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STABILITY OF SOLUTIONS TO GENERALIZED FORCHHEIMER
EQUATIONS OF ANY DEGREE

LUAN HOANG†,∗, AKIF IBRAGIMOV†, THINH KIEU† AND ZEEV SOBOL‡

ABSTRACT. The non-linear Forchheimer equations are considered as laws of hydrody-
namics in porous media in case of high Reynolds numbers, when the fluid flows deviate
from the ubiquitous Darcy’s law. In this article, the dynamics of generalized Forchheimer
equations for slightly compressible fluids are studied by means of the resulting initial
boundary value problem for the pressure. We prove that the solutions depend contin-
uously on the boundary data and the Forchheimer polynomials both in finite time and
at time infinity. In contrast to related long-time dynamics results which are in the L2-
context and require a restriction on the degree of the Forchheimer polynomial, the results
obtained here are for general Lα-spaces and without this degree restriction. New bounds
for the solutions are established in Lα-norm for all α ≥ 1, and then are used to improve
estimates for their spatial and time derivatives. New Poincaré-Sobolev inequalities and
non-linear Gronwall-type estimates for non-linear differential inequalities are utilized to
achieve better asymptotic bounds.
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1. INTRODUCTION

Fluid flows in porous media are usually described by Darcy’s law which is a linear
relation between velocity u and pressure gradient ∇p. However this law does not hold
in many cases, for instance, when the flows have high velocity or the media have frac-
tures. Non-linear relations are used instead to model the fluid filtration in those situations.
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The common non-linear models are the so-called Forchheimer (or Darcy-Forchheimer)
equations; specifically, u and ∇p satisfy the equation g(|u|)u = −∇p where g(s) is a
polynomial (c.f. [4,17]). Historically speaking, Darcy in his pioneering book [10] already
used such a non-linear equation to match experimental data. While Darcy’s law, even with
its restriction, is well-established in literature as the basic equation for hydrodynamics in
porous media, mathematical studies of the Forchheimer equations only gained attention
in the 1990s (see e.g. [9, 19]). Since then there have been a growing number of articles
studying them and their variations – the Brinkman-Forchheimer equations – from applied
and theoretical points of view. Interested reader can find references in [21]; among recent
articles are [7, 8, 15, 18, 22]; for numerical studies, see e.g. [3]. Most of them are devoted
to incompressible fluids. In contrast, this article continues our previous studies [2, 13, 14]
of slightly compressible fluid flows subject to Forchheimer equations.

Although the original and commonly used Forchheimer equations – the two term, three
term and power laws – are only for a polynomial g(s) of up to second degree, there is a
need, from practical and theoretical point of view, to allow g to be a generalized poly-
nomial with positive coefficients of higher degrees. In this case corresponding equation
is called generalized Forchheimer equation (see [2]) and g(s) is called the Forchheimer
polynomial. The generalized Forchheimer equation can be inverted to u = −K(|∇p|)∇p
with conductivity function K degenerating for large ∇p. Namely, K(ξ) ∼ (1 + ξa)−1,
where a = deg(g)

(1+deg(g))
with deg(g) denoting the degree of the polynomial g. For slightly

compressible fluids, the description of fluid dynamics can be deduced, with a slight sim-
plification, to a degenerate parabolic equation for the pressure p(x, t):

∂p

∂t
= ∇ · (K(|∇p|)∇p) in U × (0,∞). (1.1)

Degenerate equations of this type are extensively studied mostly for their solutions’ spa-
tially local behavior and/or finite time properties (see [11] and references therein, and
also, for e.g., [1] for a localization result).

Here we study the initial boundary value problem (IBVP) for (1.1) with Dirichlet
boundary data on an open bounded domain U in Rn and focus on its long-time dynamics.
In our previous works [2, 13], see also [14], we establish the continuous dependence of
the solutions of (1.1) in L2- and W 1,2−a-norms on the initial, boundary data and on the
Forchheimer polynomials. To effectively study the asymptotic dynamics of the solutions,
a technical Degree Condition (DC) is imposed, namely, deg(g) ≤ n

n−2
. This condition

also arises naturally in studies of degenerate parabolic equations. (See e.g. [11,12] for the
cruciality of such condition in establishing Harnack inequalities.)

Our goals in this article are to establish a Lα-theory for α 6= 2, as a counterpart for the
L2-results, and to explore the problem when the DC is not met – the case we now refer
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to as NDC. Two observations that support our effort: (a) The DC is not needed for time-
invariant velocity field (see [2]); and (b) basic numerical simulations hint at the stability
at time infinity of the solution in Lα-norm.

In this paper, we establish the continuous dependence of the solution of (1.1) on either
the boundary data or coefficients of the Forchheimer polynomial in the space Lα(U) for
α ≥ 1 and in W 1,2−a(U). We will mainly focus on the NDC case. In the DC case we
obtain sharper estimates which significantly generalize previous L2-estimates in [13].

The main features of our results are:
(i) New Lα-estimates of the solutions for all α ≥ 1. Because of the order of degener-

acy, the differential inequality for the Lα-norm has a weak dissipative term, see (4.11). We
use a new Poincaré-Sobolev inequality for the mixed term (of derivatives) |∇p̄|2−a|p̄|α−2

to take advantage of this weak dissipation to gain much sharper estimates. Here p̄ is the
solution p adjusted by the Dirichlet data.

(ii) The continuous dependence of the solution on the time-dependent boundary data
in Lα-norm. Another new weighted Poincaré-Sobolev inequality is used, c.f. Lemma 2.5.
Particularly, in the NDC case (part (ii) of the mentioned lemma) the inequality is highly
non-linear and involves, in addition to the weight K(ξ(x)), a compensating term |u|θ2α.
We then utilize a new non-linear Gronwall-type estimates, c.f. Lemma A.1, to explore the
resulting differential inequality.

(iii) The continuous dependence of the solution on the Forchheimer polynomial in Lα-
norm. This requires estimates of the cross-terms |∇p1|2−a|p̄2|α−2 and |∇p2|2−a|p̄1|α−2 of
individual solutions p1 and p2. By using the structure of the equation we bound them by
the mixed terms which are dealt with in (i).

(iv) The continuous dependence of the pressure gradient in L2−a-norm with respect to
the boundary data and the Forchheimer polynomials.

(v) The above continuous dependence results are established in both DC and NDC
cases.

The paper is organized as follows. In section 2 we recall the main definitions and rel-
evant results from [2, 13, 14]. We then obtain some inequalities of Poincaré-Sobolev type
in Lemmas 2.3 and 2.5. They are suitable for the non-linear degenerate parabolic equa-
tion (1.1), and are essential to our analysis of the solutions, particularly their asymptotic
behavior. In section 3, using the theory of monotone operators [5,16,20,23], we prove the
global existence of weak solutions in C([0,∞), Lα(U)) and L2−a

loc ([0,∞),W 1,2−a(U)).
In section 4 we derive more refined estimates of the solutions to (1.1) in Lα(U) for all
α ≥ 1 with explicit dependence on the time-dependent boundary data. (For this, the ini-
tial data are required to belong to Lα̂(U) with α̂ ≥ α, see Definition 4.2.) These are used
to improve estimates of the pressure’s spatial and time derivatives, especially for the NDC
case. Moreover, asymptotic bounds for the solutions are obtained. As a consequence, we
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are able to estimate the mixed terms
∫
U
|∇p|2−a|p|αdx for arbitrarily large α. This re-

sult will be key to proving the structural stability in section 6. In section 5 we establish
the continuous dependence of solutions on the boundary data in Lα- and W 1,2−a- norms.
To investigate this for large time we use a generalization of Gronwall’s inequality for
certain non-linear differential inequalities at finite time as well as at time infinity. The
upper bounds of difference between two solutions for large time and their limits supe-
rior when t → ∞ are given in Theorems 5.2–5.6. It is noteworthy that these bounds are
independent of the initial data. In section 6 we prove various theorems on structural sta-
bility for equation (1.1). More precisely, we show that the solution depends continuously
on the coefficients of the Forchheimer polynomial both for finite time intervals and for
time infinity and in both DC and NDC cases. Unlike previous L2-estimates in [13] one
must control the cross-terms

∫
U
|∇p1|2−a|p̄2|α−2dx and

∫
U
|∇p2|2−a|p̄1|α−2dx, see (6.11)

of Lemma 6.1. This cannot be achieved directly from previous sections’ estimates. How-
ever by exploring the structure of equation (1.1) we can estimate these integrals using the
mixed terms

∫
U
|∇p1|2−a|p̄1|γdx and

∫
U
|∇p2|2−a|p̄2|γdx for possibly very large γ; the

latter integrals are already estimated in section 4. The Appendix generalizes our previous
results in [13, 14] to give bounds for solutions to a wider class of non-linear differential
inequalities.

2. BACKGROUND AND SUPPLEMENTARIES

Consider a fluid in a porous medium occupying a bounded domain U in space Rn.
Throughout this paper, n ≥ 2 even though for physics problems n = 2 or 3. Let x ∈ Rn

and t ∈ R be the spatial and time variables. The fluid flow has velocity u(x, t) ∈ Rn,

pressure p(x, t) ∈ R and density ρ(x, t) ∈ R+ = [0,∞).
A generalized Forchheimer equation is

g(|u|)u = −∇p, (2.1)

where g(s) ≥ 0 is a function defined on [0,∞). It is considered as a momentum equation
and is studied in [2, 13, 14]. When g(s) = α, α + βs, α + βs + γs2, α + γms

m−1, where
α, β, γ,m, γm are empirical constants, we have Darcy’s law, Forchheimer’s two term,
three term and power laws, respectively. In this paper, we study the case when the function
g in (2.1) is a generalized polynomial with non-negative coefficients. More precisely, the
function g : R+ → R+ is of the form

g(s) = a0s
α0 + a1s

α1 + · · ·+ aNs
αN , s ≥ 0, (2.2)

where N ≥ 1, α0 = 0 < α1 < · · · < αN are fixed real numbers, the coefficients
a0, . . . , aN are non-negative numbers with a0 > 0 and aN > 0. From (2.1) one can solve
for u in terms of∇p and obtain a non-linear version of Darcy’s equation:

u = −K(|∇p|)∇p, (2.3)
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where the function K : R+ → R+ is defined for ξ ≥ 0 by

K(ξ) =
1

g(s(ξ))
, with s = s(ξ) being the unique non-negative solution of sg(s) = ξ.

(2.4)
The number αN is the degree of g and is denoted by deg(g). The vector of powers in

(2.2) is denoted by ~α = (α0, . . . , αN) and the vector ~a = (a0, . . . , aN) is referred to as
the coefficient vector. When the dependence on ~a needs to be specified, we use notation
g(s,~a), K(ξ,~a) to denote the corresponding functions in (2.2) and (2.4).

In addition to (2.1) we have the equation of continuity
∂ρ

∂t
+∇ · (ρu) = 0, (2.5)

and the equation of state which, for slightly compressible fluids, is
dρ

dp
=
ρ

κ
, κ > 0. (2.6)

Substituting (2.3) and (2.5) into (2.6) we obtain a scalar equation for the pressure:
∂p

∂t
= κ∇ · (K(|∇p|)∇p) +K(|∇p|)|∇p|2. (2.7)

One the right hand side of (2.7) the constant κ is very large for most slightly compressible
fluid in porous media, hence we neglect its second term and study the following reduced
equation

∂p

∂t
= κ∇ · (K(|∇p|)∇p). (2.8)

(This simplification is used commonly in petroleum engineering.) By scaling the time
variable t→ κt, we can assume throughout that κ = 1.

The class of functions g(s) as in (2.2) is denoted by FP (N, ~α) which is the abbrevi-
ation of “Forchheimer polynomials”. When the function g in (2.1) is one of the g(s) in
(2.2), it is referred to as the Forchheimer polynomial.

Let g = g(s,~a) in FP (N, ~α). The following exponent is frequently used in our calcu-
lations

a =
αN

αN + 1
∈ (0, 1). (2.9)

The function K(ξ) in (2.4) has the following properties: it is decreasing in ξ, maps
[0,∞) onto (0, 1

a0
] and

d1

(1 + ξ)a
≤ K(ξ) ≤ d2

(1 + ξ)a
, (2.10)

d3(ξ2−a − 1) ≤ K(ξ)ξ2 ≤ d2ξ
2−a, (2.11)

where d1, d2, d3 are positive constants depending on ~α and ~a.
As in [2, 13, 14], we define

H(ξ) =

∫ ξ2

0

K(
√
s)ds for ξ ≥ 0.
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The function H(ξ) can be compared with ξ and K(ξ) by

K(ξ)ξ2 ≤ H(ξ) ≤ 2K(ξ)ξ2, (2.12)

and hence, as a consequence of (2.11) and (2.12), we have

d3(ξ2−a − 1) ≤ H(ξ) ≤ 2d2ξ
2−a. (2.13)

Since H ′(ξ) = 2ξK(ξ) is non-negative and, by Lemma III.5 of [2], increasing,

H(ξ) is an increasing and convex function on [0,∞). (2.14)

We recall here Lemma 2.3 in [13] on an important monotonicity property.

Lemma 2.1 (c.f. [13]). (i) For any y, y′ ∈ Rn,

(K(|y′|)y′ −K(|y|)y) · (y′ − y) ≥ (1− a)K(max{|y|, |y′|})|y′ − y|2. (2.15)

(ii) For two functions p1 and p2 defined on U , one has∫
U

(K(|∇p1|)∇p1 −K(|∇p2|)∇p2) · (∇p1 −∇p2)dx

≥ (1− a)

∫
U

K(max{|∇p1|, |∇p2|})|∇p1 −∇p2|2dx

≥ d4

[∫
U

|∇p1 −∇p2|2−adx
] 2

2−a

(1 + max{‖∇p1‖L2−a , ‖∇p2‖L2−a})−a,

where d4 = d4(~α,~a, n, U) > 0.

Definition 2.2. We will refer to the following inequality as the Degree Condition

deg(g) ≤ 4

n− 2
. (DC)

We label the negation of (DC) by (NDC), that is,

deg(g) >
4

n− 2
. (NDC)

We will use the phrase “the DC case”, respectively “the NDC case”, to refer to the
case when condition (DC), respectively condition (NDC), holds.

We establish below a couple of Poincaré-Sobolev inequalities which are suitable to
our type of degeneracy in (2.8) and are essential to our estimates in subsequent sections.
We first recall the classical Poincaré-Sobolev inequality.

Let W̊ 1,r(U) be the space of functions in W 1,r(U) with vanishing traces on the bound-
ary. If 1 ≤ r < n, then by Sobolev’s imbedding theorem and Poincaré’s inequality, we
have

‖f‖Lr∗ (U) ≤ C‖∇f‖Lr(U) for all f ∈ W̊ 1,r(U), (2.16)

where the constant C depends on r, n and the domain U , and

r∗ = nr/(n− r).

Throughout, r0 is the conjugate of (2− a)∗, that is, 1
r0

+ 1
(2−a)∗

= 1.
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We denote
α∗ =

na

2− a
=

nαN
αN + 2

,

a threshold exponent for the validity of our inequalities below.
One can easily verify that

(DC)⇔ 2 ≤ (2− a)∗ ⇔ r0 ≤ 2⇔ α∗ ≤ 2,

(NDC)⇔ 2 > (2− a)∗ ⇔ r0 > 2⇔ α∗ > 2.
(2.17)

In the following, C denotes a generic positive constant whose value may vary from
one line to another.

Lemma 2.3. Let U be an open, bounded domain in Rn and α ≥ max{2, α∗}. There exists
c1 = c1(α, ~α,~a, n, U) > 0 such that if u is a function on U vanishing on the boundary
∂U , then∫

U

|u|α dx ≤ c1

{∫
U

K(|∇u|)|∇u|2 |u|α−2 dx+
(∫

U

K(|∇u|)|∇u|2 |u|α−2 dx
)γ0}

,

(2.18)
where γ0 = γ0(α) = α

α−a ; consequently,∫
U

|∇u|2−a |u|α−2 dx ≥ c2

((∫
U

|u|αdx
) 1
γ0 − 1

)
, (2.19)

where c2 = c2(α, ~α,~a, n, U) > 0.

Proof. Let ξ = ξ(x) be a non-negative function on U . Let δ = 1− a
2
∈ (0, 1), r = 2−a ∈

(1, 2) and m = α−a
2−a ≥ 1. Applying Poincaré-Sobolev’s inequality (2.16) to the function

|u|m, we have(∫
U

|u|mr
∗
dx

) 1
r∗

≤ C

[∫
U

(∇|u|m)rdx

] 1
r

≤ C

[∫
U

|∇u|rKδ(ξ) ·K−δ(ξ)|u|(m−1)rdx

] 1
r

.

Applying Hölder’s inequality with powers 1/δ and 1/(1− δ) gives(∫
U

|u|mr
∗
dx

) 1
r∗

≤ C

[∫
U

|∇u|
r
δK(ξ)|u|(m−1)rdx

] δ
r
[∫

U

K
−δ
1−δ (ξ)|u|(m−1)rdx

] 1−δ
r

.

Using (2.10) to estimate K
−δ
1−δ (ξ) yields(∫

U

|u|mr
∗
dx

) 1
r∗

≤ C

[∫
U

|∇u|
r
δK(ξ)|u|(m−1)rdx

] δ
r
[∫

U

(1 + ξ)
aδ
1−δ |u|(m−1)rdx

] 1−δ
r

= C

[∫
U

|∇u|2K(ξ)|u|α−2dx

] 1
2
[∫

U

(1 + ξ)2−a|u|α−2dx

] a
2(2−a)

.

Using relation (2.11) to compare (1 + ξ)2−a with 1 +K(ξ)ξ2, we assert(∫
U

|u|mr
∗
dx

) 1
r∗

≤ C

[∫
U

K(ξ)|∇u|2|u|α−2dx

] 1
2
[∫

U

(1 +K(ξ)ξ2)|u|α−2dx

] a
2(2−a)

.

(2.20)



8 L. Hoang, A. Ibragimov, T. Kieu and Z. Sobol

Since α ≥ α∗, elementary calculations show α ≤ mr∗. Then using Holder’s inequality
and applying (2.20) with ξ = |∇u| yield∫
U

|u|αdx ≤ C

(∫
U

|u|mr
∗
dx

) α
mr∗

≤ C

[∫
U

K(|∇u|)|∇u|2|u|α−2dx

]α(2−a)
2(α−a)

[∫
U

(1 +K(|∇u|)|∇u|2)|u|α−2dx

] aα
2(α−a)

≤ C

[∫
U

K(|∇u|)|∇u|2|u|α−2dx

]α(2−a)
2(α−a)

[∫
U

|u|α−2dx+

∫
U

K(|∇u|)|∇u|2|u|α−2dx

] aα
2(α−a)

.

Hence ∫
U

|u|αdx ≤ C

[∫
U

K(|∇u|)|∇u|2|u|α−2dx

]α(2−a)
2(α−a)

[∫
U

|u|αdx
]a(α−2)

2(α−a)

+ C

[∫
U

K(|∇u|)|∇u|2|u|α−2dx

] α
α−a

.

Applying Young’s inequality with powers 2(α−a)
α(2−a)

and 2(α−a)
a(2−a)

to the product term on the
right-hand side of the previous inequality, we obtain∫

U

|u|αdx ≤ C

∫
U

K(|∇u|)|∇u|2|u|α−2dx+
1

2

∫
U

|u|αdx

+ C

[∫
U

K(|∇u|)|∇u|2|u|α−2dx

] α
α−a

,

and (2.18) follows as a consequence.
We define a family of non-linear functions ϕc,γ by

ϕc,γ(z) = c(z + zγ), for c > 0, γ > 0, z ≥ 0. (2.21)

Since K(|∇u|)|∇u|2 ≤ d2|∇u|2−a we have from (2.18) that∫
U

|u|α dx ≤ ϕc,γ0

(∫
U

|∇u|2−a |u|α−2 dx

)
,

where c = c1 max{d2, d
γ0
2 }, and hence∫
U

|∇u|2−a |u|α−2 dx ≥ ϕ−1
c,γ0

(∫
U

|u|α dx
)
. (2.22)

For z ≥ 0, let y = ϕc,γ0(z) = c(z + zγ0). Then y ≤ 1 + C1z
γ0 , where C1 = c + cγ0 ,

hence zγ0 ≥ C−1
1 (y − 1). Noticing that 1/γ0 < 1, we assert z ≥ C

−1/γ0
1 (y

1
γ0 − 1), that is,

ϕ−1
c,γ0

(y) ≥ C
−1/γ0
1 (y

1
γ0 − 1). Therefore we obtain (2.19) from (2.22). �

Remark 2.4. For α ≥ max{2, α∗}, a straightforward application of the imbedding from
the Sobolev space W̊ 1,2−a(U) into L

α(2−a)
α−a (U) to function |u|α gives∫

U

|u|αdx ≤ C

[∫
U

|∇u|2−a|u|α−2dx

] α
2−a

, (2.23)
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U

|∇u|2−a|u|α−2dx ≥ C

[∫
U

|u|αdx
] 2−a

α

. (2.24)

Since 1 < γ0 = α
α−a <

α
2−a , then roughly speaking, (2.18) is better than (2.23), and (2.19)

is better than (2.24).

We now prove another Poincaré-Sobolev inequality with a specific weight.

Lemma 2.5. Let U be an open bounded domain in Rn and ξ = ξ(x) be a non-negative
function defined on U . Assume α ≥ 2.

(i) In the DC case, there is a constant c3 = c3(α, ~α,~a, n, U) > 0 such that∫
U

|u|αdx ≤ c3

[ ∫
U

K(ξ)|∇u|2|u|α−2dx
][

1 +

∫
U

ξ2−adx
] a

2−a
(2.25)

for any function u(x) vanishing on the boundary ∂U .
(ii) In the NDC case, given two numbers θ and θ1 that satisfy

θ >
2

(2− a)∗
and max

{
1,

2n

nθ + 2

}
≤ θ1 < 2− a, (2.26)

there is a constant c4 = c4(α, θ, θ1, ~α,~a, n, U) > 0 such that∫
U

|u|αdx ≤ c4

[ ∫
U

K(ξ)|∇u|2|u|α−2dx
] 1
θ
[
1 +

∫
U

ξ2−a + |u|θ2αdx
] 2−θ1
θθ1 (2.27)

for any function u(x) vanishing on the boundary ∂U , where

θ2 =
θ1(θ − 1)(2− a)

2(2− a− θ1)
> 0. (2.28)

Proof. Suppose θ1 and m are two numbers that satisfy 1 ≤ θ1 < n and α
m
≤ θ∗1. By the

standard Poincaré-Sobolev’s inequality corresponding to the imbedding of W̊ 1,θ1(U) into
L

α
m (U), we have∫
U

|u|αdx =

∫
U

(|u|m)
α
mdx ≤ C

[∫
U

|∇|u|m|θ1dx
] α
mθ1

≤ C

[∫
U

|∇u|θ1|u|(m−1)θ1dx

] α
mθ1

.

If δ1 ∈ [0, 1] and 0 < θ1 < 2 then rewriting the above inequality as∫
U

|u|αdx ≤ C

[∫
U

(
|∇u|θ1K(ξ)

θ1
2 |u|δ1(m−1)θ1

)(
K(ξ)−

θ1
2 |u|(1−δ1)(m−1)θ1

)
dx

] α
mθ1

,

and then applying Holder’s inequality with powers 2/θ1 and 2/(2− θ1) give∫
U

|u|αdx ≤ C

[∫
U

K(ξ)|∇u|2|u|2δ1(m−1)dx

] α
2m
[∫

U

K(ξ)
− θ1

2−θ1 |u|
2θ1(1−δ1)(m−1)

2−θ1 dx

]α(2−θ1)
2θ1m

.

(2.29)
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(i) Consider the DC case. Set θ1 = 2 − a, m = α
2

and δ1 = 1, then 1 < θ1 < 2 and
α/m = 2 ≤ θ∗1 thanks to (2.17). By (2.29) and (2.10) we have∫

U

|u|αdx ≤ C
[ ∫

U

K(ξ)|∇u|2|u|α−2dx
][ ∫

U

K(ξ)−
2−a
a dx

] a
2−a

≤ C
[ ∫

U

K(ξ)|∇u|2|u|α−2dx
][ ∫

U

(1 + ξ2−a)dx
] a

2−a
,

thus obtaining (2.25).
(ii) Next, we consider the NDC case. Note that θ > 2

(2−a)∗
is equivalent to 2n

nθ+2
< 2−a,

hence there always exists θ1 that satisfies the second condition in (2.26). Also, θ > 1

thanks to (2.17).
Setm = θα/2 and δ1 = (α−2)/(2(m−1)). Thenm > α/2 ≥ 1 and hence δ1 ∈ [0, 1).

Since θ1 ≥ 2n
nθ+2

, we have 2m/α = θ ≥ 2/θ∗1 or α/m ≤ θ∗1. Note that 2δ1(m−1) = α−2

and 2(1− δ1)(m− 1) = 2(m− 1)− (α− 2) = 2m−α. Therefore it follows from (2.29)
that∫

U

|u|αdx ≤
[ ∫

U

K(ξ)|∇u|2|u|α−2dx
] α

2m
[ ∫

U

K(ξ)
− θ1

2−θ1 |u|
θ1(2m−α)

2−θ1 dx
]α(2−θ1)

2θ1m

≤
[ ∫

U

K(ξ)|∇u|2|u|α−2dx
] α

2m
[ ∫

U

(1 + ξ)
aθ1
2−θ1 |u|

θ1(2m−α)
2−θ1 dx

]α(2−θ1)
2θ1m .

(2.30)

Since θ1 < 2− a implies aθ1
2−θ1 < 2− a, we apply Young’s inequality to obtain∫

U

(1 + ξ)
aθ1
2−θ1 |u|

θ1(2m−α)
2−θ1 dx ≤ C

∫
U

(1 + ξ)2−a + |u|
θ1(2m−α)(2−a)

2(2−θ1−a) dx. (2.31)

Note that
θ1(2m− α)(2− a)

2(2− θ1 − a)
= θ2α. (2.32)

Therefore we have from (2.30), (2.31) and (2.32) that∫
U

|u|αdx ≤ C
[ ∫

U

K(ξ)|∇u|2|u|α−2dx
] α

2m
[ ∫

U

(1 + |u|θ2α + ξ2−a)dx
]α(2−θ1)

2mθ1 ,

which proves (2.27). �

We derive below some simple but useful estimates for solutions of certain non-linear
ordinary differential inequalities.

Definition 2.6. Given f(t) defined on an interval I ⊂ R. A function F (t) is called an
(upper) envelop of f(t) on I if F (t) ≥ f(t) for all t ∈ I . We denote by Env(f) a
continuous, increasing envelop function of f(t).

Lemma 2.7. Let θ > 0 and let y(t) ≥ 0, h(t) > 0, f(t) ≥ 0 be continuous functions on
[0,∞) that satisfy

y′(t) ≤ −h(t)y(t)θ + f(t) for all t > 0.

Then
y(t) ≤ y(0) +

[
Env(f(t)/h(t))

] 1
θ for all t ≥ 0. (2.33)
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If
∫∞

0
h(t)dt =∞ then

lim sup
t→∞

y(t) ≤ lim sup
t→∞

[
f(t)/h(t)

] 1
θ . (2.34)

In the simple case when y(t) =
∫ t

0
e−k(t−τ)f(τ)dτ , where k is a positive number, we

have from (2.34) that

lim sup
t→∞

∫ t

0

e−k(t−τ)f(τ)dτ ≤ k−1 lim sup
t→∞

f(t). (2.35)

Lemma 2.7 is a special case of Lemma A.1 when applied to the function φ(s) = s1/θ.
The reader is referred to Appendix A for its proof.

3. EXISTENCE RESULTS

Our aim is to study the IBVP for equation (2.8) in a bounded domain. Here afterward
U is a bounded open connected subset of Rn, n = 2, 3, . . . with C2 boundary Γ = ∂U .
In this section the number N ≥ 1, the vectors ~α and ~a, and the Forchheimer polynomial
g(s,~a) ∈ FP (N,~a) all are fixed. Denote g(s) = g(s,~a) and letK(ξ) andH(ξ) be defined
as in the previous section.

Consider the following IBVP for p(x, t):
∂p
∂t

= ∇ · (K(|∇p|)∇p) in U × (0,∞),

p(x, 0) = p0(x) in U,
p(x, t) = ψ(x, t) on Γ× (0,∞).

(3.1)

In order to deal with the non-homogeneous boundary condition, the data ψ(x, t) with
x ∈ Γ and t > 0 is extended to a function Ψ(x, t) with x ∈ Ū and t ≥ 0. Throughout, our
results are stated in terms of Ψ instead of ψ. Nonetheless, corresponding results in terms
of ψ can be retrieved as performed in [13].

In this section we prove the global (in time) existence and uniqueness of weak solu-
tions to (3.1). The proof is based on the theory of monotone operators (c.f. [5,16,20,23]).

To reduce our problem to the framework of the general theory let us recollect some
definitions.

Definition 3.1. Let V1, V2 be Banach spaces, A : V1 → V2 be a map. Then A is called:

• bounded if it maps bounded sets in V1 into bounded sets in V2,
• (weakly) continuous if it maps (weakly) convergent sequences in V1 into (weakly)

convergent sequences in V2,
• completely continuous if it maps weakly convergent in V1 sequences into strongly

convergent sequences in V2,
• demi-continuous if it maps strongly convergent sequences in V1 into weakly

convergent sequences in V2.

In case V1 = V and V2 = V′, that is, A : V→ V′, the map A is called
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• hemi-continuous if t 7→ V′
〈
A(u+ tv), v

〉
V

is continuous for all u, v ∈ V,
• monotone if V′

〈
Au− Av, u− v

〉
V
≥ 0 for all u, v ∈ V,

• of type M if for every sequence {un}∞n=1 in V such that un → u weakly in V,
Aun → ξ weakly in V′ as n→∞, and lim sup

n→∞
V′
〈
Aun, un

〉
V
≤ V′

〈
ξ, u

〉
V

, one

has Au = ξ.

Above, V′ denotes the dual space of V and V′
〈
w, v

〉
V

denotes w(v) for w ∈ V′ and
v ∈ V.

From Lemmas 2.1 and 2.2 in [20] follows:

Proposition 3.2. Let V be a Banach space and let A : V→ V′. Then:
(i) if A is monotone and hemi-continuous then A is of type M ,
(ii) if A is bounded and of type M then it is demi-continuous.

Next we prove an abstract existence result which will be applied to our particular
problem. This follows Propositions 4.1, 4.2 and 5.1 in Chapter III from [20], and Theorem
30.A from [23] with necessary modifications. We provide some details of the proof for the
sake of unity and self-containment. Below, for a number r > 1 we denote r′ its conjugate,
that is, 1/r + 1/r′ = 1.

Theorem 3.3. Let V be a separable reflexive Banach space, and H be a separable Hilbert
space such that V ∩H is dense in H . Assume that a family of operators

A(t) : V→ V′, t ∈ (0, T ),

is given such that

(1) for every v ∈ V, the map t 7→ A(t)v is a measurable map (0, T )→ V′,
(2) for almost all (a.a.) t ∈ (0, T ), the operator A(t) is monotone, hemi-continuous

and bounded with

‖A(t)v‖V′ ≤ c
(
‖v‖r−1

V + kr−1
0 (t)

)
, for all v ∈ V, (3.2)

with some constant c > 0, a number r ∈ (1,∞), and a non-negative function
k0 ∈ Lr(0, T ).

(3) there exists a semi-norm [ · ] on V, constants γ, λ > 0, and a non-negative function
k1 ∈ Lr(0, T ) such that

λ‖v‖H + [v] ≥ γ‖v‖V for all v ∈ V ∩H, (3.3)

V′
〈
A(t)v, v

〉
V
≥ γ[v]r − kr1(t) for all v ∈ V, a.a. t ∈ (0, T ). (3.4)

Part I. Then, for every u0 ∈ H and f ∈ Lr′
(
0, T ;V′

)
there exists a solution u to the

abstract Cauchy problem

u′ + A(t)u = f(t) in Lr
′(

0, T ;V′
)
, u(0) = u0, (3.5)
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that satisfies

u ∈ C
(
[0, T ];H

)
∩ Lr

(
0, T ;V

)
, u′ ∈ Lr′

(
0, T ;V′

)
.

Moreover, this solution is unique in the class

{
u ∈ Lr

(
0, T ;V ∩H

)
: u′ ∈ Lr′

(
0, T ;V′ + H

)}
.

Part II. In addition, assume that there exists a map Φ = Φ(v, t) from V× [0, T ] to R+,
convex and locally bounded in the first variable for all t ∈ [0, T ], such that the following
chain rule holds

d

dt
Φ(v(t), t) = V′

〈
A(t)v(t), v′(t)

〉
V

+ ∂tΦ(v(t), t) for a.a. t ∈ (0, T ) (3.6)

for every absolutely continuous finite dimensional trajectory v : (0, T ) → V ∩ H with
v′ ∈ Lr′(0, T ;V). Assume there is c > 0 such that

∣∣∂tΦ(v, t)
∣∣ ≤ c

(
‖v‖rV + k2(t)

)
for all v ∈ V ∩H, a.a. t ∈ (0, T ), (3.7)

where k2 is a non-negative function. Then the following regularity result holds.

(i) If f ∈ L2
(
0, T ;H; tµdt

)
, Φ(0, ·) ∈ L1

(
0, T ; tµ−1dt

)
and k2 ∈ L1

(
0, T ; tµdt

)
for

some µ ≥ 1 then

u′ ∈ L2
(
0, T ;H; tµdt

)
and ess sup

t∈(0,T )

tµΦ
(
u(t), t

)
<∞.

In particular, the identity

u′(t) + A(t)u(t) = f(t) holds in H for a.a. t ∈ (0, T ).

Moreover, u : (0, T ]→ V is weakly continuous.
(ii) If f ∈ L2

(
0, T ;H

)
, k2 ∈ L1(0, T ) and u0 ∈ V ∩H then

u′ ∈ L2
(
0, T ;H

)
and ess sup

t∈(0,T )

Φ
(
u(t), t

)
<∞.

Moreover, if in addition k1 is bounded in a neighborhood of zero, then u : [0, T ]→
V is also weakly continuous at t = 0.
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Remark 3.4. Let m > 0, t > 0 and v ∈ V ∩ H, we define v(s) = (s/t)mv for s ∈
[2−

1
mr t, t]. It follows from (3.6), (3.7), (3.3) and (3.4) that

Φ(v, t) ≥ Φ
(
(s/t)mv, s

)∣∣∣s=t
s=2−

1
m t

=

∫ t

2−
1
mr t

[
m
s V′
〈
A(s)(s/t)mv, (s/t)mv

〉
V

+ ∂tΦ((s/t)mv, s)
]
ds

≥
∫ t

2−
1
mr t

γm
s

[(s/t)mv]rds−
∫ t

2−
1
mr t

m
s
kr1(s)ds

− c
∫ t

2−
1
mr t

‖(s/t)mv‖rVds− c
∫ t

2−
1
mr t

k2(s)ds

= γ
r
(1− 2−1)[v]r − ct

mr+1
(1− 2−

mr+1
mr )‖v‖rV −

∫ t

2−
1
mr t

(
m
s
kr1(s) + ck2(s)

)
ds

≥
(
γ
2r
− 2rct

mrγr

)
[v]r − 2rλrct

mrγr
‖v‖rH −

∫ t

2−
1
mr t

(
m
s
kr1(s) + ck2(s)

)
ds.

Hence, choosing m = 2r+2ct/γr+1, we obtain

γ
4r

[v]r ≤ Φ(v, t) + γλr

4r
‖v‖rH +

∫ t

2−
1
mr t

(
m
s
kr1(s) + ck2(s)

)
ds.

So holds with

[v]r ≤ k3(t)
(
Φ(v, t) + ‖v‖rH + 1

)
for all v ∈ V ∩H and t ∈ (0, T ), (3.8)

where

k3(t) = 4r
γ

+ λr + 4r
γ

∫ t

2−
1
mr t

(
m
s
kr1(s) + ck2(s)

)
ds.

If k2 ∈ L1
loc((0, T ]), then k3 ∈ L∞loc((0, T ]). Moreover, since

∫ t
2−

1
mr t

m
s
ds = ln 2

r
, the

above function k3 is bounded in a neighborhood of zero provided k1 is bounded in a
neighborhood of zero and k2 ∈ L1(0, T ).

Proof of Theorem 3.3. Note the following.
• By Philips theorem, Lr

(
0, T ;V

)′
w Lr

′(
0, T ;V′

)
.

• By Proposition 3.2, A(t) is demi-continuous for a.a. t ∈ (0, T ). So, given a measur-
able map w : (0, T ) → V, and a sequence of simple functions wn converging to w a.e.
in t as n → ∞, one has A(t)wn(t) → A(t)w(t) weakly in V′ for a.a. t ∈ (0, T ). Hence
t 7→ A(t)w(t) is a measurable map.
• Due to (3.2), the map A : Lr

(
0, T ;V

)
→ Lr

′(
0, T ;V′

)
defined by Aw(t)

def
==

A(t)w(t) is a bounded hemi-continuous map. Moreover, since A(t) is monotone for
a.a. t ∈ (0, T ), the map A is monotone as well. Therefore A is of type M and demi-
continuous.
• The uniqueness of the solution u follows from the fact thatA is a monotone operator.
Case A. First we consider the case V ↪→ H.



Generalized Forchheimer Equations of Any Degree 15

Part I. Note that in this case V ↪→ H w H′ ↪→ V′, where both embeddings are
dense. Since V is separable, there exists a countable set F ⊂ V dense in V, H and
V′. The Gram-Schmidt orthonormalization procedure in H produces a Schauder basis
{ek}k∈N ⊂ V which spans V, H and V′, being orthonormal in H and biorthogonal in
〈V′,V〉.

For n ∈ N, let Vn = span{ek : 1 ≤ k ≤ n} and let Pn denote the projection V′ → Vn

defined by Pnv
def
==

n∑
k=1

V′
〈
v, ek

〉
V
ek for any v ∈ V′.

Let An(t) = PnA(t)Pn : Vn → Vn and fn(t) = Pnf(t).
Let u0n ∈ Vn be such that u0n → u0 in H as n→∞.
Consider the following initial value problem in Vn:

u′n = An(t)un + fn(t), un(0) = u0n. (3.9)

SinceA(t) is demi-continuous on V for a.a. t ∈ (0, T ), it follows thatAn(t) is continuous
on Vn for a.a. t ∈ (0, T ). Then, by the Cauchy-Peano and Carathéodory theorems, (3.2)
implies that (3.9) has a (unique) local solution un, called Galerkin approximation, on
[0, Tn] with 0 < Tn ≤ T , un ∈ Lr(0, Tn;Vn) and u′n ∈ Lr

′
(0, Tn;Vn). Note that this

implies un ∈ C([0, Tn],Vn). The solution un is extendable to the whole interval [0, T ],
i.e., Tn = T , unless it blows up. We derive an estimate of un which is independent of n to
show the absence of a blow up and use it in passing to the limit in n.

Multiply (3.9) by un and integrate in t to obtain

1
2
‖un(t)‖2

H +

∫ t

0
V′
〈
A(s)un(s), un(s)

〉
V
ds = 1

2
‖u0n‖2

H +

∫ t

0
V′
〈
f(s), un(s)

〉
V
ds.

Let k(t) = max{k0(t), k1(t)}, t ∈ (0, T ). Note that, by (3.4)∫ t

0
V′
〈
A(s)un(s), un(s)

〉
V
ds ≥ γ

∫ t

0

[un]rds− ‖k‖rLr(0,T )

and, by (3.3) and the Hölder and Young inequalities, there are positive constants Cγ,r and
Cγ,λ,r such that∫ t

0
V′
〈
f(s), un(s)

〉
V
ds ≤

∫ t

0

‖f(s)‖V′‖un(s)‖Vds ≤ 1
γ

∫ t

0

‖f‖V′
(
[un] + λ‖un‖H

)
ds

≤ Cγ,r‖|f |‖r
′

r′ + Cγ,λ,r‖|f |‖2
r′ +

γ
2

∫ t

0

[un]rds+ 1
2

(∫ t

0

‖un‖rHds
) 2
r
,

where ‖| · |‖r′ denotes the norm in Lr′
(
0, T ;V′

)
. So there exists a constant cγ,λ,r > 0 such

that

‖un(t)‖2
H + γ

∫ t

0

[un]rds

≤ ‖u0‖2
H + 2‖k‖rLr(0,T ) + cγ,λ,r

(
‖|f |‖r′r′ + ‖|f |‖2

r′

)
+
(∫ t

0

‖un‖rHds
) 2
r
. (3.10)
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In particular, neglecting the integral term on the left-hand side and raising both sides to
the power r/2 give

‖un(t)‖rH ≤ c
(

1 +

∫ t

0

‖un‖rHds
)
,

with
c = 2

r
2

(
1 + ‖u0‖2

H + 2‖k‖rLr(0,T ) + cγ,λ,r
(
‖|f |‖r′r′ + ‖|f |‖2

r′

)) r2
independent of n. By Gronwall’s inequality, ‖un(t)‖rH ≤ cect and hence the solution is
extendable to the interval [0, T ] and, by (3.10) and (3.3),

sup
t∈[0,T ]

‖un(t)‖2
H +

∫ T

0

‖un‖rVds is bounded uniformly in n. (3.11)

Since A is a bounded operator Lr
(
0, T ;V

)
→ Lr

′(
0, T ;V′

)
, it follows that Aun is

bounded in Lr′
(
0, T ;V′

)
uniformly in n. Since a closed ball in Lr

(
0, T ;V

)
is weakly

compact, the sequence {un} has a weak limit point u ∈ Lr
(
0, T ;V

)
. Let {unk}∞k=1 be a

subsequence such that
unk → u weakly in Lr

(
0, T ;V

)
. (3.12)

Since closed balls in Lr′
(
0, T ;V′

)
and in H are weakly compact as well, the sequence

{Aunk}∞k=1 has a weak limit point ξ ∈ Lr′
(
0, T ;V′

)
and {unk(T )}∞k=1 has a weak limit

point u∗ ∈ H. Passing if necessary to a subsequence of {unk}∞k=1 (which we denote by
the same notation), we may assume that

Aunk → ξ weakly in Lr
′(

0, T ;V′
)
, and (3.13)

unk(T )→ u∗ weakly in H as k →∞. (3.14)

Note that

−
∫ T

0

θ′(t)V′
〈
unk(t), v

〉
V
dt =

∫ T

0

θ(t)V′
〈
A(t)unk(t), v

〉
V
dt+

∫ T

0

θ(t)V′
〈
f(t), v

〉
V
dt

for all θ ∈ C1
c (0, T ) and v ∈ Vnk . Since F def

== ∪nVn is dense in V, it follows that

−
∫ T

0

θ′(t)V′
〈
u(t), v

〉
V
dt =

∫ T

0

θ(t)V′
〈
ξ(t), v

〉
V
dt+

∫ T

0

θ(t)V′
〈
f(t), v

〉
V
dt

for all θ ∈ C1
c (0, T ) and v ∈ V. By Proposition 23.20(b) in [23], this implies u is weakly

differentiable and
u′ = −ξ + f ∈ Lr′

(
0, T ;V′

)
. (3.15)

Hence, by Proposition 23.23(ii) in [23], u ∈ C
(
[0, T ];H

)
, u(T ) = u∗ and∫ T

0
V′
〈
ξ(t), u(t)

〉
V
dt =

∫ T

0
V′
〈
f(t), u(t)

〉
V
dt+ 1

2
‖u0‖2

H − 1
2
‖u(T )‖2

H . (3.16)

We are left to show that Au = ξ. Since A is of M -type, and one already has (3.12)
and (3.13), it suffices to show that

lim sup
k→∞

∫ T

0
V′
〈
A(t)unk(t), unk(t)

〉
V
dt ≤

∫ T

0
V′
〈
ξ(t), u(t)

〉
V
dt. (3.17)
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Indeed, it follows from (3.9) that

lim sup
k→∞

∫ T

0
V′
〈
A(t)unk(t), unk(t)

〉
V
dt

=

∫ T

0
V′
〈
f(t), u(t)

〉
V
dt+ 1

2
‖u0‖2

H − 1
2

lim inf
k→∞

‖unk(T )‖2
H

≤
∫ T

0
V′
〈
f(t), u(t)

〉
V
dt+ 1

2
‖u0‖2

H − 1
2
‖u(T )‖2

H .

The last inequality is due to (3.14) and ‖ · ‖H being lower semi-continuous in the weak
topology. Combining with (3.16), we obtain (3.17). Thus Au = ξ and (3.15) implies
(3.5). So every weak limit point of {un}∞n=1 is a solution to (3.5). Since such a solution is
unique, we conclude that

un → u weakly in Lr(0, T ;V) as n→∞. (3.18)

Similar argument shows that Au is the only weak limit point of the sequence {Aun}∞n=1

in Lr′(0, T ;V′). So Aun → Au weakly in Lr′(0, T ;V′) as n→∞.
The latter implies that, for all v ∈ H, t ∈ [0, T ],

|V′
〈
v, un(t)− u(t)

〉
V
| → 0 as n→∞. (3.19)

Since sup
n≥1

max
t∈[0,T ]

‖un(t)‖H and max
t∈[0,T ]

‖u(t)‖H are bounded, it suffices to prove (3.19) for

v ∈ F . Let m > 1 and v ∈ Vm. Let n > m. Then

|V′
〈
un(t)− u(t), v

〉
V
| ≤ ‖un0 − u0‖H‖v‖H +

∣∣∣ ∫ t

0
V′
〈
u′n(τ)− u′(τ), v

〉
V
dτ
∣∣∣

= ‖un0 − u0‖H‖v‖H +
∣∣∣ ∫ t

0
V′
〈
A(τ)un(τ)− A(τ)u(τ), v

〉
V
dτ
∣∣∣

+
∣∣∣ ∫ t

0
V′
〈
fn(τ)− f(τ), v

〉
V
dτ
∣∣∣

= ‖un0 − u0‖H‖v‖H +
∣∣∣ ∫ t

0
V′
〈
A(τ)un(τ)− A(τ)u(τ), v

〉
V
dτ
∣∣∣→ 0 as n→∞.

(In fact, Theorem 30.A of [23] has much stronger result, namely,

max
t∈[0,T ]

‖un(t)− u(t)‖H → 0 as n→∞.

However, the weak convergence in (3.19) with a short proof adequately serves our purpose
at the moment.)

Part II. The proof of this part requires additional estimates of un, independent of n.
(i) By (3.6),

d

dt
Φ
(
un(t), t

)
= V′

〈
A(t)un(t), u′n(t)

〉
V

+ ∂tΦ
(
un(t), t

)
.
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It follows from (3.9) and (3.7) that

‖u′n(t)‖2
H +

d

dt
Φ
(
un(t), t

)
≤ ‖u′n(t)‖H‖f(t)‖H + ∂tΦ

(
un(t), t

)
≤ 1

2
‖u′n(t)‖2

H +
1

2
‖f(t)‖2

H + C(‖un(t)‖rV + k2(t)).

Hence

1
2
‖u′n(t)‖2

H +
d

dt
Φ
(
un(t), t

)
≤ 1

2
‖f(t)‖2

H + C(‖un(t)‖rV + k2(t)). (3.20)

Multiply by tµ and integrate in t to obtain the following:∫ T

0

tµ‖u′n(t)‖2
Hdt+ sup

t∈[0,T ]

tµΦ
(
un(t), t

)
≤ 3

2

∫ T

0

tµ‖f(t)‖2
Hdt+ 3

2
µ

∫ T

0

tµ−1Φ
(
un(t), t

)
dt+ CT µ‖|un|‖rr + C

∫ T

0

tµk2(t)dt;

here ‖|un|‖r stands for the norm of un in Lr
(
0, T ;V

)
. Now observe that, since v 7→

Φ(v, t) is convex for all t ∈ [0, T ], it follows from (3.2) that

Φ
(
un(t), t

)
≤ Φ(0, t) + V′

〈
A(t)un, un

〉
V
≤ (c+ 1)‖un(t)‖rV + kr1(t) + Φ(0, t).

Hence there exists a constant c = cµ,T > 0 such that∫ T

0

tµ‖u′n(t)‖2
Hdt+ sup

t∈[0,T ]

tµΦ
(
un(t), t

)
≤ c
(∫ T

0

tµ‖f(t)‖2
Hdt+ ‖|un|‖rr + ‖k1‖rLr(0,T ) +

∫ T

0

tµ−1Φ(0, t)dt+

∫ T

0

tµk2(t)dt
)
.

(3.21)

Combining (3.21) with (3.11), we have {u′n}∞n=1 is uniformly bounded inL2
(
0, T ;H; tµdt

)
,

and hence it is weakly pre-compact in L2
(
0, T ;H; tµdt

)
. Let w ∈ L2

(
0, T ;H; tµdt

)
be a

weak limit point of {u′n}∞n=1 and {unk} be a subsequence of {un}∞n=1 such that u′nk → w

weakly in L2
(
0, T ;H; tµdt

)
as k → ∞. Then, due to (3.18), for every θ ∈ C1

c (0, T ) and
v ∈ V, ∫ T

0

θ(t)V′
〈
w(t), v

〉
V
dt = lim

k

∫ T

0

θ(t)V′
〈
u′nk(t), v

〉
V
dt

=− lim
k

∫ T

0

θ′(t)V′
〈
unk(t), v

〉
V
dt

=−
∫ T

0

θ′(t)V′
〈
u(t), v

〉
V
dt

So w = u′, by Proposition 23.20(b) in [23]. Since the weak limit point of {u′n}∞n=1

is unique, it follows that u′n → u′ weakly in L2
(
0, T ;H; tµdt

)
as n → ∞ and u′ ∈

L2
(
0, T ;H; tµdt

)
.
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Similarly, we have from (3.21) that

sup
n

sup
t∈[0,T ]

tµΦ
(
un(t), t

)
<∞. (3.22)

Because of (3.12) and V being separable, by passing to a subsequence we may assume
unk(t) → u(t) weakly in V for a.a. t ∈ (0, T ). Since Φ is convex in the first vari-
able, it is lower semi-continuous with respect to the weak topology of V. Therefore
ess sup
t∈(0,T )

tµΦ
(
u(t), t

)
<∞. The weak continuity of u in V will be shown below.

(ii) Note that, since u0 ∈ V, we can choose un(0) converging to u0 in V rather than in
H. Since a locally bounded convex function is continuous, it follows that Φ

(
un(0), 0

)
→

Φ
(
u0, 0

)
as n→∞. Then integration of (3.20) leads to the following:∫ T

0

‖u′n‖2
Hdt+ sup

t∈[0,T ]

Φ
(
un(t), t

)
≤ c
(

Φ
(
un(0), 0

)
+

∫ T

0

‖f‖2
Hdt+ ‖|un|‖rr +

∫ T

0

k2(t)dt
)
.

(3.23)

The argument can be completed as in (i).
Now we prove weak continuity of u in V. It suffices to prove the assertion for T <∞.
Assume (i). By Remark 3.4, we have (3.8) with k3 ∈ L∞loc((0, T ]). Then, by (3.3),

(3.22) and (3.11) we have that, for every ε > 0,

{un(t) : n ∈ N, ε ≤ t ≤ T} is bounded in V and in H. (3.24)

For each t ∈ [ε, T ], property (3.19) implies that un(t) → u(t) weakly in H, hence by
the weak pre-compactness in V and H of the set in (3.24), we have u(t) ∈ V. Since
u ∈ C

(
[0, T ];H

)
, the weak continuity of u : (0, T ]→ V again follows from (3.24).

Assume (ii) with k1 bounded in a neighborhood of zero. Then (3.8) holds with k3 ∈
L∞(0, T ). Thanks to (3.23), the boundedness (3.24) holds with ε = 0 and the correspond-
ing weak continuity on [0, T ] is proved similarly.

Case B. Now, consider the general case when V∩H is dense in H. Let V0 = V∩H.
Then

V0 ↪→ H ' H′ ↪→ V′0 ' V′ + H densely and continuously.

Moreover, assumptions (1)–(3) hold true with V and V′ replaced with V0 and V′0, re-
spectively. Hence problem (3.5) has a unique solution u satisfying

u ∈ C
(
[0, T ];H

)
∩ Lr

(
0, T ;V ∩H

)
, u′ ∈ Lr′

(
0, T ;V′ + H

)
.

However, C
(
[0, T ];H

)
∩ Lr

(
0, T ;V ∩ H

)
' C

(
[0, T ];H

)
∩ Lr

(
0, T ;V

)
, and, since

f ∈ Lr
′(

0, T ;V′
)

and A is a bounded operator Lr
(
0, T ;V

)
→ Lr

′(
0, T ;V′

)
, we have

u′ = −Au+ f ∈ Lr′
(
0, T ;V′

)
. The other assertions follow from case A above. �

We apply the above abstract result to our problem to obtain the existence of weak
solutions globally in time. Below, for any function ϕ(x, t) of two variables x and t, we
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use ϕ(t) to denote the function t → ϕ(·, t), hence give meaning to expressions such as
ϕ ∈ C((0, T ), L2(U)) and ‖ϕ(t)‖L2(U).

Theorem 3.5. (i) For every p0 ∈ L2(U) and

Ψ ∈ C
(
[0,∞), L2(U)

)
∩ L∞loc

(
[0,∞),W 1,2−a(U)

)
with Ψt ∈ L(2−a)′

loc

(
[0,∞), (W 1,2−a(U))′

)
,

the initial boundary value problem (3.1) has a unique solution p satisfying

p ∈ C
(
[0,∞), L2(U)

)
∩ L∞loc

(
[0,∞),W 1,2−a(U)

)
and pt ∈ L(2−a)′

loc

(
[0,∞), (W 1,2−a(U))′

)
.

(3.25)

(ii) If, in addition, Ψ : [0,∞)→ W 1,2−a(U) is weakly continuous,

∂tΨ ∈ L2
loc

(
[0,∞), L2(U)

)
∩ L2−a

loc

(
[0,∞),W 1,2−a(U)

)
,

and p0 ∈ W 1,2−a(U) with p0

∣∣
Γ

= Ψ(0)
∣∣
Γ

then

p : [0,∞)→ W 1,2−a(U) is weakly continuous and ∂tp ∈ L2
loc

(
[0,∞), L2(U)

)
. (3.26)

Proof. (i) The uniqueness of a solution p(x, t) is a direct consequence of the monotonicity
in Lemma 2.1. For the existence, as usual, we solve for p(x, t) of the form p(x, t) =

p̄(x, t) + Ψ(x, t), where p̄(x, t) satisfies{
∂p
∂t

= ∇ ·
(
K(|∇p̄+∇Ψ|)(∇p̄+∇Ψ)

)
−Ψt in U × (0,∞),

p(x, t) = 0 on Γ× (0,∞).
(3.27)

We will apply Theorem 3.3 to (3.27). Let V = W̊ 1,2−a(U), H = L2(U) and f = −∂tΨ.
Let T > 0 be arbitrary. Then f ∈ L(2−a)′(0, T ;V′). For the weak formulation, we multiply
the equation by w ∈ V and integrate over U to obtain

d

dt

∫
U

p̄wdx = −
∫
U

(
K
(
|∇p̄+∇Ψ(t)|

)
(∇p̄+∇Ψ(t)

)
· ∇wdx+

∫
U

fwdx.

Therefore we define A(t)v, for t > 0 and v ∈ V, by

V′
〈
A(t)v, w

〉
V

=

∫
U

(
K
(
|∇v +∇Ψ(t)|

)(
∇v +∇Ψ(t)

)
· ∇wdx, w ∈ V.

Then it follows from (2.10) that

‖A(t)v‖V′ ≤
∥∥K(|∇v +∇Ψ(t)|

)
(∇v +∇Ψ(t))

∥∥
L(2−a)′

≤ C
∥∥∇v +∇Ψ(t)

∥∥1−a
L2−a ≤ C

(
‖v‖1−a

V + ‖∇Ψ(t)‖1−a
L2−a

)
.

(3.28)

Hence A(t) is a bounded linear map V→ V′ and the estimate (3.2) holds with

k0(t) = ‖∇Ψ(t)‖L2−a and the number r = 2− a.

Obviously, k0 ∈ Lr(0, T ). Applying (2.10) and the Lebesgue dominated convergence the-
orem, it is easy to obtain that A(t) is hemi-continuous, (2.15) implies that it is monotone.
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We define the seminorm [v], for v ∈ V, to be ‖∇v‖L2−a . Then (3.3) clearly holds since
2− a < 2. It follows from estimates (2.10)–(2.11) that, with some c > 0,

V′
〈
A(t)v, v

〉
V
≥
∫
U

K
(
|∇v +∇Ψ(t)|

)
|∇v +∇Ψ(t)|2dx

−
∫
U

K
(
|∇v +∇Ψ(t)|

)
|∇v +∇Ψ(t)||∇Ψ(t)|dx

≥ c
(
‖∇v +∇Ψ(t)‖2−a

L2−a − |U |
)
− ‖∇v +∇Ψ(t)‖1−a

L2−a‖∇Ψ(t)‖L2−a

≥ c
2
‖∇v +∇Ψ(t)‖2−a

L2−a − c|U | − ( c
2
)a−1‖∇Ψ(t)‖2−a

L2−a

≥ c23−a‖v‖2−a
V − c|U | −

(
c
2

+ ( c
2
)a−1

)
‖∇Ψ(t)‖2−a

L2−a .

Thus we obtain the coercivity estimate (3.4) with k1 = C(1 + k0) for some C > 0.
Applying Theorem 3.3 part I, we obtain solution p̄(x, t) and conclude (3.25) for p(x, t)
accordingly.

(ii) Here f ∈ L2(0, T ;H) and p̄0 ∈ V ∩H. For v ∈ V and t ≥ 0, let

Φ(v, t) =
1

2

∫
U

H
(
|∇v +∇Ψ(t)|

)
dx.

Then Φ(v, t) meets the requirements in Theorem 3.3, part II. Indeed, by (2.13),

|Φ(v, t)| ≤ C(‖v‖2−a
V + ‖Ψ(t)‖2−a

V ),

hence Φ(v, t) is bounded in v for each t ≥ 0.
Let v, w ∈ V and τ ∈ (0, 1), by (2.14) we have

Φ(τv + (1− τ)w, t) ≤ 1

2

∫
U

H(τ |∇v +∇Ψ(t)|+ (1− τ)|∇w +∇Ψ(t)|)dx

≤ 1

2

∫
U

τH(|∇v +∇Ψ(t)|) + (1− τ)H(|∇w +∇Ψ(t)|)dx

= τΦ(v, t) + (1− τ)Φ(w, t).

Therefore Φ(v, t) is convex in v. By direct calculations, one can verify (3.6) and

∂tΦ(v, t) =

∫
U

K
(
|∇v +∇Ψ(t)|

)
(∇v +∇Ψ(t)) · ∇∂tΨ(t)dx.

Then by (2.10),

|∂tΦ(v, t)| ≤ C

∫
U

|∇v +∇Ψ(t)|1−a|∇∂tΨ(t)|dx

≤ C
(
‖v‖2−a

V + ‖∇Ψ(t)‖2−a
L2−a + ‖∇∂tΨ(t)‖2−a

L2−a

)
.

Hence (3.7) holds with k2(t) = ‖∇Ψ(t)‖2−a
L2−a + ‖∇∂tΨ(t)‖2−a

L2−a . Clearly, k2 ∈ L1(0, T )

and k1 ∈ L∞(0, T ). Now the assertion follows from (ii) of part II, Theorem 3.3. �

In case the initial and boundary data have more regularity, so does our solution. Specif-
ically, we have:



22 L. Hoang, A. Ibragimov, T. Kieu and Z. Sobol

Theorem 3.6. Let α ≥ 2. Assume p0(x) ∈ Lα(U), Ψ ∈ C
(
[0,∞);Lα(U)

)
, ∇Ψ ∈

L
α(2−a)

2

(
U × (0, T )

)
and Ψt ∈ Lα

(
U × (0, T )

)
for all T > 0. Then the corresponding

solution p(x, t) to (3.1) satisfies p ∈ C
(
[0,∞);Lα(U)

)
, and p̄ = p−Ψ satisfies

1

α

d

dt

∫
U

|p̄(x, t)|αdx = −(α− 1)

∫
U

K(|∇p|)(∇p · ∇p̄)|p̄|α−2dx

+

∫
U

Ψt|p̄|α−2p̄dx for all t > 0.

(3.29)

Proof. Let T > 0. For n ∈ N and s ∈ R, let Vn(s) =
∫ s

0
(min{|τ |, n})α−2τ dτ , that is,

Vn(s) =

{
1
α
|s|α, |s| ≤ n;

1
α
nα + 1

2
nα−2(|s| − n)2, |s| > n.

Clearly, Vn(s) ↑ 1
α
|s|α as n ↑ ∞. Let also p̄n = min{|p̄|, n}. Note that p̄α−2

n p̄ ∈
C
(
[0,∞),W 1,2−a(U)

)
and that

∇(p̄α−2
n p̄) =

[
(α− 1)χn|p̄|α−2 + nα−2χcn

]
∇p̄,

where χn is the indicator of the set {(x, t) : |p̄(x, t)| ≤ n} and χcn = 1−χn is the indicator
of the complement.

Multiplying the first equation in (3.27) by p̄α−2
n p̄ and integrating over domain U give

d

dt

∫
U

Vn(p̄)dx =

∫
U

p̄α−2
n p̄

∂p̄

∂t
dx

= −
∫
U

[
K(|∇p|)|∇p|2 −K(|∇p|)(∇p) · (∇Ψ)

][
(α− 1)χn|p̄|α−2 + nα−2χcn

]
dx

+

∫
U

Ψtp̄
α−2
n p̄dx ≡ I1 + I2. (3.30)

We will estimate two integrals on the right-hand side of (3.30).
Note from (2.10)–(2.11) that for ε > 0 and ξ, η ≥ 0, we have

K(ξ)ξη ≤ Cξ1−aη ≤ C
[
(K(ξ)ξ2)

1−a
2−a + 1

]
η ≤ εK(ξ)ξ2 + Cε(η

2−a + 1). (3.31)

Estimating K(|∇p|)(∇p · ∇Ψ) by (3.31) with ε = 1
2
, there exists C > 0 such that

−
[
K(|∇p|)|∇p|2 −K(|∇p|)(∇p) · (∇Ψ)

]
≤−K(|∇p|)|∇p|2 +K(|∇p|)|∇p||∇Ψ|

≤ − 1
2
K(|∇p|)|∇p|2 + C(|∇Ψ|2−a + 1).

Moreover,

(α− 1)χn|p̄|α−2 + nα−2χcn ≤ α
2α−2
α Vn(p̄)

α−2
α ,

and, since α ≥ 2, we have pα−2
n |p̄| ≤ CαVn(p̄)

α−1
α . Then, by the Young inequality,

I1 ≤ −1
2
α

2α−2
α

∫
U

K(|∇p|)|∇p|2Vn(p̄)
α−2
α dx+ C

(∫
U

Vn(p̄)dx+

∫
U

|∇Ψ|
α(2−a)

2 dx+ 1
)
,

I2 ≤
∫
U

Vn(p̄)dx+

∫
U

|Ψt|αdx.
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Hence it follows from (3.30) and the above estimate of I1 and I2 that
d

dt

∫
U

Vn(p̄)dx+
1

2
α

2α−2
α

∫
U

K(|∇p|)|∇p|2Vn(p̄)
α−2
α dx

≤ C
(∫

U

Vn(p̄)dx+

∫
U

|∇Ψ|
α(2−a)

2 dx+

∫
U

|Ψt|αdx+ 1
)
.

(3.32)

Drop the second summand on the left-hand side to obtain
d

dt

∫
U

Vn(p̄)dx ≤ C

∫
U

Vn(p̄)dx+ C
(∫

U

|∇Ψ|
α(2−a)

2 dx+

∫
U

|Ψt|αdx+ 1
)
.

Then it follows from the Gronwall inequality that there exists C = C(T ) > 0 such that∫
U

Vn(p̄)dx ≤ CeCt, 0 < t < T.

Passing n→∞ and by the Beppo Levi lemma, we have∫
U

|p̄|αdx ≤ αCeCt, 0 < t < T. (3.33)

Therefore p̄ ∈ L∞
(
0, T ;Lα(U)

)
.

Now integrate (3.32) in t to obtain that, for all T > 0,∫ T

0

∫
U

K(|∇p|)|∇p|2Vn(p̄)
α−2
α dxdt ≤ C

(∫ T

0

∫
U

|p̄|αdxdt+

∫ T

0

∫
U

|∇Ψ|
α(2−a)

2 dxdt

+

∫ T

0

∫
U

|Ψt|αdxdt+

∫
U

|p̄0|αdx+ 1
)
.

Again, it follows from the Beppo Levi lemma that

K(|∇p|)|∇p|2|p̄|α−2 ∈ L1
(
U × (0, T )

)
for all T > 0. (3.34)

Now (3.29) follows from (3.30) as n→∞.
To prove that p̄(t) is continuous in Lα(U), observe that it is continuous in measure

convergence since it is continuous in L2(U). Then by the Brezis-Lieb lemma [6], it
suffices to prove that ‖p̄(t)‖Lα is continuous. However, by the asserted identity (3.29),
similar estimates to those of I1 and I2, and properties (3.33) and (3.34), it follows that∫ T

0

∣∣ d
dt
‖p̄(t)‖αLα

∣∣dt <∞, hence ‖p̄(t)‖αα is absolutely continuous. Consequently the asser-
tion follows. �

4. ESTIMATES OF SOLUTIONS

In this section, we obtain more refined estimates for solutions of (3.1) than those in
the previous section. We emphasize on the asymptotic estimates as t→∞ in terms of the
asymptotic behavior of the Dirichlet data. They are crucial to the stability analysis of the
solutions in the next two sections.

In previous section, we prove that (3.1) possesses a weak solution p(x, t) for all t > 0

(see Theorems 3.5 and 3.6). Our solution p(x, t), in fact, has more regularity in spatial
and time variables. However, a proof of this fact requires another lengthy treatment which
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is beyond the scope of the current paper. Also, since we aim is to study the qualitative
properties of the solutions, we take the liberty to assume that p(x, t) has sufficient regu-
larities both in x and t variables such that our calculations hereafterward can be performed
legitimately.

Let p(x, t) be a solution to IBVP (3.1) with given data p0(x) and ψ(x, t). Let p = p−Ψ,
then it satisfies

{
∂p
∂t

= ∇ · (K(|∇p|)∇p)−Ψt in U × (0,∞),

p(x, t) = 0 on Γ× (0,∞).
(4.1)

We will derive estimates for
∫
U
|p̄(x, t)|αdx for all α > 0 and t > 0, as well as for∫

U
|∇p(x, t)|2−adx and

∫
U
|p̄t(x, t)|2dx. The corresponding estimates for p(x, t) can be

obtained by using the facts

∫
U

|p|αdx ≤ 2α
∫
U

|p̄|α + |Ψ|αdx and
∫
U

|pt|2dx ≤ 2

∫
U

|p̄t|2 + |Ψt|2dx.

Notation for constants. In this section all constants C,C1, C2, . . . depend on many pa-
rameters, namely, exponent α, vectors ~α and ~a, the spatial dimension n and domain U ,
but are independent of the initial and boundary data. The constant C is generic and may
vary from place to place, even changes values on the same line. Constants C1, C2, . . .

have values temporarily fixed within one proof. The constants c1, c2, . . . , have fixed val-
ues for each α. Their dependence on n, U , ~α and ~a is implicitly understood. The constants
d1, d2, . . . , do not depend on α.

The Lebesgue norms (on U ) of Ψ(x, t) or its spatial and time derivatives are always
assumed to be continuous in t on [0,∞) whenever they are used.

For α > 0 and t ≥ 0, we define

A(α, t) = A[Ψ](α, t)
def
==
[ ∫

U

|∇Ψ(x, t)|
α(2−a)

2 dx
] 2(α−a)
α(2−a)

+
[ ∫

U

|Ψt(x, t)|αdx
] α−a
α(1−a)

.

(4.2)

Lemma 4.1. Suppose α ≥ max{2, α∗}. Then there exist positive constants c5 = c5(α)

and C such that

d

dt

∫
U

|p(x, t)|αdx ≤ −c5

(∫
U

|p̄(x, t)|αdx
) 1
γ0 + C(1 + A(α, t)), t > 0, (4.3)

where γ0 = γ0(α) = α/(α− a).
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Proof. Multiplying both sides of the first equation in (4.1) by |p̄|α−1sign(p̄), integrating
over domain U , and using Green’ formula and the facts α > 1, p̄ = 0 on Γ, we have

1

α

d

dt

∫
U

|p|αdx =

∫
U

|p|α−1sign(p)
∂p

∂t
dx

=

∫
U

[
∇ · (K(|∇p|)∇p)−Ψt

]
|p|α−1sign(p)dx

= −(α− 1)

[∫
U

K(|∇p|)|∇p|2|p|α−2dx−
∫
U

K(|∇p|)(∇p · ∇Ψ)|p|α−2dx

]
−
∫
U

Ψt|p|α−1sign(p)dx.

(4.4)

We will estimate the last three integrals of (4.4). Let ε > 0. By (2.11) and Hölder’s
inequality, we have

−
∫
U

K(|∇p|)|∇p|2|p|α−2dx ≤ −C
∫
U

(|∇p|2−a − 1)|p̄|α−2dx

≤ −C
∫
U

|∇p̄|2−a|p|α−2dx+ C

∫
U

|∇Ψ|2−a|p̄|α−2 + |p̄|α−2dx

≤ −C
∫
U

|∇p̄|2−a|p|α−2dx+ C
(∫

U

|p̄|αdx
)α−2

α
(∫

U

(1 + |∇Ψ|2−a)
α
2 dx
) 2
α
.

Since α−2
α

< α−a
α

= 1
γ0

, applying Young’s inequality to the last product gives

−
∫
U

K(|∇p|)|∇p|2|p|α−2dx ≤ −C
∫
U

|∇p̄|2−a|p|α−2dx+ ε
(∫

U

|p̄|αdx
) 1
γ0

+ Cε

[
1 +

(∫
U

|∇Ψ|
α(2−a)

2 dx
) 2(α−a)
α(2−a)

]
.

(4.5)

For the second integral on the right-hand side of (4.4),∣∣∣∣∫
U

K(|∇p|)(∇p · ∇Ψ)|p̄|α−2dx

∣∣∣∣ ≤ C

∫
U

|∇p|1−a|∇Ψ||p̄|α−2dx

≤ C

∫
U

|∇p̄|1−a|∇Ψ||p̄|α−2dx+

∫
U

|∇Ψ|2−a|p̄|α−2dx.

(4.6)

Applying Hölder’s inequality to functions |p̄|α−2 and |∇Ψ|2−a using powers α
α−2

and α
2

,
and then applying Young’s inequality we obtain∫

U

|p̄|α−2|∇Ψ|2−adx ≤
(∫

U

|p̄|αdx
)α−2

α
(∫

U

|∇Ψ|
α(2−a)

2 dx
) 2
α

≤ ε
(∫

U

|p̄|αdx
) 1
γ0 + Cε

(∫
U

|∇Ψ|
α(2−a)

2 dx
) 2(α−a)
α(2−a)

.

(4.7)
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Applying Hölder’s inequality to three functions |∇p̄|1−a|p̄|
(α−2)(1−a)

2−a , |p̄|
α−2
2−a , |∇Ψ| with

powers 2−a
1−a , α(2−a)

α−2
, α(2−a)

2
respectively, we have∫

U

|∇p̄|1−a|∇Ψ||p̄|α−2dx =

∫
U

|∇p̄|1−a|p̄|
(α−2)(1−a)

(2−a) · |p̄|
α−2
2−a · |∇Ψ|dx

≤
(∫

U

|∇p̄|2−a|p̄|α−2dx
) 1−a

2−a
(∫

U

|p̄|αdx
) α−2
α(2−a)

(∫
U

|∇Ψ|
α(2−a)

2 dx
) 2
α(2−a)

.

Since 1−a
2−a < 1 and α−2

α(2−a)
≤ α−2

α
< 1

γ0
, applying Young’s inequality gives∫

U

|∇p̄|1−a|∇Ψ||p̄|α−2dx

≤ ε

∫
U

|∇p̄|2−a|p̄|α−2dx+ ε
(∫

U

|p̄|αdx
) 1
γ0 + Cε

(∫
U

|∇Ψ|
α(2−a)

2 dx
) 2(α−a)
α(2−a)

.

(4.8)

From (4.6), (4.7) and (4.8), we have∣∣∣∣∫
U

K(|∇p|)∇p · ∇Ψ|p̄|α−2dx

∣∣∣∣ ≤ ε

∫
U

|∇p̄|2−a|p̄|α−2dx+ ε
(∫

U

|p̄|αdx
) 1
γ0

+ Cε

(∫
U

|∇Ψ|
α(2−a)

2 dx
) 2(α−a)
α(2−a)

.

(4.9)

For the last integral on the right-hand side of (4.4), by Höder’s and Young’s inequali-
ties, we similarly obtain∣∣∣∣∫

U

Ψt|p̄|α−1sign(p̄)dx

∣∣∣∣ ≤ (∫
U

|p̄|αdx
)α−1

α
(∫

U

|Ψt|αdx
) 1
α

≤ ε
(∫

U

|p̄|αdx
) 1
γ0 + Cε

(∫
U

|Ψt|αdx
) α−a
α(1−a)

.

(4.10)

Using estimates (4.5), (4.9) and (4.10) in (4.4), we have

d

dt

∫
U

|p̄|αdx ≤ −C
∫
U

|∇p̄|2−a|p̄|α−2dx+ ε
(∫

U

|p̄|αdx
) 1
γ0 + ε

∫
U

|∇p̄|2−a|p̄|α−2dx

+ Cε(1 + A(α, t)).

For sufficiently small ε, we obtain

d

dt

∫
U

|p|αdx ≤ −C
∫
U

|∇p̄|2−a|p|α−2dx+ ε
(∫

U

|p̄|αdx
) 1
γ0 + Cε(1 + A(α, t)). (4.11)

Applying inequality (2.19) of Lemma 2.3 to
∫
U
|∇p̄|2−a|p|α−2dx in (4.11) yields

d

dt

∫
U

|p|αdx ≤ −C
((∫

U

|p̄|αdx
) 1
γ0 − 1

)
+ ε
(∫

U

|p̄|αdx
) 1
γ0 + Cε(1 + A(α, t)).

Now selecting ε sufficiently small, we obtain (4.3). �

We can estimate the Lα-norm of p̄ for all α > 0.
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Definition 4.2. For any α > 0, we define

α̂ = max{α, 2, α∗} =

{
max{α, α∗} in the NDC case
max{α, 2} in the DC case.

(4.12)

For α ≥ 1, let

A(α) = lim sup
t→∞

A(α, t) and β(α) = lim sup
t→∞

[A′(α, t)]−.

Whenever β(α) is in use, it is understood that the function t → A(α, t) belongs to
C1((0,∞)).

Theorem 4.3. Let α > 0.
(i) For all t ≥ 0,∫

U

|p̄(x, t)|αdx ≤ C
(

1 +

∫
U

|p̄(x, 0)|α̂dx+ [EnvA(α̂, t)]
α̂
α̂−a

)
. (4.13)

(ii) If A(α̂) <∞ then

lim sup
t→∞

∫
U

|p̄(x, t)|αdx ≤ C
(
1 + A(α̂)

α̂
α̂−a
)
. (4.14)

(iii) If β(α̂) <∞ then there is T > 0 such that∫
U

|p̄(x, t)|αdx ≤ C
(
1 + β(α̂)

α̂
α̂−2a + A(α̂, t)

α̂
α̂−a
)

(4.15)

for all t ≥ T .

Proof. Since α ≤ α̂, by Young’s inequality∫
U

|p̄(x, t)|αdx ≤
∫
U

1 + |p̄(x, t)|α̂dx,

hence it suffices to prove (4.13), (4.14) and (4.15) for the case α = α̂.
Consider α = α̂. Let y(t) =

∫
U
|p̄(x, t)|αdx. Then by (4.3),

y′(t) ≤ −c5y(t)
1
γ0 + C(1 + A(α, t)), t > 0. (4.16)

(i) Applying estimate (2.33) Lemma 2.7 to inequality (4.16), we obtain∫
U

|p̄(x, t)|αdx ≤
∫
U

|p̄(x, 0)|αdx+ C(1 + [EnvA(α, t)]γ0),

hence (4.13) follows.
(ii) Assume A(α) <∞. Applying (2.34) of Lemma 2.7 to (4.16) yields

lim sup
t→∞

∫
U

|p̄(x, t)|αdx ≤ C(1 + A(α))γ0 ,

hence we obtain (4.14).
(iii) Assume β(α) < ∞. Let φ(z) = c−γ05 zγ0 for z ≥ 0. Then φ(z) ≤ ϕc,γ0(z), where

c = c−γ05 , and φ−1(z) ≥ ϕ−1
c,γ0

(z), and it follows from (4.16) that

y′(t) ≤ −φ−1(y(t))+C(1+A(α, t)) ≤ −ϕ−1
c,γ0

(y(t))+C(1+A(α, t)), t > 0. (4.17)
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Note that 1 < γ0 < 2, applying Proposition 3.7 in [14] to (4.17), there is T > 0 such
that for all t > T , ∫

U

|p̄(x, t)|αdx ≤ C(1 + β(α)
γ0

2−γ0 + A(α, t)γ0),

which yields (4.15). �

For further estimates of spatial and time derivatives of the pressure, we recall the
following quantities from [13, 14]:

G1(t) = G1[Ψ](t) =

∫
U

|∇Ψ(x, t)|2dx+
[ ∫

U

|Ψt(x, t)|r0dx
] 2−a
r0(1−a)

+
[ ∫

U

|Ψt(x, t)|r0dx
] 1
r0 ,

G2(t) = G2[Ψ](t) =

∫
U

|∇Ψt(x, t)|2dx+

∫
U

|Ψt(x, t)|2dx,

G3(t) = G3[Ψ](t) = G1(t) +G2(t),

G4(t) = G4[Ψ](t) = G3(t) +

∫
U

|Ψtt|2dx,

where r0 is the same as in section 2, or explicitly, r0 = n(2−a)
(2−a)(n+1)−n .

Using the above Lα-estimates, we re-estimate and improve the bounds of the integrals∫
U
H(|∇p|)dx and

∫
U
|p̄t|2dx obtained in [13]. Particularly, our new estimates are much

sharper in the NDC case.
From estimate (3.25) in [13] we have for all t ≥ 0 that∫
U

H(|∇p(x, t)|)dx ≤
∫
U

H(|∇p(x, 0)|) + |p̄(x, 0)|2dx+ C

∫ t

0

G3(τ)dτ. (4.18)

However, this does not imply the uniform boundedness of
∫
U
H(|∇p(x, t)|)dx for

t ≥ 0 even when G3(t) are uniformly bounded.
We easily obtain from inequality (3.4) in [13] that∫ t

0

∫
U

H(|∇p(x, t)|)dx ≤ C

∫
U

|p̄(x, 0)|2dx+ C

∫ t

0

G1(τ)dτ. (4.19)

Also, we recall (3.25) of [13]:∫ t

0

∫
U

|p̄t(x, τ)|2dxdτ ≤
∫
U

H(|∇p(x, 0)|) + |p̄(x, 0)|2dx+ C

∫ t

0

G3(τ)dτ. (4.20)

Because of estimate (4.13), we define for α > 0 and t ≥ 0,

B(α, t) = B[p̄(·, 0),Ψ](α, t)
def
==

∫
U

|p̄(x, 0)|αdx+ [EnvA(α, t)]
α
α−a . (4.21)
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Theorem 4.4. (i) If t ≥ 0 then∫
U

H(|∇p(x, t)|)dx ≤ C
(

1 +

∫
U

|p̄(x, 0)|2̂dx
)

+ e−d5t
∫
U

H(|∇p(x, 0)|)dx

+ C

∫ t

0

e−d5(t−τ)
[
[Env(A(2̂, τ)]

2̂
2̂−a +G3(τ)

]
dτ,

(4.22)

where d5 > 0 is introduced in (4.26) below.
(ii) If A(2̂) <∞ then there is T > 0 such that for t > T ,∫

U

H(|∇p(x, t)|)dx ≤ C
(

1 + A(2̂)
2̂

2̂−a +

∫ t

0

e−d5(t−τ)G3(τ)dτ
)

; (4.23)

consequently

lim sup
t→∞

∫
U

H(|∇p(x, t)|)dx ≤ C
[
1 + A(2̂)

2̂
2̂−a + lim sup

t→∞
G3(t)

]
. (4.24)

(iii) If β(2̂) <∞ then there is T > 0 such that∫
U

H(|∇p(x, t)|)dx ≤ C
{

1+β(2̂)
2̂

2̂−2a +

∫ t

0

e−d5(t−τ)
[
A(2̂, τ)

2̂
2̂−a +G3(τ)

]
dτ
}

(4.25)

for all t > T .

Proof. (i) From line 4 into the proof of Corollary 3.7 in [13], we have
d

dt

∫
U

H(|∇p|)dx+
1

2

∫
U

|p̄t|2dx ≤ −d5

∫
U

H(|∇p|)dx+C

∫
U

p̄2dx+CG3(t), (4.26)

hence neglecting the non-negative term on the left-hand side gives
d

dt

∫
U

H(|∇p|)dx ≤ −d5

∫
U

H(|∇p|)dx+ C

∫
U

p̄2dx+ CG3(t). (4.27)

Applying Gronwall’s inequality yields∫
U

H(|∇p(x, t)|)dx ≤ e−d5t
∫
U

H(|∇p(x, 0)|)dx

+ C

∫ t

0

e−d5(t−τ)
[ ∫

U

p̄2(x, τ)dx+G3(τ)
]
dτ. (4.28)

Using estimate (4.13) in (4.28) gives∫
U

H(|∇p(x, t)|)dx ≤ e−d5t
∫
U

H(|∇p(x, 0)|)dx

+ C

∫ t

0

e−d5(t−τ)
(

1 +

∫
U

|p(0, x)|2̂dx+ [EnvA(2̂, τ)]
2̂

2̂−a +G3(τ)
)
dτ,

and hence (4.22) follows.
(ii) Assume A(2̂) < ∞. We notice that the first term on the right-hand side of (4.28)

exponentially decays to 0 as t→∞. Next, by (2.35) and (4.14)

lim sup
t→∞

∫ t

0

e−d5(t−τ)

∫
U

p̄(x, τ)2dxdτ ≤ C lim sup
t→∞

∫
U

p̄2(x, t)dx ≤ C(1 + A(2̂)γ0(2̂)).
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Hence it follows from (4.28) for large t that∫
U

H(|∇p(x, t)|)dx ≤ C(1 + A(2̂)γ0((2̂)) + C

∫
U

e−d5(t−τ)G3(τ)dτ,

which is (4.23). Taking limit superior both sides of (4.23) and, again, applying (2.35) to∫ t
0
e−d5(t−τ)G3(τ)dτ we obtain (4.24).
(iii) Assume β(2̂) < ∞. By virtue of Theorem 4.3, there is T1 > 0 such that (4.15)

holds for t > T1. Let t > T1. Splitting the time integral in (4.28) gives∫
U

H(|∇p(x, t)|)dx ≤ e−d5t
∫
U

H(|∇p(x, 0)|)dx

+ C

∫ T1

0

e−d5(t−τ)
(∫

U

p̄(x, τ)2dx+G3(τ)
)
dτ

+ C

∫ t

T1

e−d5(t−τ)
(∫

U

p̄(x, τ)2dx+G3(τ)
)
dτ.

To estimate
∫
U
p̄(x, τ)2dx we use (4.13) for τ < T1 and use (4.15) for t > T1. Then∫

U

H(|∇p(x, t)|)dx ≤ e−d5t
∫
U

H(|∇p(x, 0)|)dx

+ Ce−d5t
∫ T1

0

ed5τ (1 +B(2̂, τ) +G3(τ))dτ

+ C

∫ ∞
T1

e−d5(t−τ)(1 + β(2̂)
2̂

2̂−2a + A(2̂, τ)γ0(2̂) +G3(τ))dτ.

≤ Ce−d5t
{∫

U

H(|∇p(x, 0)|)dx+

∫ T1

0

ed5τ (1 +B(2̂, τ) +G3(τ))dτ
}

+ C(1 + β(2̂)
2̂

2̂−2a ) + C

∫ t

T1

e−d5(t−τ)(A(2̂, τ)γ0(2̂) +G3(τ))dτ.

Due to the exponential decay of the term e−d5t{. . .} above, there exists T > T1 such that
for t > T ,∫

U

H(|∇p(x, t)|)dx ≤ C(1 + β(2̂)
2̂

2̂−2a ) + C

∫ t

T1

e−d5(t−τ)(A(2̂, τ)γ0(2̂) +G3(τ))dτ,

therefore we obtain (4.25). �

For the time derivative, we have the following.

Theorem 4.5. (i) If t ≥ t0 > 0 then∫
U

H(|∇p(x, t)|) + |p̄t(x, t)|2dx ≤ C
(

1 +

∫
U

|p̄(x, 0)|2̂dx
)

+ Ced6t0t−1
0 e−d6t

{∫
U

|p̄(x, 0)|2 +H(|∇p(x, 0)|)dx+

∫ t0

0

G3(τ)dτ
}

+ C

∫ t

0

e−d6(t−τ)
(

[EnvA(2̂, τ)]
2̂

2̂−a +G4(τ)
)
dτ,

(4.29)

where d6 > 0 is introduced in (4.33) below.
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(ii) If A(2̂) <∞ then there is T > 0 such that for t > T ,∫
U

H(|∇p(x, t)|) + |p̄t(x, t)|2dx ≤ C
(

1 + A(2̂)
2̂

2̂−a +

∫ t

1

e−d6(t−τ)G4(τ)dτ
)

; (4.30)

consequently,

lim sup
t→∞

∫
U

H(|∇p(x, t)|) + |p̄t(x, t)|2dx ≤ C
[
1 + A(2̂)

2̂
2̂−a + lim sup

t→∞
G4(t)

]
. (4.31)

(iii) If β(2̂) <∞ then there is T > 0 such that for t > T ,∫
U

H(|∇p(x, t)|)+|p̄t(x, t)|2dx ≤ C
(

1+β(2̂)
2̂

2̂−2a+

∫ t

1

e−d6(t−τ)(A(2̂, τ)
2̂

2̂−a+G4(τ))dτ
)
.

(4.32)

Proof. (i) The inequality (3.51) of [13] reads
d

dt

∫
U

H(|∇p|) + |p̄t|2 + |p̄|2dx ≤ −d6

∫
U

H(|∇p|) + |p̄t|2dx+ CG4(t).

By Cauchy’s inequality (see the derivation of (4.26)), we have
d

dt

∫
U

H(|∇p|) + |p̄t|2dx ≤ −d6

∫
U

H(|∇p|) + |p̄t|2dx+ C

∫
U

p̄2dx+ CG4(t). (4.33)

Then by Theorem 4.3(i),
d

dt

∫
U

H(|∇p|)+|p̄t|2dx ≤ −d6

∫
U

H(|∇p|)+|p̄t|2dx+C(1+B(2̂, t))+CG4(t). (4.34)

By (4.19) and (4.20)∫ t0

0

∫
U

H(|∇p(x, τ)|) + |p̄t(x, τ)|2dxdτ

≤ C1

[ ∫
U

H(|∇p(x, 0)|) + |p̄(x, 0)|2dx+

∫ t0

0

G3(τ)dτ
]
.

Hence there is t′ ∈ (0, t0) such that∫
U

H(|∇p(x, t′)|) + |p̄t(x, t′)|2dx

≤ 2C1t
−1
0

[ ∫
U

H(|∇p(x, 0)|) + |p̄(x, 0)|2dx+

∫ t0

0

G3(τ)dτ
]
.

By (4.34) and Gronwall’s inequality, for t ≥ t0 > t′ > 0,∫
U

H(|∇p(x, t)|) + |p̄t(x, t)|2dx

≤ e−d6(t−t′)
∫
U

H(|∇p(x, t′)|) + |p̄t(x, t′)|2dx+ C

∫ t

t′
e−d6(t−τ)(1 +B(2̂, τ) +G4(τ))dτ

≤ Ce−d6(t−t0)t−1
0

{∫
U

H(|∇p(x, 0)|) + |p̄(x, 0)|2dx+

∫ t0

0

G3(τ)dτ
}

+ C

∫ t

0

e−d6(t−τ)
(

1 +

∫
U

p̄(x, 0)2̂dx+ [EnvA(2̂, τ)]γ0(2̂) +G4(τ)
)
dτ.
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Therefore (4.29) follows.
(ii) Assume A(2̂) <∞. By (4.33) and Theorem 4.3(ii), there exists T1 ≥ 1 such that

d

dt

∫
U

H(|∇p|) + |p̄t|2dx ≤ −d6

∫
U

H(|∇p|) + |p̄t|2dx+C
[
1 +Aγ0(2̂) +G4(t)

]
(4.35)

for all t > T1. Let t > T1. Applying Gronwall’s inequality to (4.35) yields∫
U

H(|∇p(x, t)|) + |p̄t(x, t)|2dx

≤ e−d6(t−T1)

∫
U

H(|∇p(x, T1)|) + p̄2
t (x, T1)dx+ C

∫ t

T1

e−d6(t−τ)(1 + Aγ0(2̂) +G4(τ))dτ

≤ e−d6(t−T1)

∫
U

H(|∇p(x, T1)|) + p̄2
t (x, T1)dx+ C(1 + Aγ0(2̂)) + C

∫ t

1

e−d6(t−τ)G4(τ)dτ.

Since
∫
U
H(|∇p(x, T1)|) + p̄2

t (x, T1)dx < ∞, estimate (4.30) easily follows for suffi-
ciently large t. Then (4.31) follows by taking limit superior of (4.30) and using (2.35).

(iii) Assume β(2̂) < ∞. By Theorem 4.3 and (4.33) there is T2 > 0 such that for
t > T2,

d

dt

∫
U

H(|∇p|) + |p̄t|2dx

≤ −d6

∫
U

H(|∇p|) + |p̄t|2dx+ C
[
1 + β(2̂)

2̂
2̂−2a + A(2̂, t)γ0(2̂) +G4(t)

]
. (4.36)

We then obtain (4.34) by using the same argument as in part (ii). �

Remark 4.6. In the NDC case, despite the initial data being imposed to be in a higher
Lebesgue space Lα∗(U) the estimates obtained in Theorems 4.4 and 4.5 are much sharper
than those in [13]. In particularly if the boundary data satisfy A(2̂, t) +G4(t) ≤ C for all
t ≥ 0, then

∫
U
H(|∇p(x, t)|)dx is uniformly bounded on [0,∞), and

∫
U
|p̄t(x, t)|2dx is

uniformly bounded on [1,∞). These cannot be achieved by the results in [13] which only
yield the boundedness for finite time intervals.

We now estimate some integrals with mixed products of p and |∇p|. These will be
needed in section 6.

Corollary 4.7. If α ≥ max{2, α∗} and t > 0 then

∫ t

0

∫
U

|∇p(x, τ)|2−a|p̄(x, τ)|α−2dx dτ

≤ C
(∫

U

|p̄(x, 0)|αdx+

∫ t

0

(1 + A(α, τ))dτ
)
, (4.37)
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U

|∇p(x, t)|2−a|p̄(x, t)|α−2dx

≤ C
(

1 + A(α, t) +

∫
U

|p̄(x, t)|2(α−1)dx+

∫
U

|p̄t(x, t)|2dx
)
. (4.38)

Proof. Note in this case that α̂ = α. Since |∇p| ≤ |∇p̄|+ |∇Ψ|, we have∫
U

|∇p|2−a|p̄|α−2dx ≤ C

∫
U

|∇p̄|2−a|p̄|α−2dx+ C

∫
U

|∇Ψ|2−a|p̄|α−2dx. (4.39)

Let t > 0. Integrating inequality (4.11) from 0 to t with ε = 1 gives∫ t

0

∫
U

|∇p̄|2−a|p̄|α−2dx ≤ C

∫
U

|p̄(x, 0)|αdx− C
∫
U

|p̄(x, t)|αdx

+

∫ t

0

(∫
U

|p̄(x, τ)|αdx
) 1
γ0 dτ + C

∫ t

0

(1 + A(α, τ))dτ. (4.40)

Integrating (4.3) from 0 to t yields∫ t

0

(∫
U

|p̄(x, τ)|αdx
) 1
γ0 dτ ≤ C

∫
U

|p(x, 0)|αdx+ C

∫ t

0

1 + A(α, τ)dτ. (4.41)

Combining (4.40) with (4.41) we have∫ t

0

∫
U

|∇p̄|2−a|p̄|α−2dx ≤ C

∫
U

|p̄(x, 0)|αdx+ C

∫ t

0

(1 + A(α, τ))dτ. (4.42)

By (4.39) as well as Hölder’s and Young’s inequalities,∫ t

0

∫
U

|∇p|2−a|p̄|α−2dxdτ

≤ C

∫ t

0

∫
U

|∇p̄|2−a|p̄|α−2dxdτ + C

∫ t

0

∫
U

|∇Ψ|2−a|p̄|α−2dxdτ

≤ C

∫ t

0

∫
U

|∇p̄|2−a|p̄|α−2dxdτ + C

∫ t

0

(∫
U

|∇Ψ|
α(2−a)

2 dx
) 2
α
(∫

U

|p̄|αdx
)α−2

α
dτ

≤ C

∫ t

0

∫
U

|∇p̄|2−a|p̄|α−2dxdτ + C

∫ t

0

(∫
U

|∇Ψ|
α(2−a)

2 dx
) 2(α−a)
α(2−a)

dτ

+

∫ t

0

(∫
U

|p̄|αdx
) 1
γ0 dτ.

Utilizing estimates (4.41) and (4.42) in the last inequality, and noticing that the quantity( ∫
U
|∇Ψ(x, τ)|

α(2−a)
2 dx

) 2(α−a)
α(2−a) is a part of A(α, τ) we obtain (4.37).

Now, we set ε = 1 in (4.11) and rewrite it as∫
U

|∇p̄|2−a|p̄|α−2dx ≤ −C
∫
U

∂|p̄|α

∂t
dx+ C

∫
U

|p̄|αdx+ C(1 + A(α, t)).

Hence∫
U

|∇p̄|2−a|p̄|α−2dx ≤ C

∫
U

|p̄t||p̄|α−1dx+ C

∫
U

|p̄|αdx+ C(1 + A(α, t))

≤ C
{∫

U

|p̄t|2dx+

∫
U

|p̄|2(α−1)dx+

∫
U

|p̄|αdx+ 1 + A(α, t)
}
.
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Also, by Young’s inequality∫
U

|∇Ψ|2−a|p̄|α−2dx ≤
∫
U

|∇Ψ|
α(2−a)

2 dx+

∫
U

|p̄|αdx ≤ 1 + A(α, t) +

∫
U

|p̄|αdx.

The last inequality is due to the fact that 2(α−1)
α(2−a)

≥ 1. Thus we have from (4.39),∫
U

|∇p|2−a|p̄|α−2dx ≤ C
{∫

U

|p̄t|2dx+

∫
U

|p̄|2(α−1)dx+

∫
U

|p̄|αdx+ 1 + A(α, t)
}

+ C
{

1 + A(α, t) +

∫
U

|p̄|αdx
}
.

Since 2(α− 1) ≥ α, estimate (4.38) then follows. �

Remark 4.8. The estimates and corresponding conditions in Theorems 4.3, 4.4 and 4.5
need be made more flexible in order to compare one to another when the involved pa-
rameters are varied. This can be done in the following way. First consider Theorem 4.3.
Suppose

α′ ≥ α̂ and A(α′, t)γ0(α′) ≤ Cα′(1 +G(t)), (4.43)

where Cα′ denotes a generic positive constant depending on α′. Then we can replace
constant C depending on α by a constant Cα′ depending on α′; and
• in part (i), replace

∫
U
|p̄(x, 0)|α̂dx by

∫
U
|p̄(x, 0)|α′dx, replace [EnvA(α̂, ·)]

α̂
α̂−a by

EnvG(·); and
• in part (ii), replace A(α̂) by [lim supt→∞G(t)]

1
γ0(α

′) , replace A(α̂)
α̂
α̂−a by

lim supt→∞G(t); and
• in part (iii), replace β(α̂) by β′ = lim supt→∞[(G(t)

1
γ0(α

′) )′]−, replace β(α̂)
α̂

α̂−2a by

β′
α′

α′−2a , replace A(α̂, t)
α̂
α̂−a by G(t).

Indeed, by Young’s inequality∫
U

|p(x, t)|αdx ≤
∫
U

1 + |p(x, t)|α′dx,

and by (4.3) and (4.43),

d

dt

∫
U

|p(x, t)|α′dx ≤ −c5(α′)
(∫

U

|p̄(x, t)|α′dx
) 1
γ0(α

′)
+ Cα′

(
1 +G(t)

1
γ0(α

′)
)
, t > 0.

Then we can proceed the proof of Theorem 4.3 with α′ replacing α and G(t)
1

γ0(α
′) replac-

ing A(α, t), also noticing that α̂′ = α′,

lim sup
t→∞

[G(t)
1

γ0(α
′) ] = [lim sup

t→∞
G(t)]

1
γ0(α

′) ,{
lim sup
t→∞

[G(t)
1

γ0(α
′) ]
}γ0(α′)

= lim sup
t→∞

G(t),

and we can choose [EnvG(t)]
1

γ0(α
′) for Env[G(t)

1
γ0(α

′) ], therefore{
Env[G(t)

1
γ0(α

′) ]
}γ0(α′)

= EnvG(t).

The above replacements can also be applied to Theorems 4.4 and 4.5 with α̂ = 2̂.
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5. DEPENDENCE ON THE BOUNDARY DATA

In this section we study the continuous dependence of the solution to IBVP (3.1) on
the boundary data ψ(x, t). Let pk = pk(x, t), for k = 1, 2, be two solutions of (3.1) with
boundary values ψk respectively. For k = 1, 2, let Ψk be an extension of ψk and denote
p̄k = pk −Ψk. Let

z = p1 − p2, Φ = Ψ1 −Ψ2 and z̄ = p̄1 − p̄2 = z − Φ.

We will estimate
∫
U
|z̄(x, t)|αdx and

∫
U
|∇z̄(x, t)|2−adx. The corresponding estimates for

z can be retrieved easily by using the relations∫
U

|z|αdx ≤ C
[ ∫

U

|z̄|αdx+

∫
U

|Φ|αdx
]
,∫

U

|∇z|2−adx ≤ C
[ ∫

U

|∇z̄|2−adx+

∫
U

|∇Φ|2−adx
]
.

We derive from (5.1) then IBVP for z̄(x, t):
∂z̄
∂t

= ∇ ·
(
K(|∇p1|)∇p1 −K(|∇p2|)∇p2

)
− Φt in U × (0,∞),

z̄(x, 0) = p̄1(x, 0)− p̄2(x, 0) in U,
z̄(x, t) = 0 on Γ× (0,∞).

(5.1)

Throughout this section the numbers θ, θ1 and θ2 are as in Lemma 2.5. Denote

N(λ, t) =
2∑

k=1

(∫
U

|p̄k(x, t)|λdx
)1/λ

for λ > 0, and N(0, t) = 1.

Lemma 5.1. Let α ≥ 2.
(i) In the DC case,
d

dt

∫
U

|z̄(x, t)|αdx ≤ −c6

[ ∫
U

|z̄(x, t)|αdx
]
M1(t)−

a
2−a + CF (α, t)D(α, t) (5.2)

for all t > 0, where c6 = c6(α, ~α,~a, n, U) > 0,

M1(t) = 1 +

∫
U

|∇p1(x, t)|2−a + |∇p2(x, t)|2−adx, (5.3)

F (α, t) = 1 +N(α, t)α−1 +N(γ1, t)
α−2M1(t)

1−a
2−a , (5.4)

with γ1 = γ1(α)
def
== 2(α− 2)(2− a), and

D(α, t) =

{
‖∇Φ(·, t)‖L2(2−a) + ‖∇Φ(·, t)‖2

Lα + ‖Φt(·, t)‖Lα if α > 2,

‖∇Φ(·, t)‖L2−a + ‖∇Φ(·, t)‖2
L2 + ‖Φt(·, t)‖L2 if α = 2.

(5.5)

(ii) In the NDC case,
d

dt

∫
U

|z̄(x, t)|αdx ≤ −c7

[ ∫
U

|z̄(x, t)|αdx
]θ
M2(α, t)

− 2−θ1
θ1 + CF (α, t)D(α, t) (5.6)

for all t > 0, where c7 = c7(α, θ, θ1, ~α,~a, n, U) > 0,

M2(α, t) = 1+

∫
U

|∇p1(x, t)|2−a+ |∇p2(x, t)|2−a+ |p̄1(x, t)|θ2α+ |p̄2(x, t)|θ2αdx. (5.7)
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Proof. Multiplying the first equation of (5.1) by |z̄|α−1sign(z), integrating over domain
U , then applying Green’s formula, we have
1

α

d

dt

∫
U

|z̄|αdx

= −(α− 1)

∫
U

(K(|∇p1|)∇p1 −K(|∇p2|)∇p2) · ∇z̄|z̄|α−2dx−
∫
U

Φt|z̄|α−1sign(z̄)dx

= −(α− 1)

∫
U

(K(|∇p1|)∇p1 −K(|∇p2|)∇p2) · (∇p1 −∇p2)|z̄|α−2dx

+ (α− 1)

∫
U

(K(|∇p1|)∇p1 −K(|∇p2|)∇p2) · ∇Φ|z̄|α−2dx−
∫
U

Φt|z̄|α−1sign(z̄)dx.

By the monotonicity, c.f. Lemma 2.1(i),
1

α

d

dt

∫
U

|z̄|αdx ≤ −(α− 1)(1− a)

∫
U

K
(

max{|∇p1|, |∇p2|}
)
|∇p1 −∇p2|2|z̄|α−2dx

+ (α− 1)J2 + J1,

where

J1 =

∫
U

|Φt||z̄|α−1dx,

J2 =

∫
U

(
K(|∇p1|)|∇p1|+K(|∇p2|)|∇p2|

)
|∇Φ||z̄|α−2dx.

Since |∇p1 −∇p2|2 = |∇z̄ −∇Φ|2 ≥ 1/2|∇z̄|2 − |∇Φ|2, we have
1

α

d

dt

∫
U

|z̄|αdx ≤ −CJ4 + CJ3 + (α− 1)J2 + J1, (5.8)

where

J3 =

∫
U

K
(

max{|∇p1|, |∇p2|}
)
|∇Φ|2|z̄|α−2dx,

J4 =

∫
U

K
(

max{|∇p1|, |∇p2|}
)
|∇z̄|2|z̄|α−2dx.

We now estimate each of J1, J2, J3.
Consider the case α > 2. For J1, we have

J1 ≤ C

[∫
U

|Φt|αdx
] 1
α
[∫

U

|z̄|αdx
]α−1

α

≤ C‖Φt‖LαN(α, t)α−1. (5.9)

For J2, using (2.10) and applying Hölder’s inequality give

J2 ≤ C

∫
U

( 2∑
k=1

|∇pk|1−a
)
|∇Φ||z̄|α−2dx

≤ C

[
2∑

k=1

∫
U

|∇pk|2−adx

] 1−a
2−a [∫

U

|z̄|(α−2)(2−a)|∇Φ|2−adx
] 1

2−a

≤ CM1(t)
1−a
2−a

[∫
U

|z̄|2(α−2)(2−a)dx

] 1
2(2−a)

[∫
U

|∇Φ|2(2−a)dx

] 1
2(2−a)

.
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Hence
J2 ≤ CM1(t)

1−a
2−aN(2(α− 2)(2− a), t)α−2‖∇Φ‖L2(2−a) . (5.10)

For J3, by the boundedness of K(ξ), Hölder’s and Young’s inequalities, we get

J3 ≤ C

∫
U

|∇Φ|2|z̄|α−2dx ≤ C

[∫
U

|∇Φ|αdx
] 2
α
[∫

U

|z̄|αdx
]α−2

α

≤ C‖∇Φ‖2
LαN(α, t)α−2,

thus,
J3 ≤ C(1 +N(α, t)α−1)‖∇Φ‖2

Lα . (5.11)

Combining (5.8) with estimates (5.9), (5.10) and (5.11), we obtain
d

dt

∫
U

|z̄|αdx ≤ −CJ4 + CN(α, t)α−1‖Φt‖Lα + CM1(t)
1−a
2−aN(γ1, t)

α−2‖∇Φ‖L2(2−a)

+ C(1 +N(α, t)α−1)‖∇Φ‖2
Lα ,

hence
d

dt

∫
U

|z̄|αdx ≤ −CJ4 + CF (α, t)D(α, t). (5.12)

For the case α = 2 we use the same estimate for J1 while quickly estimate

J2 ≤ CM1(t)
1−a
2−a‖∇Φ‖L2−a and J3 ≤ C‖∇Φ‖2

L2 ,

hence obtaining (5.12) again with the corresponding D(2, t) defined in (5.5).
(i) Consider the DC case. Applying inequality (2.25) of Lemma 2.5 with u = z̄,

ξ = max{|∇p1|, |∇p2|} and using ξ ≤ |∇p1|+ |∇p2| in the last integral of that inequality
we obtain ∫

U

|z̄|αdx ≤ CJ4M1(t)
a

2−a ,

which implies

−J4 ≤ −C
[ ∫

U

|z̄|αdx
]
M1(t)−

a
2−a . (5.13)

Then (5.2) follows from (5.12) and (5.13).
(ii) Now consider the NDC case. Similarly, applying inequality (2.27) instead of (2.25)

with the same u(x) and ξ(x), and also using |u| ≤ |p̄1|+ |p̄2| in its last integral, we have

−J4 ≤ −C
[ ∫

U

|z̄|αdx
]θ
M2(α, t)

− 2−θ1
θ1 . (5.14)

Hence (5.6) follows from (5.12) and (5.14). �

Referring to the notation used in the section 4, we set

Gj(t) = Gj[Ψ1](t) +Gj[Ψ2](t) for j = 1, 2, 3, 4.

To unify may estimates below, we will use the replacements in Remark 4.8. With the
condition (4.43) in mind, we observe that( 2∑

k=1

A[Ψk](α, t)
)γ0(α)

≤ C
2∑

k=1

{(∫
U

|∇Ψk|
α(2−a)

2 dx
) 2

2−a
+
(∫

U

|(Ψk)t|αdx
) 1

1−a
}
,
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therefore, by Hölder’s inequality,( 2∑
k=1

A[Ψk](α, t)
)γ0(α)

≤ CÃ(α, t), (5.15)

where

Ã(α, t) =
2∑

k=1

{∫
U

|∇Ψk(x, t)|αdx+
(∫

U

|(Ψk(x, t))t|αdx
) 1

1−a
}
. (5.16)

For each k = 1, 2, applying (4.22) of Theorem 4.4 for pk and using replacements in
Remark 4.8 with α′ = α ≥ 2̂ and, thanks to (5.15), G(t) = Ã(α, t), we have

M1(t) ≤ CαM1(α, t) for all α ≥ 2̂, t ≥ 0, (5.17)

where

M1(α, t) = 1 +
2∑

k=1

[ ∫
U

|p̄k(x, 0)|αdx+ e−d5t
∫
U

|∇pk(x, 0)|2−adx
]

+

∫ t

0

e−d5(t−τ)(EnvÃ(α, τ) + G3(τ))dτ. (5.18)

Particularly, for α = 2̂

M1(t) ≤ CM1(t) for all t ≥ 0, where M1(t) = M1(2̂, t). (5.19)

For λ ≥ 0, similar to (5.17) but using (4.13) instead of (4.22), using α′ = λ and
G(t) = Ã(λ, t) in Remark 4.8, we have

2∑
k=1

∫
U

|p̄k(·, t)|λdx ≤ CλE(λ̂, t) for all t ≥ 0, (5.20)

where

E(λ, t) =

{
1 +

∑2
k=1

∫
U
|p̄k(·, 0)|λdx+ EnvÃ(λ, t) if λ > 0,

1 if λ = 0.
(5.21)

Let λ ≥ θ̂2α ≥ 2̂, we observe that

M2(α, t) = M1(t) +
2∑

k=1

∫
U

|p̄k(x, t)|θ2αdx

≤ Cα,λ

(
1 +M1(t) +

2∑
k=1

∫
U

|p̄k(x, t)|λdx
)
.

(5.22)

hence by taking α in (5.17) to be λ and using (5.20), we obtain

M2(α, t) ≤ Cα,λ(M1(λ, t) + E(λ, t)). (5.23)

Taking into account that EnvÃ(λ, t) is increasing in t, we can bound∫ t

0

e−d5(t−τ)EnvÃ(λ, τ)dτ ≤ d−1
5 EnvÃ(λ, t). (5.24)
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Hence

M2(α, t) ≤ Cα,λM2(λ, t) for all λ ≥ θ̂2α, t ≥ 0, (5.25)

where

M2(λ, t) = 1 +
2∑

k=1

[ ∫
U

|p̄k(x, 0)|λdx+ e−d5t
∫
U

|∇pk(x, 0)|2−adx
]

+ EnvÃ(λ, t) +

∫ t

0

e−d5(t−τ)G3(τ)dτ. (5.26)

When λ = θ̂2α, estimate (5.25) reads

M2(α, t) ≤ CαM2(θ̂2α, t) for all t ≥ 0. (5.27)

If α ≥ 0, then N(α, t) ≤ Cα(1 + N(α̂, t)), and by (5.20) we have N(α, t) ≤
CαE(α̂, t))1/α̂, thus

N(α, t) ≤ CαN(α, t) for all ≥ α ≥ 0, t ≥ 0, (5.28)

where

N(α, t) =

{
1 +

∑2
k=1 ‖p̄k(·, 0)‖Lα̂ +

(
EnvÃ(α̂, t)

)1/α̂ if α > 0,

1 if α = 0.
(5.29)

If λ ≥ α ≥ 0, then N(α, t) ≤ Cα,λ(1 +N(λ, t)), and applying (5.28) with α set to equal
λ, we have

N(α, t) ≤ Cα,λN(λ, t) for all λ ≥ α ≥ 0, t ≥ 0. (5.30)

Consequently, concerningF (α, t) in (5.4), using (5.28) to estimateN(α, t) andN(γ1, t),
and using (5.19) to estimate M1(t), we obtain

F (α, t) ≤ CαF (α, t) for all t ≥ 0, (5.31)

where

F (α, t) = N(α, t)α−1 +N(γ1(α), t)α−2M1(t)
1−a
2−a . (5.32)

Alternatively, for λ ≥ max{α, γ1(α), θ̂2α}, we use (5.30) to estimate N(α, t) and
N(γ1, t), and use (5.17) with α set to equal λ to estimate M1(t), thus obtaining

F (α, t) ≤ Cα,λF (α, λ, t) for all t ≥ 0, λ ≥ max{α, γ1(α), θ̂2α}, (5.33)

where

F (α, λ, t) = N(λ, t)α−1 +N(λ, t)α−2M1(λ, t)
1−a
2−a . (5.34)

For large time estimates we define

Ā(α) = lim sup
t→∞

Ã(α, t) and β̄(α) = lim sup
t→∞

[ d
dt

(
Ã(α, t)

1
γ0(α)

)]−
.

For α ≥ 2̂, there is Tα > 0 such that

M1(t) ≤ CαM̃1(α, t) for all t ≥ Tα, (5.35)
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where

M̃1(α, t) =



1 + Ā(α) +
∫ t

0
e−d5(t−τ)G3(τ)dτ if Ā(α) <∞,

1 + β̄(α)
α

α−2a

+
∫ t

0
e−d5(t−τ)(Ã(α, τ) + G3(τ))dτ if Ā(α) =∞, β̄(α) <∞,

1 + EnvÃ(α, t)

+
∫ t

0
e−d5(t−τ)G3(τ)dτ if Ā(α) =∞, β̄(α) =∞.

(5.36)

In particular, when α = 2̂ there is T > 0 such that

M1(t) ≤ CM̃1(t) for all t ≥ T, where M̃1(t) = M̃1(2̂, t). (5.37)

For the proof of (5.35), we combine Theorem 4.4 with the same replacements in Re-
mark 4.8 used for the above derivation of (5.17), and have (4.23) corresponding to the
case Ā(α) <∞, have (4.25) corresponding to the case Ā(α) =∞, β̄(α) <∞, and have
(4.22) corresponding to the case Ā(α) =∞, β̄(α) =∞.

Similarly, it follows from Theorem 4.3 instead of 4.4 that there is Tα > 0, for α ≥ 2̂,
such that

2∑
k=1

∫
U

|p̄k(·, t)|αdx ≤ CαẼ(α̂, t) for all t ≥ Tα, (5.38)

where

Ẽ(α, t) =


Ā(α) if Ā(α) <∞,
β̄(α)

α
α−2a + Ã(α, t) if Ā(α) =∞, β̄(α) <∞,

EnvÃ(α, t) if Ā(α) =∞, β̄(α) =∞,
(5.39)

For α ≥ 0 and λ ≥ θ̂2α, by (5.22), (5.35) and (5.38) with α = λ = λ̂, there is Tα,λ > 0

such that
M2(α, t) ≤ Cα,λM̃2(λ, t) for all t ≥ Tα,λ, (5.40)

where
M̃2(α, t) = M̃1(α, t) + Ẽ(α, t). (5.41)

Taking λ = θ̂2α, estimate (5.40) reads

M2(α, t) ≤ CαM̃2(θ̂2α, t) for all t ≥ Tα, some Tα > 0. (5.42)

The functions N(λ, t) and F (α, t) can be treated similarly to obtain counter parts of
(5.31) and (5.33). The counter part of N(λ, t) is

Ñ(λ, t) =

{
1 + Ẽ(λ̂, t)1/λ̂ if λ > 0,

1 if λ = 0,
(5.43)

the counter part of F (α, t) is

F̃ (α, t) = Ñ(α, t)α−1 + Ñ(γ1(α), t)α−2M̃1(t)
1−a
2−a , (5.44)

and the counter part of F (α, λ, t) is

F̃ (α, λ, t) = Ñ(λ, t)α−1 + Ñ(λ, t)α−2M̃1(λ, t)
1−a
2−a . (5.45)
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For α ≥ 2, resp. α ≥ 2 and λ ≥ max{α, γ1(α), 2̂}, using (5.38) we have

N(α, t) ≤ CαÑ(α, t) and N(γ1, t) ≤ CαÑ(γ1, t),

resp. N(α, t), N(γ1, t) ≤ Cα,λÑ(λ, t),

for sufficiently large t, hence combining this with (5.37), resp. with (5.35) for α set to
equal λ, we obtain

F (α, t) ≤ CαF̃ (α, t) for all t ≥ Tα, some Tα > 0, (5.46)

resp. F (α, t) ≤ Cα,λF̃ (α, λ, t) for all t ≥ Tα,λ, some Tα,λ > 0. (5.47)

Note that the quantities M̃1(α, t), M̃2(α, t), Ñ(λ, t), F̃ (α, t) and F̃ (α, λ, t) depend on
the boundary data Ψ1(x, t) and Ψ2(x, t), but are independent of the initial data p1(x, 0)

and p2(x, 0).
Throughout, we assume all of the quantities Gj(t), Ã(α, t),Mk(α, t), M̃k(α, t),N(α, t),

Ñ(α, t), F (α, t), F̃ (α, t), F (α, λ, t), F̃ (α, λ, t), as functions of t, are continuous on
[0,∞) whenever they are in use.

With the above preparations, we are ready for continuous dependence results.

Theorem 5.2. (i) Assume (DC) and α ≥ 2. Then∫
U

|z̄(x, t)|αdx ≤ e−c8
∫ t
0 M1(τ)

−a
2−a dτ

∫
U

|z̄(x, 0)|αdx

+ C

∫ t

0

e−c8
∫ t
τ M1(s)

−a
2−a dsF (α, τ)D(α, τ)dτ (5.48)

for all t ≥ 0, where c8 = c8(α) > 0. Moreover, if
∫∞

0
M̃1(t)−

a
2−adt =∞ then

lim sup
t→∞

∫
U

|z̄(x, t)|αdx ≤ C lim sup
t→∞

[
F̃ (α, t)M̃1(t)

a
2−aD(α, t)

]
. (5.49)

(ii) Assume (NDC) and α ≥ α∗. Then∫
U

|z̄(x, t)|αdx ≤
∫
U

|z̄(x, 0)|αdx+C
[
Env

(
F (α, t)M2(θ̂2α, t)

2−θ1
θ1 D(α, t)

)] 1
θ

(5.50)

for all t ≥ 0. Moreover, if
∫∞

0
M̃2(t)

− 2−θ1
θ1 dt =∞ then

lim sup
t→∞

∫
U

|z̄(x, t)|αdx ≤ C lim sup
t→∞

[
F̃ (α, t)M̃2(θ̂2α, t)

2−θ1
θ1 D(α, t)

] 1
θ

. (5.51)

Proof. (i) By (5.2), estimates (5.19) and (5.31):

d

dt

∫
U

|z̄|αdx ≤ −c8

[∫
U

|z̄|αdx
]
M1(t)−

a
2−a + CF (α, t)D(α, t).

Applying Gronwall’s inequality we obtain (5.48).
By (5.2), (5.37) and (5.46), we have for t > T that

d

dt

∫
U

|z̄|αdx ≤ −C1

[∫
U

|z̄|αdx
]
M̃1(t)−

a
2−a + C2F̃ (α, t)D(α, t).
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Then applying estimate (2.34) in Lemma 2.7 with y(t) =
∫
U
|z̄(x, t)|αdx, h(t) =

C1M̃1(t)−
a

2−a , f(t) = C2F̃ (α, t)D(α, t) and θ = 1 yields (5.49).
(ii) By (5.6), (5.27) and (5.31) we have

d

dt

∫
U

|z̄|αdx ≤ −C3

[∫
U

|z̄|αdx
]θ
M2(θ̂2α, t)

− 2−θ1
θ1 + C4F (α, t)D(α, t). (5.52)

Applying estimate (2.33) in Lemma 2.7 to (5.52) with y(t) =
∫
U
|z̄(x, t)|αdx, h(t) =

C3M2(θ̂2α, t)
− 2−θ1

θ1 , f(t) = C4F (α, t)D(α, t), we obtain (5.50).
Thanks to (5.42) and (5.46), we have for t > T that

d

dt

∫
U

|z̄|αdx ≤ −C5

[∫
U

|z̄|αdx
]θ
M̃2(θ̂2α, t)

− 2−θ1
θ1 + C6F̃ (α, t)D(α, t), (5.53)

Applying (2.34) in Lemma 2.7 to (5.53) on (T,∞), we obtain (5.51). �

According to Theorem 5.2, even when the individual boundary data Ψ1 and Ψ2, char-
acterized here by Mk and F , are asymptotically large as t → ∞, if their difference Φ,
characterized by D(t), is asymptotically sufficiently small to diminish their growth, then∫
U
|z̄(x, t)|αdx is asymptotically small. For all time estimates,

∫
U
|z̄(x, t)|αdx can be con-

trolled by
∫
U
|z̄(x, 0)|αdx and small D(t). Below, we present a simple scenario.

Corollary 5.3. Let α ≥ max{2, α∗}. Assume the functions Ψk (k = 1, 2) satisfy

sup
[0,∞)

{‖∇Ψk(·, t)‖L∞ , ‖(Ψk)t(·, t)‖L∞ , ‖∇(Ψk)t(·, t)‖L∞} <∞, (5.54)

lim
t→∞
‖∇Φ(·, t)‖Lγ = lim

t→∞
‖Φt(·, t)‖Lα = 0, (5.55)

where γ = max{α, 2(2− a)}. Then

lim
t→∞

∫
U

|z̄(x, t)|αdx = 0. (5.56)

Proof. On the one hand, we have, thanks to (5.54), thatA[Ψk](2̂, t),A[Ψk](α̂, t),A[Ψk](θ̂2α, t),
A[Ψk](γ̂1, t) and G3[Ψk](t), for k = 1, 2, are uniformly bounded on [0,∞), hence so are
M̃1(t), M̃2(θ̂2α, t) and F̃ (α, t). On the other hand, by (5.55) we have limt→∞D(α, t) = 0.
Therefore inequality (5.49), resp. (5.51), implies (5.56) in the DC, resp. NDC, case. �

We turn to the continuous dependence for the pressure gradient. Because the DC case
was treated in [14], we now focus on the NDC case.

Lemma 5.4. In the NDC case, we have for all t > 0 that[ ∫
U

|∇z|2−adx
] 2

2−a ≤ CM1(t)
1

2−a‖∇Φ(·, t)‖L2−a + CM1(t)
a

2−aM3(t)
1
2

[ ∫
U

|z̄|α∗dx
] 1
α∗
,

(5.57)
where

M3(t) =

∫
U

|(p̄1)t(x, t)|2 + |(p̄2)t(x, t)|2dx+

∫
U

|Φt(x, t)|2dx. (5.58)
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Proof. Multiplying the first equation of (5.1) by z̄ and integrating over U give∫
U

z̄z̄tdx = −
∫
U

(K(|∇p1|)∇p1 −K(|∇p2|)∇p2) · (∇z −∇Φ)dx−
∫
U

Φtz̄dx.

Hence ∫
U

(K(|∇p1|)∇p1 −K(|∇p2|)∇p2) · (∇z)dx

≤
∫
U

(K(|∇p1|)|∇p1|+K(|∇p2|)|∇p2|)|∇Φ|dx+

∫
U

(|z̄t|+ |Φt|)|z̄|dx.

By Lemma 2.1(ii),∫
U

(K(|∇p1|)∇p1 −K(|∇p2|)∇p2) · (∇z)dx ≥ CM1(t)
−a
2−a

(∫
U

|∇z|2−adx
) 2

2−a
.

By relation (2.10),∫
U

(K(|∇p1|)|∇p1|+K(|∇p2|)|∇p2|)|∇Φ|dx ≤ C

∫
U

(|∇p1|1−a + |∇p2|1−a)|∇Φ|dx

≤ C
(∫

U

|∇p1|2−a + |∇p1|2−adx
) 1−a

2−a
(∫

U

|∇Φ|2−adx
) 1

2−a ≤ CM1(t)
1−a
2−a‖∇Φ‖L2−a .

Recall from (2.17) that α∗ > 2 in this NDC case. Applying Hölder’s inequality and using
|z̄t| ≤ |(p̄1)t|+ |(p̄2)t|, we have∫

U

(|z̄t|+ |Φt|)|z̄|dx ≤ C
(∫

U

|(p̄1)t|2 + |(p̄2)t|2 + |Φt|2dx
) 1

2
(∫

U

|z̄|α∗dx
) 1
α∗

≤ CM3(t)
1
2

(∫
U

|z̄|α∗dx
) 1
α∗
.

Combining all the above, we obtain

M1(t)−
a

2−a

(∫
U

|∇z|2−adx
) 2

2−a ≤ CM1(t)
1−a
2−a‖∇Φ‖L2−a + CM3(t)

1
2

(∫
U

|z̄|α∗dx
) 1
α∗
.

Then multiplying by M1(t)
a

2−a yields (5.57) �

By virtue of Lemma 5.4 we need to estimate M3(t). For each k = 1, 2, applying
inequality (4.29) in Theorem 4.4 for pk with t0 = 1 and using Remark 4.8 with α′ = α ≥
2̂ and G(t) = Ã(α, t), we have

M3(t) ≤ CαM3(α, t) for all t ≥ 1, (5.59)

where

M3(α, t) = 1 +
2∑

k=1

∫
U

|p̄k(x, 0)|α + |∇pk(x, 0)|2−adx

+

∫ 1

0

G3(τ)dτ +

∫ t

0

e−d6(t−τ)(EnvÃ(α, τ) + G4(τ))dτ +

∫
U

|Φt(x, t)|2dx.

(5.60)

In particular, when α = 2̂

M3(t) ≤ CM3(t) for all t ≥ 1, where M3(t) = M3(2̂, t). (5.61)
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For α ≥ 2̂, same as estimate (5.35) but using Theorem 4.5 (setting t0 = 1) instead of
Theorem 4.4 and using the same replacements for Remark 4.8, there exists Tα ≥ 1 such
that

M3(t) ≤ CαM̃3(α, t) for all t ≥ Tα, (5.62)

where

M̃3(α, t) = 1 +

∫
U

|Φt(x, t)|2dx

+


Ā(α) +

∫ t
1
e−d6(t−τ)G4(τ)dτ if Ā(α) <∞,

β̄(α)
α

α−2a +
∫ t

1
e−d6(t−τ)(Ã(α, τ) + G4(τ))dτ if Ā(α) =∞, β̄(α) <∞,

EnvÃ(α, t) +
∫ t

1
e−d6(t−τ)G4(τ)dτ if Ā(α) =∞, β̄(α) =∞.

(5.63)

Particularly, when α = 2̂ there exists T ≥ 1 such that

M3(t) ≤ CM̃3(t) for all t ≥ T, where M̃3(t) = M̃3(2̂, t). (5.64)

Combining Lemma 5.4 and previous estimates for the quantities M1(t), M2(t), M3(t)

and
∫
U
|z̄(x, t)|α∗dxwill give continuous dependence results for the pressure gradient. We

will explicate in details below. Let

µ1 = max{2, α∗, θ2α∗, γ1(α∗)},

µ2 = max
{α∗ − 1

µ1

,
α∗ − 2

µ1

+
1− a
2− a

}
,

µ3 =
a

2− a
+

1

2
+

1

θα∗

(
µ2 +

2− θ1

θ1

)
.

Taking α = µ1 in (5.35), taking α = α∗ and λ = µ1 in (5.40), taking α = µ1 in (5.62),
and taking α = α∗ and λ = µ1 in (5.47), we assert that there is T > 0 such that for t ≥ T ,

M1(t) ≤ CM̃1(µ1, t), M2(α∗, t) ≤ CM̃2(µ1, t), M3(t) ≤ CM̃3(µ1, t), (5.65)

F (α∗, t) ≤ CF̃ (α∗, µ1, t). (5.66)

Theorem 5.5. Assume (NDC).
(i) Then(∫
U

|∇z(x, t)|2−adx
) 2

2−a ≤ CM1(t)
1

2−a‖∇Φ(·, t)‖L2−a + CM1(t)
a

2−aM3(t)
1
2D(t)

(5.67)
for all t ≥ 1, where

D(t) = ‖z̄(·, 0)‖Lα∗ +
[
Env

(
F (α∗, t)M2(θ̂2α∗, t)

2−θ1
θ1 D(α∗, t)

)] 1
θα∗
, (5.68)

with F (α∗, t), M2(θ̂2α∗, t) and D(α∗, t) defined by (5.32), (5.26) and (5.5), respectively.
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(ii) Let η1 = 1 + Ā(µ1) + lim supt→∞ G4(t). If η1 <∞ then

lim sup
t→∞

(∫
U

|∇z(x, t)|2−adx
) 2

2−a ≤ Cη
1

2−a
1 lim sup

t→∞
‖∇Φ(·, t)‖L2−a

+ Cηµ31 lim sup
t→∞

{
‖∇Φ(·, t)‖L2(2−a) + ‖∇Φ(·, t)‖2

Lα∗ + ‖Φt(·, t)‖Lα∗
} 1
θα∗
.

(5.69)

Proof. (i) For the last integral of (5.57), we use (5.50) to bound(∫
U

|z̄|α∗dx
) 1
α∗ ≤ CD(t). (5.70)

Thus (5.67) follows from inequality (5.57) and estimates (5.19), (5.59) and (5.70).
(ii) Note in this NDC case that 2̂ = α∗. By (5.65) and (2.35), we obtain

lim supt→∞M1(t) ≤ C lim supt→∞ M̃1(µ1, t) ≤ Cη1,

lim supt→∞M2(α∗, t) ≤ C lim supt→∞ M̃2(µ1, t) ≤ Cη1,

lim supt→∞M3(t) ≤ C lim supt→∞ M̃3(µ1, t) ≤ Cη1.

(5.71)

Above, for M3(t) we first bound
∫
U
|Φt(x, t)|2dx by

∑
k=1,2

∫
U
|(Ψk)t(x, t)|2dx and then

absorb it into G4(t). Note γ1(α∗) > 0 in this case, then

Ñ(µ1, t) ≡ 1 + Ā(µ1)
1
µ1 ≤ Cη

1
µ1
1

and hence by (5.66),

lim sup
t→∞

F (α∗, t) ≤ C lim sup
t→∞

F̃ (α∗, µ1, t) ≤ C
(
η
α∗−1
µ1

1 + η
α∗−2
µ1

1 η
1−a
2−a
1

)
≤ Cηµ21 . (5.72)

Applying (2.34) of Lemma 2.7 to (5.6) yields

lim sup
t→∞

∫
U

|z̄(x, t)|α∗dx ≤ C
(

lim sup
t→∞

F (α∗, t) lim sup
t→∞

M2(α∗, t)
2−θ1
θ1 lim sup

t→∞
D(α∗, t)

) 1
θ

≤ C
(
η
µ2+

2−θ1
θ1

1 lim sup
t→∞

D(α∗, t)
) 1
θ
. (5.73)

Combining (5.71), (5.73) with (5.57) gives

lim sup
t→∞

(∫
U

|∇z(x, t)|2−adx
) 2

2−a ≤ C lim sup
t→∞

M1(t)
1

2−a lim sup
t→∞

‖∇Φ(·, t)‖L2−a

+ C lim sup
t→∞

M1(t)
a

2−a lim sup
t→∞

M3(t)
1
2

(
η
µ2+

2−θ1
θ1

1 lim sup
t→∞

D(α∗, t)
) 1
θα∗

≤ Cη
1

2−a
1 lim sup

t→∞
‖∇Φ(·, t)‖L2−a + Cη

a
2−a
1 η

1
2
1

(
η
µ2+

2−θ1
θ1

1 lim sup
t→∞

D(α∗, t)
) 1
θα∗
,

hence (5.69) follows, noting that D(α∗, t) is defined by (5.5) with α = α∗ > 2. �

Next we deal with the case when η1 =∞. Let

µ4 = α∗(θ − 1)
( a

2− a
+

1

2

)
+

2− θ1

θ1

and µ5 = µ4 + α∗

( a

2− a
+

1

2

)
.
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Theorem 5.6. Assume (NDC) and η1 =∞. Define for t ≥ 0,

ω(t) =


1 + Ā(µ1) +

∫ t
0
e−d7(t−τ)G4(τ)dτ if Ā(µ1) <∞,

1 + β̄(µ1)
µ1

µ1−2a + Ã(µ1, t)

+
∫ t

0
e−d7(t−τ)(Ã(µ1, τ) + G4(τ))dτ if Ā(µ1) =∞, β̄(µ1) <∞,

1 + EnvÃ(µ1, t) +
∫ t

0
e−d7(t−τ)G4(τ)dτ if Ā(µ1) =∞, β̄(µ1) =∞,

where d7 = min{d5, d6}. If
∫∞

0
ω(t)−µ4dt =∞ and

η2
def
== lim sup

t→∞
[(ω(t)µ5)′]+ <∞ (5.74)

then

lim sup
t→∞

(∫
U

|∇z(x, t)|2−adx
) 2

2−a ≤ C lim sup
t→∞

(
ω(t)

1
2−a‖∇Φ(·, t)‖L2−a

)
+ C

[
lim sup
t→∞

ω(t)µ6D(t)
] 1
θα∗

+ Cη
1
θα∗
2

[
lim sup
t→∞

ω(t)µ7D(t)
] 1
θ2α∗ ,

(5.75)

where µ6 and µ7 are positive numbers defined below by (5.79) and (5.82), respectively.

Proof. Same as for (5.71) and (5.72), one can verify that

M̃1(µ1, t), M̃2(µ1, t), M̃3(µ1, t) ≤ Cω(t) and F̃ (α∗, µ1, t) ≤ Cω(t)µ2 for all t ≥ 0.

Then by (5.65) and (5.66), there is T > 1 such that

M1(t),M2(α∗, t),M3(t) ≤ Cω(t) and F (α∗, t) ≤ Cω(t)µ2 for all t ≥ T. (5.76)

Combining (5.57) with estimates in (5.76) we have for t ≥ T that(∫
U

|∇z(x, t)|2−adx
) 2

2−a ≤ Cω(t)
1

2−a‖∇Φ(·, t)‖L2−a + Cω(t)
a

2−a+ 1
2Z(t)

1
α∗ ,

where Z(t) =
∫
U
|z̄(x, t)|α∗dx. Hence by setting W (t) = ω(t)α∗(

a
2−a+ 1

2
) we obtain(∫

U

|∇z(x, t)|2−adx
) 2

2−a ≤ Cω(t)
1

2−a‖∇Φ(·, t)‖L2−a + C
(
W (t)Z(t)

) 1
α∗
, t ≥ T.

(5.77)
We now estimate the limit superior of the productW (t)Z(t) as t→∞. As treated in [13],
we derive a differential inequality for WZ first. Denote M̃2(t) = M̃2(θ̂2α∗, t), F̃ (t) =

F̃ (α∗, t) and D(t) = D(α∗, t). For t > T , setting α = α∗ in (5.6) and in estimates (5.42),
(5.46), we have

(WZ)′ = Z ′W + ZW ′ ≤ −CZθM̃
− 2−θ1

θ1
2 W + CF̃DW + ZW ′

≤ −C
(
W 1−θM̃

− 2−θ1
θ1

2

)
(WZ)θ + CWF̃D +W ′Z

≤ −Cω−α∗(θ−1)( a
2−a+ 1

2
)− 2−θ1

θ1 (WZ)θ + Cωµ2+α∗(
a

2−a+ 1
2

)D + Cω′ωα∗(
a

2−a+ 1
2

)−1Z.

Thus

(WZ)′ ≤ −Cω−µ4(WZ)θ + Cωµ2+α∗(
a

2−a+ 1
2

)D + C[ω′]+ωα∗(
a

2−a+ 1
2

)−1Z.
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Since
∫∞

0
ω(t)−µ4dt = ∞, applying (2.34) in Lemma 2.7 for y(t) = W (t + T )Z(t + T )

gives

lim sup
t→∞

W (t)Z(t)

≤ C lim sup
t→∞

(
ω(t)µ4+µ2+α∗(

a
2−a+ 1

2
)D(t) + [ω′(t)]+ω(t)µ4+α∗(

a
2−a+ 1

2
)−1Z(t)

) 1
θ
,

or

lim sup
t→∞

W (t)Z(t) ≤ C lim sup
t→∞

(
ω(t)µ6D(t) + [(ω(t)µ5)′]+Z(t)

) 1
θ
, (5.78)

where

µ6 = µ4 + µ2 + α∗

( a

2− a
+

1

2

)
= µ5 + µ2. (5.79)

Then by (5.78) and (5.74)

lim sup
t→∞

W (t)Z(t) ≤ C
(

lim sup
t→∞

ω(t)µ6D(t)
) 1
θ

+ C
(
η2 lim sup

t→∞
Z(t)

) 1
θ
.

Therefore (5.77) now gives

lim sup
t→∞

(∫
U

|∇z(x, t)|2−adx
) 2

2−a ≤ C lim sup
t→∞

(
ω(t)

1
2−a

(∫
U

|∇Φ(x, t)|2−adx
) 1

2−a
)

+ C lim sup
t→∞

[
ωµ6(t)D(t)

] 1
α∗θ

+ Cη
1
α∗θ
2

[
lim sup
t→∞

Z(t)
] 1
α∗θ
. (5.80)

Also, by (5.51) and (5.76):

lim sup
t→∞

Z(t) ≤ lim sup
t→∞

[
ω(t)µ7D(t)

] 1
θ
, (5.81)

where

µ7 = µ2 +
2− θ1

θ1

. (5.82)

(Since θ1 < 2 − a, the numbers µ4, µ5, µ6 and µ7 are positive.) We then obtain (5.75)
from (5.80) and (5.81). The proof is complete. �

6. DEPENDENCE ON THE FORCHHEIMER POLYNOMIAL

In this section we study the dependence of solutions of IBVP (4.1) on the coeffi-
cients of the Forchheimer polynomial g(s) in (2.2). Let N ≥ 1, the exponent vector
~α = (0, α1, . . . , αN) and the boundary data ψ(x, t) be fixed. For each Forchheimer
polynomial g(s,~a) in class FP (N, ~α) we denote p(x, t;~a) the solution of (4.1) with
K = K(ξ,~a) and initial data p(x, 0,~a).

Let D be a compact subset of {~a = (a0, a1, . . . , aN) : a0, aN > 0, a1, . . . , aN−1 ≥ 0}.
Let g1(s) = g(s,~a(1)) and g2(s) = g(s,~a(2)) be two functions of class FP(N, ~α), where

~a(1) and ~a(2) belong to D. Let pk = pk(x, t;~a
(k)) and p̄k = pk − Ψ for k = 1, 2, where Ψ
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is an extension of ψ. Then{
∂p̄k
∂t

= ∇ · (K(|∇pk|,~a(k))∇pk)−Ψt in U × (0,∞),

p̄k(x, t) = 0 on Γ× (0,∞).
(6.1)

We denote the difference between p1 and p2 by z = p1 − p2 = p̄1 − p̄2. Then{
∂z
∂t

= ∇ · (K(|∇p1|,~a(1))∇p1)−∇ · (K(|∇p2|,~a(2))∇p2) in U × (0,∞),

z(x, t) = 0 on Γ× (0,∞).
(6.2)

We use the following notation for convenience in further discussions: let ~x = (x1, x2, . . .)

and ~x′ = (x′1, x
′
2, . . .) be two arbitrary vectors of the same length, including possible

length 1. We denote by ~x ∨ ~x′ and ~x ∧ ~x′ their maximum and minimum vectors, respec-
tively, with components

(~x ∨ ~x′)j = max{xj, x′j} and (~x ∧ ~x′)j = min{xj, x′j}.

We will derive estimates for
∫
U
|z|αdx and

∫
U
|∇z|2−adx. Those estimates contain

different constants that depend on ~a(1), ~a(2), ~a(1) ∨ ~a(2) or ~a(1) ∧ ~a(2). To simplify those
dependences, we define for ~a ∈ D

χ(~a) = max
{
a0, a1, . . . , aN ,

1

a0

,
1

aN

}
∈ [1,∞) and set χ̂(D) = max{χ(~a) : ~a ∈ D}.

Then χ̂(D) is a number in [1,∞). As shown in [13], all constants dj , cj , Cj and C ap-
pearing in estimates in the previous sections when ~a varies among the vectors ~a(1), ~a(2),
~a(1)∨~a(2) and ~a(1)∧~a(2), can be made independent of ~a; they depend only on n, U , χ̂(D),
~α, θ, θ1, and possibly α. We still denote them by dj , cj , Cj and C, respectively, in this
section.

Let M1(t) and M2(α, t) be defined by (5.3) and (5.7), respectively.

Lemma 6.1. (i) In the DC case, if α ≥ 3 then for t > 0,
d

dt

∫
U

|z(x, t)|αdx ≤ −c9

[ ∫
U

|z(x, t)|αdx
]
M1(t)−

a
2−a + C|~a(1) − ~a(2)|R(t), (6.3)

where c9 = c9(α) > 0 and R(t) = R(α, t) = 1 +R1(t) +R2(t) +R3(t) +R4(t) with

R1(t) = R1(α, t) =

∫
U

|∇Ψ(x, t)|4−2a + |Ψt(x, t)|αdx,

R2(t) =
2∑

k=1

∫
U

|∇pk(x, t)|2−a + |(p̄k)t(x, t)|2dx,

R3(t) = R3(α, t) =
2∑

k=1

∫
U

|p̄k(x, t)|γ2dx,

R4(t) = R4(α, t) =
2∑

k=1

∫
U

|∇pk(x, t)|2−a|p̄k(x, t)|γ3dx,

γ2 = γ2(α)
def
== max{2α, (4− 2a)(α− 2)}, (6.4)
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γ3 = γ3(α)
def
== max

{
α− 2,

2− a
1− a

, (2− a)(α− 3)
}
. (6.5)

(ii) In the NDC case, if α ≥ max{3, α∗} then for t > 0,
d

dt

∫
U

|z(x, t)|αdx ≤ −c10

[ ∫
U

|z(x, t)|αdx
]θ
M2(α, t)

− 2−θ1
θ1 + C|~a(1) − ~a(2)|R(t), (6.6)

where c10 = c10(α, θ, θ1) > 0.

Proof. Multiplying both sides of the first equation of (6.2) by α|z|α−1sign(z), integrating
over domain U , then applying Green’s formula, we have

1

α

d

dt

∫
U

|z|αdx

= −(α− 1)

∫
U

(K(|∇p1|,~a(1))∇p1 −K(|∇p2|,~a(2))∇p2) · (∇p1 −∇p2)|z|α−2dx.

(6.7)

According to the perturbed monotonicity, c.f. Lemma 5.2 in [13], we have

(K(|∇p1|,~a(1))∇p1 −K(|∇p2|,~a(2))∇p2) · (∇p1 −∇p2)

≥ (1− a)K(|∇p1| ∨ |∇p2|,~a(1) ∨ ~a(2))|∇p1 −∇p2|2

− C|~a(1) − ~a(2)|K(|∇p1| ∨ |∇p2|,~a(1) ∧ ~a(2))(|∇p1| ∨ |∇p2|)|∇p1 −∇p2|.

Thus
d

dt

∫
U

|z|αdx ≤ −CJ1 + C|~a(1) − ~a(2)|J2, (6.8)

where

J1 =

∫
U

K(|∇p1| ∨ |∇p2|,~a(1) ∨ ~a(2))|∇z|2|z|α−2dx,

J2 =

∫
U

K(|∇p1| ∨ |∇p2|,~a(1) ∧ ~a(2))(|∇p1| ∨ |∇p2|)|∇p1 −∇p2||z|α−2dx.

Regarding J2, we have

J2 ≤ C

∫
U

K(|∇p1| ∨ |∇p2|,~a(1) ∧ ~a(2))(|∇p1| ∨ |∇p2|)2|z|α−2dx,

then by (2.11),

J2 ≤ C

∫
U

(|∇p1| ∨ |∇p2|)2−a|z̄|α−2dx ≤ C

∫
U

(|∇p1|+ |∇p2|)2−a(|p̄1|α−2 + |p̄2|α−2)dx.

Hence

J2 ≤ C(L1 + L2), (6.9)

where

L1 =

∫
U

|∇p1|2−a|p̄1|α−2dx+

∫
U

|∇p2|2−a|p̄2|α−2dx, (6.10)

L2 =

∫
U

|∇p1|2−a|p̄2|α−2dx+

∫
U

|∇p2|2−a|p̄1|α−2dx. (6.11)
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We estimate the crossed term L2. Multiplying the first equation of (6.1) for p̄1 by
p̄1|p̄2|α−2, multiplying the first equation of (6.1) for p̄2 by p̄2|p̄1|α−2, summing up and
integrating over domain U , we have∫

U

(p̄1)tp̄1|p̄2|α−2dx+

∫
U

(p̄2)tp̄2|p̄1|α−2dx

= −
∫
U

K(|∇p1|,~a(1))∇p1 · (∇p1 −∇Ψ)|p̄2|α−2dx

−
∫
U

K(|∇p2|,~a(2))∇p2 · (∇p2 −∇Ψ)|p̄1|α−2dx

− (α− 2)

∫
U

K(|∇p1|,~a(1))(∇p1 · ∇p̄2)p̄1|p̄2|α−3sign(p̄2)dx

− (α− 2)

∫
U

K(|∇p2|,~a(2))(∇p2 · ∇p̄1)p̄2|p̄1|α−3sign(p̄1)dx

−
∫
U

Ψt(p̄1|p̄2|α−2 + p̄2|p̄1|α−2)dx

≤ −I + I1 + (α− 2)I2 + I3,

where

I =

∫
U

K(|∇p1|,~a(1))|∇p1|2|p̄2|α−2 +K(|∇p2|,~a(2))|∇p2|2|p̄1|α−2dx,

I1 =

∫
U

K(|∇p1|,~a(1))|∇p1||∇Ψ||p̄2|α−2 +K(|∇p2|,~a(2))|∇p2||∇Ψ||p̄1|α−2dx,

I2 =

∫
U

K(|∇p1|,~a(1))|∇p1||∇p̄2||p̄1||p̄2|α−3 +K(|∇p2|,~a(2))|∇p2||∇p̄1||p̄2||p̄1|α−3dx,

I3 =

∫
U

|Ψt||p̄1||p̄2|α−2 + |Ψt||p̄2||p̄1|α−2dx.

Hence

I ≤ I1 + (α− 2)I2 + I3 + I4, (6.12)

where

I4 =

∫
U

|(p̄1)t||p̄1||p̄2|α−2 + |(p̄2)t||p̄2||p̄1|α−2dx.

By (2.11) we have

I ≥ C
[ ∫

U

|∇p1|2−a − 1)|p̄2|α−2dx+

∫
U

(|∇p2|2−a − 1)|p̄1|α−2dx
]

= C
[
L2 −

∫
U

|p̄1|α−2 + |p̄2|α−2dx
]
.

Together with (6.12) we have

L2 ≤ CI + C
[ ∫

U

|p̄1|α−2 + |p̄2|α−2dx
]

≤ C
[ ∫

U

|p̄1|α−2 + |p̄2|α−2dx+ I1 + I2 + I3 + I4

]
.

(6.13)



Generalized Forchheimer Equations of Any Degree 51

• Estimating I1: Applying Young’s inequality to three functions |∇pk|1−a, |∇Ψ|, |p̄3−k|α−2,
for k = 1, 2, with powers 2−a

1−a , 2(2− a), 2(2− a) respectively, we have

I1 ≤ C

∫
U

|∇p1|1−a|∇Ψ||p̄2|α−2dx+

∫
U

|∇p2|1−a|∇Ψ||p̄1|α−2dx

≤ C
2∑

k=1

[ ∫
U

|∇pk|2−a + |∇Ψ|4−2a + |p̄3−k|(4−2a)(α−2)dx
]
.

(6.14)

• Estimating I2: Applying Young’s inequality to two functions |∇pk|1−a|p̄k| and |∇p̄3−k||p̄3−k|α−3,
for k = 1, 2, with powers 2−a

1−a and 2− a, respectively, we have

I2 ≤ C
[ ∫

U

|∇p1|1−a|p̄1||∇p̄2||p̄2|α−3dx+

∫
U

|∇p2|1−a|p̄2||∇p̄1||p̄1|α−3dx
]

≤ C

2∑
k=1

[ ∫
U

|∇pk|2−a|p̄k|
2−a
1−a + |∇p̄3−k|2−a|p̄3−k|(2−a)(α−3)dx

]
≤ C

2∑
k=1

[ ∫
U

|∇pk|2−a|p̄k|
2−a
1−a + |∇p3−k|2−a|p̄3−k|(2−a)(α−3) + |∇Ψ|2−a|p̄3−k|(2−a)(α−3)dx

]
.

Applying Cauchy’s inequality to the last product gives

I2 ≤ C
2∑

k=1

[ ∫
U

|∇pk|2−a
(
|p̄k|

2−a
1−a + |p̄k|(2−a)(α−3)

)
+ |p̄k|(4−2a)(α−3)dx

]
+ C

∫
U

|∇Ψ|4−2adx.

(6.15)

• Estimating I3: Similarly, applying Young’s inequality to three functions |Ψt|, |p̄k|,
|p̄3−k|α−2, for k = 1, 2, with powers α, α, α

α−2
respectively, we have

I3 ≤ C
2∑

k=1

[ ∫
U

|Ψt|α+ |p̄k|α+ |p̄3−k|αdx
]

= C

∫
U

|Ψt|αdx+C
2∑

k=1

∫
U

|p̄k|αdx. (6.16)

• Estimating I4: Applying Young’s inequality to three functions |(p̄k)t|, |p̄k|, |p̄3−k|α−2,
for k = 1, 2, with powers 2, α, 2α

α−2
respectively, we have

I4 ≤ C
2∑

k=1

[ ∫
U

|(p̄k)t|2 + |p̄k|α + |p̄3−k|2αdx
]
. (6.17)

From (6.10), (6.13) and (6.14)–(6.17) we have

L1 + L2 ≤ C

2∑
k=1

∫
U

|p̄k|α−2 + |p̄k|α + |p̄k|2α + |p̄k|(4−2a)(α−3) + |p̄k|(4−2a)(α−2)dx

+ C

2∑
k=1

∫
U

|∇pk|2−a
(

1 + |p̄k|α−2 + |p̄k|
2−a
1−a + |p̄k|(2−a)(α−3)

)
+ |(p̄k)t|2dx

+ C

∫
U

|∇Ψ|4−2a + |Ψt|αdx.
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By Young’s inequality, we then obtain

L1 + L2 ≤ C
2∑

k=1

∫
U

1 + |p̄k|γ2dx+ C
2∑

k=1

∫
U

|∇pk|2−a(1 + |p̄k|γ3) + |(p̄k)t|2dx

+ C

∫
U

|∇Ψ|4−2a + |Ψt|αdx,

thus

L1 + L2 ≤ CR(t). (6.18)

Combining (6.8), (6.9) and (6.18) gives
d

dt

∫
U

|z|αdx ≤ −CJ1 + C|~a(1) − ~a(2)|R(t). (6.19)

We now use Lemma 2.5 to estimate J1. Note that z = z̄ in this case.
(i) In the DC case, for α ≥ 3, we have similar to (5.13) that

−J1 ≤ −C1

[∫
U

|z|αdx
]
M1(t)−

a
2−a . (6.20)

Hence combining (6.19) and (6.20) yields (6.3).
(ii) In the NDC case, for α ≥ max{3, α∗}, similar to (5.14) we have

−J1 ≤ −C1

[ ∫
U

|z|αdx
]θ
M2(α, t)

− 2−θ1
θ1 . (6.21)

Then (6.6) follows (6.19) and (6.21). The proof is complete. �

By Hölder’s and Young’s inequalities, we easily see that

A(α, t) ≤ C(1 + A(α′, t)) for α < α′. (6.22)

We obtain a dependence result for finite time intervals.

Theorem 6.2. If α ≥ max{3, α∗} and T > 0 then∫
U

|z(x, t)|αdx ≤
∫
U

|z(x, 0)|αdx+ CM0,T |~a(1) − ~a(2)| for all t ∈ [0, T ], (6.23)

where

M0,T = 1+
2∑

k=1

∫
U

|p̄k(x, 0)|γ4 + |∇pk(x, 0)|2−adx+

∫ T

0

1+R1(τ)+A(γ4, τ)+G3(τ)dτ,

(6.24)
with γ4 = γ4(α)

def
== max{γ2 + a, γ3 + 2}.

Proof. Dropping the negative term on the right-hand side of inequality (6.3) in the DC
case, or of inequality (6.6) in the NDC case, then integrating from 0 to t, we have∫

U

|z(x, t)|αdx ≤
∫
U

|z(x, 0)|αdx+ C|~a(1) − ~a(2)|
∫ t

0

R(τ)dτ. (6.25)

We estimate each integral
∫ t

0
Rj(τ)dτ , for j = 2, 3, 4, in

∫ t
0
R(τ)dτ .
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• Using relation (2.13), estimates (4.19) and (4.20), we have for t ≥ 0 that∫ t

0

R2(τ)dτ =
2∑

k=1

∫ t

0

∫
U

|(p̄k)t|2 + |∇pk|2−adxdτ

≤ C + C
2∑

k=1

∫
U

|∇pk(x, 0)|2−a + |p̄k(x, 0)|2dx+ C

∫ t

0

1 +G3(τ) +G1(τ)dτ.

Since G1(t) ≤ G3(t), above inequality becomes∫ t

0

R2(τ)dτ ≤ C+C
2∑

k=1

∫
U

|∇pk(x, 0)|2−a+|p̄k(x, 0)|2dx+C

∫ t

0

1+G3(τ)dτ. (6.26)

• Observe that∫
U

|p̄k|γ2dx ≤ C
(∫

U

|p̄k|γ2+adx
) γ2
γ2+a = C

(∫
U

|p̄k|γ2+adx
) 1
γ0(γ2+a) .

Applying (4.41) with α = γ2 + a yields∫ t

0

R3(τ)dτ ≤ C
2∑

k=1

∫ t

0

(∫
U

|p̄k(x, τ)|γ2+adx
) 1
γ0(γ2+a)dτ

≤ C
2∑

k=1

∫
U

|p̄k(x, 0)|γ2+adx+ C

∫ t

0

1 + A(γ2 + a, τ)dτ.

(6.27)

• Note that γ3 + 2 ≥ max{2, α∗}. Applying inequality (4.37) in Corollary 4.7 with
α = γ3 + 2 gives∫ t

0

R4(τ)dτ ≤ C
2∑

k=1

∫
U

|p̄k(x, 0)|γ3+2dx+ C

∫ t

0

1 + A(γ3 + 2, τ)dτ. (6.28)

Summing up (6.26), (6.27) and (6.28), and using Young’s inequality as well as relation
(6.22), we obtain for t ∈ [0, T ] that∫ t

0

R(τ)dτ ≤
∫ T

0

R(τ)dτ ≤ C + C
2∑

k=1

{∫
U

|∇pk(x, 0)|2−a + |p̄k(x, 0)|γ4dx
}

+ C

∫ T

0

1 +R1(τ) +G3(τ) + A(γ4, τ)dτ,

hence
∫ t

0
R(τ)dτ ≤ CM0,T . This and (6.25) prove inequality (6.23). �

We now estimate
∫
U
|z(x, t)|αdx for large t, the case that is not covered well by Theo-

rem 6.2. As indicated by differential inequalities in Lemma 6.1, we need to bound M1(t),
M2(α, t) and R(t). The first two quantities were estimated in section 5 with the use of the
function Ã(α, t), see (5.16). Taking Ψ1 = Ψ2 = Ψ, we recast Ã(α, t) as

Ã(α, t) =

∫
U

|∇Ψ|αdx+
(∫

U

|Ψt|αdx
) 1

1−a
, (6.29)
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and have, the same as (5.15),

A(α, t) ≤ 1 + A(α, t)γ0(α) ≤ C
(
1 + Ã(α, t)

)
. (6.30)

By Young’s inequality,

Ã(α, t) ≤ Cα,α′(1 + Ã(α′, t)) for α < α′. (6.31)

The estimates (5.19) and (5.27) can be rewritten as

M1(t) ≤ CM1(t) and M2(t) ≤ CM2(t) for all t ≥ 0, (6.32)

where

M1(t) = 1 +
2∑

k=1

[ ∫
U

|p̄k(x, 0|2̂dx+ e−d5t
∫
U

|∇pk(x, 0)|2−adx
]

+

∫ t

0

e−d5(t−τ)(EnvÃ(2̂, τ) +G3(τ))dτ,

(6.33)

M2(t)
def
==M2(θ̂2α, t) = 1 +

2∑
k=1

[ ∫
U

|p̄k(x, 0|θ̂2αdx+ e−d5t
∫
U

|∇pk(x, 0)|2−adx
]

+ EnvÃ(θ̂2α, t) +

∫ t

0

e−d5(t−τ)G3(τ)dτ. (6.34)

We now estimate R(t). Let α ≥ max{3, α∗}. Applying (4.38) in Corollary 4.7 with
α− 2 = γ3, we have∫
U

|∇pk|2−a|p̄k|γ3 ≤ C

∫
U

|(p̄k)t|2dx+C
(

1+A(γ3+2, t)+

∫
U

|p̄k|2(γ3+1)dx
)
, k = 1, 2.

Hence
R(t) ≤ R1(t) + C(1 + A(γ3 + 2, t))

+ C
2∑

k=1

{∫
U

|(p̄k)t|2 + |∇pk|2−adx+

∫
U

|p̄k|2(γ3+1)dx+ |p̄k|γ2dx
}
.

By Young’s inequality, we obtain for t > 0 that

R(t) ≤ R1(t) +C
{

1 +A(γ3 + 2, t) +
2∑

k=1

(∫
U

|p̄k|γ5dx+

∫
U

|(p̄k)t|2 + |∇pk|2−adx
)}
,

(6.35)
where γ5 = γ5(α) = max{γ2, 2γ3 + 2}.

Using relation (2.13) and using (4.29) with t0 = 1, we have for t ≥ 1 that∫
U

|∇pk|2−a + |(p̄k)t|2dx ≤ C
(

1 +

∫
U

|p̄k(x, 0)|2̂ + |∇pk(x, 0)|2−adx+

∫ 1

0

G3(τ)dτ
)

+ C

∫ t

0

e−d6(t−τ)(EnvÃ(2̂, τ) +G4(τ))dτ.
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Note that γ5 ≥ γ2 ≥ 2α ≥ 2̂. By Theorem 4.3(i),∫
U

|p̄k|γ5dx ≤ C
{

1 +

∫
U

|p̄k(x, 0)|γ5dx+ EnvÃ(γ5, t)
}
.

Summing up, using (6.35) and Young’s inequality with γ5 ≥ 2̂, we obtain

R(t) ≤ C
{

1 +
2∑

k=1

∫
U

|p̄k(x, 0)|γ5 + |∇pk(x, 0)|2−adx+

∫ 1

0

G3(τ)dτ
}

+R1(t) + C(A(γ3 + 2, t) + EnvÃ(2̂, t) + EnvÃ(γ5, t)) + C

∫ t

0

e−d6(t−τ)G4(τ)dτ.

Therefore

R(t) ≤ CR(t), t ≥ 1, (6.36)

where

R(t) = R(α, t)
def
==M0 +

∫ 1

0

G3(τ)dτ +R1(t) + EnvÃ(γ5, t) +

∫ t

0

e−d6(t−τ)G4(τ)dτ,

(6.37)
with

M0 = 1 +
2∑

k=1

{∫
U

|p̄k(x, 0)|γ5 + |∇pk(x, 0)|2−adx
}
. (6.38)

To avoid complicated expressions, we continue to estimate R(t) more explicitly in
terms of Ψ(x, t). Let t ≥ 1. Note that

∫ 1

0
G3(t)dt ≤ (EnvG4)(1) ≤ (EnvG4)(t) and,

similar to (5.24), the last integral of (6.37) is bounded by d−1
6 EnvG4(t). Therefore

R(t) ≤ C
(
M0 +R1(t) + EnvÃ(γ5, t) + EnvG4(t)

)
. (6.39)

To unify different dependences on Ψ(x, t) of the terms on the right-hand side of (6.39),
we introduce, for γ > 0, the function

S(γ, t) =

∫
U

|∇Ψ(x, t)|γ+
(∫

U

|Ψt(x, t)|γdx
) 1

1−a
+

∫
U

|∇Ψt(x, t)|2+|Ψtt(x, t)|2dx, t ≥ 0.

We have Ã(γ, t) ≤ S(γ, t). Regarding G1(t) as part of G4(t), we note that if γ ≥
max{2− a, r0} then[ ∫

U

|Ψt|r0dx
] 1
r0 ≤ 1 +

[ ∫
U

|Ψt|r0dx
] 2−a
r0(1−a) ≤ 1 + C

[ ∫
U

|Ψt|γdx
] 2−a
γ(1−a)

≤ C + C
[ ∫

U

|Ψt|γdx
] 1

1−a
,

hence we easily find G4(t) ≤ C(1 + S(γ, t)). Therefore, if α ≥ 2, λ > 0 and t > 0 then

R1(α, t) + Ã(λ, t) +G4(t) ≤ C
(
1 +S(γ, t)

)
, where γ = max{α, 4−2a, λ, r0}. (6.40)

By (6.39) and (6.40), we obtain

R(t) ≤ CR(t), t > 0, (6.41)
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where
R(t) = R(α, t)

def
==M0 + EnvS(γ̃5, t), (6.42)

with γ̃5 = max{α, 4− 2a, γ5, r0}. Since γ5 ≥ γ2 ≥ 2α ≥ 6 > 4− 2a, we have

γ̃5 = max{γ5, r0}. (6.43)

Thanks to (6.36) and (6.41),

R(t) ≤ CR(t), t ≥ 1. (6.44)

Theorem 6.3. Assume (DC) and α ≥ 3.
(i) If t ≥ 1 then∫
U

|z(x, t)|αdx ≤
∫
U

|z(x, 0)|αdx

+ C|~a(1) − ~a(2)|
{
M0,1 +

∫ t

1

e−c11
∫ t
τ M1(s)

− a
2−a dsR(τ)dτ

}
, (6.45)

where c11 = c11(α) > 0, and M0,1 is the constant M0,T defined by (6.24) with T = 1.
(ii) Let γ6 = max{γ4, γ5, r0}. If

Υ0
def
== 1 +

2∑
k=1

∫
U

|p̄k(x, 0)|γ6 + |∇pk(x, 0)|2−adx+ sup
[0,∞)

S(γ6, t)

is finite then

sup
[0,∞)

∫
U

|z(x, t)|αdx ≤
∫
U

|z(x, 0)|αdx+ CΥ
2

2−a
0 |~a(1) − ~a(2)|. (6.46)

Proof. (i) By virtue of (6.32) and (6.44), we can replace M1(t) and R(t) by M1(t) and
R(t), respectively, in (6.3) for t ≥ 1, and then apply Gronwall’s inequality to obtain∫

U

|z(x, t)|αdx ≤
∫
U

|z(x, 1)|αdx+ C|~a(1) − ~a(2)|
∫ t

1

e−c11
∫ t
τ M1(s)

− a
2−a dsR(τ)dτ.

(6.47)
Theorem 6.2 with T = 1 yields

sup
[0,1]

∫
U

|z(x, t)|αdx ≤
∫
U

|z(x, 0)|αdx+ CM0,1|~a(1) − ~a(2)|. (6.48)

Then using (6.48) to estimate
∫
U
|z(x, 1)|αdx in (6.47) results in (6.45).

(ii) Note that M0,1,M0,M1(t) ≤ CΥ0. Also, γ̃5 ≤ γ6 implies

S(γ̃5, t) ≤ C(1 + S(γ6, t)) ≤ CΥ0,

hence we can select EnvS(γ̃5, t) ≡ CΥ0. Therefore it follows from (6.45) for t ≥ 1 that∫
U

|z(x, t)|αdx ≤
∫
U

|z(x, 0)|αdx+ C|~a(1) − ~a(2)|
[
Υ0 +

∫ t

1

e−CΥ
− a

2−a
0 (t−τ)Υ0dτ

]
,

thus ∫
U

|z(x, t)|αdx ≤
∫
U

|z(x, 0)|αdx+ CΥ
2

2−a
0 |~a(1) − ~a(2)|. (6.49)
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Combining estimate (6.49) for t ≥ 1 with (6.48), we obtain (6.46). �

Theorem 6.4. Assume (NDC) and α ≥ max{3, α∗}.
(i) If t ≥ 1 then∫

U

|z(x, t)|αdx ≤
∫
U

|z(x, 0)|αdx+ CM0,1|~a(1) − ~a(2)|

+ C|~a(1) − ~a(2)|
1
θ

[
Env

(
R(t)M2(t)

2−θ1
θ1

)] 1
θ
.

(6.50)

(ii) Let γ7 = γ7(α) = max{θ2α, γ4, γ5, r0}. If

Υ0
def
== 1 +

2∑
k=1

∫
U

|p̄k(x, 0)|γ7 + |∇pk(x, 0)|2−adx+ sup
[0,∞)

S(γ7, t)

is finite then

sup
[0,∞)

∫
U

|z(x, t)|αdx ≤
∫
U

|z(x, 0)|αdx+CΥ0|~a(1)−~a(2)|+CΥ
2
θ1θ

0 |~a(1)−~a(2)|
1
θ . (6.51)

Proof. (i) By virtue of (6.32) and (6.36), we replace M2(t), R(t) by M2(t), R(t), respec-
tively, in inequality (6.6) for t ≥ 1 to obtain

d

dt

∫
U

|z|αdx ≤ −C1

[ ∫
U

|z|αdx
]θ
M2(t)

− 2−θ1
θ1 + C2|~a(1) − ~a(2)|R(t).

Applying Lemma 2.7 to the preceding inequality on [1,∞) yields∫
U

|z(x, t)|αdx ≤
∫
U

|z(x, 1)|αdx+ C|~a(1) − ~a(2)|
1
θ

[
Env(R(t)M2(t)

2−θ1
θ1 )
] 1
θ
. (6.52)

Again, using (6.48) to estimate
∫
U
|z(x, 1)|αdx in (6.52) yields (6.50).

(ii) We haveM0,1,M0 ≤ CΥ0, andM2(t) ≤ CΥ0 for all t ≥ 0. Also, thanks to (6.41),
R(t) ≤ CR(t) ≤ CΥ0 for all t ≥ 1. Employing these in (6.50), we have for t ≥ 1 that∫

U

|z(x, t)|αdx ≤
∫
U

|z(x, 0)|αdx+ CΥ0|~a(1) − ~a(2)|+ C|~a(1) − ~a(2)|
1
θ (Υ0Υ

2−θ1
θ1

0 )
1
θ

=

∫
U

|z(x, 0)|αdx+ CΥ0|~a(1) − ~a(2)|+ CΥ
2
θθ1
0 |~a(1) − ~a(2)|

1
θ .

Combining this with (6.48), we obtain (6.51). �

We now study the limit superior of
∫
U
|z(x, t)|αdx as t→∞.

In the DC case, if
∫∞

0
M1(t)−a/(2−a)dt =∞ then by (6.3) and Lemma 2.7 we have

lim sup
t→∞

∫
U

|z(x, t)|αdx ≤ C|~a(1) − ~a(2)| lim sup
t→∞

(
R(t) ·M1(t)

a
2−a
)
. (6.53)

Similarly, in the NDC case, if
∫∞

0
M2(t)

− 2−θ1
θ1 dt = ∞ then by (6.6) and Lemma 2.7 we

have

lim sup
t→∞

∫
U

|z(x, t)|αdx ≤ C|~a(1) − ~a(2)|
1
θ lim sup

t→∞

(
R(t) ·M2(t)

θ1
2−θ1
) 1
θ . (6.54)

Hence we need to estimate the limits superior of M1(t), M2(t) and R(t).
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Let α ≥ max{3, α∗}. In (6.35), by applying Theorem 4.3(ii), with α set to be γ5, and
Theorem 4.5(ii) combined with relation (6.30) we have

lim sup
t→∞

R(t) ≤ C lim sup
t→∞

(
1 +R1(t) + A(γ3 + 2, t) + Ã(γ̂5, t) + Ã(2̂, t) +G4(t)

)
.

Since γ5 ≥ max{2̂, 2α, γ3 + 2}, then γ̂5 = γ5 and by taking into account (6.22), (6.30),
(6.31) and (6.40) we assert

lim sup
t→∞

R(t) ≤ C lim sup
t→∞

(
1 +R1(t) + Ã(γ5, t) +G4(t)

)
≤ C lim sup

t→∞

(
1 + S(γ̃5, t)

)
.

(6.55)

Similarly, from part (ii) of Theorems 4.4 and 4.3 follow

lim sup
t→∞

M1(t) ≤ C lim sup
t→∞

(1 + Ã(2̂, t) +G3(t)) ≤ C lim sup
t→∞

(
1 + S(γ̃5, t)

)
, (6.56)

lim sup
t→∞

M2(t) ≤ C lim sup
t→∞

(1 + Ã(2̂, t) +G3(t) + Ã(θ̂2α, t)) ≤ C lim sup
t→∞

(1 + S(γ8, t)),

(6.57)
where γ8 = γ8(α) = max{γ5, θ2α, r0}.

Theorem 6.5. (i) In the DC case, if α ≥ 3 and Υ1
def
== lim supt→∞ S(γ5, t) is finite, then

lim sup
t→∞

∫
U

|z(x, t)|αdx ≤ C(1 + Υ1)
2

2−a |~a(1) − ~a(2)|. (6.58)

(ii) In the NDC case, if α ≥ max{3, α∗} and

Υ2 = Υ2(α)
def
== lim sup

t→∞
S(γ8, t) (6.59)

is finite, then

lim sup
t→∞

∫
U

|z(x, t)|αdx ≤ C(1 + Υ2)
2
θθ1 |~a(1) − ~a(2)|

1
θ . (6.60)

Proof. (i) Assume (DC), α ≥ 3 and Υ1 < ∞. By (2.17) We have 2̂ = 2, 3̂ = 3 and
r0 ≤ 2. Hence α ≥ max{3, α∗} and γ̃5 = γ5. We have 1 + S(γ5, t) ≤ C for all t ≥ 0.
Thanks to this uniform boundedness, we have from (6.53), (6.55) and (6.56) that

lim sup
t→∞

∫
U

|z(x, t)|αdx ≤ C|~a(1) − ~a(2)| lim sup
t→∞

(
1 + S(γ5, t)

)
lim sup
t→∞

(
1 + S(γ5, t)

) a
2−a ,

which proves (6.58).
(ii) Assume (NDC), α ≥ max{3, α∗} and Υ2 <∞. Note that γ5 ≥ γ2 ≥ 2α > α∗ and

r0 > 2. Similar to part (i), we obtain from (6.54), (6.55) and (6.57) that

lim sup
t→∞

∫
U

|z(x, t)|αdx

≤ C|~a(1) − ~a(2)|
1
θ lim sup

t→∞

(
1 + S(γ̃5, t)

) 1
θ lim sup

t→∞
(1 + S(γ8, t))

2−θ1
θθ1 . (6.61)
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Since γ̃5 ≤ γ8, we have S(γ̃5, t) ≤ C(1 + S(γ8, t)). Thus (6.61) gives

lim sup
t→∞

∫
U

|z(x, t)|αdx ≤ C|~a(1) − ~a(2)|
1
θ

(
1 + lim sup

t→∞
S(γ8, t)

) 1
θ

+
2−θ1
θθ1

and (6.59) follows. �

We now find estimates for
∫
U
|∇z(x, t)|2−adx. Since the DC case was already studied

in [14], we focus on the NDC case here. Recall that 3̂ = max{3, α∗}.

Theorem 6.6. Assume (NDC).
(i) For all t ≥ 1,(∫

U

|∇z(x, t)|2−adx
) 2

2−a ≤ C|~a(1) − ~a(2)|M1(t)
2

2−a

+ CM1(t)
a

2−aM3(t)
1
2

{[∫
U

|z(x, 0)|3̂dx
]1/3̂

+
[
M0,1|~a(1) − ~a(2)|+

(
Env

{
R(3̂, t)M2,3̂(t)

2−θ1
θ1

}) 1
θ |~a(1) − ~a(2)|

1
θ

]1/3̂
}
,

(6.62)

where M3(t) is defined in (5.61) and (5.60) with the boundary data Ψ1 = Ψ2 = Ψ and
the difference Φ = 0, while M0,1 is defined by (6.24) and M2,3̂(t) is defined by (6.34) with
α = 3̂.

(ii) Let Υ2 = Υ2(3̂), the limit defined by (6.59) with α = 3̂. If Υ2 <∞ then

lim sup
t→∞

(∫
U

|∇z(x, t)|2−adx
) 2

2−a ≤ C(1 + Υ2)
2

2−a |~a(1) − ~a(2)|

+C
(
1 + Υ2

)1/2+a/(2−a)+2/(3̂θθ1)|~a(1) − ~a(2)|1/(3̂θ).
(6.63)

Proof. (i) Inequality (5.20) of Lemma 5.3 in [13] reads∫
U

zztdx ≤ −C
(∫

U

|∇z|2−adx
) 2

2−a
M1(t)

−a
2−a

+ C|~a(1) − ~a(2)|
∫
U

(|∇p1|2−a + |∇p2|)2−adx,

hence (∫
U

|∇z|2−adx
) 2

2−a ≤ C|~a(1) − ~a(2)|M1(t)
2

2−a + CM1(t)
a

2−a

∫
U

|z||zt|dx.

Same note as above, the constant C here can be made dependent on χ̂(D) instead of on
~a(1) and ~a(2). Since zt = z̄t and 3̂ > 2, applying Hölder’s inequality to the last integral we
have[ ∫

U

|∇z|2−adx
] 2

2−a ≤ C|~a(1)−~a(2)|M1(t)
2

2−a+CM1(t)
a

2−a

[ ∫
U

|z̄t|2dx
] 1

2
[ ∫

U

|z|3̂dx
]1/3̂

.

(6.64)
We use (6.32) to bound M1(t), use (5.61) to bound∫

U

|z̄t|2dx ≤ 2

∫
U

|(p̄1)t|2 + |(p̄2)t|2dx ≤ CM3(t)
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and use (6.50) with α = 3̂ to estimate
∫
U
|z|3̂dx, hence obtain(∫

U

|∇z|2−adx
) 2

2−a ≤ C|~a(1) − ~a(2)|M1(t)
2

2−a + CM1(t)
a

2−aM3(t)
1
2

{∫
U

|z(x, 0)|3̂dx

+M0,1|~a(1) − ~a(2)|+
[
Env

(
R(3̂, t)M2,3̂(t)

2−θ1
θ1

)] 1
θ |~a(1) − ~a(2)|

1
θ

}1/3̂

.

This proves inequality (6.62).
(ii) Assume Υ2 < ∞. Let R(t) = R(3̂, t) and S(t) = S(γ8(3̂), t) defined as in

Lemma 6.1 and Theorem 6.5, respectively, with α = 3̂. Similar to the previous theorem,
one can easily verify that

lim sup
t→∞

M1(t), lim sup
t→∞

R(t) ≤ C(1 + lim sup
t→∞

S(t)) ≤ C(1 + Υ2). (6.65)

Note from the definition of R(t) in Lemma 6.1 that∫
U

|z̄t|2dx ≤ 2

∫
U

|(p̄1)t|2 + |(p̄2)t|2dx ≤ 2R2(t) ≤ 2R(t).

We then have

lim sup
t→∞

∫
U

|z̄t(x, t)|2dx ≤ 2 lim sup
t→∞

R(t) ≤ C(1 + Υ2). (6.66)

By (6.65), (6.66) and (6.60) with α = 3̂, each time-dependent term on the right-hand side
of (6.64) has finite limit superior. Hence taking the limit superior of inequality (6.64) and
using the mentioned estimates we obtain

lim sup
t→∞

(∫
U

|∇z(x, t)|2−adx
) 2

2−a ≤ C|~a(1) − ~a(2)|(1 + Υ2)
2

2−a

+ C(1 + Υ2)
a

2−a (1 + Υ2)
1
2

{
(1 + Υ2)

2
θθ1 |~a(1) − ~a(2)|

1
θ

}1/3̂

,

therefore (6.63) follows. �

APPENDIX A

We generalize the results in section 3 of [14]. This covers the special case in Lemma 2.7.

Lemma A.1. Let φ be a continuous, strictly increasing function from [0,∞) onto [0,∞).
Suppose y(t) ≥ 0 is a continuous function on [0,∞) such that

y′ ≤ −h(t)φ−1(y(t)) + f(t), t > 0, (A.1)

where h(t) > 0, f(t) ≥ 0 for t ≥ 0 are continuous functions on [0,∞).
(i) If M(t) = Env

(
f(t)
h(t)

)
on [0,∞) then

y(t) ≤ y(0) + φ(M(t)) for all t ≥ 0. (A.2)

(ii) If
∫∞

0
h(τ)dτ =∞ then

lim sup
t→∞

y(t) ≤ φ

(
lim sup
t→∞

f(t)

h(t)

)
. (A.3)
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Here, we use the notation φ(∞) =∞.

Proof. (i) Claim 1. Given any ε > 0,

y(t) ≤ y(0) + ε+ φ(M(t)) for all t ≥ 0. (A.4)

Suppose (A.4) fails. Then there exist t2 > t1 > 0 such that

y(t1) = y(0) + φ(M(t1)),

y(t2) = y(0) + ε+ φ(M(t2)),

y(t) ≥ y(0) + φ(M(t)) ≥ φ

(
f(t)

h(t)

)
, for all t ∈ [t1, t2).

The last inequality and (A.1) give

y′(t) ≤ −h(t)φ−1(y(t)) + f(t) ≤ −h(t)
f(t)

h(t)
+ f(t) = 0

for all t ∈ (t1, t2), thus y(t) is decreasing on [t1, t2]. This and the fact that M(t) is in-
creasing give

y(t2) ≤ y(t1) = y(0) + φ(M(t1)) < y(0) + ε+ φ(M(t2)) = y(t2).

It is a contradiction and hence Claim 1 holds true. Now letting ε→ 0 in (A.4) yields (A.2).

(ii) Assume
∫∞

0
h(τ)dτ =∞. Let A = lim supt→∞ φ

(
f(t)
h(t)

)
. It suffices to prove (A.3) for

finite A. Given δ > 0, there is T0 > 0 such that for all t > T0

φ

(
f(t)

h(t)

)
≤ A+ δ ⇒ f(t) ≤ φ−1(A+ δ)h(t).

Thus

y′(t) ≤ −h(t)φ−1(y(t)) + φ−1(A+ δ)h(t) for all t > T0. (A.5)

Claim 2. Given any ε > 0, there is T > 0 such that

y(t) ≤ φ
(
φ−1(A+ δ) + ε

)
for all t > T. (A.6)

We infer from (A.6) that

lim sup
t→∞

y(t) ≤ φ
(
φ−1(A+ δ) + ε

)
.

Now letting ε → 0 and then δ → 0, and using the continuity of φ and φ−1 we obtain
(A.3).

Proof of Claim 2. Given ε > 0. If (A.6) holds for T = T0 then we are done. Suppose
(A.6) fails for T = T0, we will prove that (A.6) holds for some T > T0. Because (A.6)
fails for T = T0, then there is T∗ ≥ T0 such that

y(T∗) > φ
(
φ−1(A+ δ) + ε

)
. (A.7)
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We claim that there is t∗ > T∗ such that

y(t∗) ≤ φ
(
φ−1(A+ δ) +

ε

2

)
. (A.8)

Indeed, if this is not the case then

y(t) > φ
(
φ−1(A+ δ) +

ε

2

)
for all t > T∗.

It implies for all t > T∗ that

y′(t) ≤ −h(t)[φ−1(A+ δ) +
ε

2
] + φ−1(A+ δ)h(t) = −ε

2
h(t).

Thus for t > T∗,

y(t) = y(T∗) +

∫ t

T∗

y′(τ)dτ ≤ y(T∗)−
ε

2

∫ t

T∗

h(τ)dτ → −∞ as t→∞,

since
∫∞

0
h(τ)dτ = ∞ and h(t) is continuous on [0, T∗]. This contradicts the fact that

y(t) ≥ 0 for all t ≥ 0 and hence (A.8) must be true.
By (A.7) and (A.8) there exists T ∈ (T∗, t∗] such that

φ
(
φ−1(A+ δ) +

ε

2

)
= y(T ) < φ

(
φ−1(A+ δ) + ε

)
.

Now we prove that (A.6) holds for such T . Suppose otherwise, then there is T ′ > T such
that y(T ′) > φ (φ−1(A+ δ) + ε). Hence there are t1 and t2 with T ≤ t1 < t2 ≤ T ′ such
that

φ
(
φ−1(A+ δ) +

ε

2

)
≤ y(t) < y(t2) = φ

(
φ−1(A+ δ) + ε

)
, for all t1 ≤ t < t2.

(A.9)
Then we have from (A.5) and (A.9) that

y(t2)− y(t1) =

∫ t2

t1

y′(t)dt ≤
∫ t2

t1

−h(t)φ−1(y(t)) + φ−1(A+ δ)h(t)dt

≤
∫ t2

t1

−h(t)
(
φ−1(A+ δ) +

ε

2

)
+ φ−1(A+ δ)h(t)dt

=

∫ t2

t1

−ε
2
h(t)dt < 0,

since h(t) > 0 and h(t) is continuous on [t1, t2]. Thus y(t2) < y(t1) which contradicts
(A.9) with t = t1. Therefore (A.6) holds for T . The proof is complete. �
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[5] BRÉZIS, H. Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de

Hilbert. North-Holland Publishing Co., Amsterdam, 1973. North-Holland Mathematics Studies, No.
5. Notas de Matemática (50).
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