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STABILITY OF THE DISCRETIZED PANTOGRAPH
DIFFERENTIAL EQUATION

MARTIN BUHMANN AND ARIEH ISERLES

Abstract. In this paper we study discretizations of the general pantograph
equation

y'(t) = ay(t) + by(6(t)) + cy'(<t>(t)),    f>0,       y(0)=y0,
where a , b , c , and yo are complex numbers and where 9 and <¡> are strictly
increasing functions on the nonnegative reals with 0(0) = <^>(0) = 0 and 8(t) <
t, 4>(t) < t for positive /. Our purpose is an analysis of the stability of the
numerical solution with trapezoidal rule discretizations, and we will identify
conditions on a , b , c and the stepsize which imply that the solution sequence
{yn/^o 's DOunded or that it tends to zero algebraically, as a negative power
of n .

X. Introduction

In this article we shall consider, in the most general form, the generalized
pantograph equation
(1.1) y'(t) = ay(t) + by(d(t)) + cy'(<p(t)),    t>0,       y(0)=y0,
where a, b, c, and yo are complex and where 8 and <p are sufficiently smooth
"delay" functions on the nonnegative reals which increase strictly monotonically
and satisfy 0(0) = 0(0) = 0 and 6(t) < t, <p(t) < t for positive t. Thus,
(1.1) is a differential equation which couples function values and derivatives on
distinct time levels. When c vanishes, (1.1) is called a delay equation and the
term cy'((j>(t)) is called the "neutral" term. Our principal focus in this paper is
the case of proportional delays 8(t) = qt and 4>(t) = pt, where q and p are
between 0 and 1. The equation (1.1) can also be considered for vector-valued
y and matrices a, b, c, but we will dispense with this generalization here.

There are many applications for the generalized pantograph equation. Here
we only mention applications in number theory (Mahler [15]), in electrodynam-
ics (Fox et al. [9]) and the collection of current by the pantograph of an electric
locomotive (whence its name; cf. Ockendon and Tayler [18]), and in nonlinear
dynamical systems (Derfel [6]). A more comprehensive list features in Iserles
[12].

Delay differential equations with constant delays, i.e., c = 0 and 6(t) = t-x,
where one also prescribes y's values on (-t, 0), have been investigated exten-
sively in the past (see, for instance, Bellman and Cooke [1,2] and Hale [10]).
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However, the analysis of stability of the analytic solution and the numerical
solution of a discretized form of (1.1) when the neutral term is present and
6(t) = qt and 4>(t) = pt (or even with more general forms of 6 and </>) has
only recently come of age. We mention the paper by the second author [12]
concerning the stability of the analytic solution of (1.1), two articles by the au-
thors [3, 4] about the stability of numerical solutions when 6(t) = <¡>(t) = L~xt,
where L > X is an integer, and the reader is referred, for further contributions
to the subject, to Carr and Dyson [5], Fox et al. [9], Feldstein and Jackiewicz
[8], Kato and McLeod [14], and to Morris, Feldstein, and Bowen [17] for other
special cases of (1.1). Stability analysis of the exact solution of (1.1) is the
theme of two forthcoming papers, Feldstein et al. [7] and Iserles and Terjéki
[13].

In the present paper we shall provide sufficient conditions on a, b, c, and
the stepsize h so that the solution of (1.1), when discretized according to the
trapezoidal rule (there will also be a generalization of this approach in our last
section), is bounded or majorized by a sequence that decreases algebraically.
When deriving discretizations for differential equations with delay terms it is
usual to find values of y(6(t)) and y(4>(t)) at gridpoints by polynomial inter-
polation (Meinardus and Nürnberger [16]) unless 6(t) and 4>(t) happen to be
on the grid themselves. This will be an essential ingredient to our approach
too. We will study conditions that admit the solution of a trapezoidal rule dis-
cretization to be bounded or algebraically decreasing first, and we will identify
conditions for these two properties to hold for general 6 and </> and for the
case of two proportional delays 6(t) = qt and <p(t) = pt, respectively. These
are our topics in the following and in the third section. In the fourth section
we will give conditions such that the solution vector of a general nonstationary
recurrence relation, the trapezoidal rule being a special case thereof, is bounded.
The case of proportional delays only will be covered in that part of our work.

2. BOUNDEDNESS FOR GENERAL MONOTONE DELAYS

In this section we will derive conditions which imply that the solution se-
quence of a discretization of (1.1) is bounded. These conditions will depend
on a, b, c, the stepsize h and the size of the derivatives of 6 and </> and
their inverses. In order to facilitate the presentation of our results, we deal with
the case c = 0, i.e., the "pure delay" case, first. Therefore, suppose that 6 is
a differentiable, strictly monotonically increasing function on the nonnegative
reals such that 0(0) = 0 and 6(t) <t for all t > 0, and define y/ := 0~x. Our
present aim is to establish a framework to extend the trapezoidal rule approxi-
mation to the solution of (1.1). In order to identify the recurrence relation for
our discretization, we integrate (1.1) and obtain

ft r6(t)
(2.1) y(t)=y0 + a     y(x)dx + b ip'(x)y(x)dx.

Jo Jo
This implies that, for all nonnegative integers n ,

An+l)h rd((n+l)h)
(2.2) y((n + X)h) = y(nh) + a y(x)dx + bl y/'(x)y(x)dx.

Jnh Jd(nh)

Let y„ denote our approximation to y(nh) for a given stepsize h.  We dis-
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cretize the first integral in (2.2) with the trapezoidal rule, viz.,

(2.3) / y(x)dx^\h(yn+yn+x).
Jnh

It requires more effort to provide a trapezoidal rule approximation of the second
integral in (2.2) as a linear combination of y[e(nh)/h\ and y[8(nh)/h]+j„ f°r some
positive j„ . In order that the recurrence relation becomes explicit for large n ,
we always require that

(2.4) [9(nh)/h) + jn<n + X,
except for n = 0, when j0 = X, and perhaps for a further finite number of «'s.
In those instances we allow equality instead of the inequality in (2.4). We label
the «'s for which (2.4) is an equality as «i (= 0) < n2 < ■ ■ ■ < nj . We note
that (2.4) can always be achieved for n > 0, since 6(t) < t for positive t. Our
strategy is to find the values of y at the endpoints 6(nh) and 6((n + X)h) of
the range of integration of the second integral in (2.2) by linear interpolation.
Hence, it is desirable to have h[d(nh)/h]+j„h as near as possible to 9((n + X)h)
without violating (2.4). Since the choice of jn clearly depends on 6 , we leave
it open how to choose it for general 6, bearing in mind that j„ = X is always
possible. We obtain

rB{(n+l)h)
(2.5) / v'{T)y(T) dx « ß„y[en] + any[ön]+jn,

J8{nh)

where we define

(2.6) 6n:=d(nh),     6n := ^

and

an = j-x(en+x - en)(\(ip'(en)ên + y/'(en+x)dn+x)

-{(y/'(dn) + w'(0n+x))[dn])>0,
ßn = (6n+x - 0n)(x2(y'(6n) + w'(Ön+i))(X +Jñ{[Gn\)

~2X-n(V'(dn)dn + w'(en+x)dn+x)).

We obtain the recurrence

(2.7) yn+l = Ryn + S(ßny[ön] + any[ön]+jn),

where R and S are the quantities

(2.8) R=1-^    and    5=      *
1 - \ha 1 - \ha '

In order that (2.7) always has a nontrivial solution, we require that S ^ a~x
for j = X ,2, ... , J. We obtain the following result.

Theorem 1. If we denote œ = sup„eZ+(a„ + \ßn\), then {.v„}£L0 is a bounded
sequence i/|/î| + û)|S|<1. Moreover, the bound

(2.9) W<«||0'|UI(/||oo(l+||0'||oo)

is true provided that ||0'||oo and ||y'||oo are finite.
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Proof. Except for (2.9), the assertion of the theorem immediately follows from
(2.7) and from the definition of <y. So we only need to prove (2.9) in order
to establish this theorem. Because of 0's monotonicity and the mean value
theorem, it is true that

(2.10) 0<ö„+1-Ö„<«||Ö'||oo.

We may now obtain a bound on œ as follows. Employing (2.10), we have

a„ < hWffWooX,,,        \ßn\ < h\\0'\U^yf'(e„) + (/(0„+i)) -K\,
where

Xn := j-x(\W(ßn% + y/'(6n+x)8n+x) - ^y/'(6„) + y'(8a+l))[8n]),

which is positive. We deduce that

an + \ßn\ < AHÖ'Hoo maxdl^H«,, \2Xn - \ip'(6n) - ^'(0„+1)|).

Furthermore, using the fact that \6n - ([6„]+jn/2)\ < j„/2, for positive integers
;„ , we see that the second expression in the maximum is at most

(2.11) H^'iioo + j-x\w'(dn+x)ën+x - w'(en+l)èn\ < \\¥'\ux + ||ö'||oo),

because of the bound (2.10). Hence, we obtain the bound (2.9) for œ as
required.   D

In view of the left-hand side of (2.11 ), the influence of the choice of the j„'s
may be reflected in the bound on co by replacing (2.9) by

W<A||0'||oo      ll^'lloo+SUp
V n>0

j-x\w'(en+l)\    sup    |0'(oi
te[nh,{n+l)h]

Corollary 2. The solution sequence of (2.1) is bounded if

(2.12) |0|-||o'||oo||^||oo(l + ||0'IU<
\X-\ha\ + \X + \ha\

Proof. We need to show that \R\ + oj\S\ < X under the condition (2.12). Sub-
stituting the values for R and 51 from (2.8) shows that we need to require

(2.13) o)\b\<\X-\ha\-\X + {ha\.

Multiplication of both sides of (2.13) with

\X-\ha\ + \X + \ha\
and employing (2.9) yields (2.12).   o

We shall see later (Theorem 6 in §3) that (2.9) gives a bound which is optimal
for the case 6(t) = qt and irrational q, whereas it can be slightly improved for
6(t) = qt and rational q .

We continue the analysis by taking the neutral term into consideration. Now
let <j) also be a strictly monotonically increasing function on the nonnegative
reals with </>(0) = 0 and 4>(t) < t for positive t. Let <p be twice differentiable,
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THE DISCRETIZED PANTOGRAPH DIFFERENTIAL EQUATION 579

and denote Ç := <p~x. We now integrate (1.1) and employ integration by parts
to obtain

rt rO(t)
y(t) =yo + a     y(x) dx + b        w'(r)y(x) dx

Jo Jo
{ rW) 1

+ c I ymWW)) - yoC(0) - J    C"(T)y(T) dx   .
rMt

10

This implies that
r{n+l)h r6((n+l)h)

ld(nh)

+ cy(<p((n + l)h))C(<K(n + 1)«)) - cy(4>(nh))C.'(4>(nh))
r<t>((n+l)h)

An+l)h ¡8((n+l)h)
y((n + X)h) = y(nh) + a y(x)dx + b i//'(x)y(x)di

Jnh Jd(nh)

r<r>((n+i)n)
-c C"(x)y(x)dx.

J<t>(nh)

We have to supply a trapezoidal rule approximation of the third integral as a
linear combination of y^n^/h] and y[4,{nh)/h]+k„ for some kn > X, where

(2.14) [<t>(nh)/h] + k„ < « + 1,
except for « = 0 (when ko = 1) and perhaps for a further finite number of «'s.
Again, we then replace the strict inequality by equality in (2.14). We define the
set {«i, «2, ..., «a:} as the set of indices « where (2.14) holds as an equality,
«i being 0. The integral is dealt with in the same way as in (2.5), and linear
interpolation will also be used to approximate the fourth and fifth terms on the
right-hand side. As a result, the expression

n .« / Ç"(x)y(x)dx-y(<l>((n + X)h)K'(<p((n + X)h))
(¿.O) Je(nh)

+y(4>(nh))C'(<p(nh))
is approximated by

(2-16) ßny{M + any[k]+kn,

where <pn and <¡>n are defined in a way analogous to the definitions of 8n and
6„ in (2.6) and where

ân = k-X(<l>n+l - <t>n){l2{C{<Pn)4>n + C"(4>„+l)4>n+l) ~ \(C(4>n) + C'(<t>n+l))[j>n])
+ k-X(C(<i>n)k - ti'(<Pn+l)k+l) + K'WnM'i'Pn+l) " C(M),

ßn = {(Pn+l - <¡>n)(\(C{<t>n) + C{<t>n+l)){X + ¿[¿B])

-à-n^"(M4>n + C'(<Pn+l)k+l))
- KX(i:'(<Pn)4>n - r'(<t>n+l)k+l) + (1 + k~X[M)(C(M - C'(4>n+l)) ■

We obtain the recurrence

(2.17) yn+l = Ry„ + S(ßny[ÖA + any[ön]+JJ - T(ßny[k] + àny{k]+kn),
where

(2.18) r = —4—.
1 - jha
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In order that (2.17) always has a nontrivial solution, we require that S ^ a"1
fot j =1,2,..., J except for the ;'s with n¡■ £ {«i, h2, ... , Hk) , and T ^
-àTx for k = X ,2, ... , K except when hk £ {«i, n2, ... , nj}, and finally
anjS -àhkT£\ for n¡ = hk .

We may now state the next result of this section.

Theorem 3. If we denote œ = sup„ez+(|â„| + \ß„\) and recall œ's definition
from the previous theorem, then {yn}™=o Is bounded í/|./?| + cü|S| + (u|r|<l.
Moreover, the estimate

(2.19) CO < «||</»'||oo||C"l|oo(3 + Halloo) + 2||<//|U|C'||oo
is valid provided that ||</>'||oo> WC'Woo, and IIC'IU are all finite.
Proof. Again, the assertion of the theorem follows from (2.17) and our defini-
tions of co and œ, except for the bound (2.19). We get this estimate by the
same methods as in Theorem 1 and by using the following two estimates:

k-x\í'((¡>n){k - Ik]) - r'{4>n+i)(k+i - [k])
< k-x\(C(4>n) - C'(4>n+i))(k - [k])\ + k-x\C(^n+i)(k - k+i)\
< AinUMloO + IIC'llooll^HoO

and
k-X\C(<t>n)(kn + [k] - k) - C((t>n+l)(kn + [k\ ~ k+l)\

<A||C"||oo||^|U + ||C'Hoo||^||oo.

Here we have also used the fact that \k + [k]-k\ < max[A:, 1] for nonnegative
integers k . The theorem is proved.   D

Instead of the estimate (2.19), we may bound œ above by

(0<2hW\U\C'\\oo

+ sup    k-x f{A||^||oc|C"(0B+i)| + 2K'(0„+1)|}
n>0 \

x     sup     \4>'(t)\ + h     sup     |C"(0W)0'(/)l]
t€[nh,{n+l)h] t€[nh ,{n+l)h] )

in order to exhibit the dependence of this bound on kn , « = 1,2,..

Corollary 4. The solution sequence of(2.Xl) is bounded if

\b\ • 110'llooH V'HooO + 110'Hoc) + \C\ • ||</»'||oc||C"l|oc(3 + Halloo)
+ 2|c|«-1||^||00||C'||oc<

1 - ^ha\ + |1 + \ha\
We shall see in the following section that the bound (2.19) is attained in the

case of proportional delay, i.e., <p(t) = pt.
So far we have chosen to approximate required values of y by linear in-

terpolation at the points where they are needed for the discretization but not
available (i.e., for the trapezoidal rule approximation of the second integral in
our equation and for the approximation of (2.15)) and to evaluate the delay
functions and their derivatives always exactly, because they are available. The
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THE DISCRETIZED PANTOGRAPH DIFFERENTIAL EQUATION 581

values of the coefficients an , ßn, â„, and ßn are expressed much more sim-
ply, however, if we use linear interpolation to the whole respective integrands
and the other terms in (2.15), and therefore we want to record them here too.
They are

an = j-x(6n+x - dn)(\(èn + 0„+1) - [ën])y/'(h[On] + jnh) > 0,

ßn = {On+l - 6„)(l + j-l[Ö„] - ¿(0„ + 0„+1))í/(«[0„])

and

âH = Kx(k+i - k){(L2(k - k+i) - [k]M"(h[k] + knh)-C(h[k] + k„h)},
ßn = (k+i - &){(i + k-x[k) - ±(k + k+i)M"(h[k]) + k-xC(h[k])}.
Suitable bounds on to and cb may now be obtained in the following manner:
We note that

Ctn < A||0'|U|l/||ocA„, \ßn\ < A||0'||oo||^'||oo|l -X„\,

because of (2.10), where

ln:=Jn\X2{èn + è„+x)-[èn\),

which is positive. A bound on X„ is obtained by writing

^n - Jñ (0" ~ \ßn] + 2{Qn+l ~ on)) ■

Using the fact that 6n -[6„]< 1, we have

Xn<Jñx\X + \       sup       lö'(i)l) <Jñ\X + \\W\\oo).
\ te[nh,(n+l)h] j

The consequence is the bound

W<«||0'||oo||v'||ooSUp
n>0

y"'    2+       sup       \d'(t)\-jn
V te[nh ,(n+l)h\

< Ä||ö'||oo||^'||oo(l + llö'Hoo)

We get the bound

o) < sup
n>0

k-x[h(2-k„)W\u\C\\00+     sup     \4>'(t)\
t€[nh ,(n+l)h\

x WlUinioo + \C(h[k] + knh)\ + |C'(A[^])|}

< Wl|oo||i"||oo(l + \W\\oo) + 2||0/||oo||C"l|oo

in an analogous way.
The analysis of this section allows us to consider, for example, the case

0(0 C- o< t< x,
X+q,        t> X,
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and, for instance, <¡)(t) = pt, both q and p being between 0 and 1. Thus, we
have

0<i< 1,
t> X,m-{\:

"»-{£•      0S<£?'

m={*;:■
+ X-q,       t>q,

It follows that ||0'||oo = 1 and ||^'||oo = q~x, and (2.9) supplies a bound on co
which is similar to the one that occurs when we have proportional delay 8(t) =
qt. The present extension is interesting because it combines the proportional
delay with constant delay.

We can further generalize the above example by admitting general piecewise
linear functions 0 : If 0 is piecewise linear, strictly monotonie and continuous
with knots at 0 = Xn < xx < x2< ■■■ and values 6(xk) = ck, where Co is zero,
then it is straightforward to see that

fc>0 xk - Xk_x

and
lk'||oo = SUP**

fc>0 ck - ck-l
if the knots and function values are such that both of these values are finite. In
this fashion, any continuous 0 can be approximated with any accuracy, because
the set of piecewise linear functions with free knots is dense in C(R+).

3. Stability and algebraic decay for proportional delays
In this section we will identify exactly the constants co and œ of the previous

section for 9(t) = qt and (j)(t) = pt in (1.1), thereby sometimes weakening the
requirements that lead to bounded sequences and sometimes confirming that the
estimates (2.9) and (2.19) on œ and œ are the best possible. We also obtain a
condition that affirms algebraic decay of 0>n}£L0, i.e., \y„\ = 0(n&) for some
negative ß , and thus admits the conclusion lim«.,,» yn = 0. It follows from
the work in the previous section that we have the system

J>0= 1,
(3.1) y„+x =Ryn + hS((X-a„)ylq„] + a„ylq„]+x)

+ T(ylj>n]+x - y[pn]) , n£l+,

where we took y(0) - 1 and where R, S, and T have been defined in (2.8)
and in (2.18), and

otn = ot„(q) = q(n + \)~ [qn] >0,        « = 0,1,....
Here we have chosen j„ = kn = 1 in (2.5) and (2.16). General choices of j„
and k„ can be accounted for by replacing a„ by a„/j„ and T by T/k„ , and
y[qn]+i, y\pn]+i by y\qn]+jn, y\pn]+k„, respectively, in (3.1), but we will dispense
with this straightforward generalization. We require that 1 - \qhS - T ^ 0 in
order that (3.1) possesses a nontrivial solution.
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In order to state the two principal results of this section, we define

n(q) := sup{a„ + |l - an\}.
«€Z+

Note that n(q) = co/h in view of w's definition in the statement of Theorem
1. Further, w = 2 in the present case.

Theorem 5. If

(3.2) 24-,|c| + ,(9)|t|<_]_|^_]_,

then the solution sequence of(3.X) is bounded. If strict inequality holds in (3.2),
then there exists an algebraically decaying majorant to {ynj^o ■ Specifically, for
positive n there is a constant that does not depend on « such that

(3.3) \yn\ < const xn108™!*.!/«'1,

where
A = \R\ + hr,(q)\S\ + 2\T\<X.

In particular, lim,,-^ y„ = 0.

Theorem 6. The function n(q) has the following values:

( 1, q = K/LandK<2,

(3.4) n(q) = { X+q-j,       q = K/LandK>2,
\ X +q, q irrational.

(When q = K/L, we assume K < L and (K, L) are relatively prime.)

Theorem 6 shows that the estimate (2.9) on co we found in the previous
section is best possible for the setting of proportional delays and irrational q .
We are aware that irrational numbers cannot be represented on a computer,
but we believe that it is sensible to consider irrational numbers nevertheless,
because in this way we make sure that we know what happens if we are very
near an irrational number.

It is perhaps worthwhile to make a comparison between our results above
and the results of the authors' earlier paper [3], where we have considered the
case q = L~x, L > 1 an integer. If c = 0, for instance, it is shown in
the latter paper that, when « is small enough, then Rea < 0 and \b\ < \a\
are sufficient for lim„_00}>„ = 0. Our present requirement (3.2) (with strict
inequality) is both worse and better than Rea < 0, \b\ < \a\ : It is worse, since
the set of values of b is considerably smaller, although we note that it is just
the right range of values when a is real and negative and ha > -2. On the
other hand, it is better because it covers the full range of q £ (0, 1) and since
algebraic decay to zero, which is stronger than lim^oo y„ = 0, corresponds
to the correct asymptotic behavior of the pantograph equation (Iserles [12]).
The roundabout method of proof of Buhmann and Iserles [3], which employs
harmonic analysis and ergodic theory, does not provide any useful information
on the rate of decay.
Proof of Theorem 5. As far as the boundedness assertion is concerned, we just
need to show that \R\ + n(q)h\S\ + 2\T\ < 1  under the condition stated in
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the theorem, and this is done in the same way as in Corollary 2. Now to the
assertion (3.3): For a given « > 0, let m be the number of times we can
apply the iteration defined through (3.1) without making any of the indices
zero. Then, clearly,

(3.5) \yn\ < const x(\R\ + hn(q)\S\ + 2\T\)m+x,

where the constant in (3.5) does not depend on m or n . We can find a lower
bound on m in the following way. Suppose p < q ; the other case can be
treated in the same way. The quantity [pn] is greater than pn-X . Therefore,
we can find a lower bound on m by looking for the largest m such that

m
pmn-Y,Pj~l >°-

7=1

Equivalently, we may require
m

(3.6) m + log1/p Y,pj-x < Xogyp n .
7 = 1

Inequality (3.6) is certainly fulfilled if we get

m + logi/i> TTTj, - l0gl/p " '

Therefore, m = log1/(p« + log1/p(l - p) is an appropriate choice. Hence, the
estimate in the statement of the theorem is true.   D

The proof of Theorem 6 requires more effort; it will occupy the rest of §3.
Our first observation is the following.

Proposition 7. It is true that a„ < 1 + \q for all n e Z+ .
Proof. For every « there exists an /„ 6 {0, 1,...,«- 1} such that

t<9<tti.
« «

Therefore, we have l„ < qn < l„ + X. It follows that [qn] = l„ , and we thus
have

a„ = qn + 2-q-ln<(l„ + X) + \q-ln = X + x1q.

This proposition is proved.   D

Note that, in particular, a„ < \ , a bound that can be approached arbitrarily
close for some values of q £ (0, 1). For instance, we may choose q = X - e,
where 0 < e < 1. Then we may take a\ = f (1 - e).

It follows at once from Proposition 7 and from a„ > ¿q that

(3.7) X<n(q)<X+q.
In particular, we have another proof of (2.9) in the present circumstances. We
will now establish the exact expressions asserted in Theorem 6. In the case of
rational q's we derive

p(q) := sup a„
n6Z+
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(and hence n(q)) explicitly. To this end, let
K

q=L>
where X < K < L and (K, L) are relatively prime. Now note that, for any
integer «,

(3.8)
nK_
L

nK nK modL

Since the group Z/(LZ) is generated by K when K and L are relatively prime
([11]), it follows from (3.8) that

p{q) = \a + sup ( 
n̂K

nez \ L
From this we obtain the following result:

Proposition 8. If q = K/L, then

nK

(3.9) "(<?) =
1

l+Q 2
L'

«i« +

K<2,

K>2.

X

We now have to deal with the remaining case, namely, irrational q . We note
that if q is irrational, then the sequence {qn - [<7«]}£L0 is equidistributed in
[0,1] (Pólya and Szegö [19, p. 88]). Hence, for every e > 0 there exists an «£
such that

X-e <qne- [qne].
Thus, we get

a«£ > 1 + \Q - e •
Note that e < \q implies a„e > X, and therefore

tj(g) > an, + \l - a„,\ = 2a„£- X > X + q - 2e.
Since e > 0 can be made arbitrarily small, it follows that n(q) > X + q and
hence, in view of (3.7), also that

n(q)= X+q
for irrational q . Thus, the proof of Theorem 6 is complete.   D

We remark that it follows at once from our analysis that n is discontinuous
everywhere in (0, 1). For let q e (0, 1) be rational, q = K/L. Then 1 + q -
n(q) - min{K,2) . Let ?* € (« - e, a + <0 be irrational. Then

n{Q*) - r](q) >X+q- n(q) - e = """^ '      - e

and all the irrationals in the neighborhood of q are bounded away from it.

4. BOUNDEDNESS OF THE SOLUTIONS FOR PROPORTIONAL DELAY

In this section, we consider the numerical stability for the more general re-
currence relation

N M Q
(4.1) yn+i=^2nyn-i+ £ t*/,,JW/+ Yl ä>W/

/=0 l=-M' l=-Q'
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instead of (3.1). Appropriate starting values have to be provided to begin this
recursion. Here, p, q £ (0, 1), the r¡, a/„, and ßi are complex numbers,
and

a¡,n=fi(Qn-[qn]),        I =-M',-M'+ X, ... , M, «€Z+.
The trapezoidal rule is a special case of (4.1). We require that [qn] + M and
[pn] + Q are always at most « for large enough « , « > N, say, so that the
recursion is explicit for large « . We suppose also that 1 - a¡ > „ - ßm is nonzero
for all « , /, and m such that [qn] + / = [pn] + m = « + 1, that 1 - a/„ ^ 0
for all « , / such that « + 1 = [qn] + /, and finally that 1 - ßm / 0 for all « ,
m such that n+X = [pn] + m . We denote

N Q
r*:=$>|    and    f :=  £ |fl|.

/=0 f=-Q'

Since we have the estimate
N M Q

\yn+i\<^2\ri\\yn-i\+ S \a¡,n\\yign]+i\+ £ IäII)w/I>
/=0 /=-M' /=-2'

it follows that for n> N

|y«+il< (r* + r*+  ¿ lo/,,| )«„,

where v„ := max;=_max[Af ,e<],-max[Af',Q']+i.« IX/I • From this we obtain for
n>N

(4.2) v„+i <maxi 1, r* + í* +   JT   |«/,,|>«/i.
[ /=-M< J

Therefore, numerical stability, i.e., boundedness of the yn's, is provided if we
can ensure

n-l I m \
II \r* + t*+  E  Ia'-7-1    ^*>       «eZ+,
7=0  \ /=-M' /

or equivalently,

1 I \
(4.3) -5>g   r* + i*+  £  |a/J|    <0.

7=0 \ /=-M' /

If q is irrational, then the equidistribution theorem which we have already used
in §3 implies that

. n-l ( m \

¿E K+' + E KJ
™ jAri r I  x

= / log /•* + *•+ 5; i/,(oiUí+o(i),    «-oo.
70 V l=-M- )
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Thus, we obtain the uniform boundedness condition

M

(4.5) / log   r* + f + E  WWI    dt<0,
—M'

which is sufficient because (4.5) and (4.4) imply (4.3) for large enough « . When
restricted to the cases studied in the previous section for irrational q, we obtain
the bound

(4.6)
(1*1 + h\s\ + 2|r|)-i*i+(1-«>/,i5i-2i;ri(|JR| + (1 + q)h\S\ + 2|r|)i*i+(1+«>Ai5i+2iri

< gih\S\

as a sufficient condition for stability.
If q is rational, viz., q = ^ , we exploit the following result:

Proposition 9. Denote qn - [qn] by à„ . Then for every m £ {0, 1, ..
and N £Z+ there exists a unique /e{0,l,...,L-l} such that

L-X]

(4.7) NL+l
m
T

Moreover, I is independent of N.
Proof. Expression (4.7) is equivalent to

K (NL + /) j(NL + l) m
L'

which, in turn, is equivalent to

g(l):=Kl-L Kl = m.

Note that TV has disappeared altogether.
Let us suppose that ¡x, l2 £ {0, 1,..., L — 1}, l2 > k , exist such that

S{h) = g(h) ■ This is the same as

(4.8) K(h-lx) -AKh KU

Let Klj = djL + cj, cj £ {0, X, ... , L - X}, j = 1,2.  Then (4.8) implies
ex = c2, and hence K(l2 - h) = L(d2 - dx). We obtain

K
L

di-dx
h-U

and this contradicts the requirement that (K, L) are relatively prime (recall
that 1 < h - h < L - 1). We deduce that the set {g(0), g(X),..., g(L-X)}
consists of distinct numbers. Thus, since g(j) £ {0, X, ... , L- X} , it follows
that the set is a permutation of {0, X, ... , L - X} (in other words, g is a
bijection of the cyclic group GL_x). In particular, there exists / such that
g(l) = m.   D
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We have proved that

{an}„=NL  ' = permutation of
L-l

7=0

Hence, we may deduce that a sufficient condition for uniform boundedness of
{yn)n%  ÍS

L-l M

(4.9) n k+<*+ e
7=0   \ l=-M

or equivalently, by taking logarithms,
L-l / M

lz <1,

(4.10)
1 5>g r* + r+ £

7=0 l=-M<
<Z <0.

Thus, we remark that expression (4.5) can be considered as a limiting case of
(4.10): if Ki/Li -»• q $ Q   (i -> co) then, clearly, L, -► co   (/'->• cx>) and
(4.10) becomes the trapezoidal rule approximant of (4.5). (If the fts are at
least C2, the convergence of the trapezoidal rule is assured by the Peano kernel
theorem.) We sum up our observations in the following theorem:

Theorem 10. The solution sequence to the recurrence relation (4.1) is bounded if
(4.5) or (4.10) hold, depending on whether q is irrational or rational.

Finally, we take a look at the case of rational q in the context of §3. Then
(4.9) reads

L-l

(4.11) J[(\R\ + Pjh\S\ + 2\T\)<l,
7=0

where

Pj =
K + 2J

2L + 1- K + 2j
2L j£{0, X,...,L-X}.

Note that if j <L- [¿(AT + 1)], then p¡■■ = X ; otherwise p¡ = (K + 2) - L)/L.
It follows that (4.11) is the same as

[(K-l)/2]n
7=1

K-2j h\S\*| + A|S| + 2|r|)'   n    ^i + ̂         ^+      j<i.

ACKNOWLEDGMENT

It is a pleasure to thank an anonymous referee for a suggestion which helped
to shorten an unnecessarily prolix proof of Proposition 8.

Bibliography

1. R. Bellman and K. L. Cooke, Asymptotic behavior of solutions of differential-difference equa-
tions, Mem. Amer. Math. Soc. No. 35 (1959).

2._, Differential-difference equations, Academic Press, New York, 1963.
3. M. D. Buhmann and A. Iserles, On the dynamics of a discretized neutral equation, IMA J.

Numer. Anal. 12 (1992), 339-363.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE DISCRETIZED PANTOGRAPH DIFFERENTIAL EQUATION 589

4._, Numerical analysis of functional equations with a variable delay, Numerical Analysis
1991 (D. F. Griffiths and G. A. Watson, eds.), Longman, Harlow, 1992, pp. 17-33.

5. J. Carr and J. Dyson, The functional differential equation y'(x) = ay(Xx) + by(x), Proc.
Roy. Soc. Edinburgh Sect. A 74 (1974-75), 165-174.

6. G. A. Derfel, Kato problem for functional-differential equations and difference Schrbdinger
operators, Operator Theory 46 (1990), 319-321.

7. A. Feldstein, A. Iserles, and D. Levin, Embedding of delay equations into an infinite-dimen-
sional ODE system, Technical Report DAMTP NA21, University of Cambridge, 1991.

8. A. Feldstein and Z. Jackiewicz, Unstable neutral functional differential equations, Arizona
State University Technical Report (1989).

9. L. Fox, D. F. Mayers, J. R. Ockendon, and A. B. Tayler, On a function differential equation,
IMA J. Appl. Math. 8 (1971), 271-307.

10. J. Hale, Theory of functional differential equations, Springer-Verlag, New York, 1977.
11. G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, Clarendon Press,

Oxford, 1954.
12. A. Iserles, On the generalized pantograph functional-differential equation, European J. Appl.

Math, (to appear).
13. A. Iserles and J. Terjéki, Stability and asymptotic stability of functional-differential equa-

tions, Technical Report DAMTP NA1, University of Cambridge, 1992.
14. T. Kato and J. B. McLeod, The functional-differential equation y'(x) = ay(Xx) + by{x),

Bull. Amer. Math. Soc. 77 (1971), 891-937.
15. K. Mahler, On a special functional equation, J. London Math. Soc. 15 (1940), 115-123.
16. G. Meinardus and G Nürnberger, Approximation theory and numerical methods for de-

lay equations, Delay Equations, Approximation and Application (G Meinardus and G.
Nürnberger, eds.), Birkhäuser-Verlag, Basel, 1986.

17. G R. Morris, A. Feldstein, and E. W. Bowen, The Phragmén-Lindelôf principle and a class of
functional-differential equations, Ordinary Differential Equations (L. Weiss, ed.), Academic
Press, New York, 1972.

18. J. R. Ockendon and A. B. Tayler, The dynamics of a current collection system for an electric
locomotive, Proc. Roy. Soc. London Ser. A 322 (1971), 447-468.

19. G. Pólya and G. Szegö, Problems and theorems in analysis. Vol. 1, Springer-Verlag, Berlin
and New York, 1972.

Magdalene College, Cambridge CB3 OAG, England, and IBM Thomas J. Watson Re-
search Center, P. O. Box 218, Yorktown Heights, New York 10598

E-mail address: mdb@amtp.cam.ac.uk

Department of Applied Mathematics and Theoretical Physics, University of Cam-
bridge, Silver Street, Cambridge CB3 9EW, England

E-mail address: ai@amtp.cam.ac.uk

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


