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Stability of the Convex Pompeiu Sets (*). 

FAUSTO SEGALA 

1 .  - I n t r o d u c t i o n .  

We will say that a bounded set ~ in the plane is a Pompeiu set if the function f -  O is 
the only continuous function on the plane for which 

I f ( x )  dx = O, 
o(~) 

V rigid motion o of the plane. 
In 1929, D. POMPEIU [9] posed the problem (afterwards called Pompeiu problem 

(P.P.)) to find all the bounded sets of the plane which are Pompeiu sets. From now on, 
open bounded simply connected subsets of the plane will be called domains. In 1944 
CHAKALOV[3] discovered that the disks are not Pompeiu sets, and in [4] it was 
conjectured that (modulo sets of measure zero) the disks are the only domains which 
are not Pompeiu sets. The depth of P.P. was finally clarified in 1976 by WILLIAMS [10]. 
A connected bounded set ~2 of the plane is called a Schiffer set if 

(1.1) 

A ~ = - ~ u  in ~2, 4 > 0 ,  

au 0, u[ am = constant, 
a~2 

implies u - 0. 
WILLIAMS proved the equivalence between Pompeiu sets and Schiffer sets. In 1877, 

LORD RAYLEIGH [8] conjectured that if there exists a non-trivial solution to (1.1), then 
~2 is a disk. Many progress about P.P. were done since 1972. In that year, ZALCMAN [12]- 
published a seminal work in which, first, he made use of the Fourier transform to 
attack P.P. Using ideas closely related to those presented in [12], BROWN, SCHREIBER 
and TAYLOR [2] gave the deepest contribution to the problem in 1973. They proved that 
~2 is a Pompeiu set if and only if ~ ~ does not vanish identically on every circle of C 2, 

(*) Entrata in Redazione fl 22 maggio 1997 e, in versione riveduta, il 14 luglio 1997. 
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where X~ is the characteristic function of ~ and ~ denotes its Fourier 
transform. 

The use of the technique of Riemann method of steepest descent, to analyze the 
asymptotic behaviour of ~ a, and the theorem of Brown, Schreiber and Taylor, enabled 
the author and GAROFALO to give the contributions [4]-[7] to P.P. (for complete 
references about P.P. see the survey of ZALCMAN [13]). 

In this paper, we will prove that Pompeiu convex domains are stable, i.e. if t9 is a 
convex Pompeiu domain, then every convex domain sufficiently close of ~ (in the sense 
of small deformation, see Section 2) is a Pompeiu set. In this way we give a positive 
answer to a question posed by BERENSTEIN in 1980 [1], in the case of convex domains. 
We hope that our contribution will be a useful step toward the solution of the Pompeiu 
problem. 

2. - Main  theorem.  

In 1981, WILLIAMS [11] proved that if ~9 is not a disk and its boundary is Lipschitz 
but not analytic, then ~9 is a Pompeiu set. Therefore we can limit the study of P.P. to the 
class of analytic domains. 

In this paper we prove the following theorem about stability of Pompeiu sets. 
From now on, ,,convex, will mean ,,strictly convex,. 
Let Q 0 be a convex set with 0 e tg. For small real ~, we put ~9 ~ = (1 + ;t) ~9 0. 
We fix a family F of convex domains t~ such that 

inf(mink~) > 0,  supHx~lJc~ < + ~ ,  
F F 

where k~ is the curvature of 8~9, s ~ x , ( s )  describes 8~9 and H']Ic~ denotes the 
C 5-norm. 

THEOREM 2.1. - Let ~ o ~ F be a convex Pompeiu domain. There exists e > 0 such 
that every convex domain Q c F ,  with 

_~C~C~ , 

is a Pompeiu set. 
Obviously, e is invariant under rigid motions of the set ~ o. 

3. - A descript ion o f  the  zeros  o f  ~ ( ~ )  for large I~l- 

Let ~ be a domain. Then by Brown, Schreiber and Taylor theorem [2], t~ is a 
Pompeiu set if and only if the Fourier-Laplace transform 

~a~(~) = ~ e -~(x, ~}(dXl + idx2) 
8t~ 

does not vanish identically on every circle ~ + ~ = a 2 in C 2, with (x, ~) = xl ~1 + x2 ~2, 
~1, ~2~ C. We can assume a > 0, by Berenstein result [1]. 
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Let t9 be a convex domain (with real analytic boundary). We put 

E(v~, a ) = ~ ( a c o s v  ~, a sinv~), 

where a > 0 and 0 ~< v~ ~< 2z .  The function E(0,  a) is analytic in the variables 0, a. If  we 
put 

M a =  {(acosvK a s i n v  ~) JOe [0, 2z]} 

t9 is a Pompeiu set if and and only if E(v ~, a) does not vanish identiclly on every 
Ma. 

Let s be the arc length. Then 3t9 is described by (xl(s), x2(s)). We have 

E(O, a) = f e -ia(~i(~)cos~ + ~2(~)~i,~)(X{ (S) + ix~ (S)) ds. 

We apply the stationary phase method. Consider the critical points of the phase 
Xl(S) cosv~ + x2(s) sin#. They are given by 

(3.1) (v(s), ~(0)) = 0 

where v(s) is the tangent vector and ~(t~) = (cosv~, sin~). 
Since f2 is convex, there are two points XI(O) and X2(v ~) on 2t9 for which the 

tangent to 8f2 is normal to ~(v ~) (see figure 1). 
By an application of stationary phase method, we obtain [1 

(3.2) E(v ~, a ) =  v*(~) k~_~(O) e x p i  

1 ex [ )] + ~aa R(~, a) 

Fig. 1. 
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where r*(#)  is the tangent vector to aY2 in XI(#) (represented by a complex number), 
kl(O) and k2(#) are the curvatures of a$9 at the points XI(#), X2(#) and R(#,  a) = 0(1)  
for a - ~  + ~ ,  uniformly in 0. 

Here we assume t9 is convex, in order to give (3.2) a meaning for every 
0 e  [0, 2z]. 

If we set H(#) = ~/kl(#)/k2(O), we can write (3.2) in the form 

(3.3) 

Here F(# ,  a) ~ 0 for # e  [0, 2z], a > 0, 6(0) is the diameter of t3 in the direction # and 
the new R(#,  a) = 0(1)  for a--* + ~ ,  uniformly in 0. 

The zeros of ~ an are therefore given by 

(3.4) [( exp - i  a6(O)- -~ =H(#)- 1-~-R(#, a). 

Equation (3.4) is solved by taking 

(3.5) IH(#)--~aaR(#,a)l=l, 

(3.6) 
�9 l o g  (H(#) - R(#,  a ) /V~)  2kz  + :~/2 

a - - ~  

6(0) 6(0) 

We observe that if we have H(O) * 1 for some 0, then the equation (3.5) has no 
solutions for large a. Then we consider the case H(O)= 1. In this case (3.5) 
becomes 

(3.7) I1---~aaR(O,a) l =1. 

Therefore 

R(#,  a) ) 
log 1 V~ = ~aG(O, a) 

for some real G. We can rewrite (3.6) in the form 

G(#, a) 2k + 1/2 
( 3 . 8 )  a + - -  - Jr. 

V~6(#)  6(0) 

From (3.8) it follows that for large a the zeros of ~ an are described by the set of (a, #)'s 
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Fig. 2. 

such that  

4 k + 1  
(3.9) a = 

2~(~) 
z +  o(1) ,  

(3.10) H(v  ~) = 1.  

In conclusion, for large a, the zeros of ~ ~ are close to dilations of the curve 

1 
O ~ -  (see figure 2) ,  

6(9) 

EXAMPLE 3.1. - In the case of a disk of radius R, (3.9) becomes 

(3.11) 
(1) 

a =  R +  ~ z + o ( 1 ) .  

We know that  the Four ie r  t ransform of the characteristic function of a circle of radius 
R is given by  

aQ (a  cos 9 ,  a sin 9) = 2zRe ~eJ1 (aR) 

and then ~ ~a = 0 for 

xk 
( 3 . 1 2 )  a - 

R 

where xk is the k-th positive zero of J1. 

I t  is well known that  (3.12) is in accordance with (3.11). 

EXAMPLE 3.2. - In the case of the ellipse Q = {(xl,  x2)Ix~/a2+ x~/b~<~ 1}, we 
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have 5(~) = 2p(v ~) with p(v ~) = ~//a 2 cos2O + b 2 sin2v ~ and then (3.9) becomes ( 1). 
= + o(1).  (3.13) a R + ~ p(v~) 

On the other hand, a simple calculation gives 

~o~(acosv  ~, as inO)  - - -  
2abe ia 

J1 (ap(~)) p(#) 

and then ~ an = 0 for 

Xk 
(3.14) a - 

P(~) 

where xk is as above. Also in this case (3.14) is in accordance with (3.11). 

4. - A n e w  p r o o f  o f  a r e s u l t  due  t o  B e r e n s t e i n .  

In [1] BERENSTEIN proved that  if ~ ~ vanishes identically on infinitely many circles 
then $9 is a disk. Here we make use of (3.9) and (3.10) to give a different proof of this 
result  at least for convex domains. After  some modification, our proof can be extended 
to general domains. 

For  large a, the zeros of ~ ~ are close to the curve 

4 k + 1  
(4.1) a - - - z  

25(0) 

with the condition (3.10). 
Clearly, (4.1) describes a circle if and only if 

(4.2) 5(#) -= constant .  

Now, (4.2) and (3.10) imply that  ~9 is a disk. 

5. - P r o o f  o f  T h e o r e m  2.1. 

We begin this section by proving a lemma. 
Le t  a,  b > 0 be fixed 

LEMMA. 
rain cp" = A > 0. Then for every r > 0, one has 

[ - a ,  b] 

b exp ( i~/4)  V~ 

where F is a continuous function of its arguments. 

- Let q~eCS([-a,b]),  k e C 2 ( [ - a , b ] ) ,  with c p ( 0 ) = c ; ' ( 0 ) = 0  and 

1 1 
- ~  llkllc2 F(A' llqJlics) ~rr  



FAUST0 SEGALA: Stabili ty of the convex Pompeiu sets 301 

b 

PROOF. - Put J(r)  = f eirr and cp(s) = s2E(s).  
- -a  

We obtain rp'(s)/s = 2E(s) + sE'(s),  and by Cauchy theorem 2E(s) + sE'(s)  = rp"(z) 
for some intermediate z. Therefore 

(5.1) 2E(s) + sE '  (s) >I A . 

We make the change of variable u = s V ~  and observe that 

u ' ( s )  = 
2E(s) + sE '  (s) 

2 E V ~  

From (5.1) it follows that s-->u(s) is an invertible map. We call s = s(u) the inverse 
map. We have 

b 

J(r)  = I e i~2 k(s(u))  s '  (u) du 
--a 

for some new a, b. Put k(u) = k(s(u))s ' (u) .  We can write 

by;  I \ 
f iV 2 I V | 

(5.2) J ( r ) -  - j e h l - - l d v =  

b~ i v 
1 eiV2h(O) dv - 2 - - ~  2iveiV2P d v . ,  

V~ -av~ -aZ; 

with 

h((1)  - h ( 0 )  
p ( (1 )  - 

By integrating by parts the last integral of (5.2) and by taking into account that 

h(O) =k(O)s'(O) and s'(0) = 1/u'(0) = 1/E~/-E~ = 1 / ~ / 2 ,  we get 

(5 .3 )  
1() 

] J ( r ) -  ~rreXp i 4  ~ / 2  I ~ < V ~  7rr [Ip]]cl" 

From now on, C will denote a constant which is independent on k, q~. 
Since 

h(o) - h(O) h '(a) o -  h(a) + h(O) 
p(a) - , p '((1) = 

(7 (12 
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by Cauchy theorem we have 

p(a )  = h ' ( z ) ,  
h " ( w )  

p '  ((~) - _ _  

2 

for some intermediate z, w. Then 

(5.4) Ilpllo, ~< cl thl l~ .  

We recall that  h ( u ) =  k ( s ( u ) ) s ' ( u ) ,  which implies 

(5.5) h ' = k '  s ,2 + ks"  

(5.6) h" = k"  s ,3 + 3 k '  s ' s"  + k s " .  

Since E ( s )  = qXs) / s  2 we have 

E ' ( s )  = 
sqg' (s) - 2cp(s) 

8 3 

and by Cauchy E ' ( s )  = cp"(z)/6 for an intermediate z. In general, it is a simple mat ter  
to prove 

(5.7) IIEIIo~ ~< CI1~11c~+2 �9 

Finally 

2V2 
8 r - -  

2 E  + s E '  

2 E '  (2E  + s E ' )  - 4 E ( 3 E '  - s E " )  

(2E + s E  ,)3 

8"r _-- . . .  

and by using (5.1): 

(5 .8 )  i8 (n) I < 
G(IIEll c3) 

A 2 n -  1 
l ~ n ~ 3  

for some continuous function G. 
Formulas (5.5), (5.6) and (5.8) imply 

(5.9) )ihb2 -< Ilklic~ 
c (A,  lie)leo) 

A 7 

for a new continuous G. 
Now, the Lemma follows from (5.3), (5.4), (5.6). 
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For a given convex domain ~,  we put 

M(t~) = max diam t~ = maxS(O), 

m(f2) = min diam f2 = min 6(8),  

S(f2) = max [ H ~ ( 0 )  - 1 ] , 

where Ha(O)= "~/kal(O)/km(O) and the meaning of k~l(O), k~2(0) is clear (see the 
definition of k~(O) and k2(0) in the Section 3). 

Consider a family 5: of convex domain with the following property 

(5.10) M(f2) - m(~2) + S(~2) i> C > 0 V~2 e 5:. 

Condition (5.10) means that the domains which are in ~, are far from a disk, since disks 
are characterized by M(t~) = m(Y2) and S(tg) = 0. 

Let t~ be a domain in 5: Then we have from (5.10) that one of the following 
conditions is true 

C 
(5.11) S(g2) t> - -  

2 '  

C C 
(5.12) M(f2) - m(f2) ~> -ff,  S(~2) < --2 " 

From (3.3) we have 

Note the dependence of the right hand side from s 
We observe that ff ~2 = V= F A {~2:f2 _~o r ~2r f2~o } for a suitably small Eo, then 

from the Lemma it follows that 

R = sup IRa(S, a)[  < + oo 
O ~ V ,  Oe [0, 2~], a E R  + 

Assume (5.11) holds. Then for ~2e VA 5: 

(5.14) c o , S U p l e - i " ~ ' ( o ) + i H a ( O ) + ~ a R a ( O ' a ) l  > ~ 2 ~  

~ I R  - @aa - - -  >I sup I e-~a~(~) + ilia(O) [ - I> sup [Ha(O) 11 - R t> C 1 R C 
[o, 2~1 V~ [o, 2~] 2 V~ /> --4 

for a >I 16R2/C 2. 
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Now assume (5.12) holds. For  ~ E V A  # w e  have 

(5.15) sup 
[0, 2M 

1 R I> [o,SUp2~l ]e-i~d~(o) + iH~(O) ] - V~  >I 

~< [o,SUp2~l { le -i .~(o)+ il _ IHQ(v~ ) _ 11 } _ @aaR/> ~o,SUp2~l le -i.a.(e) + il 
C 1 

2 V ~ R -  

C 1 C 1 
sup I e - / ~  + i I - -  R = sup I e -it + i t - - -  - Vr~ R .  

d e [re(Y2), M(Q)] 2 ~ f a  t e [am(Q), aM(Q)] 2 

We observe that  by (5.12), a(M(Q) - m(D)) >I a(C/2) >I 2 z  if a >i 4z /C .  Then the 
interval [am(Q) ,  aM(52)], contains at least a point of the form - z / 2  + 2 k z ,  and 
therefore  

sup I e -it + i I = 2 
t e [am(Q), aM(Q)] 

when a />  4 z / C .  
By (5.15) we deduce 

(5.16) sup le-ia~'(~)+iHQ(~) ~ a R ( ~ , a )  l ~ 2  C ~ a R  . . . .  I>1 
[o, 2~] 2 

for a >~4R2/(2 - C) 2 when t g e V A  5:. 
In conclusion, by (5.13), (5.14) and (5.16) ~(aQ does not vanish identically for every  

Q e V A 5: and a I> a o with a o independent  from ~9. 
Now, assume that  t9 o is a Pompeiu convex domain. Then, by (5.16) there  exist e > 0 

and a o > 0 such that  

(5.17) 2 aa does not vanish identically on every circle Ma if Q _~ c D c ~9~, 

a>~ao . 

Since ~ o is a Pompeiu set, 

(5.18) P(a) = sup IZ~o [ > 0 Va > 0 
Ma 

and hence 

(5.19) P = inf P(a) > 0. 
[0, ao] 

Let  Q be a small deformation of ~2 o. We obtain for a ~< a o: 

(5.20) s u p 1 2 a l  ~> P -  sup 1 2 Q - 2 S o l  ~ > -  P if sup 
Ma I~l ~<~o 2 I~l ~<ao 

P 
12 -2 ol < -  �9 2 
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A simple calculation shows 

(5.21) = 

Therefore  

:logo e -i(~' ~) dx - 
J 

~2o- t~ 

e-i(~'~)dx I <<,#(Q - ~o)  + # ( ~ 9  o - ~9) .  

(5.22) 
P 

, . . . .  sup 
2 

if 

(5.23) 
P 

#(t9 - ~9o) + tt(~9 o - ~9) ~< - - ,  
2 

and (5.22) is surely satisfied if 

(5.24) 

for a sufficiently small (~. 
In conclusion, for a ~< a o 

s _6c s s a 

P 
(5.25) sup 12 ~ I >~ - -  

Ma 2 

when ~2 satisfies (5,24). 
Finally, by  (5.25) and (5.17) Theorem follows. 
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