

θ(s)

w(s)
=

s

Is3 + (q3 + kkd)s2 + ks + kki

(47)

5.4 Flight trim with payload offset

Unlike conventional helicopters, planar quadrotors develop

lifting thrust at two points on the aircraft and do so in a con-

stant vertical direction. Load imbalances are adjusted for

by changing the relative proportion of the thrusts (whilst

keeping the overall magnitude of thrust constant). Of par-

ticular interest for robotics applications of hovering air-

craft, quadrotors can maintain horizontal flight attitude even

with unbalanced loads, without necessarily producing lateral

thrust (see Fig. 24).

The permissible static imbalance torque w = ndx is lim-

ited by the maximum increase or decrease in rotor speed, δω

5In practice all rotorcraft exhibit flapping, however small.
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Fig. 25 Quadrotor trim stability boundary

and the distance of the rotor hubs from the unladen center

of gravity, d , which produce a maximum achievable torque

umax ∝ δω2:

0 = umax − ngdx (48)

This hyperbolic relation has asymptotes at dx = 0 and n = 0,

but does not depend on vertical offset of the added mass (see

Fig. 25).

Compared with a conventional helicopter the range of lat-

eral offsets that may be accommodated is quite small, sig-

nificantly less than the cyclic stability cone below the rotor

(see Fig. 26). Although a quadrotor may achieve substantial

thrust, the unidirectional thrust of opposing motors acts to

limit the maximum reaction torque that can be applied—

only a relatively small difference in thrust may be lever-

aged. However, quadrotors designed for carrying loads can

increase their permissible payload offsets by increasing d ,

which is a much simpler modification than changing rotor

mast height on a traditional helicopter.

6 Conclusion

In this paper we have presented planar helicopter and

quadrotor models and analyzed attitude stability subject to

bias and step disturbance encountered during instantaneous

payload change and offset loadings. We have shown that un-

der PID control, a helicopter will successfully reject added

load offsets within a fairly large range, and that cyclic trim

limitations dominate the range of allowable load positions.

Successful helicopter loading configurations are insensitive

to parameter variation in their flight control, or substantial

changes in mass, as the bounds of cyclic range dominate

under even a large range of controller gain configurations.

Experimental results with a test vehicle confirmed pitch

stability of the helicopter under trim imbalance, and also

demonstrated predicated unbound lateral translation. Note

Fig. 26 Combined quadrotor stability isoclines

for a fully autonomous helicopter system, so means of mea-

suring and correcting for this lateral translation must be im-

plemented in the controller, such as through the use of op-

tical flow measurements of motion relative to ground, a ca-

pability that exists in high-end off-the-shelf controllers such

as the Helicommand Profi.

Quadrotors were found to exhibit stable pitch dynamics

and bounded lateral translation under bias loading. While

quadrotors have a much smaller range of permissible load

placement offsets, they offer stable loading configurations

directly on top of the airframe, compared to helicopters,

where loads must be added close to, or below, the unladen

center of gravity. This makes quadrotors an attractive option

for robotic payload carrying tasks where the load is added

from above. Additionally, due to the ability to adapt to pay-

load offsets through rotor speed differential, quadrotors do

not exhibit the unbounded lateral translation seen in uncom-

pensated standard helicopters.
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