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1. Introduction

Consider the stochastic programming model

min

{∫
Ξ

f0(ξ, x)P (dξ) : x ∈M(P )

}
M(P ) :=

{
x ∈ X :

∫
Ξ

fj(ξ, x)P (dξ) ≤ 0, j = 1, ..., d

}
where fj from Ξ × Rm to the extended reals R are normal inte-

grands, X is a nonempty closed subset of Rm, Ξ is a closed subset

of Rs and P is a Borel probability measure on Ξ.

(f is a normal integrand if it is Borel measurable and f(ξ, .) is lower semicontinuous ∀ξ ∈ Ξ.)

Let P(Ξ) the set of all Borel probability measures on Ξ and by

v(P ) = inf
x∈M(P )

∫
Ξ

f0(ξ, x)P (dξ) (optimal value)

Sε(P ) =

{
x ∈M(P ) :

∫
Ξ

f0(ξ, x)P (dξ) ≤ v(P ) + ε

}
S(P ) = S0(P ) = arg min

x∈M(P )

∫
Ξ

f0(ξ, x)P (dξ) (solution set).
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The underlying probability distribution P is often incompletely known

in applied models and/or has to be approximated (estimated, dis-

cretized).

−→ stability behaviour of stochastic programs becomes important

when changing (perturbing, estimating, approximating) P ∈ P(Ξ).

Here, stability refers to (quantitative) continuity properties of the
optimal value function v(.) and of the set-valued mapping Sε(.) at
P , where both are regarded as mappings given on certain subset of
P(Ξ) equipped with some convergence of probability measures and
some probability metric, respectively.
(The corresponding subset of probability measures is determined such that certain moment condi-
tions are satisfied that are related to growth properties of the integrands fj with respect to ξ.)

Examples: Two-stage stochastic programs, chance constrained

stochastic programs.

Survey:
W. Römisch: Stability of stochastic programming problems, in: Stochastic Programming (A.
Ruszczynski, A. Shapiro eds.), Handbook, Elsevier, 2003.
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Weak convergence in P(Ξ)

Pn →w P iff

∫
Ξ

f (ξ)Pn(dξ) →
∫

Ξ

f (ξ)P (dξ) (∀f ∈ Cb(Ξ)),

iff Pn({ξ ≤ z}) → P ({ξ ≤ z}) at continuity points z

of P ({ξ ≤ ·}).

Probability metrics on P(Ξ) (Monographs: Rachev 91, Rachev/Rüschendorf 98)

Metrics with ζ-structure:

dF(P,Q) = sup

{∣∣∣∣∫
Ξ

f (ξ)P (dξ)−
∫

Ξ

f (ξ)Q(dξ)

∣∣∣∣ : f ∈ F
}

where F is a suitable set of measurable functions from Ξ to R and

P , Q are probability measures in some set PF on which dF is finite.

Examples (of F): Sets of locally Lipschitzian functions on Ξ or

of piecewise (locally) Lipschitzian functions.

There exist canonical sets F and metrics dF for each specific class

of stochastic programs!



Home Page

Title Page

Contents

JJ II

J I

Page 6 of 35

Go Back

Full Screen

Close

Quit

2. General quantitative stability results

To simplify matters, let X be compact (otherwise, consider localizations).

F := {fj(., x) : x ∈ X, j = 0, . . . , d},

PF := {Q ∈ P(Ξ) :

∫
Ξ

inf
x∈X

fj(ξ, x)Q(dξ) > −∞,

sup
x∈X

∫
Ξ

fj(ξ, x)Q(dξ) <∞, j = 0, . . . , d},

and the probability (semi-) metric on PF :

dF(P,Q) = sup
x∈X

max
j=0,...,d

∣∣∣∣∣∣
∫
Ξ

fj(ξ, x)(P −Q)(dξ)

∣∣∣∣∣∣.
Lemma:
The functions (x,Q) 7→

∫
Ξ

fj(ξ, x)Q(dξ) are lower semicontinuous

on X × PF .
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Theorem: (Rachev-Römisch 02)

If d ≥ 1, let the function x 7→
∫

Ξ f0(ξ, x)P (dξ) be Lipschitz

continuous on X , and, let the function

(x, y) 7→ d

(
x,

{
x̃ ∈ X :

∫
Ξ

fj(ξ, x̃)P (dξ) ≤ yj, j = 1, ..., d

})
be locally Lipschitz continuous around (x̄, 0) for every x̄ ∈ S(P )

(regularity condition).

Then there exist constants L, δ > 0 such that

|v(P )− v(Q)| ≤ LdF(P,Q)

S(Q) ⊆ S(P ) + ΨP (LdF(P,Q))B

holds for all Q ∈ PF with dF(P,Q) < δ.

Here ΨP (η) := η + ψ−1(η) and ψ : R+ → R+

ψ(τ ) :=min

{∫
Ξ

f0(ξ, x)P (dξ)− v(P ) :d(x, S(P )) ≥ τ, x ∈M(P )

}
.

(Proof by appealing to general perturbation results of Klatte 94 and Rockafellar/Wets 98.)
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Convex case and d := 0:

Assume that f0(ξ, ·) is convex on Rm ∀ξ ∈ Ξ.

Theorem: (Römisch-Wets 06)

Then there exist constants L, ε̄ > 0 such that

dl∞(Sε(P ), Sε(Q)) ≤ L

ε
dF(P,Q)

for every ε ∈ (0, ε̄) and Q ∈ PF such that dF(P,Q) < ε.

Here, dl∞ is the Pompeiu-Hausdorff distance of nonempty closed

subsets of Rm, i.e.,

dl∞(C,D) = inf{η ≥ 0 : C ⊆ D + ηB, D ⊆ C + ηB}.

Proof using a perturbation result by Rockafellar/Wets 98.
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The (semi-) distance dF plays the role of a minimal probability

metric implying quantitative stability.

Furthermore, the result remains valid when bounding dF from above

by another distance and when reducing the set PF to a subset on

which this distance is defined and finite.

Idea: Enlarge F , but maintain the analytical (e.g., (dis)continuity)

properties of fj(·, x), j = 0, . . . , d !

This idea may lead to well-known probability metrics, for which a

well developed theory is available !
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Example: (Fortet-Mourier-type metrics)

We consider the following classes of locally Lipschitz continuous

functions (on Ξ)

FH := {f : Ξ → R : f (ξ)− f (ξ̃) ≤ max{1, H(‖ξ‖), H(‖ξ̃‖)} ·
‖ξ − ξ̃‖,∀ξ, ξ̃ ∈ Ξ}

are of particular interest, where H : R+ → R+ is nondecreasing,

H(0) = 0. The corresponding distances are

dFH(P,Q) = sup
f∈FH

∣∣∣∣∫
Ξ

f (ξ)P (dξ)−
∫

Ξ

f (ξ)Q(dξ)

∣∣∣∣ =: ζH(P,Q)

are so-called Fortet-Mourier-type metrics defined on

PH(Ξ) :={Q ∈ P(Ξ) :

∫
Ξ

max{1, H(‖ξ‖)}‖ξ‖Q(dξ) <∞}

Important special case: H(t) := tp−1 for p ≥ 1.
The corresponding classes of functions and measures, and the dis-
tances are denoted by Fp, Pp(Ξ) and ζp, respectively.
(Convergence with respect to ζp means weak conergence of the probability measures and conver-
gence of the p-th order moments (Rachev 91))
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Application: Convergence of empirical estimates

Let P ∈ P(Ξ) and let ξ1, ξ2, . . . , ξn, . . . be independent, identically

distributed Ξ-valued random variables on some probability space

(Ω,A,P) having the common distribution P .

Let Pn(ω) := 1
n

∑n
i=1 δξi(ω) be the empirical measures ∀n ∈ N.

We consider the empirical estimates or sample average approxima-

tion (replacing P by Pn(·)):

min

{
1

n

n∑
i=1

f0(ξi, x) : x ∈ X, 1

n

n∑
i=1

fj(ξi, x) ≤ 0, j = 1, . . . , d

}
Then results on the convergence in probability of

dF(P, Pn(·))

and, hence, of

|v(P )− v(Pn(·))|
may be obtained using the general stability results, empirical process

theory and covering numbers for F as subsets of Lp(Ξ, P ).
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3. Two-stage stochastic programming models

We consider the two-stage stochastic program

min

{
〈c, x〉 +

∫
Ξ

Φ̂(ξ, x)P (dξ) : x ∈ X
}
,

where

Φ̂(ξ, x) := inf{〈q(ξ), y〉 : y ∈ Y,W (ξ)y = h(ξ)− T (ξ)x}

P := Pξ−1 ∈ P(Ξ) is the probability distribution of the random

vector ξ, c ∈ Rm, X ⊆ Rm is a bounded polyhedron, q(ξ) ∈ Rm,

Y ∈ Rm is a polyhedral cone, W (ξ) a r ×m-matrix, h(ξ) ∈ Rr

and T (ξ) a r ×m-matrix.

We assume that q(ξ), h(ξ), W (ξ) and T (ξ) are affine functions of

ξ (e.g., some of their components or elements are random).
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Example:(two-stage model with simple recourse)

m = s = 1, d = 0, f0(ξ, x) := max{0, ξ − x},
Ξ := R, X := [−1, 1],

P := δ0 (unit mass at 0),

Pn := (1− 1
n)δ0 + 1

nδn2 , n ∈ N.

∫
Ξ f0(ξ, x)P (dξ) =

{
−x , x ∈ [−1, 0)

0 , x ∈ [0, 1]
v(P ) = 0, S(P ) = [0, 1],∫

Ξ f0(ξ, x)Pn(dξ) = (1− 1
n) max{0,−x} + 1

n max{0, n2 − x}
v(Pn) = n− 1

n, S(Pn) = {1} (n ∈ N).

Note: Pn →w P , but first order moments do not converge !∫
Ξ f (ξ)Pn(dξ) = (1− 1

n)f (0) + 1
nf (n2) → f (0), ∀f ∈ Cb(Ξ).

But,
∫

Ξ |ξ|Pn(dξ) = 1
nn

2 = n (n ∈ N) and
∫

Ξ |ξ|P (dξ) = 0
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Structural properties of two-stage models

We consider the infimum function of the parametrized linear (second-

stage) program and the dual feasible set of the second-stage pro-

gram, namely,

Φ(ξ, u, t):=inf{〈u, y〉 :W (ξ)y = t, y ∈ Y } ((ξ, u, t) ∈Ξ×Rm×Rr)

D(ξ) := {z ∈ Rr :W (ξ)>z − q(ξ) ∈ Y ∗} (ξ ∈ Ξ),

where W (ξ)> is the transposed of W (ξ) and Y ∗ the polar cone

of Y (i.e., Y ∗ = {y∗ : 〈y∗, y〉 ≤ 0,∀y ∈ Y }). Then we have

Φ̂(ξ, x)=Φ(ξ, q(ξ), h(ξ)−T (ξ)x)=sup{〈h(ξ)−T (ξ)x, z〉:z∈D(ξ)}.

Theorem: (Walkup/Wets 69)

For any ξ ∈ Ξ, the function Φ(ξ, ·, ·) is finite and continuous on

the polyhedral set D(ξ) × W (ξ)Y . Furthermore, the function

Φ(ξ, u, ·) is piecewise linear convex on the polyhedral set W (ξ)Y

for fixed u ∈ D(ξ), and Φ(ξ, ·, t) is piecewise linear concave on

D(ξ) for fixed t ∈ W (ξ)Y .
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Assumptions:

(A1) relatively complete recourse: for any (ξ, x) ∈ Ξ×X,

h(ξ)− T (ξ)x ∈ W (ξ)Y ;

(A2) dual feasibility: D(ξ) 6= ∅ holds for all ξ ∈ Ξ.

Note that (A1) is satisfied if W (ξ)Y = Rr (complete recourse). In

general, (A1) and (A2) impose a condition on the support of P .

Proposition:
Then the deterministic equivalent of the two-stage model repre-

sents a finite convex program (with polyhedral constraints) if the

integrals
∫

Ξ Φ(ξ, q(ξ), h(ξ)−T (ξ)x)P (dξ) are finite for all x ∈ X .

For fixed recourse (W (ξ) ≡ W ), it suffices to assume∫
Ξ

‖ξ‖2P (dξ) <∞.

Convex subdifferentials, optimality conditions, conditions for differ-

entiability, duality results are well known.

(Ruszczyński/Shapiro, Handbook, 2003)
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Towards stability

We define the integrand f0 : Ξ× Rm → R by

f0(ξ, x)=


〈c, x〉+Φ(ξ, q(ξ), h(ξ)−T (ξ)x) if h(ξ)− T (ξ)x ∈

W (ξ)Y, D(ξ) 6= ∅,
+∞ otherwise,

and note that f0 is a convex random lsc function with Ξ × X ⊆
dom f0 if (A1) and (A2) are satisfied.

The two-stage stochastic program can thus be expressed as

min

{∫
Ξ

f0(ξ, x)P (dξ) : x ∈ X
}
.

Then the general stability theory applies !

Simple examples of two-stage stochastic programs show that, in general, the set-valued mapping

S(.) is not inner semicontinuous at P . Furthermore, explicit descriptions of conditioning functions

ψP of stochastic programs (like linear or quadratic growth at solution sets) are only known in some

specific cases.
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Stability w.r.t. the Fortet-Mourier metric ζH

Proposition:
Suppose the stochastic program satisfies (A1) and (A2). Assume

that the mapping ξ 7→ D(ξ) is bounded-valued and there exists a

constant L > 0, and a nondecreasing function h : R+ → R+ with

h(0) = 0 such that

dl∞(D(ξ), D(ξ̃)) ≤ L max{1, h(‖ξ‖), h(‖ξ̃‖)}‖ξ − ξ̃‖

holds for all ξ, ξ̃ ∈ Ξ.

Then there exist L̂ > 0 such that

|f0(ξ, x)− f0(ξ̃, x)| ≤ L̂max{1, H(‖ξ‖), H(‖ξ̃‖)}‖ξ − ξ̃‖
|f0(ξ, x)− f0(ξ, x̃)| ≤ L̂max{1, H(‖ξ‖)‖ξ‖}‖x− x̃‖

for all ξ, ξ̃ ∈ Ξ, x, x̃ ∈ X , where H is defined by

H(t) := h(t)t, ∀t ∈ R+.

Note that h(t) =

{
1 , fixed recourse

tk , lower diagonal randomness with k blocks.
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Discrete approximations of two-stage stochastic programs

Replace the (original) probability measure P by measures Pn having

(finite) discrete support {ξ1, . . . , ξn} (n ∈ N), i.e.,

Pn =

n∑
i=1

piδξi,

and insert it into the infinite-dimensional stochastic program:

min{〈c, x〉 +

n∑
i=1

pi〈q(ξi), yi〉 : x ∈ X, yi ∈ Y, i = 1, . . . , n,

W (ξ1)y1 +T (ξ1)x = h(ξ1)

W (ξ2)y2 +T (ξ2)x = h(ξ2)
. . . ... = ...

W (ξn)yn +T (ξn)x = h(ξn)}
Hence, we arrive at a (finite-dimensional) large scale block-structured

linear program which allows for specific decomposition methods.

(Ruszczyński/Shapiro, Handbook, 2003)
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How to choose the discrete approximation ?

The quantitative stability results suggest to determine Pn such that

it forms the best approximation of P with respect to the semi-

distance dF or the probability metric ζp, i.e., given n ∈ N solve

min

{
ζp

(
P,

1

n

n∑
i=1

δξi

)
: ξi ∈ Ξ, i = 1, . . . , n

}
Such best approximations P ∗

n = 1
n

∑n
i=1 δξ∗i are known as optimal

quantizations of the probability distribution P (Graf/Luschgy, Lecture Notes

Math. 1730 2000).

Convergence properties of optimal quantizations in case of the `p-

minimal metrics (or Wasserstein metrics)

`p(P,Q) :=

(
inf

{∫
Ξ×Ξ

‖ξ − ξ̃‖pη(dξ, dξ̃) | π1η = P, π2η = Q

})1
p

,

are already known. Here, πi is the projection onto the i-th compo-

nent. Note that ζp(P,Q) ≤ (1 +
∫
Ξ ‖ξ‖

p(P +Q)(dξ))
p−1

p `p(P,Q).
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Scenario reduction

We consider discrete distributions P with scenarios ξi and proba-

bilities pi, i = 1, . . . , N , and Q being supported by a given subset

of scenarios ξj, j 6∈ J ⊂ {1, . . . , N}, of P .

Optimal reduction of a given scenario set J :

The best approximation of P with respect to ζr by such a distribu-

tion Q exists and is denoted by Q∗. It has the distance

DJ := ζr(P,Q
∗) = min

Q
ζr(P,Q) =

∑
i∈J

pi min
j 6∈J

ĉr(ξi, ξj)

=
∑
i∈J

pi min{
n−1∑
k=1

cr(ξlk, ξlk+1) : n ∈ N, lk ∈ {1, . . . , N},

l1 = i, ln = j 6∈ J}

and the probabilities q∗j = pj +
∑
i∈Jj

pi, ∀j 6∈ J, where

Jj := {i ∈ J : j = j(i)} and j(i) ∈ arg min
j 6∈J

ĉr(ξi, ξj), ∀i ∈ J .

(Dupačová-Gröwe-Kuska-Römisch 03, Heitsch-Römisch 07)
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We needed the following notation:

cr(ξ, ξ̃) := max{1, ‖ξ‖r−1, ‖ξ̃‖r−1}‖ξ − ξ̃‖ (ξ, ξ̃ ∈ Ξ).

Proposition: (Rachev/Rüschendorf 98)

ζr(P,Q) = inf

{∫
Ξ×Ξ

ĉr(ξ, ξ̃)η(dξ, dξ̃) :π1η=P, π2η =Q

}
where ĉr ≤ cr and ĉr is the metric (reduced cost)

ĉr(ξ, ξ̃) := inf

{
k−1∑
i=1

cr(ξli, ξli+1) : k ∈ N, ξli ∈ Ξ, ξl1 = ξ, ξlk = ξ̃

}
.

Determining the optimal scenario index set with prescribed cardi-

nality n is, however, a combinatorial optimization problem of set

covering type:

min{DJ =
∑
i∈J

pi min
j 6∈J

ĉr(ξi, ξj) : J ⊂ {1, ..., N},#J = N − n}

Hence, the problem of finding the optimal set J to delete is NP-

hard and polynomial time solution algorithms do not exist.



Home Page

Title Page

Contents

JJ II

J I

Page 22 of 35

Go Back

Full Screen

Close

Quit

Fast reduction heuristic

Starting point (n = 1): min
u∈{1,...,N}

N∑
k=1

pkĉr(ξk, ξu)

Algorithm: (Forward selection)

Step [0]: J [0] := {1, . . . , N}.
Step [i]: ui ∈ arg min

u∈J [i−1]

∑
k∈J [i−1]\{u}

pk min
j 6∈J [i−1]\{u}

ĉr(ξk, ξj),

J [i] := J [i−1] \ {ui} .
Step [n+1]: Optimal redistribution.
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Example: (Electrical load scenario tree)

(Mean shifted ternary) Load scenario tree (729 scenarios)

−1000

−500

0

500

1000

24 48 72 96 120 144 168

<Start Animation>
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Reduced load scenario tree obtained by the forward selection method (15 scenarios)
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4. Chance constrained stochastic programs

We consider the chance constrained model

min{〈c, x〉 : x ∈ X,P ({ξ ∈ Ξ : T (ξ)x ≥ h(ξ)}) ≥ p},

where c ∈ Rm, X and Ξ are polyhedra in Rm and Rs, respectively,

p ∈ (0, 1), P ∈ P(Ξ), and the right-hand side h(ξ) ∈ Rd and the

(d,m)-matrix T (ξ) are affine functions of ξ.

By specifying the general (semi-) distance we obtain

dF(P,Q) := sup
x∈X

max
j=0,1

∣∣∣∣∫
Ξ

fj(x, ξ)(P −Q)(dξ)

∣∣∣∣
= sup

x∈X
|P (H(x))−Q(H(x))|,

where f0(ξ, x) = 〈c, x〉, f1(ξ, x) = p− χH(x)(ξ) and

H(x) = {ξ ∈ Ξ : T (ξ)x ≥ h(ξ)} (polyhedral subsets of Ξ).

The relevant probability metrics are polyhedral discrepancies:

αph(P,Q) = sup
B∈Bph(Ξ)

|P (B)−Q(B)|
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5. Two-stage mixed-integer stochastic programs

min

{
〈c, x〉 +

∫
Ξ

Φ(q(ξ), h(ξ)− T (ξ)x)P (dξ) : x ∈ X
}
,

where Φ is given by

Φ(u, t) := inf
{
〈u1, y〉 + 〈u2, ȳ〉 : Wy + W̄ ȳ ≤ t, y ∈ Zm̂, ȳ ∈ Rm̄

}
for all pairs (u, t) ∈ Rm̂+m̄ × Rr, and c ∈ Rm, X is a closed

subset of Rm, Ξ a polyhedron in Rs, W and W̄ are (r, m̂)- and

(r, m̄)-matrices, respectively, q(ξ) ∈ Rm̂+m̄, h(ξ) ∈ Rr, and the

(r,m)-matrix T (ξ) are affine functions of ξ, and P ∈ P2(Ξ).

Probability metric on P2(Ξ):

ζ2,ph(P,Q) := sup

{∣∣∣∣∫
B

f (ξ)(P −Q)(dξ)

∣∣∣∣ ∣∣∣∣ f ∈ F2(Ξ)

B ∈ Bph(Ξ)

}
≤ Cαph(P,Q)

1
s+1 (if Ξ is bounded)

Here, the set F2(Ξ) contains all functions f : Ξ → R such that

|f (ξ)| ≤ max{1, ‖ξ‖}‖ξ‖ , |f (ξ)−f (ξ̃)| ≤ max{1, ‖ξ‖, ‖ξ̃‖}‖ξ−ξ̃‖.



Home Page

Title Page

Contents

JJ II

J I

Page 27 of 35

Go Back

Full Screen

Close

Quit

6. Multistage stochastic programs

Let {ξt}Tt=1 be a discrete-time stochastic data process defined on

some probability space (Ω,A,P) and with ξ1 deterministic. The

stochastic decision xt at period t is assumed to be measurable with

respect to At(ξ) := σ(ξ1, . . . , ξt) (nonanticipativity).

Multistage stochastic optimization model:

min

E
[

T∑
t=1

〈bt(ξt), xt〉

]∣∣∣∣∣∣
xt ∈ Xt, t = 1, . . . , T,

xt is At(ξ)-measurable, t = 1, . . . , T,

At,0xt + At,1(ξt)xt−1 = ht(ξt), t = 2, ., T


where X1 is bounded polyhedral and Xt, t = 2, . . . , T , are polyhe-

dral cones, the vectors bt(·), ht(·) and At,1(·) are affine functions

of ξt, where ξ varies in a polyhedral set Ξ.

If the process {ξt}Tt=1 has a finite number of scenarios, they exhibit

a scenario tree structure.
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To have the model well defined, we assume

x ∈ Lr′(Ω,A,P; Rm) and ξ ∈ Lr(Ω,A,P; Rs),

where r ≥ 1 and

r′ :=


r
r−1 , if only costs are random

r , if only right-hand sides are random

2 , if costs and right-hand sides are random

∞ , if all technology matrices are random and r = T.

Then nonanticipativity may be expressed as

x ∈ Nr′(ξ)

Nr′(ξ) = {x ∈ ×T
t=1Lr′(Ω,A,P; Rmt) : xt = E[xt|At(ξ)] , ∀t},

i.e., as a subspace constraint, by using the conditional expectation

E[·|At(ξ)] with respect to the σ-algebra At(ξ).

For T = 2 we have Nr′(ξ) = Rm1 × Lr′(Ω,A,P; Rm2).

→ infinite-dimensional optimization problem
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Example: (Optimal purchase under uncertainty)

The decisions xt correspond to the amounts to be purchased at

each time period with uncertain prices are ξt, t = 1, . . . , T , and

such that a prescribed amount a is achieved at the end of a given

time horizon. The problem is of the form

min

E

[
T∑
t=1

ξtxt

] ∣∣∣∣∣∣∣∣∣
(xt, st) ∈ Xt = R2

+,

(xt, st) is (ξ1, . . . , ξt)-measurable,

st − st−1 = xt, t = 2, . . . , T,

s1 = 0, sT = a.

 ,

where the state variable st corresponds to the amount at time t.

Let T := 3 and ξε denote the stochastic price process having the

two scenarios ξ1
ε = (3, 2 + ε, 3) (ε ∈ (0, 1)) and ξ2

ε = (3, 2, 1) each

endowed with probability 1
2. Let ξ̃ denote the approximation of ξε

given by the two scenarios ξ̃1 = (3, 2, 3) and ξ̃2 = (3, 2, 1) with the

same probabilities 1
2.
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3

12

2+ε 3

1

233

Scenario trees for ξε (left) and ξ̃

We obtain

v(ξε) =
1

2
((2 + ε)a + a) =

3 + ε

2
a

v(ξ̃) = 2a , but

‖ξε − ξ̃‖1 ≤ 1

2
(0 + ε + 0) +

1

2
(0 + 0 + 0) =

ε

2
.

Hence, the multistage stochastic purchasing model is not stable

with respect to ‖ · ‖1.
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Quantitative Stability

Let F denote the objective function defined on Lr(Ω,A,P; Rs)×
Lr′(Ω,A,P; Rm) → R by F (ξ, x) := E[

∑T
t=1〈bt(ξt), xt〉], let

Xt(xt−1; ξt) := {xt ∈ Xt : At,0xt + At,1(ξt)xt−1 = ht(ξt)}

denote the t-th feasibility set for every t = 2, . . . , T and

X (ξ) := {x ∈ Lr′(Ω,F ,P; Rm) : x1 ∈ X1, xt ∈ Xt(xt−1; ξt)}

the set of feasible elements with input ξ.

Then the multistage stochastic program may be rewritten as

min{F (ξ, x) : x ∈ X (ξ) ∩Nr′(ξ)}.

Let v(ξ) denote its optimal value and, for any α ≥ 0,

Sα(ξ) := {x ∈ X (ξ) ∩Nr′(ξ) : F (ξ, x) ≤ v(ξ) + α}
S(ξ) := S0(ξ)

denote the α-approximate solution set and the solution set of the

stochastic program with input ξ.
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Assumptions:
(A1) ξ ∈ Lr(Ω,A,P; Rs) for some r ≥ 1.

(A2) There exists a δ > 0 such that for any ξ̃ ∈ Lr(Ω,A,P; Rs)

with ‖ξ̃ − ξ‖r ≤ δ, any t = 2, . . . , T and any x1 ∈ X1, xτ ∈
Xτ (xτ−1; ξ̃τ ), τ = 2, . . . , t − 1, the set Xt(xt−1; ξ̃t) is nonempty

(relatively complete recourse locally around ξ).

(A3) Assume that the optimal values v(ξ̃) are finite if ‖ξ− ξ̃‖r ≤ δ

and that the objective function F is level-bounded locally uniformly

at ξ, i.e., for some α > 0 there exists a bounded subset B of

Lr′(Ω,A,P; Rm) such that Sα(ξ̃) is contained in B if ‖ξ̃−ξ‖r ≤ δ.
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Theorem: (Heitsch-Römisch-Strugarek 06)

Let (A1) – (A3) be satisfied and X1 be bounded.

Then there exist positive constants L and δ such that

|v(ξ)− v(ξ̃)| ≤ L(‖ξ − ξ̃‖r + df,T−1(ξ, ξ̃))

holds for all ξ̃ ∈ Lr(Ω,A,P; Rs) with ‖ξ̃ − ξ‖r ≤ δ.

If 1 < r′ < ∞ and (ξ(n)) converges to ξ in Lr and with respect

to df,T , then any sequence xn ∈ S(ξ(n)), n ∈ N, contains a subse-

quence converging weakly in Lr′ to some element of S(ξ).

Here, df,τ (ξ, ξ̃) denotes the filtration distance of ξ and ξ̃ defined by

df,τ (ξ, ξ̃) := sup
‖x‖r′≤1

τ∑
t=2

‖E[xt|At(ξ)]− E[xt|At(ξ̃)]‖r′.

Remark:
For T = 2 we obtain the same result for the optimal values as

in the two-stage case ! However, we obtain weak convergence of

subsequences of (random) second-stage solutions, too !



Home Page

Title Page

Contents

JJ II

J I

Page 34 of 35

Go Back

Full Screen

Close

Quit

Consequences for designing scenario trees

• If ξtr is a scenario tree process approximating ξ, one has to take

care that ‖ξ− ξtr‖r and df,T (ξ, ξtr) are small. This is achieved

for the generation of scenario trees by recursive scenario reduc-

tion (Heitsch-Römisch 05).

 t = 1  t = 2  t = 3  t = 4  t = 5  t = 1  t = 2  t = 3  t = 4  t = 5

<Start Animation>

• Are there specific approximations ξ̃ of ξ such that an estimate

of the form |v(ξ)−v(ξ̃)| ≤ L‖ξ− ξ̃‖r is valid ? Recently, such

approximations ξ̃ were characterized by Küchler 07 ! The con-

ditions on ξ and approximation schemes developed by Kuhn 05,

Pennanen 05, Mirkov-Pflug 07 also avoid filtration distances.

file:C:/anim05/animation.html
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