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1. Introduction
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Consider the stochastic programming model

min { /_ fol&, 2)P(dg) : z € M(p)}

M(P) :—{xEX /f] P(d¢) <0,5=1,.. d}

where f; from = x R™ to the extended reals R are normal inte-
grands, X is a nonempty closed subset of R, = is a closed subset I
of R® and P is a Borel probability measure on =.
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(f is a normal integrand if it is Borel measurable and f(&,.) is lower semicontinuous V¢ € E.)

Let P (=) the set of all Borel probability measures on = and by Gomact |
v(P) = aselj\r/l[f /fo £, x)P(d¢)  (optimal value) Ry |

5.7) = {semp): [ fieorie <up)+e] —
S(P) = Sy(P)=arg min /fogx (d¢)  (solution set). que |

xeM(P



The underlying probability distribution P is often incompletely known
in applied models and/or has to be approximated (estimated, dis-

cretized).

— stability behaviour of stochastic programs becomes important

when changing (perturbing, estimating, approximating) P € P(Z).

Here, stability refers to (quantitative) continuity properties of the
optimal value function v(.) and of the set-valued mapping S-(.) at

P, where both are regarded as mappings given on certain subset of
73(_,) equipped with some convergence of probability measures and

some probability metric, respectively.
(The corresponding subset of probability measures is determined such that certain moment condi-
tions are satisfied that are related to growth properties of the integrands f; with respect to £.)

Examples: Two-stage stochastic programs, chance constrained
stochastic programs.
Survey:

W. Romisch: Stability of stochastic programming problems, in: Stochastic Programming (A.
Ruszczynski, A. Shapiro eds.), Handbook, Elsevier, 2003.
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Weak convergence in P(Z)

Py = P iff | fE)Pa(dE) — | FE)P(dE) (Vf € Ci(2)),

—_
—
—

iff P;({ﬁ < z}) — P({£ < z}) at continuity points z
of P({¢ < -}).

Probability metrics on P(E) (Monographs: Rachev 91, Rachev/Riischendorf 98)

Pg) - [ Q)| s e 7}

where F is a suitable set of measurable functions from = to R and

Metrics with (-structure:

dr(P, Q) = sup {

P, () are probability measures in some set Pz on which dr is finite.

Examples (of F): Sets of locally Lipschitzian functions on = or
of piecewise (locally) Lipschitzian functions.

There exist canonical sets F and metrics dr for each specific class
of stochastic programs!
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2. General quantitative stability results

To S|mp||fy matters, let X be compact (otherwise, consider localizations).

F =Afi,x) :2e€X,j=0,...,d},
Pf:{@epﬁw/nﬁmgwm%ﬁ»—

ﬂmfﬁé, QUdE) < 00, § =0,...,d},

and the probability (semi-) metric on Px:

d5(P,Q) = ﬂmmw(/ﬁﬁxP Q)(d¢)|.

reX J=0,...,

Lemma:
The functions (z, Q) — [ f;(&, x)Q(dE) are lower semicontinuous

on X X 73]:.



Theorem: (Rachev-Rémisch 02)
If d > 1, let the function z — [ fo(§, 2)P(d€) be Lipschitz [romeree |
continuous on X, and, let the function

Title Page I

(z,y) —d ( {:U e X : /f7 P(d¢) <wy;,j=1,. d}) _—

be locally Lipschitz continuous around (z,0) for every £ € S(P) —
(regularity condition).

Then there exist constants L, § > 0 such that ) .
‘U( ) U(Q)‘ S Ldf(P Q) Page 7 of 35
S(Q) € S(P)+ Vp(Ldr(P,Q))B LR
holds for all @ € Px with dx(P, Q) < 6. Go Back
Here \I/p(??) =" + w_l(n) and w : R+ N ]R+ Full Screen |

WY(T) :—min{/: fol&, z)P(d§) — v(P):d(x,S(P)) > 1,0 € M(P);.

(Proof by appealing to general perturbation results of Klatte 94 and Rockafellar/Wets 98.)



Convex case and d := 0:
Assume that fy(&, -) is convex on R™ V¢ € =.

Theorem: (Rémisch-Wets 06)
Then there exist constants L, £ > 0 such that

A-(5(P),5:(Q)) < Zd#(P,Q)

for every € € (0,€) and @) € P such that dx(P,Q) < ¢.

Here, d . is the Pompeiu-Hausdorff distance of nonempty closed
subsets of R™ i.e.,

d(C,D)=inf{n >0:C C D+nB,D C C+nB}.

Proof using a perturbation result by Rockafellar/Wets 98.
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The (semi-) distance dz plays the role of a minimal probability
metric implying quantitative stability.

Furthermore, the result remains valid when bounding d  from above
by another distance and when reducing the set Pr to a subset on
which this distance is defined and finite.

|dea: Enlarge F, but maintain the analytical (e.g., (dis)continuity)
properties of f;(-,x), 7 =0,...,d

This idea may lead to well-known probability metrics, for which a
well developed theory is available !
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Example: (Fortet-Mourier-type metrics)
We consider the following classes of locally Lipschitz continuous
functions (on =)

Fr={f 2R : f(&)— £(&) < max{1, H(|IE]), H(IEIN} -
1€ — &I, V€, € € =}

are of particular interest, where H : R, — R, is nondecreasing,
H(0) = 0. The corresponding distances are

/ F(€)P(dg) - / f(&)@(dﬁ)‘ — (P, Q)

are so-called Fortet-Mourier-type metrics defined on

Pu(®)={Q € P(E): / mesc{L, H(|E])}1€1Q(d€) < 0o}

dr, (P,Q) = sup
feFn

Important special case: H(t) := t’! for p > 1.
The corresponding classes of functions and measures, and the dis-
tances are denoted by F,, P,(=) and (,, respectively.

(Convergence with respect to (;, means weak conergence of the probability measures and conver-
gence of the p-th order moments (Rachev 91))
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Application: Convergence of empirical estimates

Let P € P(Z) and let &1, &, ..., &y, - . . be independent, identically
distributed =-valued random variables on some probability space
(2, A, P) having the common distribution P.

Let P (w) :=L>"" | & (.) be the empirical measures Vn € N.

We consider the empirical estimates or sample average approxima-
tion (replacing P by P,(+)):

1 n 1 n
: 4 AR E=D. o= (&) <0,9=1,...,d
mln{n;fo(ﬁ T): T n;f‘]@ ) J }

Then results on the convergence in probability of

and, hence, of
[v(P) — v(F(-))]

may be obtained using the general stability results, empirical process
theory and covering numbers for F as subsets of L,(=, P).
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3. Two-stage stochastic programming models

We consider the two-stage stochastic program

min {(c, T) +/:Ci>(§,a:)P(d§) X € X},
where

O(¢,x) = inf{{g(€),y) 1 y € ,W(E)y = h(€) — T(&)x}

P = P&t € P(Z) is the probability distribution of the random
vector &, ¢ € R™, X C R™ is a bounded polyhedron, ¢(§) € R™,
Y € R™ is a polyhedral cone, W (&) a r x m-matrix, h(§) € R”
and T'(&) a r X m-matrix.

We assume that ¢(&), h(§), W (&) and T'(§) are affine functions of

¢ (e.g., some of their components or elements are random).
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Example:(two-stage model with simple recourse)

P = 50 (unit mass at 0),
P, =(1 ——)(50+152 n € N.

i W
v(P) =0, S(P) = 0,1),

&, 1) P,(d€) = (1 — ) max{0, —z} + + max{0,n* — z}
U(Pn): —% S(P) = {1} (n € N),

Note: P, —" P, but first order moments do not converge !

Jz FE)Pu(d€) = (1= 1) f(0) + 1 f(n?) — f(0), Vf € Cy(Z).
But, [2[£|P.(d€) = 2n? =n (n € N) and 2 |£|P(d€) =0
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Structural properties of two-stage models

Home Page I

We consider the infimum function of the parametrized linear (second-
stage) program and the dual feasible set of the second-stage pro- _ Teepse |
gram, namely,

O(&, u, t):=inf{{u,y): W)y =t,y € Y} ((§,u,t) eExR"xR")
D) ={zeR"W() z—q(€) e Y*} (£ €2), | » ]

where TV (€)' is the transposed of T¥(£) and Y* the polar cone <
of Y (i.e., Y*={y*: (y*,y) <0,Vy € Y}). Then we have
Page 14 of 35 |

(¢, 2)=®(&, q(€), h(E) = T(€)z) =sup{(h(§) =T (€)z, z): z€ D(E)}.

Theorem: (walkup/Wets 69)

For any £ € =, the function ®(&, -, ) is finite and continuous on s |
the polyhedral set D(&) x W(£)Y . Furthermore, the function

O(&, u, -) is piecewise linear convex on the polyhedral set W (&)Y coe |
for fixed u € D(&), and P(&, -, t) is piecewise linear concave on

D(§) for fixed t € W(E)Y. que |

Contents
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Assumptions:

(A1) relatively complete recourse: for any (&, x) € = x X,
hE) =T )z € W)Y
(A2) dual feasibility: D(£) # () holds for all £ € =.

Note that (A1) is satisfied if W (&)Y = R" (complete recourse). In
general, (A1) and (A2) impose a condition on the support of P.

Proposition:
Then the deterministic equivalent of the two-stage model repre-
sents a finite convex program (with polyhedral constraints) if the

integrals |- P(&, (&), h(&) —T(&§)x)P(dE) are finite for all z € X.

For fixed recourse (W (£) = W), it suffices to assume

/: [€IPP(de) < oo.

Convex subdifferentials, optimality conditions, conditions for differ-
entiability, duality results are well known.
(Ruszczyriski/Shapiro, Handbook, 2003)
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Towards stability

We define the integrand f; : = x R™ — R by

(¢, 2) + (€, ¢(€), M&) =T (€)z) if h(§) —T()x €
fol€,z)= W(&)Y, D(¢) # 0,

+00 otherwise,

and note that fj is a convex random Isc function with = x X C

dom fy if (Al) and (A2) are satisfied.

The two-stage stochastic program can thus be expressed as

min {/:f()<§,:v)P(d§) L x € X}.

Then the general stability theory applies !

Simple examples of two-stage stochastic programs show that, in general, the set-valued mapping
S(.) is not inner semicontinuous at P. Furthermore, explicit descriptions of conditioning functions
1 p of stochastic programs (like linear or quadratic growth at solution sets) are only known in some

specific cases.
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Stability w.r.t. the Fortet-Mourier metric (y

Proposition:

Suppose the stochastic program satisfies (Al) and (A2). Assume
that the mapping £ — D(&) is bounded-valued and there exists a
constant L > 0, and a nondecreasing function A : R, — R, with

h(0) = 0 such that

do(D(€), D(€)) < L max{1, h([I€])), A€} IIE — €]

holds for all £,€ € =.
Then there exist L > 0 such that

| fo(&,2) = fol&2)] < Lmax{L, H(|IE]), H(EN}IE — €]
[fo(&, 2) = fo(&,2)] < Lmax{L, H([[E])lI¢]|} ]z —

forall £,€ € =, x,% € X, where H is defined by

1 , fixed recourse

Note that Ai(t) = {

t* . lower diagonal randomness with & blocks.
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Discrete approximations of two-stage stochastic programs

Replace the (original) probability measure P by measures P, having
(finite) discrete support {&1,...,&,} (n € N), e,

n
1=1

and insert it into the infinite-dimensional stochastic program:

min{(c, x) + Zp@<q(§z),yz> xeX, €Y, i=1,...,n,
W (&) +T(&)x = h(&)
W (&2)yo +T(.§2)CU = h(&)

Wy +T(E)e = €}

Hence, we arrive at a (finite-dimensional) large scale block-structured
linear program which allows for specific decomposition methods.
(Ruszczyriski/Shapiro, Handbook, 2003)
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How to choose the discrete approximation ?

Home Page I

Title Page I
distance dz or the probability metric ¢, i.e., given n € N solve s |

The quantitative stability results suggest to determine P, such that
it forms the best approximation of P with respect to the semi-

. 1 < _
min § G P’EZ% ez, i=1,....n “« | o»
i=1

Such best approximations P = %Z?:l 55; are known as optimal ]
quantizations of the probability distribution P (Graf/Luschgy, Lecture Notes
Page 19 of 35 I

Go Back I
Convergence properties of optimal quantizations in case of the /-
minimal metrics (or Wasserstein metrics) Fun sren |

Math. 1730 2000).

1
p

0,(P,Q):= <inf {[ ) 1€ — ngn(dg, dé) | mn = P, mn = Q}) 7 cose |

are already known. Here, 7; is the projection onto the i-th compo- Qe |
nent. Note that (,(P,Q) < (1 + [ IE[P(P + Q)(d€)) T 4,(P.Q).



Scenario reduction

We consider discrete distributions P with scenarios & and proba-
bilities p;, 1 = 1,..., N, and () being supported by a given subset
of scenarios &, j & J C {1,..., N}, of P.

Optimal reduction of a given scenario set J:
The best approximation of P with respect to (, by such a distribu-
tion () exists and is denoted by ()*. It has the distance

- CT(P7Q ) — mmg} P Q sz mlncr gz;&])

1€J

sz mm{z (& &) smEN € {1,..., N},

1eJ
ll—'l,ln:] g‘]}
and the probabilities ¢7 = p; + > pi, Vj & J, where

ZEJJ'
S iSRG EhiRand i)l Stangminic (i) i el
J

(Dupacova—Growe—Kuska—Romlsch 03, Heitsch-Rémisch 07)
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We needed the following notation:

cr(€,€) = max{L, [l €] HIE— €]l (€,€ € D).

Proposition: (Rachev/Riischendorf 98)

ey |
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KT

where ¢, < ¢, and ¢, is the metric (reduced cost)

) - ~ I N
ér(f,f) = inf {Z Cr(fliagliﬂ) ke N,fli € E,&l = g;flk = f}

G(PQ) = mf{ / & (& Emldg, &) :mn =P, man —Q}

. Page 21 of 35
=l —I
Determining the optimal scenario index set with prescribed cardi- oo |
nality n is, however, a combinatorial optimization problem of set
covering type: Ful Sereen |
min{D; = min ¢, (&,&) J C{1,..., N J=N—n
{ J ;pz idJ T(€Z7€j) { y ey }7 # } o I

Hence, the problem of finding the optimal set J to delete is N'P- que |
hard and polynomial time solution algorithms do not exist.



Fast reduction heuristic

Starting point (n = 1):

min

Z kaT’ (51{: fu)

N} =1

Algorithm: (Forward selection)

Step [0]: JU .= {1,.

Step [i]: u; € arg min Z

ue Jli— ]

J[Z —

LNV,

=1\ {u}

A {uz} -
Step [n+1]: Optlmal redistribution.

jgJli-

min

T\ {u}

éT(é-k‘: €j)7



Example: (Electrical load scenario tree)
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Reduced load scenario tree obtained by the forward selection method (15 scenarios)
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4. Chance constrained stochastic programs

We consider the chance constrained model
min{(c,z) : x € X, P{£ € 2:T(§)x > h(§)}) > p},

where ¢ € R™, X and = are polyhedra in R™ and R®, respectively,
p € (0,1), P € P(Z), and the right-hand side h(£) € R? and the
(d, m)-matrix T'(§) are affine functions of £.

By specifying the general (semi-) distance we obtain
d5(P,Q) = supmax

suprma| | £, €)(P = Q)

= sup |P(H(z)) — Q(H(2))]
where f()(f:x) - <C7 aj>' fl(grr) =D~ XH(x)(é.) and
H(x)={¢€Z: Tz > h(&)} (polyhedral subsets of =).
The relevant probability metrics are polyhedral discrepancies:

&ph(Pv Q) = BeSBup(:) ‘P(B) o Q(B)|
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5. Two-stage mixed-integer stochastic programs

Home Page |

min {(c, x) + /:q)(q(ﬁ), h(&) —T(E)x)P(dE) : x € X}, rite Page |
where ® is given by H Contents

D(u,t) = inf{(ul,y>+<u2,zj> - Wy+Wy<tyecZmy ERm} =

for all pairs (u,t) € R™™ x R", and ¢ € R™, X is a closed

subset of R™, = a polyhedron in R*, W and W are (r,1)- and Lol
(r, 7m)-matrices, respectively, ¢(§) € R™™ h(£) € R”, and the

(7, m)-matrix T'(£) are affine functions of £, and P € Py(=). I
Probability metric on Ps(=):

enP.Q) = swf| [ -l LS5}
T (if = is bounded)

S C@ph(P7 Q) I

Here, the set F5(=) contains all functions f : = — R such that

7O < mass{L IEIHIEN, 7€)~ F@)] < max{, el IEHIE—EN T



6. Multistage stochastic programs

Home Page I

Let {&}1 | be a discrete-time stochastic data process defined on
some probability space (), A,P) and with & deterministic. The [ merse |
stochastic decision x; at period t is assumed to be measurable with

respect to A (&) := o (&1, ..., &) (nonanticipativity). _ Comems_|

4 144
Multistage stochastic optimization model:

xtEXt,t:17...,T, < >
xy is A(§)-measurable,t = 1,..., T,
Arozr + A1 (&)1 = he(&), 0 =2,., T | |

where X is bounded polyhedral and X;, t =2,...,T, are polyhe- GoBack |
dral cones, the vectors b;(-), h(-) and A;1(-) are affine functions
of &, where £ varies in a polyhedral set =. Full sereen_|

T

Z(bt(ft)» Tt)

t=1

min <K

If the process {&;}1_, has a finite number of scenarios, they exhibit e
a scenario tree structure. -



To have the model well defined, we assume
x e Ls(Q,AP;R™ and £ € L,.(Q2, A, P;R?),

where » > 1 and

if only costs are random

o r , if only right-hand sides are random
o 2, if costs and right-hand sides are random
oo , if all technology matrices are random and r» = T.

Then nonanticipativity may be expressed as

z € Ny(§)
M’(f) - {ZC S X?:lLT’<Qv A, P; Rmt) - Ly = ]E[:Ct’At(g)} ) Vt}’

I.e., as a subspace constraint, by using the conditional expectation
E[-|A;(&)] with respect to the o-algebra A;(&).

For T'= 2 we have N/(§) = R™ x L.(Q, A, P;R™2).

— infinite-dimensional optimization problem
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Example: (Optimal purchase under uncertainty)

The decisions x; correspond to the amounts to be purchased at
each time period with uncertain prices are &, t = 1,...,T, and
such that a prescribed amount a is achieved at the end of a given
time horizon. The problem is of the form

p

T (ajh St) c Xt = Ri)

Zg T ] (¢, 5¢) is (&1, - - ., & )-measurable,
tLt

t=1

St—St_llet,tZQ,...,T,

-~
-

min £ [

s1=0,s7 = a.
\ y,

where the state variable s; corresponds to the amount at time ¢.

Let T" := 3 and &. denote the stochastic price process having the
two scenarios £! = (3,2 +¢,3) (e € (0,1)) and €2 = (3,2, 1) each
endowed with probability % Let ¢ denote the approximation of &.
given by the two scenarios £! = (3,2, 3) and €2 = (3,2, 1) with the

same probabilities %
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Scenario trees for & (left) and &

We obtain
o(E.) = %((2+5)a+a)=3;€a
v(€) = 2a, but
l&: =€l < %<0+s+0)+%(0+0+0)=§

Hence, the multistage stochastic purchasing model is not stable
with respect to || - ||;.



Quantitative Stability

Let F' denote the objective function defined on L,.(€2, A, P; R®) x
Ly(Q, A P;R™ — R by F(6,2) :=E[>,_ (b(&), )], let

Xi(xri—1; &) = {xe € Xo : Aroxr + Ar1(&)vi—1 = (&)}
denote the ¢-th feasibility set for every t =2,...,T and
X(g) = {Qf S LT/(Q7f7 IP)7 Rm) 1 X € Xlaxt S Xt(ajt—l;gt)}

the set of feasible elements with input &.
Then the multistage stochastic program may be rewritten as

min{F (&, z) : x € X(&) NN.(§)}.
Let v(&) denote its optimal value and, for any o > 0,

Sa(§) = {z € X(§)NNL(E): F(§,2) S v(§) + a}
S(&) = So(§)

denote the a-approximate solution set and the solution set of the
stochastic program with input &.
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Assumptions:
(A1) ¢ € L, (2, A, P;R%) for some r > 1.

(A2) There exists a § > 0 such that for any £ € L.(Q, A, P;R?)
with ||€ — €|, < 0, anyt = 2,...,T and any z; € X, z, €
XT(:UT_l;gT), T =2,...,t — 1, the set Xt(a:t_l;gt) is nonempty
(relatively complete recourse locally around &).

(A3) Assume that the optimal values v(&) are finite if || —&]|, < 0
and that the objective function F' is level-bounded locally uniformly

at &, i.e., for some a > 0 thf:re exists a bounded sybset B of
L.(Q, A, P;R™) such that S, (&) is contained in B if ||[£—¢&]|, < 9.
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Theorem: (Heitsch-Romisch-Strugarek 06)
Let (A1) — (A3) be satisfied and X be bounded.

Then there exist positive constants L and ¢ such that

[0(€) = v(€)] < L€ — €llr + dir-1(€, €))

holds for all ¢ € L,(2, A, P;R?) with ||£ — &]|, < 6.

If 1 < 7' < oo and (£) converges to € in L, and with respect
to d¢ 7, then any sequence x,, € S(£), n € N, contains a subse-
quence converging weakly in L,/ to some element of S(&).

Here, d; ; (€, ¢) denotes the filtration distance of & and € defined by

T

di(€,€) = sup Y |[Efai| Ai(€)] — Elxi] Ai(E)]]l,
]l <12
Remark:
For T' = 2 we obtain the same result for the optimal values as
in the two-stage case | However, we obtain weak convergence of
subsequences of (random) second-stage solutions, too !
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Consequences for designing scenario trees

o If &, is a scenario tree process approximating &, one has to take
care that ||& — &, || and dr. (€, &) are small. This is achieved
for the generation of scenario trees by recursive scenario reduc-

tion (Heitsch-Rémisch 05).

—
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<Start Animation>

e Are there specific approximations & of & such that an estimate
of the form |v(&) —v(€)| < L||€ —£||, is valid ? Recently, such
approximations & were characterized by Kiichler 07 | The con-
ditions on & and approximation schemes developed by Kuhn 05,
Pennanen 05, Mirkov-Pflug 07 also avoid filtration distances.
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