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Abstract. The dynamical environment on the surface of a rotating, massive ellipsoid is studied,
with applications to surface motion on an asteroid. The analysis is performed using a combi-
nation of classical dynamics and geometrical analysis. Due to the small sizes of most asteroids,
their shapes tend to differ from the classical spheroids found for the planets. The tri-axial ellips-
oid model provides a non-trivial approximation of the gravitational potential of an asteroid and
is amenable to analytical computation. Using this model, we study some properties of motion on
the surface of an asteroid. We find all the equilibrium points on the surface of a rotating ellipsoid
and we show that the stability of these points is intimately tied to the conditions for a Jacobi or
MacLaurin ellipsoid of equilibria. Using geometrical analysis we can define global constraints on
motion as a function of shape, rotation rate, and density, we find that some asteroids should have
accumulation of material at their ends, while others should have accumulation of surface mate-
rial at their poles. This study has implications for motion of a rover on an asteroid, and for the
distribution of natural material on asteroids, and for a spacecraft hovering over an
asteroid.
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1. Introduction

The motivation for this paper is to better understand the motion of a particle
traveling on the surface of an asteroid. A better understanding of this ques-
tion has applications to the motion of natural material on the surface of an
asteroid [9] and to the dynamics and control of an artificial object travel-
ing on the surface of an asteroid [10]. Due to their small size and possible
rapid rotation rates the combination of centripetal and gravitational accelerations
change the dynamical environment on an asteroid surface to the point where
simple models no longer apply, and a more sophisticated investigation must be
used.

Due to the small size of most asteroids, their shapes tend to differ markedly from
the classical spheroidal shapes found for planets. The general problem of surface
motion on an asteroid must be analyzed with both a model for the asteroid surface
and a model for the asteroid gravity field. While a spherical harmonic expansion
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model could be used for the shape of the asteroid [16], a spherical harmonic gravity
field could not be used for such a computation due to their strong divergence at
the surface of an asteroid [15]. Alternately, a polyhedron shape could be used for
both the asteroid surface and its gravity field, and indeed, simple slope calcula-
tions have been performed for asteroids using such a model [6, 8, 12, 13, 16],
however the generality of these models make it difficult to extract the qualitative
principles of motion on such a body. Thus, in this paper we adopt the tri-axial
ellipsoid model to approximate an asteroid and its surface. There are three basic
reasons that justify the use of this model. First because of its generality, as it
can generate a wide range of shapes by adjusting only three parameters. Second
because of its tractability, as its gravity field is known in closed form. Third be-
cause of its simple specification of the asteroid surface, which can be represented
as a quadratic form. The ellipsoid model has also been used previously to study
dynamics in the vicinity of asteroids [2, 11], and serves, in general, as the simplest
non-trivial model for motion about such bodies. While the use of an ellipsoid
model is clearly a strong approximation to a true asteroid shape, nonetheless we
find that this provides a rich dynamical environment which can serve as the ini-
tial step towards understanding motion on the surface of more general asteroid
shapes.

It should be stressed that the current study is not directly connected to the
well-known problem of geodesic motion on the surface of an ellipsoid. In that
problem the surface curvature acts as the force environment for the motion of the
particle. In the problem considered here, the ellipsoid is not only rotating but is also
gravitating, creating a fundamentally different environment than that considered in
the study of geodesics, and preventing any direct comparisons between the two.
One interesting aspect of our study is that we find a fundamental relationship
between the stability of a particle resting on the surface of a rotating ellipsoid and
the families of Jacobi and MacLaurin ellipsoids (see [1] for a complete review of
these families).

The content of this paper is as follows. First we define the basic model
and introduce normalizations to reduce the equations to their simplest form.
Next we develop the conditions for equilibrium on the surface of a rotating el-
lipsoid. In general an ellipsoid will only have six unique equilibrium points,
but we also find situations where every point on the surface of an ellipsoid
may be in equilibrium. Following this we evaluate the stability of these equi-
librium points using two different methods, first by performing a linear ana-
lysis about the equilibrium points and second by analyzing the zero-velocity
curves associated with these points. Then we study the stability conditions and
show that they are intimately related to the well-known families of Jacobi and
MacLaurin ellipsoids. Finally, we apply our results to some known asteroids,
showing that a variety of surface stability conditions probably exist in the solar
system.
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2. Description of the Tri-axial Ellipsoid Model

2.1. PHYSICAL CHARACTERISTICS

To model an asteroid using a tri-axial ellipsoid we only need five parameters, the
three major axes, the rotation rate and the density. In all the following, we assume
that the tri-axial ellipsoid has semi-axes α, β and γ with α�β � γ , a constant
density ρ, and a rotation rate ω about its maximum moment of inertia (γ -axis).
The gravitational parameter µ is then:

µ = 4
3πGραβγ (1)

where G is the gravitational constant and 4π/3ραβγ is the mass of the ellipsoid.
Now define a body-fixed coordinate system in the ellipsoid. The x-axis lies

along the largest dimension α, the y-axis lies along its intermediate dimension β
and the z-axis lies along its smallest dimension γ .

2.2. GRAVITATIONAL POTENTIAL

The gravitational potential on the surface of a constant density tri-axial ellipsoid
is [7]

V (x, y, z) = 3µ

4

∫ ∞

0
φ(x, y, z, u)

du

�(u)
(2)

with

φ(x, y, z, u) = x2

α2 + u + y2

β2 + u + z2

γ 2 + u − 1,

�(u) =
√
(α2 + u)(β2 + u)(γ 2 + u)

2.3. SURFACE CONSTRAINT

As mentioned previously, we are interested in motion on the surface. Thus the
particle must satisfy the equation of the surface constraint:

S(r) = 0 (3)

where

S(r) = x2

α2
+ y2

β2
+ z2

γ 2
− 1 or S(r) = φ(x, y, z, 0)

Since motion is assumed to be tangent to the surface and the gradient of S, Sr , is
perpendicular to the surface, we have:

Sr = |Sr |n̂, Sr · ṙ = 0, Sr · r̈ = 0 (4)

where n̂ is the unit normal vector of the surface.
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2.4. EQUATIONS OF MOTION

The Lagrangian for unconstrained motion is stated as

L = 1
2(ṙ + ωωω ∧ r) · (ṙ + ωωω ∧ r)− V (r) (5)

To apply this to motion on the surface requires the Lagrangian to be augmented as

L′ = L(r, ṙ)+ λS(r) (6)

where S(r) is the surface of the ellipsoid.
The equations of motion are then:

d

dt

(
∂L′

∂ ṙ

)
= ∂L′

∂r
, 0 = ∂L′

∂λ
(7)

that is,

r̈ + 2ωωω ∧ ṙ + ωωω ∧ (ωωω ∧ r) = −Vr + λSr , S(r) = 0 (8)

It is now useful to normalize all the variables:

x̂ = x

α
, ŷ = y

α
, ẑ = z

α
, t̂ = ωt, δ = µ

ω2α3

The potential in the normalized coordinates is

V̂ (x̂, ŷ, ẑ) = 3δ

4

∫ ∞

0
φ(x̂, ŷ, ẑ, v)

dv

�(v)
(9)

where

φ(x̂, ŷ, ẑ, v) = x̂2

1 + v + ŷ2

β̂2 + v + ẑ2

γ̂ 2 + v − 1,

�(v) =
√
(1 + v)(β̂2 + v)(γ̂ 2 + v),

β̂ = β

α
and γ̂ = γ

α

Expanding the integral yields:

V̂ (x̂, ŷ, ẑ) = 3
4δ(Iα̂x̂

2 + Iβ̂ ŷ2 + Iγ̂ ẑ2 − Î ) (10)

where

Iα̂ =
∫ ∞

0

du

(1 + u)�(u), Iβ̂ =
∫ ∞

0

du

(β̂2 + u)�(u) ,

Iγ̂ =
∫ ∞

0

du

(γ̂ 2 + u)�(u) , Î =
∫ ∞

0

du

�(u)
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Moreover, as 1 � β̂ � γ̂ , it immediately follows that:

Iα̂ � Iβ̂ � Iγ̂ , Iα̂ � β̂2Iβ̂ � γ̂ 2Iγ̂ (11)

To state the final form of the equation, we drop the hat notation and assume all
quantities to be normalized:

r̈ + 2ωωω ∧ ṙ + ωωω ∧ (ωωω ∧ r) = −Vr + λSr ,

S(r) = x2 + y2

β2
+ z2

γ 2
− 1 = 0 (12)

where ωωω has unit magnitude and points along the γ axis.
Thus we have reduced the number of parameters from 5 to 3 (β, γ and δ).

2.5. EVALUATION OF THE LAGRANGE MULTIPLIER λ

To simplify the full motion (Equation (12)) we must solve for the Lagrange mul-
tiplier λ in terms of the positions and velocities of the particle. The dot product of
Sr with Equation (12) yields:

Sr · (r̈ + 2ωωω ∧ ṙ + ωωω ∧ (ωωω ∧ r)) = Sr · (−Vr + λSr)

Using Equations (4), we solve for λ:

λ|Sr |2 = Sr · {2ωωω ∧ ṙ + ωωω ∧ (ωωω ∧ r)+ Vr} (13)

Using Equations (12) and (13) we are now able to study the existence of the
equilibrium points.

3. Existence of Equilibrium Points

Substituting Equation (13) into Equation (12) and simplifying yields:

r̈ + Inn[2ωωω ∧ ṙ] = Inn[−ωωω ∧ (ωωω ∧ r)− Vr] (14)

S(r) = 0 (15)

where Inn = I − (Sr/|Sr |)(Sr/|Sr |)T projects a general vector into the space
tangent to the ellipsoid surface, and I is the identity matrix.
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We are interested in the equilibrium points, so we set ṙ = r̈ = 0. Simplifying
and expanding yields:

x

[
1 − 4

|Sr |2
(
x2 + y2

β2

)
− 3δ

2
Iα

+ 6δ

|Sr |2
(
x2Iα + y2

β2
Iβ + z2

γ 2
Iγ

)]
= 0 (16)

y

β2

[
β2 − 4

|Sr |2
(
x2 + y2

β2

)
− 3δ

2
β2Iβ

+ 6δ

|Sr |2
(
x2Iα + y2

β2
Iβ + z2

γ 2
Iγ

)]
= 0 (17)

z

γ 2

[
γ 2 − 4

|Sr |2
(
x2 + y2

β2

)
− 3δ

2
γ 2Iγ

+ 6δ

|Sr |2
(
x2Iα + y2

β2
Iβ + z2

γ 2
Iγ

)]
= 0 (18)

x2 + y2

β2
+ z2

γ 2
− 1 = 0 (19)

We immediately note that points P1 = (±1, 0, 0), P2 = (0,±β, 0) and P3 =
(0, 0,±γ ) are equilibrium points, since they verify Equations (16)–(19).

Let us try to find other equilibrium points. For that let us first find some useful
relationships. The difference between Equation (16) divided by x and Equation (17)
divided by y/β2, the difference between Equation (16) divided by x and Equation
(18) divided by z/γ 2 and the difference between Equation (17) divided by y/β2

and Equation (18) divided by z/γ 2 lead to:

1 − β2 = 3
2δ(Iα − β2Iβ) (20)

1 = 3
2δ(Iα − γ 2Iγ ) (21)

β2 = 3
2δ(β

2Iβ − γ 2Iγ ) (22)

Note that these equations are not necessarily true in general, they are verified only
for equilibrium points, and thus will allow us to search for additional equilibrium
points.

1. If x �= 0 then
— if y �= 0, Equation (17) can be replaced by Equation (20) which is a

linear combination of Equations (17) and (16) (note that if β = 1 this
new equation becomes void).
• If z �= 0, Equation (18) can be replaced by Equation (21). To find equi-

librium points, we now need to solve Equations (16), (20), (21) and (19).
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Nevertheless, Equations (20) and (21) are only conditions on the phys-
ical characteristic of the ellipsoid, they define the Jacobi ellipsoid.1 If
Equations (20) and (21) are satisfied (i.e. if we have a Jacobi ellipsoid),
we substitute z in Equation (16) using (19), and simplify using Equations
(20) and (21) to find that all points on the ellipsoid surface (except the
equator because we set z �= 0) are solutions of our system, that is, are in
equilibrium. If β = 1, we have seen that Equation (20) is void. In that
case, only Equation (21) describes the ellipsoid. Its solution is known
as the MacLaurin spheroid. If it is satisfied, then again all points on the
surface are equilibria. Finally, if γ = 1, there is no solution to Equation
(21) and there is no equilibrium point.

• If z = 0, Equation (18) is always true. We only need to solve Equations
(16), (20) and (19). If we substitute y in Equation (16) using (19), and
simplify using Equation (20), we find that all points on the equator are
solutions, that is are in equilibrium. The geometry defined by Equa-
tion (20) includes, but is not limited to, the Jacobi ellipsoid and the
MacLaurin spheroid.

— if y = 0 Equation (17) is always true.
• z = 0 leads to P1

• If z �= 0 we replace Equation (18) by Equation (21). We now have to
solve Equations (16), (21) and (19). If we substitute z in Equation (16)
using (19), and simplify using Equation (21), we find that all points on
the ellipse which lies on the ellipsoid in the plane y = 0 are solutions,
that is are in equilibrium. The geometry defined by (21) includes, but
is not limited to, the Jacobi ellipsoid and the MacLaurin spheroid. Note
that if γ = 1 there is no solution to (21) and there is no equilibrium
point.

2. If x = 0, Equation (16) is always true
— y = 0 leads to P3,
— y �= 0 and z = 0 lead to P2,
— y �= 0 and z �= 0 allows us to replace Equation (18) by Equation (22). If

we substitute z in Equation (17) using (19), and simplify using Equation
(22), we find that all points on the ellipse which lies on the ellipsoid in
the plane x = 0 are solutions, that is are in equilibrium. The geometry
defined by (22) includes, but is not limited to, the Jacobi ellipsoid and the
MacLaurin spheroid.

Through this analysis, we have shown that in the most general case the only
equilibrium points for β < 1 are P1, P2 and P3. Nevertheless, there exist some
geometries for which the ellipsoid has infinitely many equilibrium points. The
MacLaurin spheroids and the Jacobi ellipsoids are some well-known figures for

1Chandrasekhar [1] gives a complete description of this equilibrium figure and discusses some
of their properties. The link between the Jacobi ellipsoids and our study is made in Appendix A.
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which all points on the surface are in equilibrium. For each β, there exists a unique
(γ, δ) defining such a figure that is a solution to Equations (20)–(22). We also put
into relief the existence of infinitely many geometries for which all points on the
ellipses which lie in the plane z = 0 or y = 0 or x = 0 are in equilibrium. These
geometries are defined by satisfying only one equation among Equations (20)–(22).

We can already underline a very interesting property of the equilibrium points,
for some particular values of (β, γ, δ) there exist an infinite number of equilibrium
points, whereas in the other cases there are only six. Thus, for these special values,
we expect a discontinuity in the properties of the six equilibrium points.

4. Stability of the Equilibrium Points

In this section we use Equations (12) and (13) to study the equilibrium points P1,
P2 and P3 found in the previous section. The first step will be to linearize the
equations of motion about the equilibrium points and find the conditions for which
they are a stable oscillator, that is for which we have spectral stability. Re-write
Equations (12) and (13) in the coordinate system:

ẍ − 2ẏ = x
(

1 − 3δ

2
Iα + 2λ

)
, ÿ + 2ẋ = y

(
1 − 3δ

2
Iβ + 2λ

β2

)
,

z̈ = z

(
− 3δ

2
Iγ + 2λ

γ 2

)
(23)

S(r) = 0 (24)

λ = 1

2

(
− 2xẏ − x2 + 3δ

2

(
x2Iα + y2

β2
Iβ + z2

γ 2
Iγ

)
+ 2yẋ

β2
− y2

β2

)
(25)

We will consider the stability of the points Pi for the cases β = 1 and β �= 1
separately.

4.1. STABILITY WHEN β �= 1

4.1.1. Stability of P1

In the vicinity of P1, we have: x = 1 + �x, y = �y, z = �z with �x, �y,
�z � 1.

First of all, we need to expand λ around P1 keeping only the terms of order 0
and 1:

λ = 1
2

( − 1 + 3
2δIα − 2xẏ

)
(26)
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Now replace λ in Equation (23) and only keep the terms of lower order:

ẍ = 0 (27)

ÿ + 2ẋ = y
(

1 − 3δ

2
Iβ + 1

β2

(
− 1 + 3δ

2
Iα

))
(28)

z̈ = z

(
− 3δ

2
Iγ + 1

γ 2

(
− 1 + 3δ

2
Iα

))
(29)

From Equation (24) we get

2�x + �y2

β2
+ �z2

γ 2
= 0 (30)

Therefore, �x is of order �y2 and �z2 at least. We can then simplify Equation
(28), since ẋ is small with respect to ÿ:

ÿ = y
[

1 − 3δ

2
Iβ + 1

β2

(
− 1 + 3δ

2
Iα

)]

P1 is spectrally stable if this equation defines an oscillator. We must have:

1 − 3δ

2
Iβ + 1

β2

(
− 1 + 3δ

2
Iα

)
< 0

Let us call this Condition 1. We will study it later.
Equation (29) is also an oscillator if

−3δ

2
Iγ + 1

γ 2

(
− 1 + 3δ

2
Iα

)
< 0

We call this Condition 2.
Thus, P1 is spectrally stable if and only if Conditions 1 and 2 are realized.
Finally, using the theory of the Lagrangian multiplier, we know that the particle

stays on the surface of the ellipsoid if and only if the constraint S(r) = 0 is active,
that is, if λ > 0. This inequality is a condition of existence for the equilibrium
point P1, it assures us that the centrifugal force is not too strong as compared to the
gravitational force.2 We can re-write (26) to the zeroth order as δ > 2/3Iα .

4.1.2. Stability of P2

At P2, we have: x = �x, y = β + �y, z = �z with �x, �y, �z � 1. Here the
expansion of λ in that case is

λ = β2

2

(
− 1 + 3δ

2
Iβ + 2yẋ

β2

)
(31)

2If the centrifugal force is too strong, the particle cannot stay on the surface of the ellipsoid.
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Replacing λ and keeping the terms of lowest order yields:

ẍ − 2ẏ = x
[

1 − 3δ

2
Iα + β2

(
− 1 + 3δ

2
Iβ

)]
(32)

ÿ = 0 (33)

z̈ = z

[
− 3δ

2
Iγ + β2

γ 2

(
− 1 + 3δ

2
Iβ

)]
(34)

From Equation (24) we get

�x2 + 2
�y

β
+ �z2

γ 2
= 0 (35)

Therefore, �y is of order �x2 and�z2 at least. We can then simplify the Equation
(32):

ẍ = x
(

1 − 3δ

2
Iα + β2

(
− 1 + 3δ

2
Iβ

))
This equation defines an oscillator if

1 − 3δ

2
Iα + β2

(
− 1 + 3δ

2
Iβ

)
< 0

We call this Condition 3.
Equation (34) is also an oscillator if Condition 4 holds:

−3δ

2
Iγ + β2

γ 2

(
− 1 + 3δ

2
Iβ

)
< 0

To conclude, P2 is spectrally stable if and only if Conditions 3 and 4 are realized.
Again, we know that the particle stays on the surface of the ellipsoid if and only

if the constraint S(r) = 0 is active, that is, if λ > 0. This inequality is a condition
of existence of the equilibrium point P2. We can re-write it at the zeroth order as:
δ > 2/3Iβ .

4.1.3. Stability of P3

At P3, we have: x = �x, y = �y, z = γ + �z with �x, �y, �z � 1. In this
case, the expansion of λ is

λ = γ 2

2

3δ

2
Iγ (36)

Equation (23) becomes:

ẍ − 2ẏ = x
(

1 − 3δ

2
Iα + γ 2 3δ

2
Iγ

)
(37)

ÿ + 2ẋ = y
(

1 − 3δ

2
Iβ + γ 2

β2

3δ

2
Iγ

)
(38)

z̈ = 0 (39)
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From Equation (24) we get

�x2 + �y2

β2
+ 2

�z

γ
= 0 (40)

Therefore, �z is of order �x2 and �y2 at least. P3 is spectrally stable if and only
if for x = K exp λt and y = L exp λt , �(λ) = 0. Replacing x and y in Equations
(37) and (38) yields:

K
(
λ2 − (

1 − 3
2δIα + γ 2 3

2δIγ
)) − 2Lλ = 0,

2Kλ+ L(
λ2 − (1 − 3

2δIβ + γ 2 3
2δIγ

)) = 0

The condition for this system to have a solution is

λ4 − λ2(A+ B − 4)+ AB = 0

where

A = 1 − 3δ

2
Iα + γ 2 3δ

2
Iγ , B = 1 − 3δ

2
Iβ + γ 2

β2

3δ

2
Iγ

Moreover, �(λ) = 0 implies that

A+ B − 4 < 0, AB > 0

Thus we conclude that A and B must be negative (if A < 0 and B < 0, A+ B − 4
is always negative). We finally find Conditions 5 and 6:

Condition 5 ⇔ 3
2δ(Iα − γ 2Iγ ) > 1,

Condition 6 ⇔ 3
2δ(β

2Iβ − γ 2Iγ ) > β
2

P3 is spectrally stable if and only if Condition 5 and Condition 6 are realized.
Finally, we know that the particle stays on the surface of the ellipsoid if and

only if the constraint S(r) = 0 is active, that is, if λ > 0. This is always true so the
equilibrium point P3 always exists.

4.2. IF β = 1

The case β = 1 corresponds to the ellipsoid axisymmetric with respect to the axis
z, that is an oblate or a prolate spheroid. A rotation of the coordinate system around
the z-axis does not influence either of the Equations (23) and (25). So we can study
the stability of any point on the equator. Let us choose the point (1, 0, 0). A limited
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development of λ gives:

λ = 1
2

( − 1 + 3
2δIα − 2xẏ

)
(41)

We replace λ in the equations of motion (23) and keep the terms of the lowest
order:

ẍ = 0 (42)

ÿ + 2ẋ = −2yẏ (43)

z̈ = z

(
− 3δ

2
Iγ + 1

γ 2

(
− 1 + 3δ

2
Iα

))
(44)

Equation (42) shows that �x is of second order. In Equation (43), yẏ is a term of
the second order, so ÿ is also of second order. Therefore, to the first order,

ÿ = ẍ = 0 and ẏ �= 0

The particle will have a constant speed along the x-axis and y-axis. Thus, in the
case β = 1, the points on the equator are always unstable.

Concerning P3, the resolution is the same as before. However, Condition 5 and
Condition 6 are identical for β = 1.

4.3. THE OTHER EQUILIBRIUM POINTS

If the ellipsoid satisfies either the Jacobi ellipsoid conditions or the MacLaurin
spheroid conditions, then the entire ellipsoid surface is an equilibrium position.
Therefore, all points are unstable in that a particle perturbed with a small velocity
will maintain that velocity in the ensuing motion.

If the ellipsoid satisfies only one condition among the three defined by Equa-
tions (20)–(22), then there are infinitely many equilibrium points which lie on an
ellipse along one of the symmetries x = 0, y = 0 or z = 0. Therefore, all points
are unstable in that a particle perturbed with a small velocity tangent to the ellipse
will maintain that velocity in the ensuing motion.

In summary, we have found the conditions of spectral stability for all the equi-
librium points. For P1, P2 and P3 there are two conditions (sometimes the same)
for stability and one condition for existence. Considering the linearized system, the
condition for existence can be viewed as a condition for stability along the axis on
which lies the equilibrium points whereas the two conditions of stability describe
the stability along the two other axes. For instance, if Condition 2 is true, P1 is
stable along the z-axis but if Condition 1 is not true, P1 is not stable along the
y-axis. The condition of existence characterizes the stability along the x-axis.
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We will now expand these results to Hill stability (see [16]) with a more general
method using quadratic forms.

5. Studies of Stability Using Geometrical Reasoning

5.1. JACOBI INTEGRAL

Taking the dot product of the equation of motion (12) by ṙ, and integrating yields:

J = 1

2

dr
dt

· dr
dt

− 1

2
(ωωω ∧ r) · (ωωω ∧ r)+ V (r) (45)

since Sr · ṙ = 0. J is a constant of the system called the Jacobi constant.
It can be expanded, replacing V (r) by (3δ/4)(Iαx2 + Iβy2 + Iγ z2 − I ):

J = 1

2

dr
dt

· dr
dt

− 1

2
(x2 + y2)+ 3δ

4
(Iαx

2 + Iβy2 + Iγ z2 − I ) (46)

To study the stability of motion, we are interested in the zero-velocity curves on
the surface of the ellipsoid.

If we suppose the speed relative to the surface is zero, the Jacobi equation
becomes:

J ′ = x2
( − 1

2 + 3
4δIα

) + y2
( − 1

2 + 3
4δIβ

) + z2 3
4δIγ (47)

where J ′ = J + (3δ/4)I .
It can be re written as

J ′ = J ′
1x

2 + J ′
2y

2 + J ′
3z

2 (48)

where

J ′
1 = − 1

2 + 3
4δIα, J ′

2 = − 1
2 + 3

4δIβ, J ′
3 = 3

4δIγ

Thus J ′ is a quadratic form, and motion is only allowed in the space

J ′ � J ′
1x

2 + J ′
2y

2 + J ′
3z

2 (49)

Moreover, as the motion must lie on the surface of the ellipsoid, we have the
additional constraint:

S(x, y, z) = x2 + y2

β2
+ z2

γ 2
− 1 (50)

with 1 � β � γ > 0
The zero-velocity curves are found by solving the Jacobi equation

(Equation (48)) under the constraint S(r) = 0 (Equation (50)), that is, by finding
the intersection of these two quadratic forms.
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5.2. QUADRATIC FORMS

Suppose we are at a given equilibrium point Pi, i ∈ {1, 2, 3}, with no speed, v = 0,
then

J ′ = riJ ′
i

where r1 = 1, r2 = β2 or r3 = γ 2 depending on the equilibrium point we are
interested in.

Now assume a speed �v is given to the particle, and then let us find the zero-
velocity curves. We have J ′ = riJ ′

i +�J ′, where �J ′ = (1/2)�v2

Equation (48) becomes:

x2

J ′/J ′
1

+ y2

J ′/J ′
2

+ z2

J ′/J ′
3

= 1 (51)

Equation (51) defines an ellipsoid whose semi-axis along the direction xj is√
J ′/J ′

j .
3 Therefore, if we are at Pi , the semi-axis in the direction xi is

√
J ′

J ′
i

>
√
ri

since �v2 > 0.

5.2.1. If J ′
1 > 0 then δ > 2/3Iα

J ′
1 > 0 implies J ′

2 > 0, and, as J ′
3 is always positive, Equation (51) defines an

ellipsoid. From Equation (49), we know that the motion is only allowed inside this
ellipsoid.

Suppose we are at Pi so that J ′/J ′
i > ri . Depending on the value of J ′/J ′

j �=i and
J ′/J ′

k �=i , the intersection between the two ellipsoids may change.

— If J ′/J ′
j � rj and J ′/J ′

k � rk, then there is no intersection between the two
ellipsoids and motion is allowed everywhere over the ellipsoid. A particle
perturbed from Pi has no barrier from traveling over the entire surface.

— If J ′/J ′
j < rj and J ′/J ′

k < rk , then the intersection is an ellipse which encircles
Pi (Figure 1). Pi is then Hill stable because the particle cannot leave Pi without
crossing a zero-velocity curve.

— If J ′/J ′
j < rj and J ′/J ′

k > rk , then the intersection is an ellipse which encircles
Pj (Figure 2). A particle perturbed from Pi may then reach Pk.

— If J ′/J ′
j > rj and J ′/J ′

k < rk , then the intersection is an ellipse which encircles
Pk. A particle perturbed from Pi may then reach Pj .

3(x1, x2, x3) = (x, y, z).
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Figure 1. Intersection of the quadratic form defined by the Jacobi integral and the ellipsoid when
J ′ = riJ ′

i +�J ′, J ′/J ′
j < rj , J ′/J ′

k < rk and δ > 2/3Iα .

Figure 2. Intersection of the quadratic form defined by the Jacobi integral and the ellipsoid when
J ′ = riJ ′

i +�J ′, J ′/J ′
j < rj , J ′/J ′

k > rk and δ > 2/3Iα .

So we conclude that:

— P1 is Hill stable under the conditions:
J ′

J ′
2

< β2 ∀ �J ′ > 0 ⇔ J ′
1

J ′
2

< β2,

J ′

J ′
3

< γ 2 ∀ �J ′ > 0 ⇔ J ′
1

J ′
3

< γ 2

These conditions are exactly Conditions 1 and 2 previously found.
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— P2 is Hill stable under the conditions:
J ′

J ′
1

< 1 ∀ �J ′ > 0 ⇔ β2J ′
2

J ′
1

< 1,

J ′

J ′
3

< γ 2 ∀ �J ′ > 0 ⇔ β2J ′
2

J ′
3

< γ 2

These conditions are exactly Conditions 3 and 4.
— P3 is Hill stable under the conditions:

J ′

J ′
1

< 1 ∀ �J ′ > 0 ⇔ γ 2J ′
3

J ′
1

< 1,

J ′

J ′
2

< β2 ∀ �J ′ > 0 ⇔ γ 2J ′
3

J ′
2

< β2

These conditions are exactly Conditions 5 and 6.

If any of the conditions are violated, we see that the particle not only loses Hill
stability, but will have a natural motion away from Pi along the unstable manifold.

5.2.2. If J ′
2 < 0 then δ < 2/3Iβ

J ′
2 < 0 implies J ′

1 < 0, thus, as J ′
3 is always positive, Equation (51) defines a

hyperboloid.

1. If we are at P3, then J ′ > 0 and the Jacobi integral defines a hyperboloid of
two sheets:

− x2

J ′/|J ′
1|

− y2

J ′/|J ′
2|

+ z2

J ′/J ′
3

= 1 (52)

Motion is allowed everywhere over the ellipsoid (Figure 3), and P3 is unstable.

Figure 3. Intersection of the quadratic form defined by the Jacobi integral and the ellipsoid when
J ′ = J ′

3 +�J ′ and δ < 2/3Iβ .
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Figure 4. Intersection of the quadratic form defined by the Jacobi integral and the ellipsoid when
J ′ = J ′

i �=3 +�J ′ and δ < 2/3Iβ .

2. If we are at Pi �=3, then J ′ < 0 and the Jacobi integral defines a hyperboloid of
one sheet:

x2

|J ′|/|J ′
1|

+ y2

|J ′|/|J ′
2|

− z2

|J ′|/J ′
3

= 1 (53)

At this point, we must pay attention to the meaning of J ′ < 0. In fact, by
dividing Equation (49) by J ′, we change the inequality. The motion becomes
allowed for (x, y, z) such that:

x2

|J ′|/|J ′
1|

+ y2

|J ′|/|J ′
2|

− z2

|J ′|/J ′
3

> 1 (54)

which is outside the hyperboloid.

Thus the particle cannot be at Pi (Figure 4), and Pi does not exist.

So we conclude that P3 is unstable in this case and that P1 and P2 do not exist.

5.2.3. If J ′
2 > 0 and J ′

1 < 0 then 2/3Iβ < δ < 2/3Iα
1. If we are at P1, then J ′ < 0 and the Jacobi integral defines a hyperboloid of

two sheets (Figure 5):

x2

|J ′|/|J ′
1|

− y2

|J ′|/J ′
2

− z2

|J ′|/J ′
3

= 1 (55)

We are in exactly the same case as Figure 3 (we just need to invert P3 and P1).
Nevertheless, in that case J ′ < 0, therefore the motion is not allowed between
the two sheets of the hyperboloid. The particle cannot be at P1, and thus P1

does not exist.



280 V. GUIBOUT AND D. J. SCHEERES

Figure 5. Intersection of the quadratic form defined by the Jacobi integral and the ellipsoid when
J ′ = J ′

k �=1 +�J ′ and 2/3Iβ < δ < 2/3Iα .

2. If we are at Pk �=1, then J ′ > 0 and the Jacobi integral defines a hyperboloid of
one sheet:

− x2

J ′/|J ′
1|

+ y2

J ′/J ′
2

+ z2

J ′/J ′
3

= 1 (56)

The motion is allowed inside the hyperboloid, so that Pk always exists but is
unstable (Figure 5, the particle can always reach Pi).

So we conclude that P2 and P3 are unstable and P1 does not exist.
Thus, we find again conditions similar to those of the previous section. Nev-

ertheless, in that analysis we made an assumption on the smallness of deviations
from Pi , whereas in the geometrical approach, we do not. We thus get a stronger
stability, namely Hill stability. A crucial point to make is that loss of Hill stability
is tied to loss of stability of the equilibrium points. Thus, once Hill stability is lost,
linear instability of the equilibrium points is gained, allowing the particle to travel
long distances across the ellipsoid. In the following, we will talk about stability as
Hill stability.

6. Conditions for the Existence and Stability of the Equilibrium Points

6.1. THE CONDITIONS FOR THE EXISTENCE OF EQUILIBRIUM POINTS

First, let us summarize our results.

— If β �= 1, we have found:
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1. Three types of equilibrium points, which satisfy these properties:
• δ < 2/3Iβ , P1 and P2 do not exist, P3 is unstable.
• 2/3Iβ < δ < 2/3Iα , P1 does not exist, P2 and P3 are unstable.
• 2/3Iα < δ, P1 is stable under Conditions 1 and 2, P2 is stable under

Conditions 3 and 4 and P3 is stable under Conditions 5 and 6.
2. For all β a unique (γ, δ) defining the Jacobi ellipsoid exists, such that all

the points on the surface are equilibrium points. These points are linearly
unstable (Appendix A).

3. Three ellipses along the planes of symmetry may be in equilibrium un-
der geometric constraints defined by Equations (20), (21) or (22). These
equilibrium are linearly unstable along one direction.

— If β = 1, we have found an infinite number of equilibrium points along the
equator. The point P3 always exists and is stable only under Conditions 5 and
6. All the other equilibrium points exist only if δ > 2/3Iα , but are linearly
unstable along one direction at least.

It is also important to notice that replacing inequality by equality in Conditions
1, 2 and 4 lead to Equations (20)–(22), which defined the equilibrium figures.

6.2. ANALYSIS OF THE CONDITION OF STABILITY

The six conditions are summarized as

Condition 1: 3
2δ(Iα − β2Iβ) < 1 − β2,

Condition 2: 3
2δ(Iα − γ 2Iγ ) < 1,

Condition 3: 3
2δ(Iα − β2Iβ) > 1 − β2,

Condition 4: 3
2δ(β

2Iβ − γ 2Iγ ) < β
2,

Condition 5: 3
2δ(Iα − γ 2Iγ ) > 1,

Condition 6: 3
2δ(β

2Iβ − γ 2Iγ ) > β
2 (57)

First, we notice that two points cannot be stable at the same time. In fact, Condition
1 is opposite to Condition 3, Condition 2 is opposite to Condition 5, and Condition
4 and Condition 6 are also opposite. In all cases, we recall that δ > 2/3Iα .

The above conditions can be rewritten as

Condition 1 : � = 2

3δ
> C1, Condition 2 : � = 2

3δ
> C2,

Condition 3 : � = 2

3δ
< C1, Condition 4 : � = 2

3δ
> C3,

Condition 5 : � = 2

3δ
< C2, Condition 6 : � = 2

3δ
< C3 (58)
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where

C1 = Iα − β2Iβ

1 − β2
=

∫ ∞

0

u du

(1 + u)3/2(β2 + u)3/2(γ 2 + u)1/2 ,

C2 = Iα − γ 2Iγ = (1 − γ 2)

∫ ∞

0

u du

(1 + u)3/2(β2 + u)1/2(γ 2 + u)3/2 ,

C3 = Iβ − γ 2

β2
Iγ = (1 − γ 2

β2
)

∫ ∞

0

u du

(1 + u)1/2(β2 + u)3/2(γ 2 + u)3/2
We also know that a point cannot be stable if � > Iα .

6.3. TOPOLOGY OF THE STABILITY CONDITIONS

In order to analyze the different regions of stability we must plot the equations:

� = C1(β, γ ), � = C2(β, γ ), � = C3(β, γ ),

� = Iα(β, γ ) (59)

Figure 6 shows a representation of these equations.
The domain of the surface lies on a triangular region 0 � γ �β � 1.
We can find exact results on the boundaries of this domain, β = 1, γ = β and

γ = 0.

Figure 6. Representation of the conditions of stability.
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6.3.1. Conditions when β = 1
We proved that all the points on the equator are unstable, and that P3 is stable only
under Conditions 5 and 6.

The stability boundaries are then:

� = C2 = (1 − γ 2)

∫ ∞

0

u du

(1 + u)2(γ 2 + u)3/2 ,

� = C3 = (1 − γ 2)

∫ ∞

0

du

(1 + u)2(γ 2 + u)3/2 ,

� = Iα =
∫ ∞

0

du

(1 + u)2(γ 2 + u)1/2 (60)

Which can be integrated as

� = C2 = C3 = (2γ 2 + 1) arctan((
√

1 − γ 2)/γ )− 3γ
√

1 − γ 2

(1 − γ 2)3/2
,

� = Iα = arctan((
√

1 − γ 2)/γ )− γ√
1 − γ 2

(1 − γ 2)3/2
(61)

These curves are plotted in Figure 7.

6.3.2. Conditions when β = γ

In this case C3 is zero, so Condition 4 is always true and Condition 6 can never
hold. The ellipsoid describes a prolate spheroid rotating about its short axis.

Thus P3 is never stable and the conditions for stability of P1 and P2 are:

Condition 1 � > C1, Condition 2 � > C2,

Condition 3 � < C1 (62)

Figure 7. Topology of the stability conditions when β = 1.
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Figure 8. Topology of the stability conditions when β = γ .

The stability boundaries are:

� = C1 =
∫ ∞

0

u du

(1 + u)3/2(β2 + u)2 ,

� = C2 = (1 − β2)

∫ ∞

0

u du

(1 + u)3/2(β2 + u)2 ,

� = Iα =
∫ ∞

0

du

(1 + u)3/2(β2 + u) (63)

Which can be integrated as

� = C1 = ln[(1/β)(1 + √
1 − β2)](2 + β2)− 3

√
1 − β2

(1 − β2)5/2
,

� = C2 = (1 − β2)C1,

� = Iα = 2 ln[(1/β)(1 + √
1 − β2)] − 2

√
1 − β2

(1 − β2)3/2
(64)

They are shown in Figure 8.

6.3.3. Conditions when γ = 0
The ellipsoid shape describes a lamina with an elliptical shape in this case and the
stability boundaries are then:

� = C1 =
∫ ∞

0

√
u du

(1 + u)3/2(β2 + u)3/2 ,

� = C2 =
∫ ∞

0

du

(1 + u)3/2(β2 + u)1/2u1/2
,
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Figure 9. Topology of the stability conditions when γ = 0.

� = C3 =
∫ ∞

0

du

(1 + u)1/2(β2 + u)3/2u1/2
,

� = Iα =
∫ ∞

0

du

(1 + u)3/2(β2 + u)1/2u1/2
(65)

These are too difficult to integrate, but we notice that C3 > C2 = Iα > C1. Those
inequalities allow us to conclude that only P3 is stable. This result can also be seen
by plotting the curves computed numerically (Figure 9).

6.3.4. Conditions when β = 1 − ε with ε → 0
As we noticed before, we expect a discontinuity in the properties of the equilibrium
points when β reaches 1.

Therefore, when β = 1−ε, the drawing of the conditions must be very different.
We clearly see in Figure 10 that each condition can be met. When ε → 0

Conditions C2 and C3 become equivalent, and as studied before, when ε reaches 0
the equilibrium points are all unstable.

6.4. INTERPRETATION

Now we can make some preliminary conclusions.
As C2 and C3 are always positive:

∀(β, γ ), β �= 1 ∃� small enough | P3 is stable

As C1 and C2 are always smaller than Iα:

∀(β, γ ), β �= 1 ∃� big enough | P1 is stable

The larger γ is, the larger is the space where P1 is stable and the smaller is the one
of P3.
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Figure 10. Topology of the stability conditions when β = 1 − ε with ε → 0.

Thus, when γ = 0 only P3 is stable, and when γ = β, P3 is never stable.
Nevertheless, when β = 1 all the points on the equator are unstable equilibrium
points.

Concerning P2, the analysis is more complicated because its area of stability is
intermediate between P1 and P3.

Here is the condition:

∀(β, γ ) | C3 − C1 < 0 ∃� | P2 is stable

Now let us discuss when C3 − C1 < 0.

6.4.1. The necessary condition of stability for P2: C3 − C1 < 0
The inequality we must study is

∫ ∞

0

(1 − γ 2)− (γ 2/β2)(1 + u)
(1 + u)3/2(β2 + u)3/2(γ 2 + u)3/2 du < 0 (66)

An analytical analysis is not possible because of the complexity of the integral.
Nevertheless, we can compute it numerically (Figure 11).

First of all we notice that P2 cannot always be stable. When β and γ are close to
each other then P2 may be stable under the condition of existence and Conditions
3 and 4. These conditions can be interpreted as a condition on the curvature of the
ellipsoid, if it is not ‘round enough’, P2 cannot be stable. We can further simplify
the interpretation of these results. In fact, as there exists a unique solution to the
equations C1 = C2 = C3 the space (β, γ ) is divided into two regions (Figure 12).4

4These equations define the MacLaurin spheroids and the Jacobi ellipsoids. More details are
given in Appendix A.
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Figure 11. Drawing of C3 = C1.

Figure 12. Drawing of C1 = C2, C1 = C3 and C2 = C3.

In Region 1, the conditions of stability become:

� > C1 ⇒ P1 stable,

C1 > � > C3 ⇒ P2 stable,

C3 > �⇒ P3 stable (67)

C2 does not play any role in this region. In Region 2, the conditions of stability
become:

� > C2 ⇒ P1 stable, C2 > �⇒ P3 stable

Only C2 is relevant in this case.
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6.4.2. What happens when crossing one of the surfaces � = C1,
� = C2 or � = C3

When � = C1, � = C2 and � = C3 are concurrent, their intersection is a line
in the three-dimensional space (β, γ,�). As we noticed in the beginning of this
section, this line defines the Jacobi ellipsoid (or the MacLaurin spheroid if β = 1).

Each surface � = Ci corresponds to the geometry for which all points on the
ellipse defined by this equation are in equilibrium. It is now obvious that this case
includes, but is not restricted to, the Jacobi ellipsoids or MacLaurin spheroids.

Using these remarks, we can explain how the stability evolves as � increases.
When � is close to zero, P3 is always stable. Let � increase.

— If γ is big enough to be in Region 1, we will first cross C3. When crossing
this surface, all points on the ellipse which lies in the plane x = 0 are in
equilibrium. They are linearly unstable along a tangent direction to the ellipse
but are stable along the x-axis. Then, above C3, P2 is stable. We then cross C2

but as we saw before this surface has no meaning in this region. Finally we
cross C1. When crossing this surface, all points on the ellipse which lies in
the plane z = 0 are in equilibrium and are stable along the z-axis but linearly
unstable along the other axis (if β and γ are small enough the ellipse may not
exist since C3 may be above � = Iα). As � increased, after P1 is stable, we
then cross � = Iα, and the equilibrium points do not exist anymore or are
unstable.

— If γ is small enough to be in Region 2, the only relevant surface is C2. When
we are crossing C2, all points on the ellipse which lie in the y = 0 plane are
in equilibrium and they are linearly unstable along a tangent direction to the
ellipse and stable along the y-axis. Above this surface, P1 is stable.

— If we cross all the surfaces at the same time, that is, when � is such that the
ellipsoid is a Jacobi ellipsoid or a MacLaurin spheroid, then all the points on
the surface are in equilibria and are linearly unstable. Above this surface, P1 is
stable.

7. Some Examples

Now we apply our results to some well-known asteroids: We assume the density
to be 2.5 g/cm3 except for Eugenia and Mathilde whose density are 1.7 g/cm3 and
Kleopatra whose density is 7.0 g/cm3.

Our data are taken from [3]. We use the synthesis values of data when they exist,
elsewhere we calculate an average value of all observations of each asteroid.

Most of the asteroids have an equilibrium point which is stable. Two asteroids,
Siwa and Chiron, are spheres, so they do not have any stable points. Two asteroids,
Icarus and Apollo, have only equilibrium points P2 and P3 (as we saw before, it
must be P1 which does not exist).
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Among the 66 asteroids which have one stable equilibrium point, 3 have P1

stable, 39 have P2 stable and 24 have P3 stable.
These results show that, a priori, all the different geometry models we just

studied are liable to exist. Nevertheless, due to the lack of accuracy in our data
(especially the density), our results for specific asteroids may change, but they will
remain true from a statistical point of view.

8. Conclusions

We study the stability of equilibrium points on the surface of a rotating ellipsoid.
We find that there are six equilibrium points for a general ellipsoid (each symmetric
about the origin) with only two symmetric points stable at any given time. If the
ellipsoids are Jacobi or MacLaurin ellipsoids, then all points on the surface are at
equilibrium, albeit unstable. We find that the stability properties of the surface equi-
libria change as a function of ‘where’ the ellipsoid lies in relation to the classical
figures of equilibriums. We show that some ‘measured’ asteroid shapes exhibit the
more exotic case of stability along the long axis of the rotating ellipsoid.

Appendix A. MacLaurin Spheroids and Jacobi Ellipsoids

The aim of this appendix is to link our work with the study of Chandrasekhar [1]
on the ellipsoidal figures of equilibrium.

Let us consider a fluid rotating about its z-axis, and let us write the conditions for
the fluid to be in equilibrium. Using Chandrasekhar’s notation we find in Equation
(17), [1, p. 6]:

2A1a
2
1 − ,2

πGρ
a2

1 = 2A2a
2
2 − ,2

πGρ
a2

2 = 2A3a
2
3 (A.1)

with

a1 = α, a2 = β, a3 = γ, Ai = a1a2a3Iα

The first equality is exactly Equation (20) and the second equality is the same as
Equation (21).

In his book, Chandrasekhar shows that these equations admit only one solution.
The solution is known as the MacLaurin spheroids in the case β = 1 and the Jacobi
ellipsoids otherwise.

From the definition of these figures, we deduce that each point is then in equilib-
rium but none of them are stable (indeed they are all linearly unstable). Obviously
these conclusions may be applied to our study.
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