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Abstract: The paper considers the stability problem of linear time-invariant continuous-time systems of fractional order, 
standard and positive, described by the state space model. Review of previous results is given and some new methods for sta-
bility checking are presented. Considerations are illustrated by numerical examples and results of computer simulations.  

 

1. INTRODUCTION 

In the last decades, the problem of analysis and synthe-
sis of dynamical systems described by fractional order 
differential (or difference) equations was considered in 
many papers and books. For review of the previous results 
see, for example, the monographs (Caponetto et al., 2010; 
Das, 2008; Diethelm (2010); Kaczorek, 2009, 2011a; Kil-
bas et al., 2006; Monje et al., 2010; Ostalczyk, 2008; Pod-
lubny, 1994, 1999; Sabatier et al., 2007). 

The problems of stability and robust stability of linear 
fractional order continuous-time systems were studied 
among others in Matignon (1996, 1998), Busłowicz (2008a, 
2008b, 2009), Petras (2008, 2009), Radwan et al. (2009), 
Sabatier et al. (2008, 2010), Tavazoei and Heri (2009) and 
in Ahn et al. (2006), Ahn and Chen (2008), Busłowicz 
(2008c), Lu and Chen (2009), Tan et al. (2009), Zhuang 
and Yisheng (2010), respectively. 

The new class of the linear fractional order systems, 
namely the positive systems of fractional order was consid-
ered by Kaczorek (2008a, 2008b, 2009, 2011a, 2011b).  

The aim of the paper is to give the review of the meth-
ods for stability analysis of fractional continuous-time lin-
ear systems described by the state-space model and presen-
tation of some new results. The standard and positive frac-
tional order systems will be considered. 

2. PROBLEM FORMULATION 

Consider a linear continuous-time system of fractional 
order described by the state equation 
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is the Caputo definition for fractional 	-order derivative, 
where ������� = 	 ���(�)/���,  p is a positive integer and 
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is the Euler gamma function. 
Definition (3) can be written in the equivalent form  
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From (2) for � = 1 and � = 2 we have, respectively 
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The Laplace transform of the Caputo fractional deriva-
tive has the form  
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For zero initial conditions, the Laplace transform (6) re-
duces to  

).()}({ 0 sFstxDL t
αα =  (6a) 

Definition 1. The fractional system (1) will be called posi-
tive (internally) if ���� ∈ ℜ�

�  for any initial condition 
��0� ∈ ℜ�

�  and for all inputs ���� ∈ ℜ�
� , �	 ≥ 0. 

Positivity condition of the system (1) is known only 
in the case of fractional order α ∈ (0,1]. In Kaczorek 
(2008a, 2008b), see also Kaczorek (2009, 2011a), the fol-
lowing theorem has been proved. 
Theorem 1. The fractional system (1) with 0 < α ≤ 1 
is positive if and only if  
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,nMA∈   ,mnB ×
+ℜ∈  (7) 

where � – the set of � × �  real Metzler matrices (matri-
ces with non-negative off-diagonal entries), ℜ�

�×� – the set 
of � × � real matrices with non-negative entries. 

Characteristic function of the fractional system (1) is the 
fractional degree polynomial of the form  
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The associated natural degree polynomial has the form 
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The polynomial (8) is a multivalued function whose 
domain is a Riemann surface. In general, this surface has 
an infinite number of sheets and the fractional polynomial 
(8) has an infinite number of zeros. Only a finite number 
of which will be in the main sheet of the Riemann surface. 
For stability reasons only the main sheet defined by 
−π < arg � < 	π  can be considered (Petras, 2008, 2009).  

From the theory of stability of linear fractional order 
systems given by Matignon (1996, 1998) and Petras (2008, 
2009), we have the following theorem. 
Theorem 2. The fractional order system (1) is stable if and 
only if the fractional degree characteristic polynomial (8) 
has no zeros in the closed right-half of the Riemann com-
plex surface, i.e. 

0)det()( ≠−= α AIssw  for ,0Re ≥s  (10) 

or equivalently, the following condition is satisfied  

,
2
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where λ�(�) is the i-th eigenvalues of matrix A.  
From Radwan et al. (2009) it follows that the fractional 

system with the characteristic polynomial (8) is unstable 
for all α > 2. Therefore, in this paper we consider the frac-
tional system (1) of fractional order α ∈ (0,2).  

The stability regions of the system (1), described 
by (11) are shown in Fig. 1 and 2 for 0 < α ≤ 1  
and 1 ≤ α < 2, respectively. Parametric description of the 
boundary of the stability regions has the form  

,||)( 2/πααα ω=ω jej  ).,( ∞−∞∈ω  (12) 

The polynomial (8) with α = 1 is a natural degree poly-
nomial and from (12) for α = 1 we have that the imaginary 
axis of the complex plane is the boundary of the stability 
region.  

The aim of this paper is to give the review of the meth-
ods for stability analysis of the fractional system (1) 
and presentation of some new results. We consider the 
stability problem of standard and positive fractional order 
systems.  

3. STABILITY OF FRACTIONAL SYSTEMS 

The following lemma can be used to checking the con-
dition (11) of Theorem 2. 

Lemma 1. The fractional order system (1) is stable 
if and only if 
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where  
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and λ�(�) is the i-th eigenvalue of A. 
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Fig. 1. Stability region for 0 < α ≤ 1 
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Fig. 2. Stability region for 1 ≤ α < 2 

From Theorem 2, Lemma 1 and Fig. 1 and 2 we have 
the following important lemmas and remark. 
Lemma 2. The fractional system (1) is unstable for all 
	 ∈ (0,2) if the matrix A has at least one non-negative real 
eigenvalue. In particular, this holds if det� = 0. 
Lemma 3. Assume that the state matrix A has no real non-
negative eigenvalues. Then the fractional system (1) 
is stable if and only if α ∈ �0, α	�,	where α	 = 2γ/π 
and γ	is computed from (14).  
Remark 1. If the fractional system (1) is stable for a fixed 
α ∈ [1,2) then it is also stable for all fractional orders 
α ∈ (0,1]. 
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3.1. Stability of system of fractional order � ∈ [�,�) 

The system (1) of fractional order α ∈ [1,2) is stable 
if and only if all eigenvalues of A lie in the stability region 
shown in Fig. 2. Hence, this system may be unstable in the 
case of negative real parts of all eigenvalues of matrix A  
if  αrgλ���� < 	απ/2, � = 1, 2, … ,�. 

The following lemma can be used to stability checking 
of the fractional system (1) of order α ∈ [1,2). 
Lemma 4 (Anderson et al., 1974; Davison and Ramesh, 
1970). The eigenvalues of an � × � matrix A lie in the sec-
tor shown in Fig. 2 if and only if the eigenvalues  
of 2� × 2� matrix  
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have negative real parts, where δ = �α − 1�π/2. 
From the above and the result given in (Hostetter, 

1975), see also (Tavazoei and Haeri, 2009) it follows that 
if ���� = det(�� − �) then  
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Based on Lemma 4, the following theorem has been 
proved in Tavazoei and Haeri (2009). 
Theorem 3. The fractional system (1) with 1 ≤ α < 2 
is stable if and only if the eigenvalues of the matrix �� have 
negative real parts, where  
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Proof. Substitution δ = �α − 1�π/2 in (15) gives (16). 
The proof follows directly from Theorem 2 and Lemma 4.  

In Molinary (1975) it has been proved that if there exist 
positive definite Hermitian matrices � > 0 and � > 0 such 
that  

,T* QPAPA −=β+β  (17) 

where β = η + �ξ with tan�π − απ/2� = η/ξ (equivalently, 
tan�π/2 − δ� = η/ξ), then all eigenvalues of A are within 
the stable area shown in Fig. 2. From the above and Theo-
rem 2 one obtains the following theorem (see also Ahn et. 
al. (2006), Sabatier et al. (2008, 2010)). 
Theorem 4. The fractional system (1) with 1 ≤ α < 2 
is stable if and only if there exist positive definite Hermi-
tian matrices � > 0 and � > 0 such that (17) holds. 

The stability region shown in Fig. 2 is convex. There-
fore, to the stability analysis of the system (1) with 
1 ≤ α < 2 the LMI based conditions can be applied.  

In Chilali et al. (1999) it has been shown that the eigen-
values of matrix A lie in the sector shown in Fig. 2 
if and only if there exists a matrix � = �
 > 0 such that  

,0
)sin()()cos()(

)cos()()sin()(
TT

TT
<













θ+θ−
θ−θ+

PAAPAPPA

PAAPPAAP
 (18) 

where θ = 	π − απ/2. 
Substitution θ = 	π − απ/2 in (18) gives  
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Hence, we prove the following theorem. 
Theorem 5. The fractional system (1) with 1 ≤ α < 2 
is stable if and only if there exists a matrix � = �
 > 0 
such that the condition (19) holds.  

The same criterion has been obtained by Sabatier et al. 
(2008, 2010). In this criterion, the condition (19) is written 
in the equivalent form  
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To checking the condition (19) (or (19a)), a LMI solver 
can be used.  

3.2. Stability of system of fractional order � ∈ (�,�] 

The system (1) of fractional order α ∈ (0,1] is stable 
if and only if all eigenvalues of A lie in the stability region 
shown in Fig. 1. Hence, this system may be stable in the 
case when not all eigenvalues of A lie in open left half-
plane. Moreover, this system may be stable when all eigen-
values of the matrix A are complex with positive real parts.  

From the above we have the following simple sufficient 
condition for the stability. 
Lemma 5. The fractional system (1) with 0 < α ≤ 1 
is stable if all eigenvalues of A lie in open left half-plane 
of the complex plane. 

Using Lemma 4 and taking into account that the system 
(1) with 0 < α ≤ 1 is unstable if all eigenvalues of A lie 
in the instability region shown in Fig. 1, we obtain the fol-
lowing theorem. 
Theorem 6 (Tavazoei and Haeri, 2009). The fractional 
system (1) with 0 < α ≤ 1 is unstable and all eigenvalues 
of A lie in the instability region shown in Fig. 1 if and only 
if the eigenvalues of �̅	have negative real parts, where  
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Proof. If all eigenvalues of A lie in the instability sector 
shown in Fig. 1, then all eigenvalues of –A satisfy the ine-
quality  

,
2

|)(arg|
πα−π>−λ Ai  ,,...,2,1 ni =  (21) 

i.e. lie in sector shown in Fig. 2 if we consider angle  
π − απ/2 with α ∈ (0,1] instead of angle απ/2. Then 
δ = �1 − α�π/2. The proof follows directly from Lemma 4 
for δ = �1 − α�π/2 and substitution A−  instead of A. 

Based on instability analysis, the following condition 
has been given in Sabatier et al. (2008, 2010). 
Theorem 7. The fractional system (1) with 0 < α < 1 
is stable if and only if there does not exist any non-negative 
rank one complex matrix Q such that  

,0≥+ rQArAQ T  (22) 
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where � = sin�απ/2� + �cos�απ/2� and �̅ denotes the 
complex conjugate of r. 

The stability region shown in Fig. 1 is not convex. 
Therefore, to the stability analysis of the fractional system 
(1) with 0 < α < 1 the LMI conditions can not be applied.  

In Sabatier et al. (2008, 2010) the following sufficient 
and necessary and sufficient conditions have been proved. 
Theorem 8. The fractional system (1) with 0 < α < 1 
is asymptotically stable if there exists a matrix � > 0 such 
that  

.0)()( /1T/1 <+ αα APPA  (23) 

Theorem 9. The fractional system (1) with 0 < α < 1 
is stable if and only if there exists a symmetric matrix 
� > 0 such that  

( ) ( ) .0)()( )2/(1T)2/(1 <−−+−− α−α− APPA  (24) 

Based on the Generalized LMI (GLMI), in Sabatier 
et al. (2008, 2010) the following criterion has been given.  
Theorem 10. The fractional system (1) with 0 < α < 1 
is stable if there exist positive definite complex matrices 
�� = 	 ��

∗ and �� = 	 ��
∗ such that 

,02
T

21
T

1 <+++ rAXArXrAXAXr  (25) 

where � = exp	(�(1 − α)π/2). 

3.3. Generalization of frequency domain methods  

The frequency domain methods for stability analysis 
of fractional systems described by the transfer function 
have been proposed in Busłowicz (2008a, 2009), see also 
Kaczorek (2011a, Chapter 9). These methods can be ap-
plied to the system (1) of any fractional order α ∈ (0,2). 

By generalization of the results of Busłowicz (2008a, 
2009) to the case of fractional system (1) we obtain the 
following methods for stability checking.  
Theorem 11. The fractional system (1) with characteristic 
polynomial (8) is stable if and only if  

,2/)(arg
0

π=ω∆
∞<ω≤

njw  (26) 

where ���ω� = ���� for � = �ω, i.e. plot of the function 
���ω� starts for ω = 0 in the point ��0� = det	(−�) 
and with ω increasing from 0 to ∞ turns strictly counter-
clockwise and goes through n quadrants of the complex 
plane.  

Plot of the function ���ω� is called the generalised 
(to the class of fractional degree polynomials) Mikhailov 
plot. 

Checking the condition (26) is difficult in general 
(for large values of n), because ���ω� quickly tends to 
infinity as ω grows to ∞.  

To remove this difficulty, we consider the rational func-
tion  
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instead of the polynomial (8), where �(�) is stable 
the reference fractional polynomial of degree α�, i.e. 

0)( ≠swr  for .0Re ≥s  (28) 

The reference fractional polynomial can be chosen 
in the form  

,)()( n
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Theorem 12. The fractional system (1) with 0 < α < 2 
is stable if and only if  

,0)(arg
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=ωψ∆
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where ψ��ω� = ψ(�) for � = �ω and ψ(�) is defined 
by (27), i.e. plot of the function ψ��ω� does not encircle 
or cross the origin of the complex plane as ω runs from −∞ 
to ∞. 

Plot of the function ψ��ω�, ω ∈ (−∞, ∞), is called 
the generalised modified Mikhailov plot. 

From (8), (27) and (29) we have  

1)(lim)( =ωψ=∞ψ
±∞→ω

j  (31) 

and  
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A
α
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From (32) it follows that ψ(0) ≤ 0 if det	(−�) ≤ 0. 
Hence, from Theorem 12 we have the following important 
lemma. 
Lemma 6. If det	(−�) ≤ 0 then the fractional system (1) 
is unstable for all α ∈ �0,2�.  

Lemma 6 also follows from the Hurwitz stability test 
because if det	(−�) ≤ 0 then not all coefficients of the 
characteristic polynomial of A are non-zero and positive. 

3.4. Stability of positive systems 

Now we consider the stability problem of the positive 
system (1) of fractional order α ∈ (0,1]. In this case, ac-
cording to Theorem 1, the condition (7) holds, i.e. the ma-
trix A has non-negative off-diagonal entries.  

Positive linear systems are sub-class of linear systems. 
Therefore, the stability conditions given in this paper can 
also be applied to the stability analysis of the positive sys-
tem (1). 

Stability conditions of positive natural number systems, 
continuous-time and discrete-time, are very simple in com-
parison with the stability conditions of standard systems 
(Farina and Rinaldi, 2000; Kaczorek, 2000, 2002). There-
fore, we consider the possibilities of simplification of the 
stability conditions of standard fractional system (1) with 
α ∈ (0,1]. 

From Theorems 1 and 2 it follows that the positive sys-
tem (1) with α ∈ (0,1) is stable if and only if all eigenval-
ues of the Metzler matrix A lie in the stability region shown 
in Fig. 1.  

From (Farina and Rinaldi, 2000; Kaczorek, 2011b) 
we have that the dominant eigenvalue (eigenvalue with the 
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largest real part) of the Metzler matrix is real. Therefore, 
the positive system (1) with α ∈ (0,1) is stable if and only 
if all eigenvalues of the Metzler matrix A have negative real 
parts. 

Hence, using the well-known stability conditions 
of positive systems given in Kaczorek (2000, 2002), 
we obtain the following simple necessary and sufficient 
condition for the asymptotic stability. 
Lemma 7. The positive system (1) is asymptotically stable 
for all 	 ∈ (0,1) if and only if one of the following equiva-
lent conditions holds: 
1. eigenvalues ��, 	��, … , λ� of the matrix A have negative 

real parts, 
2. all the leading principal minors Δ�, 	Δ�, … , Δ� of the ma-

trix −� are positive, 
3. all the coefficients of the characteristic polynomial 

of the matrix � are positive. 
It is easy to see that if � ∈ � then the matrix (20) 

is not a Metzler matrix. This means that is not possible 
simplification of the condition given in Theorem 6 for the 
positive system (1).  

4. ILLUSTRATIVE EXAMPLES 

Example 1. Check stability of the system (1) with 

,
10









−−
=

ab
A   ., ℜ∈ba  (33) 

Eigenvalues of A are as follows 

.
2

42

2,1
baa −±−=λ  (34) 

If  � = 4! then  λ�,� = − /2 Hence, from Lemmas 2 
and 3 we have the following: 
− if  < 0 then eigenvalues of A are positive and the sys-

tem is unstable for all fractional orders α 
− if  > 0 then eigenvalues of A are negative and the 

system is stable for all fractional orders α ∈ (0,2). 
If  

ba 42 >  and 042 ≥−+− baa  or ,042 ≥−−− baa (35) 

then from Lemma 2 it follows that the system is unstable 
for all values α ∈ (0,2). 

If  

ba 42 >  and ,042 <−±− baa  (36) 

then from Lemma 5 it follows that the system is stable 
for all α ∈ �0,1�. 

If  � < 4! then the matrix (33) has two complex eigen-
values  

.
2

4 2

2,1
abja −±−=λ  (37) 

If  < 0 then from (14) and (37) we have  

,14arctan −τ=γ  ,/ 2ab=τ  (38) 

and  

.14arctan
22

0 −τ
π

=γ
π

=α  (39) 

From Lemma 3 it follows that the system with  � < 4! 
and  < 0 is stable for any α ∈ �0, α	�	where α	 is com-
puted from (39). 

Similarly, we can show that if  > 0 and  � < 4! then 
the system is stable for any α ∈ �0, α	�� where  

),14arctan(
22

01 −τ−π
π

=γ
π

=α  ./ 2ab=τ  (40) 

Plots of α	(τ) and α	�(τ) for τ ∈ [1,10] are shown 
in Fig. 3. It is easy to check that α	 → 1 and α	� → 1 
if τ → ∞. 

 
Fig. 3. Plot of the functions (39) and (40) vs. τ ∈ [1,10] 

From Fig. 3 and (39), (40) it follows that α	 < 		� 
for all fixed τ. 

If  τ = 4 (i.e. ! = 4 �), for example, then the system  
− with  < 0 is stable if and only if α ∈ �0, α	�,	 

α	 = 0.8391 
− with  > 0 is stable if and only if α ∈ �0, α	��, where  

α	� = 1.1609.  
Assume that the output equation and the input matrix 

of the system (1), (33) are as follows 

),()( tCxty =  ],01[=C  .
1
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=B

 

Then, the transfer function has the form  
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bassAIs
BAIsCsG

++
=
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=−= ααα
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Step responses of the system for ! = 4,  = 1	and 
! = 4,  = −1 are shown in Figs 4 and 5, respectively, for 
few values of fractional order α. 

Numerical simulations are performed using Ninteger v. 
2.3 − Fractional Control Toolbox for MatLab, see Valério 
(2005). 

From Figs 4 and 5 it follows that simulations confirm 
the above theoretical results that the system with ! = 4 � 
and  < 0 is stable for all positive α < 0.8391, whereas 
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this system with  > 0 is stable for all positive  

α < 1.1609. 
Now we consider the stability problem of positive sys-

tem (1) with (33). 
From Theorem 1 it follows that the system (1) with A 

of the form (33) and α ∈ (0,1] is positive if and only 
if ! < 0. If  ! < 0 then from (34) it follows that A has two 
real eigenvalues, one negative and one positive. Hence, 
from the above and Lemma 2 we have that the positive 
system (1) with the matrix (33) with ! < 0 is unstable 
for all fractional orders α ∈ �0,1". In particular, this system 
is unstable for α = 1 (the natural number positive system). 

 
Fig. 4. Step responses of the system with � = −1	, � = 4 

 
Fig. 5. Step responses of the system with � = 1	, � = 4 

Example 2. Consider the fractional system (1) with  
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Check stability of the system for α = 1.4 and α = 1.9. 
Plot of the function  
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j
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with α = 1.4 and α = 1.9 is shown in Figs 6 and 7, respec-
tively.  

According to (31) and (32) we have (independently 
of the value of α) 

,1)(lim)( =ωψ=∞ψ
±∞→ω

j   5.1240.)det()0( =−=ψ A  

From Figs 6, 7 and Theorem 12 it follows that the system 
with α = 1.4  is stable (plot of (42) does not encircle the 
origin of the complex plane) and with α = 1.9 is unstable 
(plot of (42) encircles the origin of the complex plane).  

 
Fig. 6. Plot of the function (42) with α = 1.4   

 
Fig. 7. Plot of the function (42) with α = 1.9   

Now we apply Theorem 5. Using the LMI toolbox 
of Matlab, we obtain the following feasible solution of (19): 

− for α = 1.4    
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− for α = 1.9   
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Computing the leading principal minors of the matrices 
(43) and (44) we obtain, respectively, 

7751.01 =∆ , 3277.02 =∆ , 1408.03 =∆ , 

4850.11 =∆ , 9
2 10676.1 −⋅−=∆ , 5

3 10025.3 −⋅−=∆ . 

From the above it follows that the matrix (43) is positive 
definite (all the leading principal minors are positive) and 
the matrix (44) is not positive definite. This means, accord-
ing to Theorem 5, that the system with α = 1.4 is stable and 
with α = 1.9 is unstable. 

Now we apply Lemma 3 to stability checking of the sys-
tem. 

The matrix (41) has the following eigenvalues: 

;9538.01 −=λ  .4313.18231.13,2 j±−=λ  

From (14) we have γ = 2.4760 and from Lemma 3 
it follows that the system is stable for all α ∈ �0, α�� where  
α� = 2γ/π = 1.4305.		Hence, the system is stable for 
α = 1.4 < α� and unstable for α = 1.9 > α�. 

Now we assume α = 0.5 and check stability using 
Theorems 8 and 9.  

Computing the feasible solutions of (23) and (24) with 
α = 0.5 we obtain respectively 

,

3173.00216.01038.0

0216.02308.00039.0

1038.00039.03866.0

















−
−−

−
=P  (45) 

.

5521.00301.01085.0

0301.04703.00125.0

1085.00125.06392.0

















−
−−

−
=P  (46) 

It is easy to check that the matrices (45) and (46) are 
positive definite. From Theorems 8 and 9 it follows the 
system with α = 0.5 is stable. 
Example 3. Check stability of the system (1) with  

.

4.15.04.00

1.14.108.01.0

5.07.15.11.0

8.11.004.1



















−
−

−
−

=A  (47) 

The matrix (47) is a Metzler matrix. Therefore, the sys-
tem (1), (47) with α ∈ �0,1� is a positive system. To stabil-
ity checking of this system we apply simple necessary 
and sufficient condition given in Lemma 7. 

Computing the characteristic polynomial of the matrix 
(47) we obtain  

.8373.00684.8284.117.5)det( 234 +λ+λ+λ+λ=−λ AI  

All coefficients of the above polynomial are positive. 
From Lemma 7 it follows that the positive fractional system 
(1) with matrix A of the form (47) is stable for any  

α ∈ �0,1�. 
The matrix (47) has the following eigenvalues: 

;1239.01 −=λ  ;5683.12 −=λ  .5404.00039.24,3 j±−=λ  

From (14) we have γ = 2.8782 and α� = 1.8323. From 
Lemma 3 it follows that the system (1) with A of the form 
(47) is stable for any fractional order α ∈ �0, 1.8323�. 

5. CONCLUDING REMARKS 

Review of the existing methods for stability analysis 
of the system (1) of fractional order α ∈ (0,2) is given 
and the new results are presented.  

In particular, generalisation of the classical Mikhailov 
stability criterion to the class of fractional order systems (1) 
with α ∈ (0,2) is proposed. 

Moreover, it has been shown that: 
− the fractional system (1) is unstable for all α ∈ (0,2) 

if the matrix A has at least one non-negative real eigen-
value (Lemma 2); 

− if A has no real non-negative eigenvalues, then the frac-
tional system (1) is stable if and only if α ∈ �0, α�� 
where α� = 2γ/π and γ is computed from (14)  
(Lemma 3); 

− the positive system (1) is stable for all α ∈ (0,1] if and 
only if all coefficients of the characteristic polynomial 
of the matrix A are positive (Lemma 7). 
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