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Abstract

We show that the ground-state solitary waves of thecritical nonlinear Schrödinger equation iψt(t, r)+�ψ+V (εr)|ψ |4/dψ =
0 in dimensiond ≥ 2 are orbitally stable asε → 0 if V (0)V (4)(0) < Gd [V ′′(0)]2, whereGd is a constant that depends only
ond.
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Keywords:Solitary waves; Nonlinear Schrödinger equation; Inhomogeneous nonlinearities; Stability

1. Introduction

The critical nonlinear Schrödinger equation

iψt(t, x) + �ψ + |ψ |4/dψ = 0, ψ(0, x) = ψ0(x), x ∈ R
d , (1.1)

models the propagation of intense laser beams in a homogeneous bulk medium with a Kerr nonlinearity. It is well
known that solutions of(1.1) can become singular in finite time if|ψ0|22 ≥ Nc, where|ψ0|22 = ∫ |ψ0|22 dx is the
input beam power, andNc, thecritical power for singularity formation, is a constant which depends only ond.
The critical powerNc, thus, sets an upper limit on the amount ofpower(|ψ |22) that can be propagated with a single
beam. The critical NLS(1.1) admits solitary wavesψ = eiωtRω(x) whose power is exactly equal to the critical
power, i.e.,|Rω|22 ≡ Nc [17]. These solitary waves are, however, strongly unstable. As a result, it is not possible to
realize stable high-power propagation in a homogeneous bulk media.

A few years ago, it was suggested that stable high-power propagation can be achieved in plasma by sending a
preliminary laser beam that creates a channel with a reduced electron density, and thus reduces the nonlinearity
inside the channel[4,8]. Under these conditions, beam propagation can be modeled, in the simplest case, by the
inhomogeneous nonlinear Schrödinger equation

iψt + �ψ + V (εx)|ψ |4/dψ = 0, (1.2)
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whereV (εx) is proportional to the electron density andε is a small parameter. It is possible to set the experimental
system so that both the potentialV and the initial conditionψ0 are radially symmetric, i.e.,V = V (r) andψ0 =
ψ0(r), wherer = |x|. In this case, the equation forψ is

iψt(t, r) + �ψ + V (εr)|ψ |4/dψ = 0, � = ∂2

∂r2
+ d − 1

r

∂

∂r
. (1.3)

Existence and nonexistence of blowup solutions of(1.2) were studied by Merle for certain types of inhomo-
geneities[10]. These results imply that a necessary condition for blowup in the radially symmetric case(1.3)is that
|ψ0|22 ≥ Nc/V

d/2(0). For comparison, in the absence of the preliminary beamV ≡ V (∞) and the critical power
isNc/V

d/2(∞). We thus see that it is possible to raise the critical power for blowup by lowering the magnitude of
the nonlinearity near the origin. In particular, whenV (0) = 0 all solutions of(1.3)exist globally.

The solitary waves of(1.3)are given byψ = eiωtφω(r), whereφω is the solution of

�φω(r) − ωφω + V (εr)φ4/d+1
ω = 0, φ′

ω(0) = 0, φω(∞) = 0. (1.4)

The following theorem gives the existence of positive (ground-state) solitary waves.

Theorem 1. Let0 < V (r) < C and letω > 0. Then,

(1) there exists a positive solution to(1.4).
(2) the positive solution is unique whenε is small enough.

SeeSection 3for the proof of part (1) andSection 4for the proof of part (2).
We note that existence of solutions of(1.4)was proved in[15] in the framework of a more general equation. Our

proof is, however, considerably simpler because of radial symmetry. The method used in the existence proof was
originally due to Strauss[14] and to Berestycki and Lions[1].

When the inhomogeneity is induced by the preliminary laser beam,V (r) increases monotonically fromV (0) to
V (∞). In that case,

lim
ε→0

|φω|22 = Nc

V d/2(0)
>

Nc

V d/2(∞)
= lim

ε→∞|φω|22. (1.5)

Therefore, it is reasonable to assume that when 0< ε � 1, the power of the solitary waves will be below the
critical power for blowupNc/V

d/2(0). In that case, one can expect the solitary waves to be stable, because solitary
waves in NLS equations are typically unstable if and only if a small perturbation can lead to singularity formation.
Surprisingly, however, our results show that monotonicity ofV is not the correct condition for stability.

Throughout this paper, we make the following assumptions onV :

V > 0, V ∈ C4 ∩ L∞, |V (i)(r)| ≤ C er for i = 1,2,3,4, (1.6)

whereV (i) is theith derivative ofV . We note that these assumptions are consistent with the electron density induced
by the preliminary beam.

The natural definition of stability of solitary waves is the one oforbital stability.

Definition. Let φω be a solution of(1.4). We say thatψ(r, t) = eiωtφω(r) is an orbitally stable solution of(1.3) if
∀ε > 0,∃ δ > 0 such that for anỹψ(r,0) ∈ H 1(Rn)which satisfies infθ |ψ̃(r,0)−eiθφω|H1 < δ, the corresponding
solutionψ̃(r, t) of (1.3)satisfies

sup
t

inf
θ

|ψ̃(r, t) − eiθφω|H1 < ε.
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Our stability proof follows[5,7,9,12]. We define

d(ω) = E(φω) + ωQ(φω), (1.7)

where

E(u) = 1

2

∫
|∇u|2 − 1

4/d + 2

∫
V (εr)|u|4/d+2, Q(u) = 1

2

∫
|u|2. (1.8)

We recall that the generic condition for stability of solitary waves isd ′′(ω) > 0 [13,18]. We have the following
lemma.

Lemma 1. Let (1.6)hold. Thend ′′(ω) > 0 for ε sufficiently small if and only if

V (0)V (4)(0) < Gd [V ′′(0)]2, (1.9)

where

Gd = 6
d + 2

d

∫ {r2R4/d+1L−1
0 (r2R4/d+1)}∫

r4R4/d+2
(1.10)

is a constant which depends only on d, R(r) is the ground-state1 solution of

�R − R + R4/d+1 = 0, R′(0) = R(∞) = 0, (1.11)

andL0 = � − 1 + (4/d + 1)R4/d .

We now state our main theorem which shows that the conditiond ′′(ω) > 0 indeed implies stability.

Theorem 2. Let(1.6)and(1.9)hold, letω > 0and letφω be the ground-state solution of(1.4). Thenψ = eiωtφω(r)

is an orbitally stable solution of(1.3) for ε sufficiently small.

This result suggests that it may be possible to produce stable high-power beam propagation in plasma by sending
a preliminary beam.

In order to motivate the condition(1.9), we use perturbation analysis inSection 2to calculate the power ofφω.
Let φω(r; ε) be the solution of(1.4)and letε̂ = ε/

√
ω. Then, we have, aŝε → 0,

|φω|22 = 1

V d/2(0)

[
|R|22 − ε̂4 (2 + d)

∫
r4R4/d+2

24d[V (0)]2
(Gd [V ′′(0)]2 − V (0)V (4)(0)) + O(ε̂6)

]
, (1.12)

whereR is the ground-state solution of(1.11)andGd is defined in(1.10). Thus, the stability condition(1.9)is also a
necessary and sufficient condition for the power of the solitary waves to be below the critical power|R|22/V d/2(0).
Indeed, from(1.8), (4.6) and (5.4)we have thatd ′(ω) = (1/2)|φω|22. Therefore, the stability conditiond ′′(ω) > 0
is satisfied if and only if|φω|22 is monotonically increasing inω hence monotonically decreasing inε.

The failure of the reasoning leading to the ‘conclusion’ that monotonicity ofV implies stability of solitary waves
thus lies in the assumption that monotonicity ofV implies that|φω|22 is monotonically decreasing inε. Indeed, when
V is monotonic thenV ′′(0) > 0. In principle, this term would have given O(ε̂2) contributions to|φω|22, whereas
V (4)(0) would only give O(ε̂4) contributions. However, because the O(ε̂2) terms due toV ′′(0) completely balance
each other, stability is determined by bothV ′′(0) andV (4)(0).

1 That is, the nontrivial solution with the smallestL2 norm.
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We calculated numerically that in the physically relevant cased = 2,∫
r4R4r dr ≈ 1.4359,

∫
r2R3L−1(r2R3)r dr ≈ −0.2001.

Therefore,G2 ≈ −1.6723. SinceG2 < 0, a necessary condition for stability is thatV (4)(0) be negative!
We recall that the NLS

iψt(t, x) + �ψ + |ψ |2σψ = 0, ψ(0, x) = ψ0(x), x ∈ Rd , (1.13)

is called subcritical, critical, and supercritical whenσd < 2, σd = 2, andσd > 2, respectively. It is well known
that solutions of the NLS can become singular only in the critical and in the supercritical cases, and that the solitary
wave solutions are stable only in the subcritical case. Indeed, there is a general ‘rule’ that solitary waves of NLS
equations are stable if and only if the equation does not admit blowup solutions. We see, thus, that when condition
(1.9)is satisfied,Eq. (1.3)is an exception to this ‘rule’ as it admits blowup solutions yet its waveguides are stable.2

Finally, we note that inhomogeneity of the nonlinearity is unlikely to affect the orbital stability of subcritical
solitary waves of(1.13) or the strong instability of supercritical ones.3 Indeed,d ′′(ω) > 0, d ′′(ω) = 0 and
d ′′(ω) < 0, when the NLS(1.13)is subcritical, critical and supercritical, respectively. Our calculation (see proof
of Lemma 7) shows that the effect of inhomogeneity ond ′′(ω) is O(ε4). Therefore, stability can be affected by the
inhomogeneity only in the critical case.

The paper is organized as follows. InSection 2, we derive(1.12)which motivates our rigorous results. InSections 3
and 4, we prove existence and some properties (Theorem 1) of solitary wave solutions.Section 5gives the proof of
the stability results (Theorem 2).

2. Perturbation analysis

In this section, we derive(1.12)by a perturbation analysis.
Let φω = [ω/V (0)]d/4S(

√
ωr). Then, the equation forS is

�S(r; ε) − S + V (ε̂r)

V (0)
S4/d+1
ε = 0. (2.1)

Whenε̂r � 1, we can expand

V (ε̂r)

V (0)
∼ 1 + aε̂2r2 + bε̂4r4 + O(ε̂6), (2.2)

wherea = V ′′(0)/2V (0) andb = V (4)(0)/24V (0). We look for a solution of(2.1)of the form

S = R + aε̂2g(r) + ε̂4h(r) + O(ε̂6). (2.3)

Therefore,

Sm = Rm + ε̂2amRm−1g + ε̂4
(

mRm−1h +
(
m

2

)
a2Rm−2g2

)
+ O(ε̂6),

and the equations forR, g, andh are(1.11),

�g − g +
(

4

d
+ 1

)
R4/dg = −r2R4/d+1, (2.4)

2 Another exception to this rule is the critical NLS on bounded domains[2].
3 Strong instability of supercritical solitary waves was proved in[16].
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and

�h − h +
(

4

d
+ 1

)
R4/dh = −a2r2

(
4

d
+ 1

)
R4/dg − br4R4/d+1,

respectively. If we multiply(2.1)byR and integrate by parts we get that

−
∫

∇R∇S −
∫

RS+
∫

VRS4/d+1 = 0.

If we substitute(2.2) and (2.3)in this equation and collect terms, the O(ε̂2) and O(ε̂4) equations are

−
∫

∇R∇g −
∫

Rg+
(

4

d
+ 1

)∫
R4/d+1g = −

∫
r2R4/d+2, (2.5)

and

−
∫

∇R∇h −
∫

Rh+
(

4

d
+ 1

)∫
R4/d+1h

= −

 4

d
+ 1

2


 a2

∫
R4/dg2 − a2

(
4

d
+ 1

)∫
r2R4/d+1g − b

∫
r4R4/d+2. (2.6)

If we multiply (1.11)by S and integrate by parts we get that

−
∫

∇R∇S −
∫

RS+
∫

SR4/d+1 = 0.

If we substitute(2.3) in this equation and collect terms, the O(ε̂2) and O(ε̂4) equations are

−
∫

∇R∇g −
∫

Rg+
∫

R4/d+1g = 0 (2.7)

and

−
∫

∇R∇h −
∫

Rh+
∫

R4/d+1h = 0. (2.8)

From(4.2)we have that

−
∫

S2 + 2

2 + d

∫
VS4/d+2 + ε̂

4/d + 2

∫
rV′(ε̂r)S4/d+2 = 0. (2.9)

If we substitute(2.2) and (2.3)in this equation and collect terms, the O(ε̂2) and O(ε̂4) equations are

2
∫

Rg= 2

2 + d

∫ [
r2R4/d+2 +

(
4

d
+ 2

)
R4/d+1g

]
+ 2

4/d + 2

∫
r2R4/d+2, (2.10)

and

2
∫

Rh+ a2
∫

g2 = 2 + 2d

2 + d

∫
br4R4/d+2 + 4 + 2d

d
a2
∫

r2R4/d+1g

+ 4

d
R4/d+1h + 2

d

(
4

d
+ 1

)
a2
∫

R4/dg2, (2.11)

respectively. If we subtract(2.7) from (2.5), we get that 4/d
∫
R4/d+1g = − ∫ r2R4/d+2. Substitution into(2.10)

gives that∫
Rg= 0. (2.12)
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If we subtract(2.8) from (2.6), we get that

4

d

∫
R4/d+1h = −


 4

d
+ 1

2


 a2

∫
R4/dg2 − a2

(
4

d
+ 1

)∫
r2R4/d+1g − b

∫
r4R4/d+2.

Substitution into(2.11)gives that

2
∫

Rh+ a2
∫

g2 = d

2 + d
b

∫
r4R4/d+2 + a2

∫
r2R4/d+1g. (2.13)

Therefore, combining∫
S2 =

∫
R2 + 2aε̂2

∫
Rg+ ε̂4

[
2
∫

Rh+ a2
∫

g2
]

+ O(ε̂6),

with (2.12) and (2.13)gives that∫
S2 =

∫
R2 + ε̂4

[
d

2 + d
b

∫
r4R4/d+2 + a2

∫
r2R4/d+1g

]
+ O(ε̂6).

Therefore,

|Rε |22 = [V (0)]−d/2

[
|R|22 + ε̂4

(
d

2 + d

V (4)(0)

24V (0)

∫
r4R4/d+2 + [V ′′(0)]2

4V 2(0)

∫
r2R4/d+1g

)
+ O(ε̂6)

]
.

Sinceg = L−1(−r2R4/d+1), relation(1.12)follows.

3. Existence of a ground state

In order to proveTheorem 1, we introduce the minimization problem

M(ω) = inf
u∈H1

radial

Iω(u), (3.1)

subject to constraintK(u) = 1, where

Iω(u) =
∫

ω|u|2 + |∇u|2, K(u) =
∫

V (εr)|u(r)|4/d+2. (3.2)

Lemma 2. Let0 < V (r) < C and letω > 0. Then, the minimization problem(3.1)has a positive minimizer.

Proof. Let un be a minimizing sequence, i.e.,Iω(un) → M(ω) andK(un) = 1. We can assume thatun is positive.
Since|un|H1 ≤ C uniformly inn, we have thatun ↪→ uε weakly inH 1 and thusIω(uε) ≤ limn→∞Iω(un) = M(ω).
Because the embeddingH 1

radial(R
d) → L4/d+2 is compact we have thatun → uε strongly inL4/d+2. Since, in

addition,V is bounded,

|K1/p(uε) − K1/p(un)| = ||V 1/puε |p − |V 1/pun|p| ≤ |V 1/p(uε − un)|p ≤ |V |1/p∞ |uε − un|p → 0,

wherep = 4/d + 2. Therefore,K(uε) = 1 anduε is a positive minimizer of(3.1). �

Proof of (1) in Theorem 1. For clarity we write from now onφ instead ofφω, except where we want to emphasize
the parametric dependence onω.
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The Euler–Lagrange equation for the minimizer of(3.1) is

�uε − ωuε + λV (εr)|uε |4/d+1 = 0, (3.3)

whereλ is a Lagrange multiplier. Let

φ = λd/4uε. (3.4)

Then,φ is a positive solution of(1.4). �

4. Several technical lemmas

In this section, we prove several technical results that are used inSection 5and also part (2) ofTheorem 1. We
first note that standard calculations show that solutions of(1.4)satisfy the following identities:

−
∫

|φ′|2 − ω

∫
|φ|2 +

∫
V (εr)φ4/d+2 = 0, (4.1)

ω

∫
|φ|2 = 2

2 + d

∫
V (εr)φ4/d+2 + 1

4/d + 2

∫
r

(
d

dr
V (εr)

)
φ4/d+2, (4.2)

which are usually referred to as Pohozaev identities.

Lemma 3. Letuε be the minimizer of(3.1)and letφ be given by(3.4). Then,

Iω(φ) = K(φ) = [M(ω)]2/d+1. (4.3)

In addition, whenω = 1 then

|φ|H1 = |uε |d/2+1
H1 . (4.4)

Proof. The identityIω(φ) = K(φ) is simply(4.1). SinceK(uε) = 1, it follows from(3.4) that

λ = [K(φ)]1/(d/2+1). (4.5)

Therefore,

M(ω) = Iω(uε) = λ−d/2Iω(φ) = [K(φ)]−1/(2/d+1)Iω(φ) = [Iω(φ)]
1/(2/d+1),

which leads to(4.3). Eq. (4.4)follows from(4.3)sinceI1(·) = | · |H1. �

Let

φ(r) = ωd/4Rε(
√
ωr). (4.6)

Then, by(1.4),

�Rε(r) − Rε + V

(
ε

r√
ω

)
R4/d+1
ε = 0. (4.7)

Lemma 4. LetPε = ∂Rε/∂ω. Then,∫
V

(
ε

r√
ω

)
R4/d+1
ε Pε = d

8
εω−3/2

∫
rV ′

(
ε

r√
ω

)
R4/d+2
ε . (4.8)
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Proof. Differentiating(4.7)with respect toω gives

�Pε − Pε +
(

4

d
+ 1

)
V

(
ε

r√
ω

)
R4/d
ε Pε − 1

2
εω−3/2rV ′R4/d+1

ε = 0. (4.9)

If we multiply (4.9)byRε and integrate, we have

−
∫

∇Rε∇Pε −
∫

RεPε +
(

4

d
+ 1

)∫
VR4/d+1

ε Pε − 1

2
εω−3/2

∫
rV ′R4/d+2

ε = 0.

If we multiply (4.7)by Pε and integrate, we have

−
∫

∇Rε∇Pε −
∫

RεPε +
∫

VR4/d+1
ε Pε = 0.

The difference of the last two equations gives(4.8). �

Let us define the linearized operatorLε onH 2
radial(R

d) by

Lε = � − 1 +
(

4

d
+ 1

)
V

(
ε

r√
ω

)
R4/d
ε . (4.10)

We can rewrite(4.9)as

Lε(Pε) = 1
2εω

−3/2rV′R4/d+1
ε . (4.11)

It is well known that Ker(L0) is empty (see e.g.[11]) and thatL−1
0 is bounded. Therefore, there exists a constant

C0 > 0 such that

|L0v|2 ≥ C0|v|2. (4.12)

Lemma 5. LetRε be the solution of(4.7), then

(a) |Rε |H1 ≤ C uniformly asε → 0.

(b) lim
ε→0

∣∣∣∣V
(
ε

r√
ω

)
R2
ε (r) − V (0)R2

0(r)

∣∣∣∣∞ = 0. (4.13)

(c) Letω > 0 and letε be sufficiently small. ThenLε is invertible andL−1
ε is bounded.

(d) LetRε be a positive solution of(4.7). Then there exist positive constantsε0, c0 and L such thatRε(r) ≤ c0 e−r/
√

2

for all 0 < ε ≤ ε0 and for all r ≥ L.

Proof. Without loss of generality, we can setω = 1. From(4.4) and (4.6)it follows that |Rε |H1 = |φε |H1 =
|uε |d/2+1

H1 . Therefore, it is sufficient to show that|uε |H1 is uniformly bounded. To see that, letvε = αεu0, whereu0

is the minimizer of the minimization problem(3.1)whenε = 0 andαε is chosen so thatK(vε) = 1. Therefore, for
the minimizeruε of (3.1)we have that|uε |H1 = I1(uε) ≤ I1(vε) = α2

ε I1(u0). Since limε→0αε = 1 it follows that
|uε |H1 is uniformly bounded. That completes the proof of (a).

To prove (b), we note from (1) and standard elliptic regularity theory[3], we have thatRε → R0 weakly inH 1

and strongly inC2
loc, whereR0 is the unique solution of(4.7)for ε = 0. From the radial lemma of Strauss, we have

that

|Rε | ≤ C

r(d−1)/2
|Rε |H1 for r ≥ 1. (4.14)

Again, in light of (a), we only need to prove(4.13)on a bounded domain which is now obvious.
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Remark. Our stability proof is limited to the cased ≥ 2 because we rely on the uniform decay estimate(4.14)in
the proof of (b).

We now proceed to prove (c). SinceLε = L0 + (4/d + 1)(V (ε(r/
√
ω))R2

ε − V (0)R2
0), we have that

〈Lεv,Lεv〉 = 〈L0v,L0v〉 +
〈
L0v,

(
4

d
+ 1

)(
V

(
ε

r√
ω

)
R2
ε − V (0)R2

0

)
v

〉

+
〈(

4

d
+ 1

)(
V

(
ε

r√
ω

)
R2
ε − V (0)R2

0

)
,L0v

〉

+
(

4

d
+ 1

)2 〈(
V

(
ε

r√
ω

)
R2
ε − V (0)R2

0

)
v,

(
V

(
ε

r√
ω

)
R2
ε − V (0)R2

0

)
v

〉

≥ |L0v|22 − 2

(
4

d
+ 1

) ∣∣∣∣V
(
ε

r√
ω

)
R2
ε − V (0)R2

0

∣∣∣∣∞ |v|2|L0v|2

−
(

4

d
+ 1

)2 ∣∣∣∣V
(
ε

r√
ω

)
R2
ε − V (0)R2

0

∣∣∣∣∞ |v|22.

Using(4.12), we have that

|Lεv|22 ≥ |v|22
[
C2

0 −
(

2

(
4

d
+ 1

)
C0 +

(
4

d
+ 1

)2
) ∣∣∣∣V

(
ε

r√
ω

)
R2
ε − V (0)R2

0

∣∣∣∣∞
]
.

Therefore, in light of (b), whenε is sufficiently small there existsC1 > 0 such that|Lεv|22 ≥ C1|v|22, from which
(c) follows.

Next we prove (d).Eq. (4.7)can be rewritten as

�Rε =
(

1 − V

(
εr√
ω

)
R4/d
ε

)
Rε.

FromLemma 5, inequality(4.14)and(1.6)it follows that there existε0, L > 0 such that for all 0< ε ≤ ε0 and for
all r ≥ L,

1 − V

(
εr√
ω

)
R4/d
ε ≥ 1

2
.

Let vε(r) = c0 e−r/
√

2 − Rε , wherec0 is sufficiently large such thatvε(L) > 0. Then,

�vε = c0�e−r/
√

2 − �Rε = c0�e−r/
√

2 − Rε(1 − VR4/d
ε ) ≤ 1

2c0 e−r/
√

2 − 1
2Rε = 1

2vε.

Therefore, from the maximum principle for exterior domains[3], we have thatvε ≥ 0 for all r ≥ L, and thus that
Rε(r) ≤ c0 e−r/

√
2. This completes the proof of the lemma.

Proof of (2) in Theorem 1. We prove uniqueness of positive solutions for(4.7), which is equivalent to(1.4)up to
a simple rescaling.

LetR1ε , R2ε be two solutions of(4.7), i.e.,

�Riε − Riε + V

(
ε

r√
ω

)
R

4/d+1
iε

= 0, i = 1,2.
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We then have,

L∗
ε (R1ε − R2ε ) = 0, (4.15)

where we denote

L∗
ε = � − 1 + V

(
ε

r√
ω

)
W(R1ε , R2ε ),

and

R
4/d+1
1ε

− R
4/d+1
2ε

= (R1ε − R2ε )W(R1ε , R2ε ).

Since the positive solutionR0 of (4.7) is unique[6], then, as inLemma 5(b)R1ε , R2ε → R0 uniformly. Therefore,

W(R1ε , R2ε ) →
(

4

d
+ 1

)
R

4/d
0 as ε → 0.

As inLemma 5(c), we can show thatL∗
ε is invertible and|L∗

εv|22 ≥ C|v|22, for ε small enough. By(4.15), this implies
R1ε = R2ε for ε small enough. �

5. Orbital stability

Lemma 6. d(ω) is differentiable and strictly increasing forω > 0.

Proof. Using(1.7), (1.8) and (3.2), we have that

d(ω) = 1

2
Iω(φ) − 1

4/d + 2
K(φ). (5.1)

Therefore, by(4.3)

d(ω) = 1

2 + d
K(φ) = ω

2 + d

∫
V

(
εr√
ω

)
R4/d+2
ε . (5.2)

Differentiatingd(ω) with respect toω and using(4.8)gives that

d ′(ω) = 1

d + 2

(∫
VR4/d+2

ε + d

4
ω−1/2ε

∫
rV′R4/d+2

ε

)
. (5.3)

Therefore, from(4.2)we have that

d ′(ω) = Q(Rε) > 0. � (5.4)

Lemma 7. Let (1.6)hold. Then, d ′′(ω) > 0 for ε sufficiently small if and only if

V (4)(0) < 6
d + 2

d

∫ {r2R
4/d+1
0 L−1

0 (r2R
4/d+1
0 )}∫

r4R
4/d+2
0

[V ′′(0)]2.
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Proof. If we differentiate(5.3)with respect toω, use(4.8) and (4.11)and expandV ′(εr/
√
ω) andV ′′(εr/

√
ω) in

a Taylor series inε, we get that

(2 + d)d ′′(ω)= d

8
εω−3/2

∫
rV ′R4/d+2

ε − d

8
ε2ω−2

∫
r2V ′′R4/d+2

ε + d

4

(
4

d
+ 2

)
εω−1/2

∫
rV ′R4/d+1

ε Pε

= d

8
εω−3/2

∫
rV′R4/d+2

ε − d

8
ε2ω−2

∫
r2V ′′R4/d+2

ε

+ d

4

(
2

d
+ 1

)
ε2ω−2

∫
rV′R4/d+1

ε L−1
ε (rV′R4/d+1

ε )

= −ε4ω−3
[
d

24

∫
r4V (4)(0)R4/d+2

0 − 2 + d

4

×
∫
(r2V ′′(0)R4/d+1

0 )L−1
0 (r2V ′′(0)R4/d+1

0 ) + F(Vε, Rε))

]
.

HereF(Vε, Rε) is the remainder from the Taylor expansion. UsingLemma 5(c) and (d), it is easy to show that
F(Vε, Rε) → 0 asε → 0. Therefore, condition(1.9) implies thatd ′′(ω) > 0 for ε sufficiently small. �

Proof of Lemma 1. This follows fromLemma 7and the rescalingR = V d/4(0)R0. �

Lemma 8. Letd ′′(ω) > 0. Then there existsδ = δ(ω) > 0 such that for allω̃ with |ω̃ − ω| < δ,

d(ω̃) ≥ d(ω) + d ′(ω)(ω̃ − ω) + 1
4d

′′(ω)|ω̃ − ω|2.

Proof. Taylor expansion. �

Given a solutionφ of (1.4), we can define the set

Uω,δ = {u ∈ H 1
radial(R

d), |u − φ|H1 < δ}.
Sinced(ω) is monotonic (Lemma 6), we can define theC1 map

ω(·) : Uω,δ → R+

by

ω(u) = d−1
(

1

2 + d
K(u)

)
. (5.5)

Lemma 9. Letd ′′(ω) > 0 for someω > 0. Then there existsδ = δ(ω) > 0 such that for allu ∈ Uω,δ,

E(u) − E(φ) + ω(u)[Q(u) − Q(φ)] ≥ 1
4d

′′(ω)|ω(u) − ω|2,
whereω(u) is defined in(5.5).

Proof. From(1.8) and (3.2), we have that

E(u) + ω(u)Q(u) = 1

2
Iω(u)(u) − 1

4/d + 2
K(u). (5.6)
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In addition, from(5.2) and (5.5), we have thatK(u) = (d + 2)d(ω(u)) = K(φω(u)). Sinceφω(u) is a minimizer
of Iω(u)(u) subject to the constraintK(u) = K(φω(u)), we have thatIω(u)(u) ≥ Iω(u)(φω(u)). Therefore, using
Lemma 8and(5.1),

E(u) + ω(u)Q(u)≥ 1

2
Iω(u)(φω(u)) − 1

4/d + 2
K(φω(u))

= d(ω(u)) ≥ d(ω) + d ′(ω)(ω(u) − ω) + 1

4
d ′′(ω)|ω(u) − ω|2.

From(5.4), we have thatd ′(ω) = Q(φ). Therefore, using(1.7),

E(u) + ω(u)Q(u)≥E(φ) + ωQ(φ) + Q(φ)[ω(u) − ω] + 1
4d

′′(ω)|ω(u) − ω|2
=E(φ) + ω(u)Q(φ) + 1

4d
′′(ω)|ω(u) − ω|2. �

Proof of Theorem 2. Assume thatψ is unstable. From the definition of stability∃δ > 0 and initial dataψk(0) ∈
Uω,(1/k) such that supt>0 inf θ |ψk(t)− eiθφ|H1 ≥ δ, whereψk(t) is the solution of refeq13 with initial dataψk(0).
Let tk be the first time at which

inf
θ

|ψk(tk) − eiθφ|H1 = δ. (5.7)

Let us denoteΦk(r) = ψk(tk). SinceE(ψ(t)) andQ(ψ(t)) are conserved int and continuous inψ , then

|E(Φk) − E(φ)| = |E(ψk(0)) − E(φ)| → 0,

|Q(Φk) − Q(φ)| = |Q(ψk(0)) − Q(φ)| → 0, as k → ∞. (5.8)

Let δ be small enough so thatLemma 9applies. We then have that

E(Φk) − E(φ) + ωk[Q(Φk) − Q(φ)] ≥ 1
4d

′′(ω)|ωk − ω|2, ωk = ω(Φk). (5.9)

From(5.7), we have that|Φk|H1 ≤ C uniformly. Sinceω(u) is a continuous map,ωk is uniformly bounded ink.
Therefore, by(5.8), ask → ∞ the left-hand side of(5.9)goes to zero. Sinced ′′(ω) > 0 (Lemma 1), this implies
that limk→∞ωk = ω. Hence, using(5.2) and (5.5),

lim
k→∞

K(Φk) = lim
k→∞

(d + 2)d(ωk) = (d + 2)d(ω) = K(φ). (5.10)

Using this and(5.6) and (5.8), we have that

Iω(Φk)= 2[E(Φk) + ωQ(Φk)] + d

d + 2
K(Φk)

= 2[E(φ) + ωQ(φ)] + d

d + 2
K(Φk) + 2[E(Φk) − E(φ)] + 2ω[Q(Φk) − Q(φ)] → (d + 2)d(ω).

Since(d + 2)d(ω) = Iω(φ) (see(4.3) and (5.2)), we see thatIω(Φk) → Iω(φ).
Let vk = [K(Φk)]−1/(4/d+2)Φk. ThenK(vk) = 1 and by(4.3)

Iω(vk) = [K(Φk)]
−1/(2/d+1)Iω(Φk) → [K(φ)]−1/(2/d+1)Iω(φ) = M(ω).

Hence,{vk} is a minimizing sequence of(3.1). By uniqueness of the minimizeruε (Theorem 1), there exists a
sequence{θk} such that limk→∞|vk − eiθkuε |H1 = 0. Using this and(3.4), (4.5) and (5.10), we get that

|Φk − eiθkφ|H1 = |[K(Φk)]
1/(4/d+2)vk − eiθk [K(Φ)]1/(4/d+2)uε |H1 → 0,

which is in contradiction with(5.7). �
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