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STABILITY OF THE BRASCAMP–LIEB CONSTANT AND

APPLICATIONS

JONATHAN BENNETT, NEAL BEZ, TARYN C. FLOCK, AND SANGHYUK LEE

Abstract. We prove that the best constant in the general Brascamp–Lieb inequality is
a locally bounded function of the underlying linear transformations. As applications we

deduce certain very general Fourier restriction, Kakeya-type, and nonlinear variants of

the Brascamp–Lieb inequality which have arisen recently in harmonic analysis.

1. Introduction

The celebrated Brascamp–Lieb inequality, which simultaneously generalises many impor-
tant multilinear inequalities in analysis, including the Hölder, Loomis–Whitney and Young
convolution inequalities, takes the form∫

H

m∏
j=1

(fj ◦ Lj)pj ≤ C
m∏
j=1

(∫
Hj

fj

)pj
.(1)

Here m denotes a positive integer, H and Hj denote euclidean spaces of finite dimensions
n and nj ≤ n respectively, equipped with Lebesgue measure for each 1 ≤ j ≤ m. The maps
Lj : H → Hj are surjective linear transformations, and the exponents 0 ≤ pj ≤ 1 are real
numbers. This inequality is often referred to as multilinear, since it is equivalent to∫

H

m∏
j=1

fj ◦ Lj ≤ C
m∏
j=1

‖fj‖Lqj (Hj)(2)

where qj = p−1
j for each j.

Following the notation introduced in [10] we denote by BL(L,p) the smallest constant C for
which (1) holds for all nonnegative input functions fj ∈ L1(Rnj ), 1 ≤ j ≤ m. Here L and p
denote the m-tuples (Lj)

m
j=1 and (pj)

m
j=1 respectively. We refer to (L,p) as the Brascamp–

Lieb datum, and BL(L,p) as the Brascamp–Lieb constant. To avoid completely degenerate
cases, where BL(L,p) is easily seen to be infinite, it is natural to restrict attention to data
(L,p) for which

m⋂
j=1

kerLj = {0}.

In [30] Lieb proved that BL(L,p) is exhausted by centred gaussian inputs

fj(x) = exp(−π〈Ajx, x〉),
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2 JONATHAN BENNETT, NEAL BEZ, TARYN C. FLOCK, AND SANGHYUK LEE

for arbitrary positive-definite transformations Aj : Hj → Hj , and thus

BL(L,p) = sup

∏m
j=1(detAj)

pj/2

det
(∑m

j=1 pjL
∗
jAjLj

)1/2
,

where the supremum is taken over all such Aj , 1 ≤ j ≤ m. While this considerably reduces
the complexity of computing the Brascamp–Lieb constant for a given datum, it does not
provide a transparent characterisation of the data for which it is finite. This problem was
addressed in [10] and [11] (see also the forerunner [26] in the rank one setting), where it was
shown that BL(L,p) is finite if and only if the scaling condition

(3)

m∑
j=1

pjnj = n

and the dimension condition

(4) dim(V ) ≤
m∑
j=1

pj dim(LjV )

hold for all subspaces V ⊆ H.

In this note we turn our attention to the stability of the constant BL(L,p) as a function of
the linear maps L, establishing the following basic result:

Theorem 1.1. Suppose that (L0,p) is a Brascamp–Lieb datum for which BL(L0,p) <∞.
Then there exists δ > 0 and a constant C <∞ such that

BL(L,p) ≤ C

whenever ‖L− L0‖ < δ.

Of course Theorem 1.1 tells us that for fixed p, the finiteness set

F (p) := {L : BL(L,p) <∞}

is open, and that the function L 7→ BL(L,p) is locally bounded. We refer to the concurrent
work of Bourgain and Demeter [21] for some interesting applications of this result in the
setting of Weyl sums and Diophantine equations.

Under certain additional constraints on the kernels of the linear maps L0
j , the conclusion of

Theorem 1.1 may be seen quite directly. For instance, in the rank one case (nj = 1 for all j)
this follows quickly via Barthe’s characterisation of the extreme points of the Brascamp–Lieb
polytope

Π(L) := {p : BL(L,p) <∞},
combined with the tautological statement that p ∈ Π(L) if and only if L ∈ F (p); see [2]. A
similar understanding may be reached in the co-rank one case (nj = n − 1 for all j) using
the characterisation of extreme points in Valdimarsson [32]. It is also pertinent to note that
when the kernels of the maps satisfy the basis condition

(5)

m⊕
j=1

kerL0
j = H,

a condition which is stable under perturbations of the Lj , there is an explicit expression
for the Brascamp–Lieb constant BL(L,p), from which the conclusion of Theorem 1.1 (and
indeed the smoothness of L 7→ BL(L,p)) is manifest; see [8].
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If we restrict attention to the so-called simple Brascamp–Lieb data, that is, data (L,p) for
which (4) holds with strict inequality for all nonzero proper subspaces V , much more can
be said. In particular, it was shown by Valdimarsson in [33] that the set

FS(p) := {L ∈ F (p) : (L,p) is simple}

is open, and that the Brascamp–Lieb constant L 7→ BL(L,p) is in fact differentiable there.
Since Valdimarsson’s argument is based on an application of the implicit function theorem,
this regularity conclusion may be pushed even as far as analyticity. However, if (L,p) is not
simple, that is, there exists a nonzero proper subspace V of H for which (4) holds with equal-
ity (such subspaces are referred to as critical subspaces), the situation appears to be much
more delicate. In particular, since FS(p) is open, the mere existence of a critical subspace
is unstable under perturbations of L. This makes a more standard inductive approach to
Theorem 1.1, via factoring the Brascamp–Lieb constant through critical subspaces, appear
quite problematic.

In this paper we also prove local boundedness for certain localised versions of the Brascamp–
Lieb constant, including BLloc(L,p), the best constant C in the inequality∫

‖x‖H≤1

m∏
j=1

(fj ◦ Lj)pj ≤ C
m∏
j=1

(∫
Hj

fj

)pj
.(6)

These inequalities have also been the subject of considerable attention; see [30] and [10] for
a gaussian-localised variant, and the more recent [11] for a characterisation of finiteness of
the best constant.

When p satisfies the scaling condition (3), BLloc(L,p) = BL(L,p). Thus the stability result
Theorem 1.1 will follow from the corresponding result for BLloc(L,p).

Theorem 1.1 and its local variants (see the forthcoming Theorems 2.1 and 2.3) are motivated
by certain seemingly quite difficult “perturbed” versions of the Brascamp–Lieb inequality
that have arisen in harmonic analysis over the past decade. For such applications we take
H and Hj to be Rn and Rnj , respectively.

The first conjectural generalisation is combinatorial in nature, and takes the form

(7)

∫
Rn

m∏
j=1

( ∑
αj∈Aj

fj,αj
◦ Lj,αj

)pj
≤ C

m∏
j=1

( ∑
αj∈Aj

∫
Rnj

fj,αj

)pj
,

where, for each 1 ≤ j ≤ m, the linear mappings (Lj,αj )αj∈Aj are required to be close to
a fixed surjection Lj : Rn → Rnj . Here, for each 1 ≤ j ≤ m, Aj indexes the linear maps
and arbitrary integrable functions fj,αj

: Rnj → R+, and the fixed maps L = (Lj)1≤j≤m
are such that BL(L,p) < ∞. Such a generalisation is known to hold in some very special
cases, the most notable being when the fixed maps L and exponents p correspond to the
Loomis–Whitney datum. This is easily seen to be equivalent to the endpoint multilinear
Kakeya inequality of Guth [27]; see also the non-endpoint versions in [12], [7], [28] and
applications beginning with [22]. Considering indexing sets Aj , with each consisting of
just one element, reveals the statement of Theorem 1.1 as a necessary feature for such a
combinatorial generalisation to hold.

Inequality (7) is best understood via an equivalent formulation obtained by testing it on
finite sums of characteristic functions of δ-balls, upon which it may be expressed as

(8)

∫
Rn

m∏
j=1

( ∑
Tj∈Tj

χTj

)pj
≤ Cδn

m∏
j=1

(#Tj)pj ,
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uniformly in δ, where for each j, Tj denotes an arbitrary finite collection of δ-neighbourhoods
of n′j-dimensional affine subspaces of Rn which, modulo translations, are close to the fixed
subspace Vj := kerLj . Here n′j := n−nj , and we use the standard metric on the Grassmann
manifold of n′j-dimensional subspaces of Rn. Notice that the characterisation of finiteness

of BL(L0,p), given by (3) and (4), depends only on the kernels of the linear maps Lj . In
particular, for Vj := kerLj , the condition (4) may be rewritten as

dim(V ) ≤
m∑
j=1

pj dim(V ∩ V ⊥j ).

A second generalisation of the Brascamp–Lieb inequality is oscillatory in nature, and belongs
to the restriction theory of the Fourier transform. To describe this suppose that, for each
1 ≤ j ≤ m, Σj : Uj → Rn is a smooth parametrisation of a nj-dimensional submanifold Sj
of Rn by a neighbourhood Uj of the origin in Rnj . We associate to each Σj the extension
operator

Ejgj(ξ) :=

∫
Uj

e2πiξ·Σj(x)gj(x)dx,

where ξ ∈ Rn. In this setting it is natural to conjecture that if BL(L,p) < ∞, where
Lj := (dΣj(0))∗ for each j, then provided the neighbourhoods Uj of 0 are chosen small
enough, the inequality

(9)

∫
Rn

m∏
j=1

|Ejgj |2pj ≤ C
m∏
j=1

‖gj‖
2pj
L2(Uj)

holds for all gj ∈ L2(Uj), 1 ≤ j ≤ m. The weaker inequality∫
B(0,R)

m∏
j=1

|Ejgj |2pj ≤ CεRε
m∏
j=1

‖gj‖
2pj
L2(Uj),

involving an arbitrary ε > 0 loss was established in the particular case when (L,p) is
the Loomis–Whitney datum in [12], and has had extensive applications and developments
beginning with [22]; see also [15], [16], [23], [19], [17], [18], [20], [24], [21], [29]. The endpoint
(9) is only known in very elementary situations, and is easily seen to be best possible in the
sense that BL(L,p) <∞ provides a necessary condition on the pj by taking linear Σj ; see
[7] for further discussion.

A third, seemingly more modest generalisation of the Brascamp–Lieb inequality, originating
in [13], involves dropping the linearity requirement on the maps Lj , and instead considering
Bj smooth submersions in a neighbourhood of a point x0 ∈ Rn. In this context it seems
natural to conjecture (see [8]) that provided

BLloc(dB(x0),p) <∞,
there exists a neighbourhood U of x0 and a finite constant C such that

(10)

∫
U

m∏
j=1

(fj ◦Bj)pj ≤ C
m∏
j=1

(∫
Rnj

fj

)pj
,

or equivalently

(11)

∫
U

m∏
j=1

fj ◦Bj ≤ C
m∏
j=1

‖fj‖Lqj (Rnj ),

where, as in (2), qj = p−1
j . Here dB(x0) = (dBj(x0)), where dBj(x0) : Rn → Rnj denotes

the derivative of Bj at the point x0. Such a generalisation has been shown to hold under the
basis condition (5) on the derivative maps dBj(x0); we refer to [8], [13], [6], [4] for this and
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applications to problems in euclidean harmonic analysis and dispersive PDE. An elementary
scaling and limiting argument shows that if (10) holds then there exists a neighbourhood
U ′ of x0 such that

sup
x∈U ′

BLloc(dB(x),p) <∞,

a statement which is closely related to the local boundedness of the (linear) localised
Brascamp–Lieb constant; see [9] for further details. The local variant of Theorem 1.1 (see
Theorem 2.1) may thus be viewed as a modest first step towards the general form of this
nonlinear Brascamp–Lieb conjecture.

Our applications of Theorem 1.1 consist of proving certain weak forms of the generalised
Brascamp–Lieb inequalities (8), (9) and (10), where one accepts some arbitrarily small loss in
regularity of the input functions. All of these combine our stability results with well-known
variants of the induction-on-scales method.

Our application to the variant (7) is best expressed in terms of the equivalent geometric
formulation (8), and is the following.

Theorem 1.2. Suppose (L,p) is a Brascamp–Lieb datum for which BL(L,p) < ∞. Then
there exists ν > 0 such that for every ε > 0,

(12)

∫
[−1,1]n

m∏
j=1

( ∑
Tj∈Tj

χTj

)pj
≤ Cεδn−ε

m∏
j=1

(#Tj)pj

holds for all finite collections Tj of δ-neighbourhoods of n′j-dimensional affine subspaces of
Rn which, modulo translations, are within a distance ν of the fixed subspace Vj := kerLj.

In the particular case of gaussian-extremisable Brascamp–Lieb data (L,p), the above theo-
rem may be seen as a consequence of Corollary 4.2 in [12]; see [10] for a characterisation of
such data. As in the case where (L,p) is the Loomis–Whitney datum (see [12]), the above
theorem implies the following very general restriction theorem. We refer to [21] for recent
number-theoretic applications of these “multilinear” restriction and Kakeya-type inequali-
ties.

Theorem 1.3. Suppose that BL(L,p) <∞, where Lj := (dΣj(0))∗ for each j. Then there
exist neighbourhoods Uj of 0 ∈ Rnj , 1 ≤ j ≤ m, such that for every ε > 0,

(13)

∫
B(0,R)

m∏
j=1

|Ejgj |2pj ≤ CεRε
m∏
j=1

‖gj‖
2pj
L2(Uj)

holds for all gj ∈ L2(Uj), 1 ≤ j ≤ m, and all R ≥ 1.

Our application to the variant (10) is best expressed in terms of the equivalent formulation
(11), and involves a regularity loss that may be captured in the scale of the classical Sobolev
spaces. (Absorbing this loss in the scale of Lp spaces appears to be less clear.)

Theorem 1.4. Suppose (L,p) is a Brascamp–Lieb datum for which BL(L,p) < ∞, and
that for each 1 ≤ j ≤ m, Bj : Rn → Rnj is a smooth submersion in a neighbourhood of the
origin satisfying dBj(0) = Lj. Then there exists a neighbourhood U of the origin in Rn such
that for every ε > 0,

(14)

∫
U

m∏
j=1

fj ◦Bj ≤ Cε
m∏
j=1

‖fj‖Lqj
ε (Rnj )

,

where qj = p−1
j .
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Here, we use the notation ‖f‖Lq
ε(Rn) = ‖(1−∆)ε/2f‖Lq(Rn) for q ≥ 1 and n ∈ N. It is worth

noting that the proof allows the smoothness condition on the Bj to be relaxed to C1,β for
any β > 0.

Structure of the paper. In Section 2 we prove Theorem 1.1 via the corresponding statement
for the local Brascamp–Lieb constant BLloc(L,p). We conclude Section 2 by unifying these
results in the setting of partially-localised Brascamp–Lieb constants. We prove Theorems
1.2–1.4 in Section 3.

Acknowledgement. We thank Ciprian Demeter for clarifying the connections between this
work and the concurrent preprint [21].

2. Stability of the Brascamp–Lieb constant

2.1. Openness. Although the proof of the local boundedness of L 7→ BL(L,p) simultane-
ously establishes the openness of F (p), the latter permits a much more elementary approach.
We describe this first.

It suffices to prove that if the dimension condition (4) holds for L = L0 then there exists
δ > 0 such that (4) holds whenever ‖L − L0‖ < δ. For each 1 ≤ k ≤ n let Ek denote
the compact set of all orthonormal sets e := {e1, . . . , ek} in H. This notation allows us to
rewrite (4) as

(15) k ≤
m∑
j=1

pj dim(〈Lje1, . . . , Ljek〉)

for all e ∈ Ek and 1 ≤ k ≤ n.

Fix k and let e ∈ Ek. Since (15) holds with L = L0, for each 1 ≤ j ≤ m we may choose a
subset Ij ⊆ {1, . . . , k} satisfying |Ij | = dim(〈L0

je1, . . . , L
0
jek〉),

(16) k ≤
m∑
j=1

pj |Ij |

and ∧
i∈Ij

L0
jei 6= 0.

Since

(L, e′) 7→
∧
i∈Ij

Lje
′
i ∈ Λ|Ij |(Hj)

is continuous for each j, there exist ε(e), δ(e) > 0 such that∧
i∈Ij

Lje
′
i 6= 0

for each j, whenever ‖e′−e‖ < ε(e) and ‖L−L0‖ < δ(e). In particular, dim(〈Lje′1, . . . , Lje′k〉) ≥
|Ij | for each j, and so by (16),

k ≤
m∑
j=1

pj dim(〈Lje′1, . . . , Lje′k〉)

whenever ‖e′ − e‖ < ε(e) and ‖L − L0‖ < δ(e). Since Ek is compact there exists a finite
collection e1, . . . , eN ∈ Ek such that the sets

{e′ ∈ Ek : ‖e′ − e`‖ < ε(e`)},
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with ` = 1, . . . , N , cover Ek. Finally, choosing δ = min{δ(e1), . . . , δ(eN )} we conclude that
(15) holds whenever ‖L−L0‖ < δ and e ∈ Ek. Since there are boundedly many such k, the
claimed openness follows.

2.2. Local boundedness for localised data. In this section we prove the following local
version of Theorem 1.1:

Theorem 2.1. Suppose that (L0,p) is a Brascamp–Lieb datum such that BLloc(L0,p) <∞.
Then there exists δ > 0 and a constant C <∞ such that

BLloc(L,p) ≤ C

whenever ‖L− L0‖ < δ.

In [10] it is shown that BLloc(L0,p) is finite if and only if

(17) codimH(V ) ≥
m∑
j=1

pj codimHj
(L0

jV ) for all subspaces V ⊂ H.

Note that Theorem 1.1 is a direct corollary of Theorem 2.1 in the case where the condition
(3) is satisfied by a scaling argument.

Our proof of Theorem 2.1 amounts to an appropriately uniform version of the proof of the
finiteness characterisation theorem for the Gaussian localised version in [10]. The advantage
of this approach over the alternative in [11] is that it avoids reference to critical subspaces,
objects whose existence is unstable under perturbations of L. Our argument fails to yield
a more quantitative statement, such as something closer to upper semi-continuity for the
Brascamp–Lieb constant, due to the crucial role played by the compactness of appropriately
nondegenerate bases for H.

As in the proof of the openness of F (p) given in Section 2.1, we shall exploit the finiteness
condition (17) through the consideration of an appropriate set of bases of H. The key tool
is a uniform version of Lemma 5.1 from [10].

Lemma 2.2. Suppose (L0,p) is a Brascamp–Lieb datum such that BLloc(L0,p) < ∞.
Then there exist real numbers c, δ > 0 such that for every e ∈ En and every L satisfying
‖L − L0‖ ≤ δ, there exists a set Ij ⊆ {1, . . . , n} with |Ij | = dim(Hj) for each 1 ≤ j ≤ m,
such that

(18)

m∑
j=1

pj |Ij ∩ {1, . . . , k}| ≤ k for all 1 ≤ k ≤ n,

and

(19)

∣∣∣∣ ∧
i∈Ij

Ljei

∣∣∣∣ ≥ c for all 1 ≤ j ≤ m.

In the above lemma, and throughout, we identify
∧
i∈Ij Ljei with a real number via Hodge

duality.

Proof. Let I denote the set of all m-tuples (I1, . . . , Im) of subsets of {1, . . . , n} satisfying
|Ij | = dim(Hj) and (18). Define

h(L, e) = max
(I1,...,Im)∈I

min
1≤j≤m

∣∣∣∣ ∧
i∈Ij

Ljei

∣∣∣∣.
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We begin by proving that h(L0, e) ≥ c′ for all e ∈ En and some c′ > 0. By the continuity of
h and the compactness of En, it is enough to verify that h(L0, e) 6= 0 for all e ∈ En. From
the definition of h, it suffices to show that there exists (I1, . . . , Im) ∈ I for which

(20)
∧
i∈Ij

L0
jei 6= 0 for all 1 ≤ j ≤ m.

Proceeding as in [10], we fix j and select Ij by a backwards greedy algorithm, firstly by
putting i0 in Ij , where

i0 = max{i ∈ {1, . . . , n} : L0
jei 6= 0}

and then choosing indices i ∈ {1, . . . , i0 − 1} for which L0
jei is not in the linear span of

{L0
jei′ : i < i′ ≤ n}. By construction (20) holds, and since L0

j is surjective, |Ij | = dim(Hj).

To prove (18), we apply the codimension condition (17) with V equal to the span of
{ek+1, . . . , en}, to obtain ∑

j

pj dim(Hj/L
0
jV ) ≤ k.

By construction of Ij , dim(L0
jV ) = |Ij ∩ {k + 1, . . . , n}| and hence dim(Hj/L

0
jV ) = |Ij ∩

{1, . . . , k}|.

Now let K be a compact set of linear maps with L0 belonging to its interior. Since the
function h is uniformly continuous on the compact set K × En, there exists δ > 0 such that

|h(L, e)− h(L0, e)| ≤ c′

2

and L ∈ K whenever e ∈ En and ‖L − L0‖ ≤ δ. Therefore, h(L, e) ≥ c′

2 whenever e ∈ En
and ‖L− L0‖ ≤ δ. The lemma now follows from the definition of h. �

Proof of Theorem 2.1. We assume, as we may, that pj > 0 and Hj 6= {0} for each j. Let
c and δ be those given by Lemma 2.2. We emphasise that these quantities depend only on
the fixed datum (L0,p). To further emphasise uniformity we include the explicit constant
factors arising in the remainder of the argument.

The constant BLloc(L,p) is bounded above by a fixed multiple of the best constant in the
Gaussian localised case,∫

H

e−π|·|
2
m∏
j=1

(fj ◦ Lj)pj ≤ C
m∏
j=1

(∫
Hj

fj

)pj
.

By an application of Lieb’s Theorem (Theorem 6.2 in [30]), we have

BLloc(L,p) ≤ C sup

∏m
j=1(detAj)

pj/2

det(M + Id)1/2
,

where M =
∑m
j=1 pjL

∗
jAjLj , Id is the identity matrix, and the supremum is taken over all

positive definite Aj : Hj → Hj , 1 ≤ j ≤ m. It will thus suffice to prove that there exists a
constant C > 0 such that

(21)

m∏
j=1

(detAj)
pj ≤ C det(M + Id)

for all data (L,p) such that ‖L− L0‖ ≤ δ and all such positive definite Aj .

Since pj > 0 and
⋂m
j=1 kerLj = {0}, we have that M and M + Id are positive definite.

Let e1, . . . , en be an orthonormal basis of eigenvectors for M + Id, ordered so that their
corresponding eigenvalues satisfy µ1 ≥ . . . ≥ µn > 1.
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For each 1 ≤ i ≤ n we have that

〈ei,Mei〉H = µi − 〈ei, ei〉H ≤ µi,
and so for each 1 ≤ i ≤ n and 1 ≤ j ≤ m,

〈AjLjei, Ljei〉Hj
= 〈ei, L∗jAjLjei〉H ≤

1

pj
〈ei,Mei〉H ≤ µi/pj .

Applying Lemma 2.2, for each 1 ≤ j ≤ m, there exists Ij ⊆ {1, . . . , n} of cardinality
|Ij | = dim(Hj) such that (18) and (19) hold. For fixed 1 ≤ j ≤ m, if we consider L∗jAjLj
acting on the subspace spanned by {ei : i ∈ Ij}, then, since the determinant of a positive
semi-definite transformation is at most the product of its diagonal entries,

det(Aj) ≤
∣∣∣∣ ∧
i∈Ij

Ljei

∣∣∣∣−2 ∏
i∈Ij

〈L∗jAjLjei, ei〉H .

Thus

det(Aj) ≤
(
c2p

nj

j

)−1 ∏
i∈Ij

µi,

where c > 0 is the constant given by (19), and this implies
m∏
j=1

(detAj)
pj ≤

(
c2

∑m
j=1 pj

m∏
j=1

p
pjnj

j

)−1 n∏
i=1

µaii ,

where ai :=
∑m
j=1 pj |Ij ∩ {i}|. By telescoping we may write

n∏
i=1

µaii = det(M + Id)

n∏
k=1

(
µk+1

µk

)k−∑k
i=1 ai

since det(M + Id) =
∏n
i=1 µi, and where we have defined µn+1 := 1. Applying (18),

k −
∑k
i=1 ai ≥ 0 and, by construction, µk+1

µk
≤ 1 for all 1 ≤ k ≤ n. Hence (21) holds with

constant C = (c2
∑m

j=1 pj
∏m
j=1 p

pjnj

j )−1. �

2.3. Local boundedness for partially localised data. In this section we prove a gener-
alisation of Theorem 1.1 for partially localised Brascamp–Lieb constants (see [30] and more
recently [11]).

Let (L,p) be a Brascamp–Lieb datum, let H0 ⊆ H be a subspace of H, and let G be
a positive semi-definite linear map whose kernel is H0. The associated partially localised
Brascamp–Lieb inequality is∫

{x∈H:|〈Gx,x〉|<1}

m∏
j=1

(fj ◦ Lj)pj ≤ C
m∏
j=1

(∫
Hj

fj

)pj
.(22)

Denote the best constant in the above inequality by BLG(L,p) (not to be confused with
BLg from [10]).

In [11] it is shown that BLG(L,p) is finite if and only if

(23) dim(V ) ≤
m∑
j=1

pj dim(LjV ) for all subspaces V ⊆ H0

and

(24) codimH(V ) ≥
m∑
j=1

pj codimHj (LjV ) for all subspaces V ⊂ H.
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It is tempting to believe that the partially localised case should follow easily from the
localised case, Theorem 2.1, by a scaling argument as Theorem 1.1 does. However, the
scaling argument in the partially localised setting requires an anisotropic dilation, which
changes the initial Brascamp–Lieb datum nontrivially. Nevertheless, a version of Theorem
1.1 holds in this case as well. Again our proof is an appropriately uniform version of the
finiteness characterisation in [10] combining the methods from the fully-local and fully-global
cases. This gives a proof of the characterisation of finiteness for partially localised data which
does not require factoring through critical subspaces as in [11].

Theorem 2.3. Suppose that (L0,p) is a Brascamp–Lieb datum and G is a positive semi-
definite linear map such that BLG(L0,p) < ∞. Then there exists δ > 0 and a constant
C <∞ such that

BLG(L,p) ≤ C
whenever ‖L− L0‖ < δ.

As in the proof of Theorem 2.1, we shall exploit the conditions (23) and (24) through the
consideration of an appropriate set of bases of H. However, rather than using orthonormal
bases, it will be important to use classes which have some alignment with the distinguished
subspace kerG = H0, and to permit bases which are not quite orthonormal.

For 0 < α ≤ 1 let Vα denote the set of all v = (v1, . . . , vn) ∈ Hn such that ‖vi‖ ≤ 1 for all
1 ≤ i ≤ n, and ∣∣∣∣ n∧

i=1

vi

∣∣∣∣ ≥ α.
Further, for each ` ∈ N with n− dimH0 ≤ ` < n, let

Vα,` := {v ∈ Vα : v`+1, · · · , vn ∈ H0},

and Vα,n := Vα. We thus interpret an element v of Vα,` as a certain (ordered) basis for H
with a lower bound on its degeneracy.

Clearly Vα,` ⊆ Vα,`+1 for each `. Note also that Vα,` is compact for each α and `.

Lemma 2.4. Suppose that n − dimH0 ≤ ` ≤ n and α ∈ (0, 1], and that (L0,p) is a
Brascamp–Lieb datum for which BLG(L0,p) <∞. Then there exist real numbers c`, δ` > 0
such that for every v ∈ Vα,` and every L satisfying ‖L − L0‖ ≤ δ`, there exists a set
Ij ⊆ {1, . . . , n} with |Ij | = dim(Hj) for each 1 ≤ j ≤ m, such that

(25)

m∑
j=1

pj |Ij ∩ {1, . . . , k}| ≤ k for all 0 ≤ k ≤ n,

(26)

m∑
j=1

pj |Ij ∩ {k + 1, . . . , n}| ≥ n− k for all ` ≤ k ≤ n,

and

(27)

∣∣∣∣ ∧
i∈Ij

Ljvi

∣∣∣∣ ≥ c` for all 1 ≤ j ≤ m.

Proof. Let I` denote the set of all m-tuples (I1, . . . , Im) of subsets of {1, . . . , n} satisfying
|Ij | = dim(Hj), (25), and (26). Define

h`(L,v) = max
(I1,...,Im)∈I`

min
1≤j≤m

∣∣∣∣ ∧
i∈Ij

Ljvi

∣∣∣∣.
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We begin by proving that h`(L
0,v) ≥ c′` for all v ∈ Vα,` and some c′` > 0. By the continuity

of h` and the compactness of Vα,`, it is enough to verify that h`(L
0,v) 6= 0 for all v ∈ Vα,`.

From the definition of h` it suffices to show that there exists (I1, . . . , Im) ∈ I` for which

(28)
∧
i∈Ij

L0
jvi 6= 0 for all 1 ≤ j ≤ m.

Again, we select each Ij by a backwards greedy algorithm, and (25) follows as before. To
prove (26), we let ` ≤ k ≤ n and apply (23), which is a consequence of our hypothesis that
BLG(L0,p) <∞, with V equal to the span of {vk+1, . . . , vn} ⊂ H0 to obtain

m∑
j=1

pj dim(L0
jV ) ≥ n− k.

By construction of Ij , we have dim(L0
jV ) = |Ij ∩ {k + 1, . . . , n}|. Thus (I1, ..., Im) ∈ I`

satisfies (28), as required.

Now let K be a compact set of linear maps which contains L0 in its interior. Since the
function h` is uniformly continuous on the compact set K × V`,α, there exists δ` > 0 such
that

|h`(L,v)− h`(L0,v)| ≤ c′`
2

and L ∈ K whenever v ∈ Vα,` and ‖L − L0‖ ≤ δ`. Therefore, h`(L,v) ≥ c′`
2 whenever

v ∈ Vα,` and ‖L− L0‖ ≤ δ`. The lemma now follows from the definition of h`. �

Proof of Theorem 2.3. We assume, as we may, that pj > 0 and Hj 6= {0} for each j. By
applying a linear transformation we may also assume that G is the orthogonal projection of
H onto H⊥0 . We may also reduce to the case where n ≥ 2 as when n = 1, G is either the
identity or 0.

Fix α ∈ (0, 1) and let

(29) c := min
`
c`, δ := min

`
δ`,

where c`, δ` are those given by Lemma 2.4. We emphasise that these quantities depend only
on H0, α, and the fixed datum (L0,p).

It will suffice to prove that there exists a constant C > 0 such that∫
H

e−π〈Gx,x〉
m∏
j=1

(fj ◦ Lj)pj ≤ C
m∏
j=1

(∫
Hj

fj

)pj
whenever ‖L − L0‖ < δ. By Lieb’s Theorem (Theorem 6.2 in [30]), this is equivalent to
proving that

(30)

m∏
j=1

(detAj)
pj ≤ C det(M +G)

holds uniformly for such L and all positive definite Aj : Hj → Hj , 1 ≤ j ≤ m, where
M =

∑m
j=1 pjL

∗
jAjLj . To this end we fix an auxiliary quantity

γ = min

{(
1− α
n

)2

,

(
c

2 maxj nj(‖L0
j‖+ δ)nj

)2
}
,

which, of course, only depends on the fixed datum (L0,p), δ and our choice of α.

Since pj > 0 and
⋂m
j=1 kerLj = {0}, we have that M , and thus M +G, is positive definite.

Let e1, . . . , en be an orthonormal basis of eigenvectors for M + G, ordered so that their
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corresponding eigenvalues satisfy µ1 ≥ · · · ≥ µn > 0. As in the proof of Theorem 2.1, we
have that 〈ei,Mei〉H ≤ µi and 〈AjLjei, Ljei〉Hj

≤ µi

pj
for each 1 ≤ i ≤ n and 1 ≤ j ≤ m.

Suppose first that µn ≥ γ. This case is much the same as the fully localised case, except
that the lower bound on the eigenvalues is γ rather than 1. Thus, by rescaling and using
the argument in the localised case, it follows that

m∏
j=1

(detAj)
pj ≤ γ(

∑m
j=1 pjnj)−n

(
c2

∑m
j=1 pj

m∏
j=1

p
pjnj

j

)−1

det(M +G).

Otherwise µn < γ. In this case, the argument combines the approaches from the localised
and the non-localised cases in [10]. We define

` := min{i ∈ {1, . . . , n} : µi < γ}.

As n ≥ 2, by construction we have that γ ≤ 1/4, and so since G is an orthogonal projection,

(31) |Gei|2 = 〈Gei, ei〉 ≤ 〈(M +G)ei, ei〉 ≤ µi ≤ γ ≤ 1/4

whenever ` ≤ i ≤ n. Thus as e`, . . . , en are orthonormal in H, the vectors

e` −Ge`, . . . , en −Gen

are linearly independent in H0. Thus in particular we have ` ≥ n− dim(H0) + 1.

Next, define (v1, . . . , vn) by vi := ei for 1 ≤ i ≤ ` − 1 and by vi := ei − Gei ∈ H0 for
` ≤ i ≤ n. By definition, ‖vi‖ ≤ 1 for all 1 ≤ i ≤ n. Moreover, using the multilinearity of
the wedge product and expanding in a suitable telescoping sum, we have∣∣∣∣ n∧

i=1

vi −
n∧
i=1

ei

∣∣∣∣ ≤ (n− `+ 1) max
1≤i≤n

‖ei − vi‖.

For ` ≤ i ≤ n we have ei − vi = Gei, and so arguing as in (31) it follows that ‖ei − vi‖2 =
|Gei|2 ≤ γ, and therefore

(32) max
1≤i≤n

‖ei − vi‖ ≤ γ1/2.

Hence by our choice of γ, ∣∣∣∣ n∧
i=1

vi

∣∣∣∣ ≥ 1− nγ1/2 ≥ α.

Whence, (v1, . . . , vn) ∈ Vα,`.

By Lemma 2.4 applied to v = (v1, . . . , vn), there exists Ij ⊆ {1, . . . , n} for each 1 ≤ j ≤ m
of cardinality |Ij | = dim(Hj) such that all three of (25), (26), and (27) hold for v.

Now observe that∣∣∣∣ ∧
i∈Ij

Ljvi −
∧
i∈Ij

Ljei

∣∣∣∣ ≤ nj‖Lj‖nj max
i∈Ij
‖ei − vi‖ ≤ nj‖Lj‖njγ1/2

where the second inequality follows from (32), and hence our choice of γ guarantees that for
‖Lj − L0

j‖ ≤ δ we have ∣∣∣∣ ∧
i∈Ij

Ljei

∣∣∣∣ ≥ c−max
j
nj‖Lj‖njγ1/2 ≥ c/2.
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Here we are assuming that we have chosen norms so that ‖Lj‖ is bounded above by ‖L‖.
This is of course quite natural, although since all choices of norms are equivalent, there is
no loss of generality in doing this. As before, we set ai :=

∑m
j=1 pj |Ij ∩ {i}| and obtain

m∏
j=1

(detAj)
pj ≤

(
(c/2)2

∑m
j=1 pj

m∏
j=1

p
pjnj

j

)−1 n∏
i=1

µaii

and a telescoping argument yields

`−1∏
i=1

µaii ≤ γ
(
∑`−1

i=1 ai)−(`−1)
`−1∏
i=1

µi.

For the terms with i ≥ `, similarly to the global case in [10], we write

n∏
i=`

µaii = µ
a≥`

`

n−1∏
i=`

(
µi+1

µi

)a≥i+1

.

where a≥` :=
∑m
j=1 pj |Ij ∩ {`, . . . , n}|.

By (26), for ` ≤ i ≤ n− 1 we have a≥i+1 ≥ n− i and as µi+1

µi
≤ 1, this yields

n∏
i=`

µaii ≤ µ
a≥`
`

n−1∏
i=`

(
µi+1

µi

)n−i
,

which on reversing the telescoping gives,

n∏
i=`

µaii ≤ µ
a≥`−(n−`+1)
`

n∏
i=`

µi.

Recall that `−1 ≥ n−dim(H0), so that we may apply (26) to conclude that a≥` ≥ n−`+1,
and therefore

∏n
i=` µ

ai
i ≤

∏n
i=` µi. Finally, we obtain

(33)

m∏
j=1

(detAj)
pj ≤ γ(

∑`−1
i=1 ai)−(`−1)

(
(c/2)2

∑m
j=1 pj

m∏
j=1

p
pjnj

j

)−1

det(M +G)

which concludes the proof. �

3. The proofs of Theorems 1.2–1.4

As we shall see in this section, the local boundedness of the Brascamp–Lieb constant estab-
lished in Theorem 1.1 is a natural requirement for the induction-on-scales method to yield
Theorems 1.2–1.4. Within harmonic analysis at least, the induction-on-scales arguments
that we use go back to Bourgain [14], and have been used extensively since; see in particular
[8], [6], [12], [7], [28] for very similar arguments in the context of the Loomis–Whitney and
multilinear Kakeya inequalities. In this Brascamp–Lieb setting, these inductive arguments
are manifestations of a fundamental multi-scale inequality of Ball [1], and are closely related
to heat-flow monotonicity and semigroup interpolation; see [26], [10], [12], [8] for further
discussion of this perspective.

We warn that the function C will have a different definition in each of the sections 3.1–3.3
below.



14 JONATHAN BENNETT, NEAL BEZ, TARYN C. FLOCK, AND SANGHYUK LEE

3.1. Generalised multilinear Kakeya inequalities and Theorem 1.2. Here we prove
Theorem 1.2 using the induction-on-scales argument in Guth [28]. The role of Theorem 1.1
in this argument is to effectively change the order of the quantifiers in the hypothesis of
Theorem 1.2. By suitably partitioning the families Tj , 1 ≤ j ≤ m, and applying Theorem
1.1, it suffices to prove the following weaker variant of Theorem 1.2. The deduction of
Theorem 1.2 in this way incurs a cost in the size of the constant C, but in a way which only
depends on ε.

Theorem 3.1. Suppose (L,p) is a Brascamp–Lieb datum for which BL(L,p) < ∞, and
ε > 0. Then there exists ν = ν(ε) > 0 and C = C(ε) <∞ (both independent of δ) such that∫

[−1,1]n

m∏
j=1

( ∑
Tj∈Tj

χTj

)pj
≤ Cδn−ε

m∏
j=1

(#Tj)pj

holds for all finite collections Tj of δ-neighbourhoods of n′j-dimensional affine subspaces of
Rn which, modulo translations, are within a distance ν of the fixed subspace Vj := kerLj.

For each 0 < δ, ν ≤ 1, let C(δ, ν) denote the smallest constant C in the inequality

(34)

∫
[−1,1]n

m∏
j=1

( ∑
Tj∈Tj

χTj

)pj
≤ Cδn

m∏
j=1

(#Tj)pj

over all such families Tj , 1 ≤ j ≤ m, as in the statement of Theorem 3.1. We are required
to show that given any ε > 0, there exists ν = ν(ε) > 0 (independent of δ) such that
C(δ, ν) .ε δ−ε.

Proposition 3.2. There is a constant κ <∞, independent of δ and ν, such that

C(δ, ν) ≤ κC(δ/ν, ν).

Iterating Proposition 3.2 we obtain C(δ, ν) ≤ κ`C(δ/ν`, ν) for each ` ∈ N. We choose `
such that δ/ν` ∼ 1, and ν such that ε log(1/ν) = log κ, so that κ` .ε δ−ε and hence
C(δ, ν) .ε δ−ε, as required.

Proof of Proposition 3.2. We begin by decomposing [−1, 1]n into a grid of axis-parallel cubes
Q of sidelength δ/ν and write∫

[−1,1]n

m∏
j=1

( ∑
Tj∈Tj

χTj

)pj
=
∑
Q

∫
Q

m∏
j=1

( ∑
Tj∈Tj(Q)

χTj∩Q

)pj
,

where Tj(Q) := {Tj ∈ Tj : Tj ∩Q 6= ∅}. Observe that since Tj is a δ-neighbourhood of an
affine n′j-dimensional subspace of Rn which, modulo translations, is within a distance ν of
Vj := kerLj , there exists an O(δ)-neighbourhood T ′j with Tj ∩ Q ⊆ T ′j ∩ Q and T ′j parallel
to Vj . Since BL(L,p) <∞,∫

Q

m∏
j=1

( ∑
Tj∈Tj(Q)

χTj∩Q

)pj
≤
∫
Q

m∏
j=1

( ∑
Tj∈Tj(Q)

χT ′j

)pj
. δn

m∏
j=1

(#Tj(Q))pj

≤ δn
m∏
j=1

( ∑
Tj∈Tj

χT̃j
(xQ)

)pj
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uniformly in xQ ∈ Q. Here T̃j = Tj +B(0, cδ/ν), with factor c chosen large enough so that

Tj ∩Q 6= ∅ ⇒ Q ⊆ T̃j . Averaging the above over xQ ∈ Q gives∫
Q

m∏
j=1

( ∑
Tj∈Tj(Q)

χTj∩Q

)pj
. νn

∫
Q

m∏
j=1

( ∑
Tj∈Tj

χT̃j

)pj
,

which on summing in Q results in∫
[−1,1]n

m∏
j=1

( ∑
Tj∈Tj(Q)

χTj∩Q

)pj
. νn

∫
[0,1]n

m∏
j=1

( ∑
Tj∈Tj

χT̃j

)pj
. δnC(δ/ν, ν)

m∏
j=1

(#Tj)pj ,

from which the proposition follows. �

3.2. Generalised multilinear restriction inequalities and Theorem 1.3. The deduc-
tion of Theorem 1.3 from Theorem 1.2 is a routine generalisation of the argument in [12] (see
also [7]) in the setting of the Loomis–Whitney datum. We provide a sketch of the argument
here for the sake of completeness.

Proof of Theorem 1.3 from Theorem 1.2. We begin with an observation. For each ε > 0 and
R ≥ 1, applying Theorem 1.2 with δ = R−1/2, and using rescaling and limiting arguments
we obtain

(35)

∫
B(0,R)

m∏
j=1

( ∑
Tj,R∈Tj,R

χTj

|Tj |
∗ gTj

)pj
.ε R

ε
2−

∑m
j=1 pjn

′
j

m∏
j=1

( ∑
Tj∈Tj,R

‖gTj‖1
)pj

for all nonnegative gTj
∈ L1(Rn), Tj ∈ Tj,R, 1 ≤ j ≤ m. Here Tj,R is any finite collection

of rectangles in Rn with nj sides of length O(R1/2) and n′j sides of length O(R), with the

property that each Tj ∈ Tj,R is contained in an O(R1/2)-neighbourhood of an n′j-dimensional
subspaces of Rn which is (modulo translations) within a distance ν > 0 (given by Theorem
1.2) of kerLj .

In order to prove Theorem 1.3 it will suffice to show that

(36)

∫
B(0,R)

m∏
j=1

|Gj |2pj .ε Rε−
∑m

j=1 pjn
′
j

m∏
j=1

‖Gj‖
2pj
2

for all Gj ∈ L2(Rn) such that supp Ĝj ⊆ Sj + O(R−1), 1 ≤ j ≤ m, and all R ≥ 1. To see

that (36) implies (13) we first observe that Ejgj = ĥjdσj , where the Sj-carried measure σj
is defined by ∫

Rn

ψdσj :=

∫
Uj

ψ(Σj(x))dx

and hj by gj = hj ◦Σj . Let φ be a smooth bump function supported in B(0, 1) with Fourier

transform bounded below on B(0, 1), and let φR(x) = Rnφ(Rx). Setting Gj = (Ejgj)φ̂R
reveals that supp Ĝj ⊆ Sj + O(R−1) and ‖Gj‖2 ∼ Rn

′
j/2‖hj‖2 ∼ Rn

′
j/2‖gj‖2 uniformly in

R for each 1 ≤ j ≤ m. Applying (36) to these functions Gj establishes (13); see [31] for
further details of this reduction in a bilinear setting.

Next we let C(R) denote the smallest constant C in the inequality

(37)

∫
B(0,R)

m∏
j=1

|Gj |2pj ≤ CR−
∑m

j=1 pjn
′
j

m∏
j=1

‖Gj‖
2pj
2
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over all Gj ∈ L2(Rn) such that supp Ĝj ⊆ Sj + O(R−1), 1 ≤ j ≤ m. In these terms (36)
becomes C(R) .ε Rε.

Upon iterating and using the elementary fact that C(100) < ∞, it will be enough to prove
that for each ε > 0, there exists a constant cε, independent of R, such that

(38) C(R) ≤ cεRεC(R1/2)

for all R ≥ 1.

Let x ∈ B(0, R) and φx
R1/2 : Rn → R be given by φx

R1/2(y) = e−2πix·yφR1/2(y), where φR1/2 is

defined above; observe that the Fourier transform of φx
R1/2 is bounded below on B(x,R1/2)

uniformly in x and R. Applying (37) on B(x,R1/2), using the modulation-invariance of the
inequality, we obtain∫

B(x,R1/2)

m∏
j=1

|Gj |2pj . C(R1/2)R−
1
2

∑m
j=1 pjn

′
j

m∏
j=1

‖Ĝj ∗ φxR1/2‖2pj2

uniformly in x and R. Averaging this over all |x| ≤ R yields∫
B(0,R)

m∏
j=1

|Gj |2pj . C(R1/2)R−
n
2−

1
2

∑m
j=1 pjn

′
j

∫
B(0,R)

m∏
j=1

‖Ĝj ∗ φxR1/2‖2pj2 dx.

Defining Ĝ
ρj
j = Ĝjχρj for caps ρj with diameter R−1/2 which together provide a cover of

Sj +O(R−1) with bounded overlap, we may write∫
B(0,R)

m∏
j=1

|Gj |2pj . C(R1/2)R−
n
2−

1
2

∑m
j=1 pjn

′
j

∫
B(0,R)

m∏
j=1

(∑
ρj

‖Ĝρjj ∗ φ
x
R1/2‖22

)pj
dx.

Using the rapid decay of the function φx
R1/2 it now suffices to show that

(39)

∫
B(0,R)

m∏
j=1

(∑
ρj

‖Gρjj ‖
2
L2(B(x,R1/2))

)pj
dx . Rε+

n
2−

1
2

∑m
j=1 pjn

′
j

m∏
j=1

‖Gj‖
2pj
2 .

Now let G̃
ρj
j be given by G

ρj
j = G̃

ρj
j ∗ ψ̂ρj , where ψρj is a Schwartz function which satisfies

ψρj ∼ 1 on ρj and

|ψ̂ρj (x+ y)| .
χρ∗j (x)

|ρ∗j |

uniformly in x ∈ Rn, y ∈ B(0, R1/2). Here ρ∗j is a rectangle in Rn with nj sides of

length O(R1/2) and n′j sides of length O(R), lying in an O(R1/2)-neighbourhood of an n′j-
dimensional affine subspace of Rn, which, if the neighbourhoods Uj are chosen sufficiently
small, is within distance ν of kerLj (modulo translations). Applying the Cauchy–Schwarz

inequality and integrating in y ∈ B(0, R1/2), we have

‖Gρjj ‖
2
L2(B(x,R1/2)) . R

n/2
χρ∗j
|ρ∗j |
∗ |G̃ρjj |

2(x)

uniformly in ρj , x and R. An application of (35), the scaling condition (3), followed by the
bounded overlap property of the caps ρj , completes the proof of (39), and hence (38). �

It is interesting to note that in the particular case of the Loomis–Whitney datum, one can
recover Theorem 1.2 from Theorem 1.3 by a simple Rademacher function argument (see
[12]). However, when the codimensions n′j 6= 1 this argument fails due to certain orientation
restrictions on the dual objects ρ∗j arising in the above wave-packet analysis.
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3.3. Nonlinear Brascamp–Lieb inequalities and Theorem 1.4. The induction-on-
scales argument we use here is very closely related to the one used in Section 3.1. We begin
by introducing, for each 0 < δ ≤ 1 and n ∈ N, the class of functions

(40) L1(Rn; δ) := {f ∈ L1(Rn) : f ≥ 0 and 1
2f(y) ≤ f(x) ≤ 2f(y) whenever |x− y| ≤ δ}.

As remarked in [8], u(cδ, ·) := Pcδ ∗ µ ∈ L1(Rn; δ) for every finite Borel measure µ on Rn,
where Pt denotes the Poisson kernel and c a suitable dimensional constant. The defining
property of a function f ∈ L1(Rn; δ) states that f is “essentially constant at scale δ”, and
in the context of the harmonic function, u, is a manifestation of the Harnack principle.

Proposition 3.3. Under the hypotheses of Theorem 1.4, there exists a neighbourhood U of
the origin in Rn and a constant κ <∞ such that

(41)

∫
U

m∏
j=1

(fj ◦Bj)pj .
(

log

(
1

δ

))κ m∏
j=1

(∫
Rnj

fj

)pj
for all functions fj ∈ L1(Rnj ; δ), 1 ≤ j ≤ m, and all 0 < δ ≤ 1.

Before proving Proposition 3.3 we indicate how it implies Theorem 1.4. We begin with a
simple observation. For each 1 ≤ j ≤ m let ψj be a Schwartz function on Rnj , and for each

δ1, . . . , δm ≥ δ > 0, let ψj,δj (x) := δ
−nj

j ψj(δ
−1
j x). Bounding |ψj | by a suitably normalised

Poisson kernel, as we may, it follows that for each nonnegative gj ∈ L1(Rnj ) there is a
g̃j ∈ L1(Rnj ; δ) such that |ψj,δj | ∗ gj . g̃j and

∫
g̃j .

∫
gj , with implicit constants uniform

in δ1, . . . , δm and δ. Thus by Proposition 3.3,

(42)

∫
U

m∏
j=1

(
(|ψj,δj | ∗ gj) ◦Bj

)pj . (log

(
1

δ

))κ m∏
j=1

(∫
Rnj

gj

)pj
for all nonnegative gj ∈ L1(Rnj ), 1 ≤ j ≤ m, and δ1, . . . , δm ≥ δ > 0.

Let ε > 0. For each 1 ≤ j ≤ m let {Pj,k}∞k=0 be the standard annular Littlewood–Paley
projection operators on Rnj with associated convolution kernels {φj,k}∞k=0. We choose these

kernels such that for k > 0, φ̂j,k(ξ) = φ̂j(2
−kξ) for some fixed Schwartz function φj on Rnj

with Fourier support in the annulus {ξ ∈ Rnj : 1/4 ≤ |ξ| ≤ 2}, and such that φj,0 is a
Schwartz function with Fourier support in the unit ball of Rnj . Furthermore the functions

{φ̂j,k}∞k=0 are taken to form a partition of unity on Rnj\{0}, so that
∑
k≥0 Pj,k is the identity

for each j. For each 1 ≤ j ≤ m let φ̃j be a Schwartz function whose Fourier transform is

equal to 1 on the Fourier support of φj , and define φ̃j,k in a similar way to φj,k. Observe

that φ̃j,k ∗ φj,k = φj,k for all j, k.

We may thus write ∫
U

m∏
j=1

fj ◦Bj =
∑

k1,...,km≥0

∫
U

m∏
j=1

(Pj,kjfj) ◦Bj .

By symmetry we need only consider the above sum for k1 ≥ k2 ≥ · · · ≥ km ≥ 0. Writing

Pj,kjfj = φ̃j,kj ∗ (Pj,kjfj) and applying Hölder’s inequality we have∫
U

m∏
j=1

|Pj,kjfj | ◦Bj ≤
∫
U

(
|φ̃j,kj | ∗ |Pj,kjfj |

)
◦Bj

.
∫
U

m∏
j=1

(
|φ̃j,kj | ∗ |Pj,kjfj |qj

)pj
◦Bj ,
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which by (42) is, up to a bounded factor, bounded above by

2εk1/2
m∏
j=1

‖Pj,kjfj‖qj .

Thus∑
k1≥···≥km≥0

∫
U

m∏
j=1

|Pj,kj | ◦Bj .
∑

k1≥···≥km≥0

2εk1/2
m∏
j=1

‖Pj,kjfj‖qj

.
∑

k1≥···≥km≥0

2−εk1/2‖f1‖Lq1
ε

m∏
j=2

‖fj‖qj

.
∑

k1≥···≥km≥0

2−εk1/(2m) · · · 2−εkm/(2m)‖f1‖Lq1
ε (Rd1 )

m∏
j=2

‖fj‖qj

.
m∏
j=1

‖fj‖Lqj
ε (Rnj )

,

as required.

Proof of Proposition 3.3. Let η be a positive real number to be determined. For δ > 0 let
C(δ) denote the best constant C in the inequality

(43)

∫
[−η,η]n

m∏
j=1

(fj ◦Bj)pj ≤ C
m∏
j=1

(∫
Rnj

fj

)pj
over all functions fj ∈ L1(Rnj ; δ), 1 ≤ j ≤ m. Of course Proposition 3.3 states that for some
choice of η, depending only on the nonlinear maps B1, . . . , Bm and exponents p1, . . . , pm,
there is a κ <∞ for which C(δ) . (log(1/δ))

κ
. This will follow upon iterating O(log log(1/δ))

times the recursive inequality

(44) C(δ) . C(
√
δ).

There will be more than one constraint placed on η, although the most significant will be a
consequence of the local boundedness of the classical Brascamp–Lieb constant, established
in Theorem 1.1. Since the Bj are smooth in a neighbourhood of the origin, and dBj(0) = Lj ,
we have that ‖dBj(x)−Lj‖ . |x| in this neighbourhood. Thus, by Theorem 1.1, there exists
η0 > 0 such that BL((dBj(x))mj=1,p) <∞ uniformly in |x| ≤ η0.

In order to prove (44), we first partition [−η, η]n into a disjoint union of axis-parallel cubes

Q of sidelength
√
δ, and write∫

[−η,η]n

m∏
j=1

(fj ◦Bj)pj =
∑
Q

∫
Q

m∏
j=1

((fjχBj(Q)) ◦Bj)pj .

Taylor expanding Bj about xQ ∈ Q we obtain

Bj(x) = Bj(xQ) + dBj(xQ)(x− xQ) +O(|x− xQ|2),

and so if x ∈ Q,

Bj(x)− (Bj(xQ) + dBj(xQ)(x− xQ)) = O(δ).

Since fj ∈ L1(Rnj ; δ) we have that

fj(Bj(x)) . fj(Bj(xQ) + dBj(xQ)(x− xQ)),
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uniformly in x ∈ Q and Q ⊆ [−η, η]n. By translation-invariance we have∫
Q

m∏
j=1

((fjχBj(Q)) ◦Bj)pj . BL((dBj(xQ))mj=1,p)

m∏
j=1

(∫
Bj(Q)

fj

)pj
for all Q. Choosing η ≤ η0 we obtain∫

[−η,η]n

m∏
j=1

(fj ◦Bj)pj .
∑
Q

m∏
j=1

(∫
Bj(Q)

fj

)pj
.(45)

Since dBj(0) = Lj : Rn → Rnj is an isometry, and Bj is smooth in a neighbourhood of the

origin, we have that (making η > 0 smaller if necessary), |Bj(Q)| ∼ δnj/2 and

1

|Bj(Q)|

∫
Bj(Q)

fj . Pc
√
δ ∗ fj(Bj(xQ))

uniformly in xQ ∈ Q and Q ⊆ [−η, η]n. Here, as before, Pt denotes the Poisson kernel
on Rnj (the dimension dictated by context), and c a dimensional constant to be chosen
momentarily. Thus∫

[−η,η]n

m∏
j=1

(fj(Bj(x)))pjdx . δ
1
2 (p1n1+···+pmnm)

∑
Q

m∏
j=1

(Pc
√
δ ∗ fj(Bj(xQ)))pj .

Averaging in the choices of xQ ∈ Q, and using the scaling condition
∑m
j=1 pjnj = n, yields∫

[−η,η]n

m∏
j=1

(fj(Bj(x)))pjdx .
∑
Q

∫
Q

m∏
j=1

(Pc
√
δ ∗ fj(Bj(x)))pjdx

.
∫

[−η,η]n

m∏
j=1

(Pc
√
δ ∗ fj(Bj(x)))pjdx.

Choosing c > 0 appropriately ensures that Pc
√
δ ∗ fj ∈ L

1(Rnj ;
√
δ) for each j. The claimed

inequality (44) follows. �
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