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In this paper, a host-vector model is considered for a disease without immunity in
which the current density of infectious vectors is related to the number of infectious
hosts at earlier times. Spatial spread in a region is modelled in the partial
integro-differential equation by a diffusion term. For the general model, we first study
the stability of the steady states using the contracting-convex-sets technique. When
the spatial variable is one dimensional and the delay kernel assumes some special
form, we establish the existence of travelling wave solutions by using the linear chain
trick and the geometric singular perturbation method.

1. Introduction

Throughout recorded history, non-indigenous vectors that arrive, establish and
spread in new areas have fomented epidemics of human diseases such as malaria,
yellow fever, typhus, plague and West Nile (see [19]). Such vector-borne diseases
are now major public health problems throughout the world. The spatial spread of
newly introduced diseases is a subject of continuing interest to both theoreticians
and empiricists.

In his pioneering work, Fisher [12] used a logistic-based reaction–diffusion model
to investigate the spread of an advantageous gene in a spatially extended population.
Kermack and McKendrik [18] proposed a simple deterministic model for a directly
transmitted viral or bacterial agent in a closed population consisting of susceptibles,
infectives and recovereds. Their model leads to a nonlinear integral equation, which
has been studied extensively. The typical feature of the Kermack–McKendrik model
is the existence of a critical threshold density of the susceptibles for the occurrence of
an epidemic, that is, if the initial population density of the susceptibles exceeds this
threshold value, then the population density of infectives at first grows and then
diminishes. The Kermack–McKendrik model and the threshold theorem derived
from it have played a pivotal role in subsequent developments in the study of the
transmission dynamics of infective diseases.
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The deterministic model of Barlett [6] predicts a wave of infection moving out
from the initial source of infection. Kendall [17] generalized the Kermack–McKend-
rik model to a space-dependent integro-differential equation. For such an epidemic
model described by an integro-differential system with a general weight function,
Atkinson and Reuter [4] studied the existence and non-existence of travelling waves
(see also [5] and [7]). Aronson [1] argued that the three-component Kendall model
can be reduced to a scalar one and extended the concept of asymptotic speed of
propagation developed in [2] to the scalar epidemic model (see also a recent paper
by Medlock and Kot [21] (and the references cited therein) on travelling waves in
scalar inegrodifferential equation epidemic models).

The Kendall model (or the scalar Aronson model) assumes that the infected
individuals become immediately infectious and does not take into account the fact
that most infectious diseases have an incubation period. Taking the incubation
period into consideration, Diekmann [10, 11] and Thieme [31, 32] simultaneously
proposed a nonlinear (double) integral equation model. Aronson and Weinberger’s
concept of asymptotic speed of propagation has been successfully extended to such
models (see [10, 11, 29–33]). All these models are integral equations in which the
spatial migration of the population or host was not explicitly modelled.

Griffiths [15] considered the initial growth of a host-vector epidemic such as
malaria using the approximation that the numbers of susceptibles remain constant
and formulated the problem as a bivariate birth–death process. Radcliffe [25] gener-
alized the results of Barlett [6] concerning the initial spatial spread of an epidemic
to host-vector and carrier-borne epidemics. Radcliffe et al . [26] investigated the
travelling wave problem for the host-vector epidemic (see also [27]).

In this paper, following Cooke [9], Busenberg and Cooke [8], Marcati and Pozio
[20] and Volz [34], we consider a host-vector model for a disease without immunity in
which the current density of infectious vectors is related to the number of infectious
hosts at earlier times. Spatial spread in a region is modelled in the partial integro-
differential equation by a diffusion term. For the general model, we first study the
stability of the steady states using the contracting-convex-sets technique (see [22,
23]). When the spatial variable is one dimensional and the delay kernel assumes
some special forms, we establish the existence of travelling wave solutions by using
the linear chain trick and the geometric singular perturbation method (see [12,16]).

2. The model

Consider a host in a bounded region Ω ∈ RN (N � 3), where a disease is carried by
a vector, such as in a human population malaria is carried by a mosquito. The host
is divided into two classes, susceptible and infectious, whereas the vector population
is divided into three classes, infectious, exposed and susceptible.

Suppose that the infection in the host confers negligible immunity and does not
result in death or isolation. All newborns are susceptible. The host population is
assumed to be stable, that is, the birth rate is constant and equal to the death
rate. Moreover, the total host population is homogeneously distributed in Ω and
both susceptible and infectious populations are allowed to diffuse inside Ω; however,
there is no migration through ∂Ω, the boundary of Ω.

For the transmission of the disease, it is assumed that a susceptible host can
receive the infection only by contacting infected vectors, and a susceptible vector
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can receive the infection only from the infectious host. Also, a susceptible vector
becomes exposed when it receives the infection from an infected host. It remains
exposed for some time and then becomes infectious. The total vector population is
also constant and homogeneous in Ω. All three vector classes diffuse inside Ω and
cannot cross the boundary of Ω.

Denote

u(t, x) := normalized spatial density of infectious host at time t in x,

v(t, x) := normalized spatial density of susceptible host at time t in x,

where the normalization is done with respect to the spatial density of the total
population. Hence we have

u(t, x) + v(t, x) = 1, (t, x) ∈ R+ × Ω,

where R+ = [0,∞). Similarly, define

I(t, x) := normalized spatial density of infectious vector at time t in x,

S(t, x) := normalized spatial density of susceptible vector at time t in x.

If α denotes the host-vector contact rate, then the density of new infections in
host is given by

αv(t, x)I(t, x) = α[1 − u(t, x)]I(t, x).

The density of infections vanishes at a rate

au(t, x),

where a is the cure/recovery rate of the infected host. The difference of host densities
of arriving and leaving infections per unit time is given by

d∆u(t, x),

where d is the diffusion constant, ∆ is the Laplacian operator. We then obtain the
following equation:

∂u

∂t
(t, x) = d∆u(t, x) − au(t, x) + α[1 − u(t, x)]I(t, x). (2.1)

If the vector population is large enough, we can assume that the density of
vectors that become exposed at time t in x ∈ Ω is proportional to the density of
the infectious hosts at time t in x. That is,

S(t, x) = hu(t, x),

where h is a positive constant. Let ξ(t, s, x, y) denote the proportion of vectors that
arrive in x at time t, starting from y at time t − s. Then∫

Ω

ξ(t, s, x, y)S(t − s, y) dy

is the density of vectors that became exposed at time t − s and are in x at time t.
Let η(s) be the proportion of vectors that are still infectious s units of time after
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they became exposed. Then

I(t, x) =
∫ ∞

0

∫
Ω

ξ(t, s, x, y)S(t − s, y)η(s) dyds

=
∫ ∞

0

∫
Ω

ξ(t, s, x, y)hη(s)u(t − s, y) dyds.

Substituting I(t, x) into equation (2.1), changing the limits and writing

b = αh, F (t, s, x, y) = ξ(t, s, x, y)η(s),

we obtain the following diffusive integro-differential equation modelling the vector
disease:

∂u

∂t
(t, x) = d∆u(t, x) − au(t, x) + b[1 − u(t, x)]

∫ t

−∞

∫
Ω

F (t, s, x, y)u(s, y) dyds,

(t, x) ∈ R+ × Ω. (2.2)

The initial value condition is given by

u(θ, x) = φ(θ, x), (θ, x) ∈ (−∞, 0] × Ω, (2.3)

where φ is a continuous function for (θ, x) ∈ (−∞, 0] × Ω, and the boundary value
condition is given by

∂u

∂n
(t, x) = 0, (t, x) ∈ R+ × ∂Ω, (2.4)

where ∂/∂n represents the outward normal derivative on ∂Ω.
The convolution kernel F (t, s, x, y) is a positive continuous function in its vari-

ables t ∈ R, s ∈ R+, x, y ∈ Ω. We normalize the kernel so that∫ ∞

0

∫
Ω

F (t, s, x, y) dyds = 1.

Various types of equations can be derived from equation (2.2) by taking different
kernels. Some examples are given as follows.

(i) If F (t, s, x, y) = δ(x − y)G(t, s), then equation (2.2) becomes the following
integro-differential equation with a local delay:

∂u

∂t
= d∆u(t, x) − au(t, x) + b[1 − u(t, x)]

∫ t

−∞
G(t − s)u(s, x) ds,

(t, x) ∈ R+ × Ω. (2.5)

If u = u(t) depends on time only, then the equation becomes

du

dt
= −au(t) + b[1 − u(t)]

∫ t

−∞
G(t − s)u(s) ds, t > 0. (2.6)

(ii) If F (t, s, x, y) = δ(x − y)δ(t − s), then equation (2.2) becomes the following
reaction–diffusion equation without delay:

∂u

∂t
= d∆u(t, x) − au(t, x) + b[1 − u(t, x)]u(t, x), (t, x) ∈ R+ × Ω. (2.7)
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(iii) If F (t, s, x, y) = δ(x − y)δ(t − s − τ), where τ > 0 is a constant, and u does
not depend on the spatial variable, then equation (2.2) becomes the following
ordinary differential equation with a constant delay:

du

dt
= −au(t) + b[1 − u(t)]u(t − τ). (2.8)

Cooke [9] studied the stability of equation (2.8) and showed that, when 0 < b � a,
the trivial equilibrium u0 = 0 is globally stable; when 0 � a < b, the trivial
equilibrium is unstable and the positive equilibrium u1 = (b − a)/b is globally
stable. Busenberg and Cooke [8] assumed that the coefficients are periodic and
investigated the existence and stability of periodic solutions of (2.8). Marcati and
Pozio [20] proved the global stability of the constant solution to (2.2) when the
delay is finite. Volz [34] assumed that all coefficients are periodic and discussed the
existence and stability of periodic solutions of equation (2.2).

In this paper, we first discuss the stability of the steady-state solutions for the gen-
eral equation (2.2). Then, for x ∈ (−∞,∞), we establish the existence of travelling
front solutions to the diffusive integro-differential equation with specific convolution
kernels.

3. Stability of the steady states

Denote E = C(Ω̄, R). Then E is a Banach space with respect to the norm

|u|E = max
x∈Ω̄

|u(x)|, u ∈ E.

Denote C = BC((−∞, 0], E). For φ ∈ C, define

‖φ‖ = sup
θ∈(−∞,0]

|φ(θ)|E .

For any β ∈ (0,∞), if u : (−∞, β) → E is a continuous function, then ut is defined
by ut(θ) = u(t + θ), θ ∈ (−∞, 0].

Define

D(A) =
{

u ∈ E : ∆u ∈ E,
∂u

∂n
= 0 on ∂Ω

}
,

Au = d∆u for all u ∈ D(A),

f(φ)(x) = −aφ(0, x) + b[1 − φ(0, x)]
∫ 0

−∞

∫
Ω

F (0, s, x, y)φ(s, y) dyds,

where φ ∈ C, x ∈ Ω̄. Then we can rewrite equation (2.2) in the following abstract
form:

du

dt
= Au + f(ut), t � 0,

u0 = φ ∈ C,

⎫⎬
⎭ (3.1)

where

(a) A : D(A) → E is the infinitesimal generator of a strongly continuous semi-
group etA for t � 0 on E endowed with the maximum norm; and
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(b) f : C → E is Lipschitz continuous on bounded sets of C.

Associated to equation (3.1), we also consider the following integral equation:

u(t) = etAφ(0) +
∫ t

0
e(t−s)Af(us) ds, t � 0,

u0 = φ.

⎫⎪⎬
⎪⎭ (3.2)

A continuous solution of the integral equation (3.2) is called a mild solution to the
abstract equation (3.1). The existence and uniqueness of the maximal mild solution
to equation (3.1) follow from a standard argument (see [28, 35]). When the initial
value is taken inside an invariant bounded set in C, the boundedness of the maximal
mild solution implies the global existence.

Define
M = {u ∈ E : 0 � u(x) � 1, x ∈ Ω̄}.

We shall use the results on invariance and attractivity of sets for general partial
functional differential equations established by Pozio [22, 23] and follow the argu-
ments in Marcati and Pozio [20] to study the invariance of the set M and the
stability of the steady-state solutions.

Definition 3.1. Let K1, K2 be two given subsets in E. We say that f ∈ E(K1, K2)
if and only if, for any r > 0, there is γ = γ(r) > 0 such that φ(0) + γf(θ) ∈ K2 if
φ ∈ C with ‖φ‖ � r and φ(θ) ∈ K1 for all θ ∈ (−∞, 0].

The following invariance result was established in Pozio [22,23].

Lemma 3.2 (invariance). Let K ⊂ E be a closed convex subset such that

(i) f ∈ E(K, K);

(ii) etAK ⊆ K for t > 0.

Then u(φ)(t, ·) ∈ K if φ ∈ BC((−∞, 0], K).

We first prove that M is invariant by using lemma 3.2 with K = M .

Theorem 3.3. The set M is invariant, that is, if φ ∈ BC((−∞, 0];M), then u(φ)
exists globally and u(φ)(t) ∈ M for all t � 0.

Proof. Let γ = 1/(a + b). For any y, z ∈ [0, 1], we have

y + γbz(1 − y) − γay � y(1 − γa)
� 0

and

y + γbz(1 − y) − γay = y[1 − γ(bz + a)] + γbz

� [1 − γ(bz + a)] + γbz

= 1 − γa

� 1.
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Thus 0 � y + γbz(1 − y) − γay � 1 for any y, z ∈ [0, 1], which implies that if
φ ∈ BC((−∞, 0], M), then we have

0 � φ(0, x) + γf(φ)(x) � 1 for all x ∈ Ω̄.

Therefore, condition (i) of lemma 3.2 is satisfied. Condition (ii) follows by the strong
maximum principle (see [23,24]). This completes the proof.

To study the stability of the steady-state solutions, we need the following attrac-
tivity result of Pozio [22,23].

Lemma 3.4 (attractivity). Let {Kn}n∈N , {K ′
n}n∈N be sequences of subsets in E

such that, for all n ∈ N , we have

(i) f ∈ E(Kn, K ′
n);

(ii) etAKn ⊆ Kn and etAK ′
n ⊆ K ′

n for t > 0;

(iii) K ′
n is convex and there exists εn > 0 such that (K ′

n)εn ∩ Kn ⊆ Kn+1, where

(K ′
n)εn

= {v ∈ E : dist(v, K ′
n) < εn};

(iv) there exists K ⊂ E such that

lim
n→∞

δ

( n⋂
j=0

Kj , K

)
= 0,

where δ(S1, S2) is the Hausdorff distance between the two sets S1, S2 ⊂ E,
that is,

δ(S1, S2) = max{dist(u, S1), dist(v, S2) : (u, v) ∈ S1 × S2};

(v) K0 ⊂ E is a bounded invariant subset.

Then
lim

t→∞
dist(u(φ)(t), K) = 0

for any φ ∈ BC((−∞, 0], K0).

Theorem 3.5. The following statements hold.

(i) If 0 < b � a, then u0 = 0 is the unique steady-state solution of (2.2) in M
and it is globally asymptotically stable in BC((−∞, 0];M).

(ii) If 0 � a < b, then there are two steady-state solutions in M , u0 = 0 and
u1 = (b − a)/b, where u0 is unstable and u1 is globally asymptotically stable
in BC((−∞, 0];M).

Proof. To use lemma 3.4, define a map by

Tγ(y) = y[1 + γb(1 − y) − γa],
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where y ∈ [0, 1] and γ > 0. Set γ = 1/(b + a). Then

Tγ/2([0, 1]) ⊆ [0, 1], Tγ([0, 1]) ⊆ [0, 1].

Let ω = max{(b − a)/b, 0} and fix any ξ, η ∈ [0, 1] such that 0 � ξ � w � η � 1
with ξ > 0 if w > 0 and η > ξ. Thus, for any n ∈ N , we have

0 � Tn
γ/2ξ � w � Tn

γ/2η � 1.

Let
Kn = C(Ω̄, [Tn

γ/2ξ, T
n
γ/2η]), K ′

n = C(Ω̄, [Tn
γ ξ, Tn

γ η]), n ∈ N.

We verify that all conditions in lemma 3.4 are satisfied.

(i) If y, z ∈ [Tn
γ/2ξ, T

n
γ/2η], then

y + γbz(1 − y) − γay = y[(1 − γa) − γbz] + γbz

� Tn
γ/2ξ(1 − γa) − Tn

γ/2ξ · γbz + γbz

= Tn
γ/2ξ(1 − γa) + γbz(1 − Tn

γ/2ξ)

� Tn
γ/2ξ[1 + γb(1 − Tn

γ/2ξ) − γa]

� TγTn
γ/2ξ

and

y + γbz(1 − y) − γay = y[(1 − γa) − γbz] + γbz

� Tn
γ/2η(1 − γa) − Tn

γ/2η · γbz + γbz

= Tn
γ/2η(1 − γa) + γbz(1 − Tn

γ/2)

� Tn
γ/2η[1 + γbz(1 − Tn

γ/2η) − γa]

= TγTn
γ/2η.

Thus we have
TγTn

γ/2ξ � y + γbz(1 − y) − γay � TγTn
γ/2η,

which implies that f ∈ E(Kn, K ′
n).

(ii) It follows by the maximum principle arguments.

(iii) Define

δn = 1
2bTn

γ/2ξ ·
(

b − a

b
− Tn

γ/2ξ

)
, σn = 1

2bTn
γ/2η ·

(
Tn

γ/2η − b − a

b

)
, n ∈ N,

and choose

εn =

{
min{δn, σn} if δnσn > 0,

max{δn, σn} if δnσn = 0.

Then we have

min{TγTn
γ/2η + εn, Tn

γ/2η} � Tn+1
γ/2 η, max{TγTn

γ/2ξ − εn, Tn
γ/2ξ} � Tn+1

γ/2 ξ.

This implies that (K ′
n)εn ∩ Kn ⊆ Kn+1.
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(iv) For ω defined above, let K = {v ∈ E : v(x) = ω}. Then, for all n, we have

δ

( n⋂
j=0

Kj , K

)
= δ(Kn, K) < Tn

γ/2η − Tn
γ/2ξ. (3.3)

We can see that {Tn
γ/2η} is a monotone non-increasing sequence bounded from

below by ω. Thus it converges to some y0 � ω, which is a fixed point of Tγ/2, that
is,

y0[1 + 1
2b(1 − y0) − 1

2a] = y0 � ω.

Thus:

(a) if b � a, we have ω = 0, and then y0 = ω = 0;

(b) if b > a, we have ω > 0, and then y0 = (b − a)/b = ω > 0.

Similarly, {Tn
γ/2ξ} is a monotone non-decreasing sequence bounded from above

by ω. Thus, if b > a and h > 0, it converges to some fixed point z0 of Tγ/2. We have

z0[1 + 1
2b(1 − z0) − 1

2a] = z0 � ω.

Therefore:

(a) if b � a, that is, ω = 0, we have h = 0 and Tγ/20 = 0 for each n ∈ N ;

(b) if b > a, we have ω > 0, and then z0 = (b − a)/b = ω > 0.

Combining the above two cases and using (3.3), we have the following.

(a) If 0 < b � a, since Tγ/2η → ω = 0, we have

lim
n→∞

δ

( n⋂
j=0

Kj , {0}
)

= 0. (3.4)

(b) If 0 � a < b and h > 0, since Tγ/2η → ω = (b−a)/b and Tγ/2ξ → ω = (b−a)/b,
we have

lim
n→∞

δ

( n⋂
j=0

Kj ,

{
b − a

b

})
= 0. (3.5)

(v) Let K0 = C(Ω̄, [ξ, η]). By lemma 3.2, we have f ∈ E(K0, K0). Thus K0 is
invariant.

Conclusion (i) of theorem 3.5 follows by (3.4). To prove conclusion (ii) by apply-
ing (3.5), we have to verify that the initial value satisfies the following condition:

φ(θ, x) � ξ > 0, (θ, x) ∈ (−∞, 0] × Ω̄. (3.6)

(I) Assume that φ(0, ·) ∈ D(A) with φ(0, ·) �≡ 0. Then there exist a time t0 =
t0(φ) > r and a number h0 = h0(φ) such that, for x ∈ Ω̄, t ∈ [t0 − r, t0] and γ > 0,
we have

e−t/γ [etAφ(0)](x) � h0 > 0. (3.7)
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Notice that the mild solution of (3.1) satisfies

u(φ)(t, x) = e−t/γ [etAφ(0)](x) +
1
γ

∫ t

0
e(t−s)(−1/γ+A)[u(φ)(s, x) + γf(us(φ))(x)] ds,

(3.8)
provided γ > 0. By the proof of lemma 3.2, we know that there exists γ > 0 such
that u(φ)(s, x) + γf(us(φ))(x) � 0. Thus (3.7) and (3.8) imply that there exist a
time t0 = t0(φ) and a number h0 = h0(φ) such that ut0 satisfies (3.6) when h = h0.

(II) If φ(0) ∈ M \ {0}, consider ψ ∈ D(A) \ {0} such that 0 � ψ(x)φ(0, x), x ∈ Ω.
Then

e−t/γ [etAφ(0)](x) � e−t/γ [etAψ](x).

We can show that the same conclusion holds.

(III) Finally, if φ ∈ BC((−∞, 0], M) with φ �= 0, then there exists (θ0, x0) ∈
(−∞, 0] × Ω such that

φ(θ0, x0) > 0. (3.9)

Assume that ut(0, ·) ≡ 0 for all t � 0. Then (3.2) implies that∫ t

0
e(t−s)Af(us) ds = 0, t � 0, x ∈ Ω̄. (3.10)

By the properties of the kernel and inequality (3.9), we can find t0 > 0 such that∫ t0

0
e(t0−s)Af(us) ds > 0,

which contradicts (3.10). Thus there exists a t̄ > 0 such that ut̄(0, ·) �≡ 0. Following
the previous arguments, we can show that condition (3.6) is satisfied.

Now conclusion (ii) follows by (3.5). This completes the proof.

Recall that b represents the contact rate and a represents the recovery rate.
The stability results indicate that there is a threshold at b = a. If b � a, then
the proportion u of infectious individuals tends to zero as t becomes large and
the disease dies out. If b > a, the proportion of infectious individuals tends to an
endemic level u1 = (b − a)/b as t becomes large. There is no non-constant periodic
solutions in the region 0 � u � 1.

The above results also apply to the special cases (2.5), (2.7) and (2.8), and thus
include the following results on global stability of the steady states of the discrete
delay model (2.8) obtained by Cooke [9] (using the Liapunov functional method).

Corollary 3.6. For the discrete delay model (2.8), we have the following state-
ments.

(i) If 0 < b � a, then the steady-state solution u0 = 0 is asymptotically stable
and the set

{φ ∈ C([−τ, 0], R) : 0 � φ(θ) � 1 for − τ � θ � 0}

is a region of attraction.
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Figure 1. Numerical simulations for the discrete delay equation (2.8). When a = 5.8,
b = 4.8 (a > b), the zero steady state u = 0 is asymptotically stable; when a = 3.8, b = 4.8
(a < b), the positive steady state u∗ is asymptotically stable for all delay values. Here, for
both cases, τ = 5.

(ii) If 0 � a < b, then the steady-state solution u1 = (b − a)/b is asymptotically
stable and the set

{φ ∈ C([−τ, 0], R) : 0 < φ(θ) � 1 for − τ � θ � 0}

is a region of attraction.

Numerical simulations are given in figure 1.
Similarly, we can obtain stability conditions for the integrodifferential equa-

tion (2.6) when u = u(t) does not depend on the spatial variable x. Numerical
simulations are presented in figure 2.

4. Existence of travelling waves

We know that, when b > a, equation (2.2) has two steady-state solutions, u0 = 0
and u1 = (b − a)/b. In this section, we consider x ∈ (−∞,∞) and establish the
existence of travelling wave solutions of the form u(x, t) = U(z) such that

lim
z→−∞

U(z) =
b − a

b
, lim

z→∞
U(z) = 0,

where z = x− ct is the wave variable and c � 0 is the wave speed. We consider two
cases:

(a) without delay, i.e. equation (2.7);
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Figure 2. Numerical simulations for the integrodifferential equation (2.6) with a strong
kernel G(t) = (t/τ2)e−t/τ . When a = 5.8, b = 4.8 (a > b), the zero steady state u = 0
is asymptotically stable; when a = 3.8, b = 4.8 (a < b), the positive steady state u∗ is
asymptotically stable for all delay values. Here, for both cases, τ = 0.2.

(b) with local delay, i.e. equation (2.5).

Throughout this section, we scale the model so that d = 1.

4.1. The model without delay

Substituting u(x, t) = U(z) into the reaction–diffusion equation (2.7) without
delay, i.e.

∂u

∂t
= ∆u(t, x) − au(t, x) + b[1 − u(t, x)]u(t, x),

we obtain the travelling wave equation

U ′′ + cU ′ + (b − a − bU)U = 0,

which is equivalent to the following system of first-order equations

U ′ = V,

V ′ = −cV − (b − a − bU)U.

}
(4.1)

System (4.1) has two equilibria, E0 = (0, 0) and E1 = ((b − a)/b, 0). The following
result shows that there is a travelling front solution of equation (4.1) connecting
E0 and E1.
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−0.005

Figure 3. The heteroclinic orbit connecting the critical points E0 = (0, 0) and
E1 = (0.2, 0). Here, a = 3.8, b = 4.8 and c = 2.4.

Theorem 4.1. If c � 2
√

b − a, then, in the (U, V ) phase plane for system (4.1),
there is a heteroclinic orbit connecting the critical points E0 and E1. The hetero-
clinic connection is confined to V < 0 and the travelling wave U(z) is strictly
monotonically decreasing.

Proof. Linear analysis of system (4.1) shows that E0 is a node (under the condition
on c) and E1 is a saddle. To establish the existence of a heteroclinic orbit connecting
the two equilibria for V < 0, we shall show that, for a suitable value of µ > 0, the
triangular set

B =
{

(U, V ) : 0 � U � b − a

b
, −µU � V � 0

}

is positively invariant. Let f be the vector defined by the right-hand sides of sys-
tem (4.1) and n be the inward normal vector on the boundary of B. We only need
to consider the side V = −µU , 0 < U � (b − a)/b of the triangle and have

f · n = U [−µ2 + cµ − (b − a)] + bU2 > 0,

with
µ = 1

2 [−c +
√

c2 + 4(b − a)].

This implies that one branch of the unstable manifold of E1 enters the region B
and joins E0 to form a heteroclinic orbit. This completes the proof.
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Figure 4. The travelling front profiles for the wave form equations (4.1).
Here, a = 3.8, b = 4.8 and c = 2.0 − 2.4.

4.2. The model with local delay

Consider the diffusive integro-differential equation (2.5) with a local delay kernel

G(t) =
t

τ2 e−t/τ ,

which is called the strong kernel. The parameter τ > 0 measures the delay, which
implies that a particular time in the past, namely, τ time units ago, is more impor-
tant than any other, since the kernel achieves its unique maximum when t = τ .
Equation (2.5) becomes

∂u

∂t
= ∆u(t, x) − au(t, x) + b[1 − u(t, x)]

∫ t

−∞

t − s

τ2 e−(t−s)/τu(s, x) ds,

(t, x) ∈ R+ × Ω. (4.2)

Define U(z) = u(x, t) and

W (z) =
∫ ∞

0

t

τ2 e−t/τU(z + ct) dt, Y (z) =
∫ ∞

0

1
τ

e−t/τU(z + ct) dt.

Differentiating with respect to z, we have

−c
dU

dz
=

d2U

dz2 − aU + b(1 − U)W,

dW

dz
=

1
cτ

(W − Y ),
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dY

dz
=

1
cτ

(Y − U).

Denote U ′ = V . Then we obtain the following travelling wave equations:

U ′ = V,

V ′ = aU − cV − bW + bUW,

cτW ′ = W − Y,

cτY ′ = −U + Y.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.3)

For τ > 0, system (4.3) has two equilibria,

(0, 0, 0, 0) and
(

b − a

b
, 0,

b − a

b
,
b − a

b

)
.

A travelling front solution of the original equation exists if there exists a heteroclinic
orbit connecting these two critical points (see [3, 13,14]).

Note that, when τ is very small, system (4.3) is a singularly perturbed system.
Let z = τη. Then system (4.3) becomes

U̇ = τV,

V̇ = τ(aU − cV − bW + bUW ),

cẆ = W − Y,

cẎ = −U + Y,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.4)

where dots denote differentiation with respect to η. While these two systems are
equivalent for τ > 0, the different time-scales give rise to two different limiting
systems. Letting τ → 0 in (4.3), we obtain

U̇ = τV,

V̇ = τ(aU − cV − bW + bUW ),
0 = W − Y,

0 = −U + Y.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.5)

Thus the flow of system (4.5) is confined to the set

M0 = {(U, V, W, Y ) ∈ R4 : W = U, Y = U}, (4.6)

and its dynamics are determined by the first two equations only. On the other hand,
setting τ → 0 in (4.4) results in the system

U ′ = 0,

V ′ = 0,

cW ′ = W − Y,

cY ′ = −U + Y.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.7)

Any points in M0 are the equilibria of system (4.7). Generally, system (4.3) is
referred to as the slow system, since the time-scale z is slow, and (4.4) is referred
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to as the fast system, since the time-scale η is fast. Hence U and V are called slow
variables and W and Y are called the fast variables. M0 is the slow manifold.

If M0 is normally hyperbolic, then we can use the geometric singular perturbation
theory of Fenichel [12] to obtain a two-dimensional invariant manifold Mτ for the
flow when 0 < τ � 1, which implies the persistence of the slow manifold as well as
the stable and unstable foliations. As a consequence, the dynamics in the vicinity
of the slow manifold are completely determined by the one on the slow manifold.
Therefore, we only need to study the flow of the slow system (4.3) restricted to Mτ

and show that the two-dimensional reduced system has a heteroclinic orbit.
Recall that M0 is a normally hyperbolic manifold if the linearization of the fast

system (4.4), restricted to M0, has exactly dim M0 eigenvalues with zero real part.
The eigenvalues of the linearization of the fast system restricted to M0 are 0, 0,
1/c, 1/c. Thus M0 is normally hyperbolic.

We need the following results on invariant manifolds, which is due to Fenichel [12].
We use a form of this theorem due to Jones [16].

Lemma 4.2 (geometric singular perturbation theorem). Given a C∞ vector field of
the form

x′ = f(x, y, ε),
y′ = εg(x, y, ε)

such that, when ε = 0, the system has a compact normally hyperbolic manifold of
critical points M0, which is given as the graph of a C∞ function h0(y), then, for
every r > 0, there exists an ε0 > 0 such that, if |ε| < ε0, there exists a manifold
Mε such that the following hold.

(1) Mε is locally invariant under the flow of the system.

(2) Mε is Cr in x, y and ε.

(3) Mε = {(x, y) | x = hε(y)} for some Cr function hε and y in some compact
set K.

(4) There are local stable and unstable manifolds, W s(Mε) and Wu(Mε), that lie
within O(ε) of and are diffeomorphic to W s(M0) and Wu(M0).

The geometric singular perturbation theorem now implies that there exists a
two-dimensional manifold Mτ for τ > 0. To determine Mτ explicitly, we have

Mτ = {(U, V, W, Y ) ∈ R
4 : W = U + g(U, V ; τ), Y = U + h(U, V ; τ)}, (4.8)

where the functions g and h are to be determined and satisfy

g(U, V ; 0) = h(U, V ; 0) = 0. (4.9)

By substituting into the slow system (4.3), we know that g and h satisfy

cτ

[(
1 +

∂h

∂U
+

∂g

∂U

)
V

+
(

∂h

∂V
+

∂g

∂V

)
(aU − cV − b(U + h + g) + bU(U + h + g))

]
= g,
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cτ

[(
1 +

∂h

∂U

)
V +

∂h

∂V
(aU − cV − b(U + h + g) + bU(U + h + g))

]
= h.

Since h and g are zero when τ = 0, we set

g(U, V ; τ) = τg1(U, V ) + τ2g2(U, V ) + · · · ,

h(U, V ; τ) = τh1(U, V ) + τ2h2(U, V ) + · · · .

}
(4.10)

Substituting g(U, V ; τ) and h(U, V ; τ) into the above equations and comparing pow-
ers of τ , we obtain

g1(U, V ) = cV,

h1(U, V ) = cV,

g2(U, V ) = 2c2(aU − cV − b(1 − U)U),

h2(U, V ) = c2(aU − cV − b(1 − U)U).

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.11)

The slow system (4.3) restricted to Mτ is therefore given by

U ′ = V,

V ′ = aU − cV − b(1 − U)[U + g(U, V ; τ) + h(U, V ; τ)],

}
(4.12)

where g and h are given by (4.10) and (4.11). Note that, when τ = 0, system (4.12)
reduces to the corresponding system (4.1) for the non-delay equation. We can see
that, for 0 < τ � 1, system (4.12) still has critical points E0 and E1. The following
theorem shows that there is a heteroclinic orbit connecting E0 and E1 and thus
equation (4.2) has a travelling wave solution connecting u0 = 0 and u1 = (b − a)/b.

Theorem 4.3. For any τ > 0 sufficiently small, there exist a speed c such that
the system (4.12) has a heteroclinic orbit connecting the two equilibrium points E0
and E1.

Proof. We write system (4.12) as

U ′ = V,

V ′ = Φ(U, V, c, τ).

}
(4.13)

Note that
Φ(U, V, c, 0) = aU − cV − b(1 − U)U.

We know that when τ = 0 the travelling front U(z) is strictly monotone if its speed
c � 2

√
b − a. Therefore, in the (U, V ) plane, it can be characterized as the graph

of some function, i.e.
V = w(U, c).

By the stable manifold theorem, for sufficiently small τ , we can also characterize
the unstable manifold at ((b − a)/b, 0) as the graph of some function,

V = w1(U, c, τ),

where w1((b − a)/b, c, τ) = 0. Furthermore, by continuous dependence of the solu-
tions on parameters, this manifold must cross the line U = (b − a)/(2b) somewhere
if τ is sufficiently small.
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Similarly, let V = w2(U, c, τ) be the equation for the stable manifold at the origin.
Clearly, w2(0, c, τ) = 0, and it also crosses the line U = (b − a)/(2b) somewhere for
suitably small τ . Thus

w1(U, c, 0) = w2(U, c, 0) = w(U, c).

For τ = 0, fix c = c0 � 2
√

b − a, so that the equation of the corresponding wave
in the phase plane is V = w(U, c0). To show that there is a heteroclinic connection
when τ > 0, we want to show that there exists a unique value of c = c(τ), near
c0, such that the manifolds w1 and w2 cross the line U = (b − a)/(2b) at the same
point. Define

G(c, τ) = w1

(
b − a

2b
, c, τ

)
− w2

(
b − a

2b
, c, τ

)
.

Note that both V = w1(U, c, τ) and V = w2(U, c, τ) satisfy the equation

dV

dU
=

Φ(U, V, c, τ)
U

.

We have

d
dU

(
∂w1

∂c
(U, c0, 0)

)
=

∂

∂c

(
dw1

dU
(U, c, 0)

)∣∣∣∣
c=c0

=
∂

∂c

(
Φ(U, w1(U, c, 0), c, 0)

w1(U, c, 0)

)∣∣∣∣
c=c0

=
∂

∂c

(
aU − cw1(U, c, 0) − b(1 − U)U

w1(U, c, 0)

)∣∣∣∣
c=c0

=
∂

∂c

(
−c +

aU − b(1 − U)U
w1(U, c, 0)

)∣∣∣∣
c=c0

= −1 − (b − a)U − bU2

w(U, c0)2
∂w1

∂c
(U, c0, 0).

Integrating from (b − a)/(2b) to (b − a)/b, we have

∂w1

∂c

(
b − a

2b
, c0, 0

)
=

∫ (b−a)/b

(b−a)/2b

exp
[∫ s

(b−a)/2b

(b − a)ξ − bξ2

w(ξ, c0)2
dξ

]
ds. (4.14)

Similarly, we have

d
dU

(
∂w2

∂c
(U, c0, 0)

)
= 1 − (b − a)U − bU2

w(U, c0)2
∂w2

∂c
(U, c0, 0).

Integrating from 0 to (b − a)/(2b) yields

∂w2

∂c

(
b − a

2b
, c0, 0

)
= −

∫ (b−a)/b

0
exp

[∫ s

(b−a)/2b

(b − a)ξ − bξ2

w(ξ, c0)2
dξ

]
ds. (4.15)
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Combining (4.14) and (4.15), we have

∂G

∂c
(c0, 0) =

∂w1

∂c

(
b − a

2b
, c0, 0

)
− ∂w2

∂c

(
b − a

2b
, c0, 0

)

=
∫ (b−a)/b

0
exp

[∫ s

(b−a)/2b

(b − a)ξ − bξ2

w(ξ, c0)2
dξ

]
ds > 0.

Thus, by the implicit function theorem, for sufficiently small τ , G(c, τ) = 0 has a
root c = c(τ) near c0. This implies that the manifolds w1 and w2 cross the line
U = (b − a)/(2b) at the same point. This establishes the existence of a heteroclinic
connection.

Remark 4.4. The existence of travelling wave solutions can be similarly established
if the local delay kernel is a weak kernel, i.e. G(t) = (1/τ)e−t/τ .

5. Discussion

Recently, great attention has been paid to the existence of travelling wave solutions
in epidemic models. The basic idea is that epidemic models described by reaction–
diffusion systems can give rise to a moving zone of transition from an infective state
to a disease-free state.

In this paper, following Cooke [9], Busenberg and Cooke [8], Marcati and Pozio
[20] and Volz [34], we have considered a host-vector model for a disease without
immunity in which the current density of infectious vectors is related to the number
of infectious hosts at earlier times. Spatial spread in a region was modelled in the
partial integro-differential equation by a diffusion term. For the general model, we
studied the stability of the steady states using the contracting-convex-sets technique
(see [22,23]). The stability results indicate that there is a threshold at b = a. If b � a,
then the proportion u of infectious individuals tends to zero as t becomes large and
the disease dies out. If b > a, the proportion of infectious individuals tends to an
endemic level u1 = (b − a)/b as t becomes large.

When the spatial variable is one dimensional and the delay kernel assumes
some special form, we first transformed the travelling wave equations into a finite-
dimensional system of ordinary differential equations by using the linear chain trick,
then we applied the geometric singular perturbation method (see [12,16]) to prove
the existence of heteroclinic orbits, which are travelling wave solutions for the orig-
inal partial integro-differential equation. Our results (theorems 4.1 and 4.3) also
show that, for the small delay, the travelling waves are qualitatively similar to
those of the non-delay equation. The existence of travelling front solutions show
that there is a moving zone of transition from the disease-free state to the infective
state.

We only established the existence of travelling front waves in the vector-disease
model when the kernel takes some specific forms, namely, a delta kernel and a local
strong kernel. The case with a general non-local kernel deserves further investiga-
tion. Also, the minimal wave speed, the asymptotic wave speed, the uniqueness and
stability of the travelling waves in such vector-disease models are interesting and
challenging problems. We leave these for future consideration.
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