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Stability of standing matter waves in a trap
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We discuss excited Bose-condensed states and find the criterion of dynamical stability of a kinkwise state,
i.e., a standing matter wave with one nodal plane perpendicular to the axis of a cylindrical trap. The dynamical
stability requires a strong radial confinement corresponding to the radial frequency larger than the mean-field
interparticle interaction. We address the question of thermodynamic instability related to the presence of
excitations with negative energy.@S1050-2947~99!51210-9#

PACS number~s!: 03.75.Fi, 05.30.Jp
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The discovery of Bose-Einstein condensation~BEC! in
trapped clouds of alkali-metal atoms@1# and extensive stud
ies of Bose-condensed gases in recent years have led t
observation of new macroscopic quantum phenomena, s
as interference between two independently created con
sates@2# and the reduction of the rates of inelastic proces
~three-body recombination! in the presence of a condensa
@3#. The success in these studies stimulates an intere
macroscopically excited Bose-condensed states, i.e., exc
state solutions of the Gross-Pitaevskii equation, where
can expect to observe novel signatures of BEC. A wid
discussed example is the vortex state, well known in sup
fluid liquid helium @4#.

Another option concerns excited Bose-condensed st
which have a macroscopic wave function with nodal plan
perpendicular to the symmetry axis of a trap. These st
represent standing matter waves for which the trap serve
a cavity, and it will be worth studying in which aspects th
are similar to light waves. An interesting idea concerns
atom laser for the generation of coherent matter wa
which, due to the potential presence of nodal planes in
condensate wave function, will be quite different from t
matter waves out of a ground-state Bose condensate.
waves with one nodal plane~kinks or dark solitons!, being
the lowest energy phase slip, are of great interest in con
tion with the decay of persistent currents. Suggested way
creating standing matter waves in a trap rely on the adiab
Raman transfer of particles from the ground to the exci
Bose-condensed state@5# or on selective population of tra
levels by bosonically enhanced spontaneous emission of
tically excited atoms of an incoming beam@6#.

A principal question concerns the stability of excite
Bose-condensed states with respect to the interparticle in
action. In this paper we consider standing matter waves w
one nodal plane perpendicular to the axis of a cylindri
trap. For the axially Thomas-Fermi regime~axial frequency
vz is much smaller than the mean-field interaction!, this state
can be called ‘‘kink wise’’~see@7# and Fig. 1!, since the

*LKB is a unitéde recherche de l’Ecole Normale Supe´rieure et de
l’Université Pierre et Marie Curie, associe´e au CNRS.
PRA 601050-2947/99/60~4!/2665~4!/$15.00
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presence of the nodal plane makes a kink in the depend
of the condensate wave functionC0 on the axial coordinate
A characteristic size of the kink is of the order of the corr
lation length, and the corresponding~axial! kinetic energy of
the condensate is of the order of the mean-field interact
Similar to the case of vortices@8,9#, the instability of the
kink-wise state is related to the motion of the kink~core!
with respect to the rest of the condensate. We analyze
spectrum of elementary excitations of this Bose-conden
state and find the criterion of dynamical stability, i.e., t
stability of small-amplitude normal modes; in order to pr
vent the interaction-induced transfer of~axial! kinetic energy
of the condensate to the radial degrees of freedom,
should strongly confine the radial motion by making the
dial frequencyvr larger than the mean-field interparticle in
teraction. Under this condition the kink-wise state will b
perfectly stable in the limit of zero temperature; the therm
dynamic instability related to the presence of an excitat
mode with negative energy will not lead to decay in t
absence of dissipative processes.

Our conclusion of how tightly one should confine the r
dial motion to achieve~quasi! one-dimensional~1D! dynam-
ics of a condensate and observe dynamically stable k
~dark solitons! is directly related to the problem of ‘‘engi
neering the dimensionality of space.’’ Various experime
aiming for quasi-1D gases are currently being set up.

To gain insight in the nature of the instability, we fir
consider a kink-wise Bose-condensed state in the absenc
trapping field, i.e., the state with one nodalx,y plane in an
otherwise spatially homogeneous condensate of densityn0.
We will use the chemical potentialm5n0Ũ and the correla-
tion lengthl 5\/Amm as units of energy and length, andn0
as a unit of density. For a positive scattering length
Gross-Pitaevskii equation is reduced to

2
1

2

d2C0

dz2
1C0

32C050 ~1!

and has a simple solution describing the kink in the dep
dence ofC0 on thez coordinate~see, e.g.,@7#!:
R2665 ©1999 The American Physical Society
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C05tanhz, ~2!

wherez is counted from the nodal plane. The presence of
kink results in a large kinetic energyK (;m) per condensate
particle at distances of orderl from the nodal plane, which
below we call kink-related kinetic energy:

K~z!52
1

2
C0

d2C0

dz2
5

tanh2z

cosh2z
. ~3!

Elementary excitations of the kinkwise condensate are c
acterized by the momentumk of transverse (x,y) motion and
by the quantum numbern of motion along thez axis. In
terms of the operatorsb̂kn ,b̂kn

† of the excitations, the above
condensate part of the field operator of atoms can be re
sented as(knexp(ik•r )@ukn(z)b̂kn2vkn(z)b̂2kn

† #, and we
obtain the following Bogolyubov–de Gennes equations
the excitation energies«kn and wave functionsf 65ukn

6vkn :

«kn f 7~z!5@h61~k2/2!# f 6~z!, ~4!

FIG. 1. Condensate wave functionC0 of a kinkwise state in a
cylindrical trap for the ratio of the mean-field interaction at ma

mum density (n0m) to the trap frequencies,n0mŨ:\vr :\vz

510:10:1 (Ũ54p\2a/m, a.0 is the scattering length, andm the
atom mass!. The axial ~z! and radial~x! coordinates are given in

units of the correlation lengthl 5\/An0mŨ, and ~normalized to
unity! C0 in units of l 23/2. In ~b! the solid curve isC0(0,z) and the
dashed curve is the first~axially! excited state of a harmonic osci
lator.
e

r-

re-

r

where the operatorsh152d2/2dz21C0
221 and h2

52d2/2dz213C0
221 take the form

h152
cothz

2

d

dzF tanh2z
d

dz
cothzG , ~5!

h252
cosh2z

2

d

dzF 1

cosh4z

d

dz
cosh2zG . ~6!

The kinkwise state has several excitation modes with z
energy. The ones fork50 are the well-known fundamenta
modes of a 1D kink state, following from decoupled equ
tions h6 f 650. Those which do not exponentially grow a
largez are f 1

15tanhz, f1
250; f 2

150, f 2
25cosh22z; and f 3

1

5z tanhz21, f 3
250. The modef 2

6 , which is even with re-
spect to inversion of thez coordinate, is localized at dis
tances of orderl from the nodal plane.

As an example, we demonstrate the instability of tra
verse normal modes in the absence of translational motio
the nodal plane. We consider modes that in the limitk→0
correspond to the localized zero-energy modef 2

6 . For trans-
verse momentak!1 the excitation wave functions at dis
tancesz!k21 can be found as a series of expansion in po
ers of k. Since the leading term in the expansion for t
function f 2 is proportional to cosh22z, from Eq.~4! one can
find that the leading terms in the expansion for the funct
f 1 should bef 15const andf 15 f 3

1 . Hence, this expansion
takes the form

f 15C@11B f3
1~z!1k2g~z!#, ~7!

whereC andB are constants. The equation for the functiong
follows directly from Eqs.~4!–~6!:

2«k
25k2h2@2h1g~z!1B f3

1~z!11#2k2cosh22z. ~8!

Using Eq.~6! and performing the integration of Eq.~8!, we
obtain the relation (3«k

2/k211)cosh2z1413f3
1(z)16h1g(z)

50. As g should not contain terms exponentially growin
with z, we find the dispersion relation corresponding
imaginary excitation energies:

«k5 ik/A3. ~9!

The instability of transverse normal modes, following fro
Eq. ~9!, originates from the transfer of the~longitudinal!
kink-related kinetic energyK of the condensate to thes
modes. AsK;m, it can be transferred by the mean-fie
interaction to modes with smallk.

The demonstrated instability and Eq.~9! are similar to
those in the case of ‘‘domain walls’’@15#. In Fig. 2 we
present numerical results for Im«k as a function ofk. For
small momenta it increases linearly withk, in accordance
with Eq. ~9!, and reaches its maximum atk51/A2. Further
increase ofk leads to decreasing Im«k , which becomes zero
at k51. At this critical point we have one more zero-ener
solution of Eqs.~4!:

«k50, f 1}1/coshz, f 250. ~10!

For k.1 the energy of free transverse motion,k2/2, exceeds
the kink-related kinetic energyK, and the normal modes ar
dynamically stable, with positive«k .
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One can now understand the origin of dynamical insta
ity of a kinkwise Bose-condensed state in a cylindrical h
monic trap; the interparticle interaction can transfer
~axial! kink-related kinetic energy of the condensate to
radial degrees of freedom. In order to suppress this insta
ity one has to significantly confine the radial motion. As t
~axial! kinetic energy per particle in the axially Thoma
Fermi condensate is of the order of the mean-field interac
at maximum density,n0mŨ, the radial frequency should b
the same or larger.

We have performed calculations for various ratia of t
radial to axial frequency,vr /vz , and found the maximum
valuegc of the parameterg5n0mŨ/\vr , at which the kink-
wise Bose-condensed state is still dynamically stable, i.e.
excitation modes have real frequencies. Ifg.gc , there are
excitations with imaginary frequencies, and the kinkw
condensate is dynamically unstable.

We have solved the Gross-Pitaevskii equation

F2
\2

2m
D1

m

2
~vz

2z21vr
2r2!1ŨuC0u22mGC050,

~11!

together with the Bogolyubov–de Gennes equations for
excitations, which we write in the form

«n f 75
\2

2m F2D1
DC0

C0
G f 61~171!ŨuC0u2f 6. ~12!

Equation~12! gives real«n
2 , which depends continuously o

g and the aspect ratio. In the range ofg andvr /vz , where
a given moden is dynamically unstable,«n

2,0 and the en-
ergy «n is purely imaginary. In the region of dynamical st
bility «n is purely real («n

2.0) and, hence, at the borde
between the two regions we have«n50.

At the critical pointg5gc all excitation energies«n are
real, and one of the excitations has zero energy. This is
the mode which forg.gc becomes dynamically unstable
Similar to the mode of Eq.~10! in the absence of trappin
field, this mode is even with respect to inversion of thez
coordinate. The functionf 250, and f 1 follows directly
from Eq. ~12!:

~2D1DC0 /C0! f 150. ~13!

FIG. 2. Imaginary part of the excitation energy~in units ofm! vs
the transverse momentumk ~in units of l 21) for a kinkwise con-
densate in the absence of a trapping field.
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-
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Equation~13! is the Schro¨dinger equation for the motion of a
particle ~with zero energy! in a cylindrically symmetric po-
tentialV5\2DC0/2mC0. The potentialV depends ong and
the aspect ratio. Thus, for a given ratiovr /vz one finds the
critical valuegc by selecting the parameterg such that there
is an even~nonzero! solution of Eq.~13!, remaining finite at
the origin and tending to zero at infinity. This was check
numerically on the basis of Eqs.~11!–~12! for a wide range
of g and the aspect ratio.

As it follows from our calculations,gc is minimal for
excitations with the projection of the orbital angular mome
tum on the symmetry axis,M51. The dependence ofgc on
the aspect ratio is presented in Fig. 3. Forvr,vz even an
arbitrary small interparticle interaction leads to instabilit
since the axial ‘‘kink-related’’ energy per particle in the co
densate (\vz) can be always transferred to the radial mo
with M51 which, by itself, has energy\vr . For vr.vz ,
the critical valuegc increases with the ratiovr /vz and
reachesgc'2.4 for vr@vz . We also found that the deca
of dynamically unstable kink states is accompanied by
undulation of the nodal plane and the formation of vorte
antivortex pairs, similar to the decay of dark optical solito
@16#.

The criterion of dynamical stability of a kinkwise conde
sate,g,gc , can be satisfied in the conditions of curre
BEC experiments. For a rubidium condensate in a cylindri
trap with vr;200 Hz@vz , it requires the maximum den
sity n0m&1014 cm23.

Although for g,gc the kinkwise condensate is dynam
cally stable, there is a thermodynamic instability related
the presence of an excitation with negative energy. Fo
very strong radial confinement of the axially Thomas-Fer
kinkwise condensate (\vr@n0mŨ@\vz ;g!gc), we calcu-
late a negative excitation energy close to«* 52\vz /A2
characteristic for the 1D Thomas-Fermi kinkwise condens
in a harmonic trap.

In the 1D case we calculate the negative excitation ene
analytically by solving the Bogolyubov–de Gennes equ
tions at distancesz from the origin, much smaller than th
Thomas-Fermi size of the condensateR5(2m/mvz

2)1/2. We
representC0 and the excitation wave functions as a series
expansion in powers of small parameterz5\vz /m. Then, in
the same dimensionless units as in the absence of trap
field, the Gross-Pitaevskii equation is given by Eq.~1! with
an extra termz2z2C0/2 on the left-hand side. Confining our
selves to the expansion up toz2, we obtain

FIG. 3. Critical parametergc vs the aspect ratio for a kinkwise
condensate in a cylindrical trap.
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C05tanhz1z2h~z!, ~14!

where the functionh(z) is determined by the equation

h2h~z!1~z2/2!tanhz50, ~15!

and is not given because of its complexity. Foruzu@1 we
have h52sgnz(112z2)/8, and Eq. ~14! recovers the
Thomas-Fermi result atuzu!R/ l . The Bogolyubov–de
Gennes equations take the form

«n f 75h6 f 61z2@z2/21~472!h~z!tanhz# f 6. ~16!

Just as in the absence of a trapping field, we consider a m
for which the leading term in the expansion for the functi
f 2 is proportional to 1/cosh2z. In order to find the excitation
energy, it is sufficient to keep the terms independent ofz and
proportional toz2 in the expansion for the functionf 1. Then,
similarly to Eq.~7!, we obtainf 1}@11z2G(z)#. The equa-
tion for G(z) follows from Eqs.~16!, and by using Eqs.~6!
and ~15! it is transformed to

S «
*
2

z2
2

1

2D 5h2@h1G~z!1z2#22 cosh2z

3
d

dzF tanhz

cosh4z

d

dz
@cosh2zh~z!#G . ~17!

Integration of Eq. ~17! gives at large uzu the relation
d2G/dz25(«

*
2 /z221/2)cosh2z21 and, sinceG should not

contain exponentially growing terms, we obtain«
*
2 5z2/2.

The normalization condition*dz f1 f 251 allows one then to
conclude that the excitation energy is negative and, he
equal to2\vz /A2. The frequencyvz /A2 for the oscilla-
tions of the kink in a 1D Thomas-Fermi condensate has a
been found in recent work@13# from the equation of motion
for the kink.
.

ev

ro
de

e,

o

The excitation spectrum for«n.0 follows from the solu-
tion of the Bogolubov–de Gennes equations at largeuzu,
where the Thomas-Fermi shape ofuC0u is not influenced by
the kink. Then, along the lines of the theory for the 3D ca
@10–12#, we obtain a discrete spectrum «n

5\vzAn(n11)/2, wheren is a positive integer.
Finally, we analyze the influence of the excitation wi

negative energy on the stability of the kink-wise condensa
Beyond the Bogolubov–de Gennes approach, there is a s
coupling of this excitation to the excitations with positiv
energies. But at temperaturesT→0 there will be no real
decay processes. Those require a simultaneous creatio
excitations with positive and negative energies, with the to
excitation energy equal to zero. Due to the structure of
discrete spectrum for«n.0, this conservation of energy can
not be satisfied while creating a moderate number of exc
tions with the above found negative energy2\vz /A2.

Thus, under the condition of dynamical stability the kin
wise Bose-condensed state is perfectly stable atT→0. The
decay mechanism in the presence of a thermal cloud i
some sense similar to that of temperature-dependent da
ing of excitations in trapped Bose-condensed gases~see@14#!
and originates from the scattering of thermal particles on
kink. Accordingly, the decay time can be made large by
creasing temperature well below the value of the mean-fi
interparticle interaction. A detailed analysis of dissipati
dynamics of a kink state at finiteT requires a separate inves
tigation.
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