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The shear resistance of slipping surfaces at fixed normal stress is given by r = 
r( v,state). Here V = slip velocity, dependence on «state" is equivalent to func
tional dependence with fading memory on prior V(t), and ar( v,state) /iJV>O. We 
establish linear stability conditions for steadY'slipstates (V(t), r(t) constant). For 
single degree-of-freedom elastic or viscoelastic dynamical systems, instability 
occurs, if at all, by a flutter mode when the spring stiffness (or appropriate 
viscoelastic generalization) .reduces to a critical value. Similar conclusions are 
reached for slipping continua with spatially periodic perturbations along their 
interface, and in this case the existence of propagating frictional creep waves is 
established at critical conditions. Increases in inertia of the slipping systems are 
found to be destabilizing, in that they increase the critical stiffness level requiredfor 
stability. 

Introduction 

For many mechanical systems in sliding contact with an 
adjoining body, loading by the imposition of a constant 
relative displacement rate, directed parallel to the contact 
surface, is observed to lead to nonconstant slip motion at that 
surface. This unsteady motion is often referred to as "stick 
slip." It is exemplified by squeaking machinery, oscillating 
violin strings, and unstable fault slip on the boundaries of the 
Earth's crustal plates. On the other hand, motion with 
constant slip rate is often observed in situations that appear 
very similar. What distinguishes these two cases? 

The simplest. although not complete, approach to this 
problem is to ask: Is steady sliding a possible stable motion? 
Classically this is analyzed by assuming the friction stress r (at 
fixed normal stress 0) to be dependent on slip rate V only, i.e .• 
r = r( V). Then a one degree-of-freedom elastic system yields 
the following simple result, attributed to Rayleigh in his study 
of the violin string-bow interaction (Kosterin and Kragel'skii 
[1]): If dr( V) /dV>O, steady sliding is stable; if 
dr( V) /dV <0, steady sliding is unstable. If steady sliding is 
unstable, a nonlinear description, including full description of 
the function r( V), possibly embodying th~ concept of higher 
static versus kinetic friction, leads to predictions of 
osciilations that may be very abrupt (relaxation oscillations) 
or nearly sinusoidal (Kosterin and Kragel'skii [11. Brockley 
and Ko [2]). 

The simple stability result just mentioned contradicts the 
common experimental observation of steady slip in an 
adequately stiff machine even though the frictional stress r is 
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often less for greater steady sliding rates. The contradiction is 
resolved. however. by the analysis in this paper, which is 
based on a recently established constitutive framework for 
frictional slip} more comprehensive than that mentioned in 
the foregoing. 

We derive conditions within this framework for the stability 
against small perturbations of steady frictional slipping in 
some mechanical systems. The analysis generalizes con
siderably the first results within this constitutive framework, 
obtained by Ruina [3] for a special class of frictional con
stitutive relations involving a single evolving state parameter. 
Implications for nonlinear analysis are mentioned at the end 
of the paper. 

Constitutive Description of Frictional Slip 

Recent experiments with rocks (Dieterich [4-8]; Ruina [3]) 
as well as earlier experiments with metals (Rabinowicz [9. 10]) 
suggest a constitutive framework. for sliding at fixed normal 
stressu, in which the shear stress r resisting unidirectional slip 
is regarded as being a function of both the slip rate V and the 
state of the surface, where the latter evolves with ongoing slip. 
We summarize this dependence by writing 

r= 7 ( V,state) (for u constant) (1) 

and regard the dependence on "state" as being equivalent to a 
functional dependence of r on prior V. That is, assuming a 
loss of memory of slips in the distant past. 

r(t) =F[V(t); V(t/}, - 00 <tl <t]. (u(t) constant) (2) 

A useful way of studying this functional dependence 
(Dieterich [6-8]; Ruina [3D. which will be illustrated shortly 
for a linearized perturbation version of equation (2), is to 
determine the response r(t) to a suddenly imposed step 
change in V(t). Such experiments as carried out thus far 
suggest a competition between the instantaneous dependence 
on rate and the dependence on the evolving state. Namely. r 
increases (decreases) simultaneously with the suddenly im-
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Fig. 1 Resistive shear stress l' in response to a sudden step AV in slip 
rate imposed at time t' 

posed increase (decrease) of V. Presuming this instantaneous 
change to represent response'of the surface at its' current state, 
we have therefore that ' 

iJr( V,state)loV>O. (3) 

This may be contrasted with the constitutive framework often 
considered for straining of inelastic solids. in which the 
material exhibits an instantaneous elastic response and thus 
no jump in stress for a jump in deformation rate. 

However, the instantaneous increase of T resulting from an 
increase of V is not maintained. Rather. as slip progresses 
with,say, V held constant at its increased value, Tis'found to 
decay in value, and we interpret this as meaning that the 
"state" of the surface is evolving toward a new one consistent 
with the increased V. Indeed, it is indicated in the experiments 
cited that independently of prior slip history, if V is main
tained constant, then T evolves toward a steady state value, 
Tss. which is a function only of V. We interpret this as 
meaning that the state term in equation (1) evolves to one that 
is dependent only on V, and therefore require that the con
stitutive relation exhibit the behavior 

T(V,state)-Tss(V), for Vconstant. (4) 

Furthermore, in most of the experimental studies cited in the 
foregoing, it is found that Tss (V) is a decreasing function of 
V, 

dTss (V) /dV <0, (5) 

although studies at elevated temperature (Stesky [11, 12]), and 
on surfaces that have undergone relatively little total slip 
(Solberg and Byerlee [13];, Dieterich [8]), show that the 
inequality (5) need not always be met. We show subsequently 
that under plausible assumptions of the nature of the decay to 
steady state, inequality (5) is a necessary, but not sufficient, 
condition for instability (under small perturb~tions) of steady' 
slip. Regarding the order of magnitude, experimental results 
[3:, 5-8] suggest that the velocity derivatives in (3) and (5) 'are 
oforder '± 0.01 u/V. 

The existence of an instantaneous positive viscosity-like 
property of frictional response as in (3), with a long-term 
negative viscosity, as in (5), is a recent discovery in the work 
of Dieterich [5-8] and Ruina [3], although such a competition 
of effects was postulated by Tolstoi[l4]. Classical descrip
tions of friction seem to recognize only inequality (5), often 
summarized as saying that "static" friction is greater than 
"kinetic" friction (e.g., Jenkin and Ewing [15]). 

For our present purposes of examining stability within a 
small-perturbation theory, we linearize the dependence of 
T (t) on V (t) in equation (2). In particular, we perturb (2) 
about a steady state at slip rate Vo• writing 

VU) = Vo+x(t) (lx(1) I/Vo< <1), (6) 

and express the result for T(t) as 

, T( t)= Tss + 1 x (t) - t h (t - t ' ) x (t , ) dt ' (7) 

(assuming that x(t) = 0 for t <O,and that conditions at t = 
- 00 have no effect). Here all of Tss , I, and h (I) depend on 
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Fig. 2 One degree·oi·freedom system represented by sliding block 
and attached spring. The velocity of the spring end is imposed as Vo 
and stability of steady slipping is examined. 

Vo. The significance of 1 and h (t) is illustrated in Fig. 1 for a 
small step increase in V, from Vo to Vo + Li V, at time t I • It is 
evident that 

l=aT( V,state)/aV, 1-J: h(t)dt=dTss (V) /dV (8) 

where the derivatiyes' of Tare evalated in the steady state with 
speed Vo. Hence tbe inequalities (3) and (5) 'are equivalent, 
respectively, to ~ 

1>0, and J:h(t)dt>1 (9a,b) 

where, again, we expect (9a) to be a general property and (9b) 
is required for tp.e instabilities to be described. We also 
assume later that h(t)~O, i.e., that the relaxation in Fig. 1 is 
monotonic. 

We close this section with a few further remarks on fric
tional constitutive'relations. First, the discussion thus far is 
for u = constant. and the same condition is assumed in the 
subsequent stability' analyses. We presume that a suitable 
generalization for nonconstant u(t) would be to include in F 
of equation (2) a 'direct dependence on u(t) and a functional 
dependence on uO'), - 00 <t' <to A strong, approximately 
linear dependence, of T on u is well, known but, to our 
knowledge. experjments have not yet documented whether 
there are memory'.effects relating to u(t) analogous to those 
previously discussed for V(t). Second, characteristic slip 
distances in the decay process of Fig: 1 are typically small, 0.3 
to 200 /Lm repres~nting the range of surfaces studied, so far. 
Thus, we neglect' tpe fact that points currently mating across 
the slip surface ~.t. time t had slightly different prior slip 
histories (ifthe adjoining solids are deformable). 

Finally, a special form of the dependence of T on state, 
adopted in description of experimental results (Ruina [3}. 
Dieterich [5-8], Kosloff and Liu [16]), is to represent the latter 
by a set of variables 01 , O2 , ••• , On, collectively the column 
{ 0). subject to fi~~!-order rate equations. Thus, with u again 
constant, ' 

\.,r 

T=T( ¥d O}), {OJ = (g( V,l O}) I {10a,~ 

The equation (7) may be thought of as a linearization of such 
a state variable d~scription. In this case h (t) would be given 
as a sum of (possibly complex) exponentially decaying func
tions. Here we take the form of equation (7), as in Fig. I, to 
be the basic constitutive assumption independent of the 
nonlinear description, such as equation (1), (2), or (lO), of 
which it is a linearization. 

Stability of One,Degree-of-Freedom Elastic System 

Consider a one degree-of-freedom elastic system, 
represented generically by the rigid block of unit base area in 
Fig. 2. loaded by a linear spring element whose end is con
strained to move 'at speed Vo• namely, the steady slip speed 
for which stability is to be examined. Writing the slip speed as 
Vo +X, x can be interpreted as the shortening of the spring 
from its steady state length, and thus the force (or stress, 
given the unit base area) exerted by the spring is 

C T=Tss-kx. (11) 

The equation of motion is therefore 

mx= T - T+q= Tss -kx~ r+q (12) 
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where q(t) is an arbitrary perturbing force. switched on at t 
= O. Hence by equation (7) for T. 

kx(t) +mx(t) + fx(t) - J~ h(t-t' )x(t' )dt' =q(t). (13) 

The Laplace transform of x(t) is given by 

xes) == 1;x(t)e-S1dt=q(S)/D(S) (14) 

where 

D(s) =k+ms2 +s[f-h(s)] (IS) 

A pole in xes) = q(s)/D(s) at s = So corresponds to a term 
of the form exp(sot) in the inverse transform of x(s). x(t). 
Evidently. then, the steady slipping state is stable if the 
equation D(s) = 0 has no solutions So with Re(so) > O. If 
D(s) = 0 for some Re(s) > 0 then steady sliding is unstable 
since q(s) is arbitrary. (An alternative, less rigorous ap
proach to the stability analysis is to look for solutions of 
equation (15) of the form xU) = exp(st), for large t. This 
again leads to D(s) = 0 and thus the ~stability condition 
Re(s) < 0 for D(s) = 0.)' 
. We consider successively lower values or k and show next 
that as k reduces from co to 0 one passel through a critical 
value, ker • at which two conjugate roots of D (s) = 0 cross the 
Im(s) axis, say. at ±i{J. into the domairfRe(s) > O. Con
sequently, the steady slip state is stable for sufficiently stiff 
systems, i.e., if k > ken and, at least in the;vicinity of ken the 
system exhibits flutter oscillations of frequency{3 whose 
amplitude grows in time if k, < ker and dec~ys if k > kef' 

To demonstrate the result just stated we first observe that 
due to the presumed integrability of h(t)'/ h(s) is bounded 
and h (co) ~ 0 in the domain Re(s) ~ o. rhus for k-co, the 
equation D (s) = 0 can only possibly be satisfied in Re(s) ~ 0 
by s-- co. But h (co) = 0 so that D{s) = 0 leads to a quadratic 
equation for s that has roots with Re(s} '"= - fl2m, a con
tradiction if f>O as required by (90). We tbnc1ude that in the 
limit k--co, D(s) has no zeros with Re(s)~.O. Next. for k = 
O. it can be observed that D(s) = 0 has~t least one root in 
Refs) ~ O. on the positive real saxis. Tilis follows because 
inequalities (9) and Ii (co) = 0 show that ,j 

f-h(O)=f-l;h(t)dt<O, f-h(~»O~ (16) 

and therefore that D(s) < 0 for small positive real s but 
D(s) > 0 for large positive s. Thus, assuming continuity, a 
real root or conjugate pair of complex roots must pass into 
the domain Re(s) > 0 as k reduces from co to O. A root 
cannot pass through the origin or infinity,. because inspection 
shows that D(O) and D(co) ¢ 0 when k> 0 (and m>O or 
f>O). By elimination, it is therefore the case that a conjugate 
pair of complex roots crosses the Im(s,) axis at critical 
conditions since D (s) has real coefficients ~<' 

The crossing points ± i{J are computed b¥setting 

D,( ± ifJ) = ker - m{Ji ± i{J[f - h ( ± i{J)] = 0 (17) 

Separating, (17) into real and imaginary, parts yields two 
equations, one determining the critical frequency {3 by 

'l;COS({3t)h(t)dt=f (IS) 

and the other giving.. an expression for.the critical spring 
constant as 

ker =m{32 + {3LooSin({3t)h(t)d(. (19) 

Equation (1S) shows that the frequency (3 of the flutter in
stability is determined solely by properties of the friction law, 
f and h(t), and not the mass m or stiffness k. 'Equation (1S) 
also results as an answer to the following question: For what 
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frequency (J does the friction force in steady. oscillatory 
motion x (t) = cos{3t not absorb any more work than the 
steady state work T ss Vo? This is also equivalent to the 
question: For what frequency (3 is the oscillatory displacement. 
x(t) = cos{Jt exactly out of phase with the excess friction 
force? Both statements follow because in steady oscillatory 
motion no energy is lost or gained by the spring or mass. Also, 
in steady sinusoidal motion both the force required to ac
celerate the mass and to cock the spring are in phase with the 
position of the mass and spring. 

It seems reasonable to assume that h(t) ~ 0 because, by 
reference to Fig. 1, this assumption means that the decay of T 

toward its steady state value is monotonic. If we do therefore 
assume that h (I) ~ 0, equation (1S) will have a solution if and 
only if inequality (5). dTss (V) IdV < 0, which is equivalent to 
the second inequality of (9), is met. This is because the cosine 
transform of a positive function is bounded by the, integral of 
that function. 

(20) 

with equality only at {J = O. Thus a necessary (and sufficient. 
since the cosine transform vanishes as (3- co) condition for 
equation (IS) to have a solution with {J ¢ 0 is that 
fa h (t)dt> f, which is the second inequality of (9). Thus, if 
the decay process is monotonic, h (t) ~ 0, then dT ss ( Vo)! dVo 
< 0 is a necessary and sufficient condition for instability to be 
possible with some (sufficiently reduced) positive spring 
constant. 

We remark further that equation (IS) for {J can have at 
most one solution if the cosine transform of h (t) decreases 
monotonically with increasing (3. Such monotonicity would 
result if h (t) had a decaying exponential representation as 
would be the case in the state variable description if the 
equations (lOb) could be decoupled (at least when linearized). 
Note that a one-state-variable constitutive law would 
necessarily generate a h (t) satisfying this monotonicity 
condition. More generally, however. we cannot rule out the 
possibility that multisolutions for {3 may exist in some cases 
and, in such cases, the solution yielding the highest ker in (19) 
is to be taken for the instability criterion. 

Equation (19) for ker shows that mass is always 
destabilizing. since increasing m increasees the threshold ker 
below which instability occurs. Note further that the right side 
of equation (19) is necessarily positive since 'the method of 
derivation has shown that inequalities (9) imply the existence 
of a ker between co and O. The derivation applies fora system ~ 
with m = 0, iff>O, so at {3 given by equation (1S). 

{31;Sin{3t h(t)dt>O. (21) 

One consequence of the last inequality is that no system is 
stable when {3 exceeds its natural vibration frequency w == 
(kIm) v., because then the result for ker in equation (19) is 
plainlyin excess of k. 

Single Decay Process 

To illustrate the preceding formulas, consider the single 
exponential representation of the decay shown in Fig. 1. 
namely 

h (t) = (1 + X)r f e- rt
, r>O. (22) 

Such an exponential form necessarily results. for example, if 
the constitutive relation in the form of equations (10) involves 
only a single state variable as explained in Ruina [3]. 
Assuming net rate weakening [equations (5), (9b)] .. X > O. 
, Equations (1S) and (19) then give the frequency and stiff
ness at critical conditions 

{3=rfi.., ker = mr2A+fr X. (23) 
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Alternatively, in terms of the frequency w of the spring-mass 
system at critical stiffness (w2 = kcrlm) 

kef =/rAl(l- w2/(2 ). (24) 

Since 
j=ih( V,state)/aV, 'A/= -dTss{ V}/dV, 

both expressions being evaluated at V = Yo, and lIr is the 
characteristic time of the decay process, the result for kef may 
be put into the more inspectable form 

k = _ VdTss (V)/dV[l+ mV ] (25) 
cr de deaT( V.state)laV 

with V = Yo. Here we have introduced de == Voir as the 
decay parameter expressed in terms of slip distance rather 
than time, i.e., with the decay in Fig. 1 proportional to 
exp( - Vot/de ). Experiments (Dieterich [5-8]; Ruina [3]) 
suggest that the decay distance de is approximately in
dependent of the slip rate Vo, and is thus closer to a material 
property than is 1/ r = de / Vo, which obviously depends on 
Vo. Ruina [3] derived the quasi-static version of (25). with m 
= 0, by an analysis based on constitutive laws of type (10) 
with a single state parameter. The dynamical result could have 
been derived from the static relation since, in steady 
sinusoidal oscillations mi is in phase with - kx, the spring 
force. Thus any steady sinusoidal oscillation with frequency {J 
found with some k and m = 0, as in Ruina [3], could be 
replaced by a motion with finite m and an increased spring 
constant k + {J2 m. This reasoning can lead to (25) directly 
from the results of Ruina [3]. Similarly the term m{J2 could 
have been added to equation (19) by this reasoning after the 
derivation was done with no inertia (m = 0). Note also that, 
at any fixed V, Tss is approximately proportional to (J. Hence 
V(X(J and thus kcfocu(when m = 0), as has been emphasized 
by Dieterich [3,4] based on a qualitative instability analysis. 

Further Discussion 

How necessary is inequality (3), i.e., the positive in
stantaneous viscosity property? We assumed in the analysis 
leading to equations (18) and (19) that at least one of the 
instantaneous viscosity j and the mass m is nonzero. Consider 
the case m = O. The results of our analysis then carry through 
with m = 0 substituted in all equations containing m. Now if 
the instantaneous viscosity /-0 equation (18) shows that the 
frequency of flutter at neutral stability becomes infinite, 
{J-oo, but equation (19) with m = 0 shows that kcr tends to a 
finite value (lim {J-oo of (J SO' sin({Jt)h(t)dt). On the other 
hand, if we let /-0 with any finite m, equation (IS) shows 
that {J-oo as in the foregoing, and now equation (19) shows 
that the critical stiffness becomes infinite, ker - 00. Equation 
(25) for ken in the case of a single decay process, clearly shows 
the result just discussed. If / == aT( V.state)laV-O a quasi
static analysis, i.e., based on setting m = 0, givesa finite kef' 
But if m ¢ 0 the limit /-0 of zero instantaneous viscosity 
gives an unbounded kcr . Hence, presuming as implicit in the 
preceding discussion that there is ultimate velocity weakening, 
steady state slip should not be possible in any elastic system, 
no matter what its stiffness, if there is no instantaneous 
viscosity. One might reverse the argument and say that the 
experimental observation that steady state slip on a given 
surface is possible, in a system of adequate stiffness, implies a 
positive instantaneous viscosity (at least on surfaces that 
exhibit Qltimate velocity weakening. inequality (5». 

We now readdress the question of whether instability is 
possible at all if inequality (5) is not satisfied but rather 
reversed, with d T ss ( V) / d V> O. This means that the surface 
exhibits ultimate velocity strengthening; the second of (9) then 
fails and instead 

l;h(t)dt</ (f>0). 
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We have already shown that no instability is then possible if 
h (t) ~O, i.e., if the decay process in Fig. 1 is monotonic. Any 
case allowing instability must therefore show nonmonotonic 
decay. A specific mathematical form allowing such instability 
is that of oscillating exponential decay, 

h (t) =Re[ H(a+ ib)e- (O+ib)t] , 

a>O, b>O, in which case the foregoing inequality becomes 
Re{H) <f. Equation (18) can still be satisfied, so that in
stability is possible, if b is sufficiently large compared to a. 
But experimental observations as made thus far do not lend 
support to decay with such marked oscillations, that are not 
likely the result of machine-sample interaction (of the type 
predicted here for k slightly greater than kef)' We thus 
propose that the inequality (5), that the steady state friction 
force is a decreasing function of slip rate, is a necessary 
condition for the instability of steady sliding. 

Viscoelastic Effects 

Consider now the same one degree-of-freedom system of 
Fig. 2 but suppose that the spring element is viscoelastic. Then 
we may express the force exerted by the spring as 

<T = T ss - k t ' (t - t I ) X (t I ) dt I (26) 

where k,(t) is the viscoelastic relaxation function; -y(t) is 
normalized so that ')'(0) = 1 and hence k is the instantaneous 
spring constant and k')'( 00), with 0 < ')'( 00) ::51, is the long
time or relaxed spring constant. If one has in mind a 
viscoelastic element that has an infinite instantaneous spring 
constant, as for example a spring and dash pot in parallel, the 
instantaneous viscosity can be subtracted from the viscoelastic 
element and added to the term/in the friction law. This"then 
leaves the form of equation (26) with k finite. The possibility 
of instability is then determined by whether inequality (9b) is 
satisfied with this modifiedj. Writing equations of motion, it 
is seenthat equation (14) applies for xes) with 

D(s) =k[s1'(s)] + ms2 +s[[- Ii (s)]. (27) 

Observing that s1'(s) - -y( 00), I, respectively, as s--O, 00, a 
similar argument to that outlined earlier can be followed to 
show that instability occurs by flutter oscillations of 
frequency {3 when k is reduced to a critical value, k cr . The 
critical conditions are again given by D (± i(3) = 0 and we find 

ker l;COS({Jt) h(t) -')'( 00 )]dt+ /= l;COS({Jt)h (t)dt, ~ 

kef [ -y ( 00) + (Jl; sin({3t)[ -y (t) - -y ( 00 HdtJ (2S) 

=m{32 + {JJ ;Sin({Jt)h (t)dt. 

These equations are difficult to solve and we do not present 
explicit results. However, we remark that now (J is dependent 
on the viscoelastic properties of the spring and on the mass m, 
and not merely on characteristics of the friction law ,as it is 
for an elastic system. We can also see from the first of 
equations (2S) that when the cosine transforms of ')'(t) -
-y{ 00) and h (t) are monotonic, as in the typical case when 
both are represented by a sum of decaying exponentials in t 
with positive coefficients, the effect of viscoelasticity is to 
reduce {3 from the value for an elastic system. equation (18). 
This is as expected. since for steady oscillatory motion the 
friction surfaces changes from an energy sink to an energy 
source (once the steady state sink VOTss is subtracted out) 
when {J decreases through the value given by equation (18). 
Thus the . viscoelastic energy absorbed is accommodated 
through the decrease iii< {J. 
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Slipping Elastic Continua and Creep Waves 

In this section we assume that the sliding bodies are 
identical elastic continua with interface along the ~I J~2 plane 
of a ~1 J~2>b cartesian coordinate system, Fig. 3. For sim
plicity we neglect inertia here. It is considered in a special 
version of the problem taken up in the next section. The 
sliding bodies are assumed to be translationally homogeneous 
in the ~ 1 direction, and steady relative slip at speed Vo in 
either the ~1 or ~2 direction is enforced by displacement 
boundary conditions imposed at b = ± H. The perturbation 
from steady slip along the interface is represented by a relative 
displacement 0, in the same direction as Vo, between 6 =·0 + 
and 0 - of the form . 

(29) 

where K is the spatial wave number of the disturbance and fjJ is 
any constant. More general perturbations may be obtained by 
Fourier superposition with various K, fjJ. The relative slip 
speed at the interface is 

V(b ,I) = Vo +x(t) COS(K~1 + ¢). (30) 

Because of the translational homogeneity. the associated 
variation in resistive shear stress 7 along the interface. 
computed from elasticity theory in terms of the given 
displacement nonuniformity. must have the same spatial 
dependence but be exactly out of phase with it. Hence 

7UIot}=Tss (Vo)-k(K) x(t) COS(K~l +fjJ), (31) 

where the coefficient k = k(K) can evidently be interpreted as 
an effective spring constant for disturbances with wave 
number K (compare equations (6) and (11)with (30) and (31». 

The stiffness k(K) can be found simply for some 
representative models. For example, if the two elastic bodies 
are isotropic, homogeneous half spaces of shear modulus G 
and Poisson ratio v, then one can derive from elementary 
elasticity theory that 

k=GIKI/2(1-v), GIKI/2 (32) 

for the respective cases of plane strain (V in ~1 direction) and 
antiplane strain (V in' h direction). For finite layers of height 
H (in the ~3 direction) in contact, the preceding formulas 
remain valid in the short wavelength limit ill> > I, but in the 
long wavelength limit, ill < < I, both expressions for k 
approach the limiting value 

k=G/2H, (33) 

which corresponds to uniform (K-O) shearing of the layers. In 
fact, the complete expression for k(k) in the antiplane strain 
mode (see the next section) is 

k(K) =GIKI/[2tanh(IKIH)]. (34) 

Analogously to the treatment· of the sliding block, we 
assume that a perturbing load distribution. generating shear 
stress 

q(t)COS(K~l + ¢) 

along the interface, is switched on at t = O. Precisely. the 
preceding expression gives the shear stress that the considered 
load perturbation would cause along the interface if x(t) were 
constrained to be zero. Hence this term must be added to 
equation (31) for 7(~"t). The resulting T at each location ~l 
must satisfy the constitutive relation (7) when xU) cos 
(K~l + fjJ) is read-in for x(t). Hence we find that 

k(K)X(t) +Jx(t) -1~ h(t-t')x(t')dt' =q(t), (35) 

which is the same as equation (13) for the sliding block 
without inertia. Thus we may again write xes) = q(s)ID(s) 
as in equation (14), but now with 

D(s) =k(K) +s[f-:-h(s)]. (36) 
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~Ig. 3 Elastic continua in slipping contact. Bottom of lower layer is 
hxed. Top of upper level has imposed velocity Vo In slip direction. 

Hence, following the earlier discussion, instability occurs, if 
at all, by a flutter mode of frequency /l satisfying D ( ± i(3) = 0 
and given by equation (18). Disturbances decay or grow in 
amplitude according to whether (by equation (19) with m = 0) 

k{ K) ~ ker == /l 1 :Sin(/lt) h (t) dt. (37) 

One expects that k varies monotonically with K so that one 
of the following two cas~ occur: As K decreases from 00 to 
zero, k decreases from 00 to either: (l) a value in excess of ker 
(~ossible when finite H gives a long wavelength cutoff); or, 
(ll) a value smaller than kef (and equal to 0 when the bodies 
are unbounded half spaces, H = 00). In case (I) all per
turbations are stable. In case (ll) perturbations with suf-

. ficiently high wave number (short wavelength) are stable, but 
those with lower wave number (long wavelength) are unstable. 

The result at critical conditions h~s all interesting in
terpretation. Since x(t) then varies as Re(eifJt ) or Im{eifJt } , 

the combination of space and time dependence as in equation 
(30) leads to disturbances with 

V(~Iot) - VoOCCOS(Ker~1 ±/It}. (38) 

This represents propagating quasi-static waves that move 
along the interface with speed /l/ Ker . The existence of such 
waves was first noted by Ruina [3] in analysis of a simple 
model of a continuous elastic system with a sliding surface 
described by a one-state variable form of equations (10). 

As an example, for the friction law with a single ex
ponential decay process, equa~ions (22) and (23). /l = ,...fX and 
the speed of the creep waves is 

speed == /lIKer = nlXl Ker = VV}../ (Kerde ) (39) 

where de is the decay distance, VIr. The critical wave number 
depends on details of the elastic continua. But for isotropic 
half spaces under anti plane slip we obtain from (32) that G 
Ker/2 = ken where kef is evaluated from (25) with m = O .• 
Thus the critical wavelength Acr is 

Aer ==2Tr/Kcr = Tr deG/[ - VdTss( V)/dV] (40) 

Further, using this Kef and the interpretation of A given 
before, the speed of creep waves is found from equation (39) 
to be 

, "speed = G/2"",[ -dTss (V) /dV][07( V,state)loVJ (41) 

According. to the results presented by Ruina [3] and 
Dieterich [5-8], the bracketed terms in the last expression are 
each of order 0.01 u/ V, where u"is the normal stress. In that 
case we obtain 

Acr ==300deG/u, speed==50 VGlu. (42) 

If we choose u as the overburden pressure in the earth from a 
1 to 10 km depth range, one estimates G/u = 103 to 102 for 
faults under crustal earthquake conditions. Thus the creep 
wave speed is 5_103 to 5-104 times the nominal steady slip 
speed V. This is still much slower than seismic shear wave 
speeds if V is of the order of a cm/sec. or less. The" 
corresponding wavelengths Aer are then of order 3_105 to 
3 - 104 times de» resulting in "-er == 0.1 to 1 m if de is of order 
3 pm {representative of laboratory studies on polished 
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quartzite surfaces, Ruina [3]). but of the order Aer ::::f 30 to 
300 m if. for example,a de of the order 1 mm is postulated 
(which is somewhat larger than the largest results of Dieterich 
[8] for laboratory fault gauge). 

The analysis predicts that disturbances with A < Aer are 
stable and decay in time but that those with A > Aer exhibit 
oscillatory growth in amplitude, at least for A in the vicinity of 
Aer. 

Inertia Effects in Antiplane Perturbations of Slipping 
Elastic Continua 

Consider isotropic, homogeneous elastic bodies as in Fig. 3, 
with enforced relative motion in the h direction,· and let the 
relative displacement 0 along the interface be given 'as in 
equation (29) of the preceding section. This loading causes an 
antiplane strain deformation and. if u (~I '~3 ,f) is the anti
plane displacement fieid (in the ~2 direction) measured 
relative to the steady sliding state, we have a boundary value 
problem described by the following equation of motion (43), 
and antisymmetry and boundary conditions (44): 

;j2U!a~12 +a2ula~l = (1/c2)a2u/at2; (43) 

U(h'~3,t) = -UUh - ~3>t). uUloH,t) =0. 

+ 1 
U(~I'O .f) = 2x(t)COS(X~I +<1», 

(44) 

where c is the shear wave speed. 
The Laplace trarsformof the solution is (for b > 0) 

. 1 ,-,.--..,.--,----,. 
U(~I.~3'S) = 2x(S)COS(K~1 +¢)sinh[..J x2 +S2 Ic2 (H -~3)]/ 

(45) 

The stress 1'( = 1'32) along the interface due to this 
elastodynamic loading can be written as 

.. 1'1 (t)COS(K~1 +<I»~G[au(~I'~3,t)la~3]h=O (46) 

The last equation shows that 

1'1 (s) = -K(s.x)x(s), where 

K(s,x) :seN x2 +S2/c2/l2 tanh(v'x2 +s2Ic2H)]. 
(47) 

Now the friction stress .1' must equal the steady state stress l'ss 

in addition to the elastodynamic stress from equation (46) and 
the perturbation stress: . 

., 1'=l'ss( Vo) + 1'1 (t)COS(Xfl +¢) +q(t)cos(x~1 +¢J. (48) 

The perturbation amplitude q(t) is again zero for t<O but 
otherwise arbitrary. 

The expression for l' in equation (48) must equal the value 
required by the constitutive law of equation (7) with the slip 
perturbation xU) cos (X~I + ¢). The Laplace transform of 
equation (48) with equation (47) then gives xes) = 
q(s) ID(s) , as in equation (14). but now with 

D(s) =K(s.x)+s[f-h(s)] (49) 

and K(s.x) given by equation (47). Again stability of steady 
sliding requires no poles in xes) for Re(s) >0 and thus no 
zeroes of D(s) in Re(s) >0. The subsequent analysis of this 
case follows the pattern established earlier. As 1 x I is reduced 
in value from 00 toO, roots of D(s) = 0 first pass into 
Re(s) >0, if at all, by crossing the Im(s) axis. Hence. setting 
D( ±i(3) = 0 we obtain the pair of equations to be met at 
critical conditions 

): cos«(3f) h (t)dt = f. 
(50) 

K (i(3, Ker)= (3 J: sin(6t) h (t) dt 

where 
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K(i(3.x) = Gv'i?-....;. (32/C
2 

for K2 > (32/C2 
. 2 tanh(.J i?- - (32/ c2 H 

Gv' (321 c2 - i?-
(51) 

The first of the pair of equations (50) is now familiar (see 
equation (18» and gives the critical frequency (3 at flutter 
instability. if such instability can occur. The second of 
equation (50) is analogous to equation (19) with m(32 moved 
to the left-hand side. 

Instability can occur if the second of equations (50). whose 
right side is positive by (21), has a solution for some I KI 
between 00 and O. To analyze the second eq~ation, let us 
observe that the equation K(iw,x) = 0 implies no traction at 
~3 = 0 and thus gives the natural frequencies of clamped~free 
vibrations'of either layer in Fig. 3, compatible with spatial 
periodicity of wave number x. These'frequencies are given by 

.Jwn2/c2 - x2H=(2n -1)1r12, n = 1,2,3, ... , 

or Wn =.J i?-c2 + (2n -If(1rcl2H)2 . (52) 

The lowest frequency of all is WI for x = 0; calling this WI*. 
we have WI * = 1fcl2H. 

We now distinguish two cases: (i) (3 < WI *. and (ii) (3 > WI * . 
For case (l) it is possible to show by simple analysis that 
K(i(3,x) decreases monotonically with x as the latter decreases 
from 00 to 0; K (i(3, 00) = 00 and the least value of K is 

K (i(3.0) = ~ ( 1r{312wl * ) « ~) (53) 
. 2H tan(1r(3/2wI*) . 2H 

If this value of K (i(3,O) is less than the right side of the second 
of equations (50), then the equation (50) has a solution and 
instability occurs by flutter oscillations for wave numbers 
I xl < 1 Xer I. Again, conditions in the vicinity of neutral 
stability, 1 xl = 1 Xer I, can be described as the propagation of 
frictional creep waves along the interface, which grow in 
amplitude when 1 xl < 1 Xef I. On the other hand, if K{i(3.O) 
exceeds the right side of the last of equations (50), then no 
solution exists and slip is stable to perturbations. of all 
wavelengths . .This is analogous to the cutoffdescribed in. the 
preceding section with inertia neglected, and the results of 
that section are approached when the lowest vibration 
frequency of the layer is much higher than the critical 
frequency for slip instability, Le., (3lwl* -0. Also, just as for 
the one degree-of-freedom system, the inclusion of inertia is 
destabilizing; the critical wave number 1 Xef I in the analys~ 
with inertia always exceeds that of the quasi-static analysis 
although, of course, the difference is negligible when 
(3«WI*' 

Fotcase (il), (3) WI * , it is evident from equation-(52) that at 
least one IKI>O exists such that (3 coincides with a natural 
frequency for that x, and hence that K (i(3, x) = O. The largest 
1 xl satisfying that condition, say 1 XI I, is readily seen to be 
that x for which (3 coincides with frequency WI' Hence, from 
(52) with n = 1 and WI = (3 we find 

(54) 

Then from equation (51) one can see that K (i(3, x) decreases 
monoton.ically from 60 to 0 as 1 xl decreases from 00 to I XI I. 
Thus in this case, for which (3)WI*' there always exists a Ker 
satisfying the second of equations (50). and 1 Xef 1 is 
necessarily greater than I KI I. That is, the system is unstable to 
perturbations of long enough wavelength if (3 exceeds its 
lowest vibration frequency. 

Since the analysis of this section has relied only on rather 
general properties to be expected of any functionK(s,x) 
relating nonuniformity of slip to nonuniformity of stress. it 
seems likely that similar conclusions would be reached for 
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other modes of perturbing sliding continua of the general 
class introduced in the last section. 

Concluding Discussion 

The systems discussed in our paper exhibit a common 
general pattern. In particular, if x(1} denotes the 
displacement perturbation from steady state slip and q(t) the 
pertur bing force, then i (s) = q (s) / D (s), as in equation 
(14), where 

D(s) =Q(s) +s[f~h(s)]. (55) 

Here f and h (I) are defined by the friction law (7) whereas 
Q(s) is a transfer function. It relates the displacement per
turbation to corresponding changes in stress 7 induced by the 
system (e.g., by its elastic or viscoelastic springiness and 
inertia) on the slip surface; i.e., if 71 (t) = 7 - TSH then 1"} (s) 
= - Q{s)i(s). 

In the various cases that we have examined, subject to (9), 
the form of the transfer function has assured that instability 
occurs by the flutter mode when an appropriately defined 
stiffness is reduced to a critical value. This contrasts with 
analyses that neglect the memory effects in (7) and thus 
deduce that rate weakening is a sufficient condition for in
stability and that oscillations depend on nonlinear effects 
(e.g., Brockley and Ko [2. 17]). 

Indeed, this universality of the flutter instability, meaning 
that roots of D(s) = 0 inevitably pass to Re(s) >0 by 
traversing the Im(s) axis in conjugate pairs, means that the 
bifurcation is of the Hopf type (e.g., Howard [18]). We have 
presented only a linear analysis here, but the generic behavior 
of the nonlinear solution in the vicinity of critical conditions is 
understood. In particular. in a one-sided neighborhood of k 
= kef (in terms of the spring-block analysis) there exists finite 
amplitude periodic oscillations of amplitude that increases 
with Ik-kef I. When the neighborhood is that for which 
k < kef> the growing oscillations of linear instability theory 
grow into a stable periodic limit cycle, at least close to k = 
kcr- When the neighborhood is that for which k>kcn the 
periodic oscillation is unstable, and the decaying oscillations 
of linear stability theory may, in fact, not be realized if the 
perturbation of the system is of too great an amplitude. 
Exceptionally, it may occur that the finite amplitude periodic 
oscillations occur with k = kef' This is precisely what we have 
found recenily (Gu et al. [19]) for the nonlinear stability 
analysis of a certain one-state variable constitutive law 
proposed by Ruina [3]. namely that for which equation (10) 
has the form 

7=71 +A In(V/V,)-O, 

dO V. 
lit = - de [O-B In( V/Vdl (56) 

where 7], dc• A, and B( >A) are all positive constants. We 
remark that there is ample experimental evidence for the type 
of flutter instability that we predict here (Ruina [3], Scholz et 
al. [20]. Teufel [21]). The flutter is of such low frequency in 
these experiments that inertia is negligible and classical 
calculations of the Rayleigh type cannot apply. Whether or 
not our results are appropriate to the type of fast oscillations 
observed by Brockley and Ko [2. 17] is not clear. Their results 
do show that 7 is not a function of Valone (although they 
neglect this in their analysis). Also. the experimental results 
show much richer nonlinear behavior than thus far discussed. 
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For example, signs of period doubling are visible in the ex
periments of Ruina [3] as k is decreased from kef' 

It is plain that there remains much to be learned about 
nonlinear stability analysis in the framework of the rate and 
state-dependent frictional constitutive laws discussed here. 
The topic is of interest not only as an extension of studies of 
the type that we have reported, but also as foundation for a 
more general and realistic fracture mechanics of slip 
propagation (shear cracking) along fault surfaces. 
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