
 Open access  Journal Article  DOI:10.1103/PHYSREVLETT.115.201802

Stability of the Electroweak Vacuum: Gauge Independence and Advanced Precision
— Source link 

A.V. Bednyakov, Bernd A. Kniehl, A. F. Pikelner, O. L. Veretin

Institutions: Joint Institute for Nuclear Research, University of Hamburg

Published on: 31 Jul 2015 - Physical Review Letters (American Physical Society)

Topics: Higgs boson, Standard Model (mathematical formulation), Planck mass, Top quark and Electroweak interaction

Related papers:

 Higgs mass and vacuum stability in the Standard Model at NNLO

 Investigating the near-criticality of the Higgs boson

 Higgs Boson Mass and New Physics

 On the metastability of the standard model vacuum

 Higgs mass implications on the stability of the electroweak vacuum

Share this paper:    

View more about this paper here: https://typeset.io/papers/stability-of-the-electroweak-vacuum-gauge-independence-and-
5ahh44dmhk

https://typeset.io/
https://www.doi.org/10.1103/PHYSREVLETT.115.201802
https://typeset.io/papers/stability-of-the-electroweak-vacuum-gauge-independence-and-5ahh44dmhk
https://typeset.io/authors/a-v-bednyakov-2ejxc96vrn
https://typeset.io/authors/bernd-a-kniehl-4yitqq15pa
https://typeset.io/authors/a-f-pikelner-3q2wa7r11v
https://typeset.io/authors/o-l-veretin-4dnklkwodk
https://typeset.io/institutions/joint-institute-for-nuclear-research-ln92yard
https://typeset.io/institutions/university-of-hamburg-i4ewvhai
https://typeset.io/journals/physical-review-letters-3av85aju
https://typeset.io/topics/higgs-boson-3epwz6e8
https://typeset.io/topics/standard-model-mathematical-formulation-2fasi1fk
https://typeset.io/topics/planck-mass-mzbj4xmm
https://typeset.io/topics/top-quark-1p15ipb7
https://typeset.io/topics/electroweak-interaction-pznbcesi
https://typeset.io/papers/higgs-mass-and-vacuum-stability-in-the-standard-model-at-5fv7rotw2y
https://typeset.io/papers/investigating-the-near-criticality-of-the-higgs-boson-1jrknkmcv0
https://typeset.io/papers/higgs-boson-mass-and-new-physics-4vkr09ta5f
https://typeset.io/papers/on-the-metastability-of-the-standard-model-vacuum-55mp3aljbg
https://typeset.io/papers/higgs-mass-implications-on-the-stability-of-the-electroweak-1kjvtvuet5
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/stability-of-the-electroweak-vacuum-gauge-independence-and-5ahh44dmhk
https://twitter.com/intent/tweet?text=Stability%20of%20the%20Electroweak%20Vacuum:%20Gauge%20Independence%20and%20Advanced%20Precision&url=https://typeset.io/papers/stability-of-the-electroweak-vacuum-gauge-independence-and-5ahh44dmhk
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/stability-of-the-electroweak-vacuum-gauge-independence-and-5ahh44dmhk
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/stability-of-the-electroweak-vacuum-gauge-independence-and-5ahh44dmhk
https://typeset.io/papers/stability-of-the-electroweak-vacuum-gauge-independence-and-5ahh44dmhk


Stability of the Electroweak Vacuum: Gauge Independence and Advanced Precision

A. V. Bednyakov,
1
B. A. Kniehl,

2
A. F. Pikelner,

2
and O. L. Veretin

2

1
Joint Institute for Nuclear Research, 141980 Dubna, Russia

2
II. Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany

(Received 30 July 2015; revised manuscript received 24 August 2015; published 9 November 2015)

We perform a manifestly gauge-independent analysis of the vacuum stability in the standard model

including two-loop matching, three-loop renormalization group evolution, and pure QCD corrections

through four loops. All these ingredients are exact, except that light-fermion masses are neglected. We in

turn apply the criterion of nullifying the Higgs self-coupling and its beta function in the modified minimal-

subtraction scheme and a recently proposed consistent method for determining the true minimum of the

effective Higgs potential that also avoids gauge dependence. Exploiting our knowledge of the Higgs-boson

mass, we derive an upper bound on the pole mass of the top quark by requiring that the standard model be

stable all the way up to the Planck mass scale and conservatively estimate the theoretical uncertainty. This

bound is compatible with the Monte Carlo mass quoted by the Particle Data Group at the 1.3σ level.

DOI: 10.1103/PhysRevLett.115.201802 PACS numbers: 11.10.Gh, 11.10.Hi, 14.65.Ha, 14.80.Bn

The standard model (SM) of elementary particle physics

has been enormously consolidated by the discovery [1] at the

CERN Large Hadron Collider of a new weak neutral

resonance that, within the present experimental uncertainty,

shares the spin (J), parity (P), and charge-conjugation (C)
quantum numbers JPC ¼ 0þþ and the coupling strengths

with the SM Higgs boson H, in the absence of convincing

signals of newphysics beyond the SM.Moreover, itsmass of

ð125.7� 0.4Þ GeV [2] falls well inside the MH range

predicted within the SM through global analyses of electro-

weak (EW) precision data [2]. Besides completing the SM

particle multiplet and confirming the Higgs mechanism of

mass generation via the spontaneous breaking of the EW

symmetry proposed by Englert, Higgs (The Nobel Prize in

Physics, 2013), and Brout, this groundbreaking discovery

also has fundamental cosmological consequences by

allowing conclusions regarding the fate of the Universe

via the analysis of the vacuum stability [3]. In fact, owing to

an intriguing conspiracy of the SM particle masses, chances

are that the Higgs potential develops a second minimum, as

deep as the one corresponding to the vacuum with expect-

ationvalue (VEV) v ¼ 2−1=4G
−1=2
F ¼ 246 GeV inwhichwe

live, at a field value of the order of the Planck mass MP ¼
1.22 × 1019 GeV [4,5]. This would imply that the SM be

stable all theway up to the energy scalewhere the unification

with gravity is expected to take place anyways, whichwould

diminish the necessity for grand unified theories at lower

scales. EW symmetry breakingmight thus be determined by

Planck-scale physics [5], and the existence of a relationship

betweenMP and SMparametersmight signify a reduction of

fundamental couplings. Of course, experimental facts that

the SM fails to explain, such as the smallness of the neutrino

masses, the strongCP problem, the existence of darkmatter,

and the baryon asymmetry in the Universe, would then still

call for an extension.

Obviously, the ultimate answer to the existential question

whether our vacuum is stable or not crucially depends on

the quality of the theoretical analysis as for both conceptual

rigor and high precision, and it is the goal of this Letter to

significantly push the state of the art by optimally exploit-

ing information that has become available just recently. The

technical procedure is as follows. The set of running

coupling constants, including the SUð2ÞI, Uð1ÞY , and

SUð3Þc gauge couplings gðμÞ, g0ðμÞ, and gsðμÞ, respec-
tively, the Higgs self-coupling λðμÞ, and the Yukawa

couplings yfðμÞ, of the full SM are evolved in the

renormalization scale μ from μthr ¼ OðvÞ to μcri ¼
OðMPÞ using the renormalization group (RG) equations.

The beta functions appearing therein take a simple poly-

nomial form in the modified minimal-subtraction (MS)

scheme of dimensional regularization. They are fully

known through three loops [6] in the approximation of

neglecting the Yukawa couplings of the first- and second-

generation fermions, and the ones of gs [7] and yq [8] also
at the four-loop order Oðα4sÞ, the latter being given by the

quark mass anomalous dimension. The initial conditions at

μ ¼ μthr are evaluated from the relevant constants of nature,

including Sommerfeld’s fine-structure constant αTh defined

in Thomson scattering (or, alternatively, Fermi’s constant

GF), the strong-coupling constant α
ð5Þ
s ðMZÞ at its reference

point in QCD with nf ¼ 5 active quark flavors, and the

physical particle masses Mi (i ¼ W;Z;H; f) defined via

the propagator poles, taking into account threshold correc-

tions [9], which are fully known through two loops

[5,10–14] and, for gs and yq, also at Oðα3sÞ [15,16] and

even at Oðα4sÞ [17,18]. Although self-consistency requires

that n-loop evolution is combined with ðn − 1Þ-loop
matching, we, nevertheless, include the additional infor-

mation [17,18] in our default predictions. There are two

approaches to the threshold corrections in the literature that
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differ in the definition of the MS VEV vðμÞ. In the first one
[10,11], vðμÞ is fixed to be the minimum of the effective

Higgs potential VeffðHÞ in the Landau gauge and is thus

gauge dependent [19]. A solution to this problem has

recently been proposed in Ref. [20]. In the second approach

[5,12–14], the adjustment of the VEV is only done for the

bare theory, yielding v0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−ðm0

Φ
Þ2=λ0

q

, with mΦ being

the mass of the complex scalar doublet Φ, or, equivalently,

v0 ¼
2m0

W

e0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −

�

m0
W

m0
Z

�

2

s

ð1Þ

in terms of basic parameters of the broken phase [9]. The

linear term in the bare Higgs potential is then quenched and

cannot serve as a tadpole counterterm, so that the tadpole

contributions, which carry gauge dependence, need to be

properly included order by order [9]. Upon MS renorm-

alization, taking Eq. (1) with the superscripts 0 dropped to

be exact, vðμÞ and all the basic parameters, including

λðμÞ, are manifestly gauge independent to all orders.

Consequently, the twofold vacuum stability condition [5],

λðμcriÞ ¼ βλðμ
criÞ ¼ 0; ð2Þ

which fixes a second minimum that is degenerate with the

first one, has gauge-independent solutions for the critical

ultrahigh scale μcri and one free basic parameter, which we

take to beMcri
t , the upper bound on the top-quark pole mass

Mt, which is much less precisely known than MH [2]. For

comparisons with the literature, we also determine the MH

lower bound Mcri
H sloppily using as input the mass param-

eterMMC
t [2] that is extracted from experimental data using

Monte Carlo event generators merely equipped with lead-

ing-order (LO) hard-scattering matrix elements. The results

for μcri obtained together with Mcri
t and Mcri

H are denoted as

μcrit and μcriH , respectively. While the criticality condition in

Eq. (2) carries a very simple physical meaning and is

straightforward to solve numerically, it is slightly scheme

dependent. To assess this scheme dependence, we compare

the results for μcrii and Mcri
i with i ¼ t; H with those

obtained applying the consistent approach of Ref. [20],

in which VeffðHÞ is reorganized in powers of ℏ, so that its

expansion coefficients are gauge independent at its extrema

[21]. Specifically, this amounts to solving

λ ¼
1

256π2

�

ðg2 þ g02Þ2
�

1 − 3 ln
g2 þ g02

4

�

þ 2g04
�

1 − 3 ln
g02

4

�

− 48y4t

�

1 − ln
y2t

4

��

; ð3Þ

which follows from dVLO
eff ð ~μ

criÞ=dH ¼ 0, for the minimum

H ¼ ~μcri of VLO
eff ðHÞ and requiring that, at next-to-leading

order (NLO), VNLO
min ¼ VLO

eff ð ~μ
criÞ þ VNLO

eff ð~μcriÞ ≥ 0 for

Mt ≤
~Mcri
t or MH ≥ ~Mcri

H , which is conveniently achieved

in the Landau gauge [11].

We adopt the input values GF¼1.1663787ð6Þ×
10−5GeV−2, α

ð5Þ
s ðMZÞ¼0.1185ð6Þ, MW¼80.385ð15ÞGeV,

MZ ¼ 91.1876ð21Þ GeV, MH ¼ 125.7ð4Þ GeV, MMC
t ¼

173.21ð87Þ GeV, and Mb ¼ 4.78ð6Þ GeV from Ref. [2],

evolve α
ð5Þ
s ðμÞ from μ ¼ MZ to the matching scale μthr ¼

ξMMC
t in the nf ¼ 5 effective theory using coupled QCD ×

QED beta functions through four loops in QCD [7] and three

loops inQED[22], andevaluate there theMS couplingsof the full

SM from

g2ðμÞ ¼ 25=2GFM
2
W ½1þ δWðμÞ�;

g2ðμÞ þ g02ðμÞ ¼ 25=2GFM
2
Z½1þ δZðμÞ�;

λðμÞ ¼ 2−1=2GFM
2
H½1þ δHðμÞ�;

yfðμÞ ¼ 23=4G
1=2
F Mf½1þ δfðμÞ�;

g2sðμÞ ¼ 4πα
ð5Þ
s ðμÞ½1þ δαsðμÞ�; ð4Þ

including the appropriate terms ofOðαnÞ with n ¼ 1; 2 [12,14],
OðααsÞ [5,12–14], andOðαns Þwith n ¼ 1; 2; 3; 4 [15–18]. The
threshold corrections δiðμÞ in Eq. (4) are expressed in terms of

the MS couplings αðμÞ and αsðμÞ, and the pole massesMi. To

avoid the theoretical uncertainty due to the hadronic contributions

to the relationship betweenαðμÞ andαTh [2], we replace the latter
by GF in the set of basic parameters by extracting αðμÞ self-

consistently from the exact relationship 1=½4παðμÞ� ¼
1=g2ðμÞ þ 1=g02ðμÞ [14]. We stress that the MS couplings in

Eq. (4) are manifestly gauge independent and, thanks to partial

tadpolecancellations, also finite in the limitMH → 0 [12,14].The

pole masses Mt and Mb are subject to renormalon ambiguities

of OðΛQCDÞ, which, for Mt, are still small against the exper-

imental error [2] and, for Mb, are inconsequential because of

the smallness of ybðμÞ. The use of MS masses mqðμÞ would
avoid renormalon ambiguities at the expense of introducing

unscreened tadpole contributions to restore gauge independence

[9], which coincidentally reduce the scheme dependence of

mtðμÞ [23], but spoil the perturbative expansion for mbðμÞ
[12]. For completeness, we also study theMS mass parameter of

the Higgs potential, m2ðμÞ ¼ −2m2

Φ
ðμÞ ¼ 2v2ðμÞλðμÞ, using

v2ðμÞ ¼ 2−1=2G−1
F ½1þ Δr̄ðμÞ�; ð5Þ

whereΔr̄ðμÞ toOðαnÞwithn ¼ 1; 2 andOðααsÞmaybe found
in Ref. [14]. Δr̄ðμÞ is gauge independent, but diverges for

MH → 0 due to unscreened tadpole contributions. We estimate

the theoreticaluncertainties in theMSparameters forξ ¼ 1 due to

unknown higher-order corrections by considering both scale

variations and truncation errors. In the first case, we in turn put

ξ ¼ 1=2 and2 inEq. (4), return toξ ¼ 1 using theRGequations,

and select the larger one of the two deviations thus generated. In

the second case, we find the full set ofMS parameters for ξ ¼ 1,

including besides those in Eq. (4) also miðμÞ with

i ¼ W;Z;H; f andvðμÞ, by self-consistently solving the system

PRL 115, 201802 (2015)
P HY S I CA L R EV I EW LE T T ER S week ending

13 NOVEMBER 2015

201802-2



of equations that express GF and Mi entirely in terms of these

parameters, so that unscreened tadpole contributions have to

cancel numerically. We cast our results for x ¼ g; g0; gs; yt; yb;
λ; m in the form

xðμÞ ¼ x0 þ Δxαs
α
ð5Þ
s ðMZÞ − α

ð5Þ;exp
s ðMZÞ

Δα
ð5Þ;exp
s ðMZÞ

þ ΔxMW

MW −M
exp
W

ΔM
exp
W

þ ΔxMH

MH −M
exp
H

ΔM
exp
H

þ ΔxMt

Mt −M
exp
t

ΔM
exp
t

þ βx
μ − μthr

μthr
� δxμ

� δxtru; ð6Þ

allowing for linear extrapolations in the least precisely known

input parameters quoted above [2] andμthr, whichwe disentangle

from M
exp
t ¼ MMC

t , and list the coefficients in Table I.

We now in turn apply criterion (2) and the approach of

Ref. [20] and write the resulting critical masses and

associated scales X ¼ Mcri
i ; μcrii ; ~Mcri

i ; ~μcrii with i ¼ t; H in

the form

X ¼ X0 þ ΔXαs

α
ð5Þ
s ðMZÞ − α

ð5Þ;exp
s ðMZÞ

Δα
ð5Þ;exp
s ðMZÞ

þ ΔXM

M −Mexp

ΔMexp
� δXpar þ δX�

μ � δXtru; ð7Þ

where M ¼ MH (Mt) if i ¼ t (H), ΔXαs
and ΔXM are the

1σ errors due to α
ð5Þ
s ðMZÞ andM, respectively, δXpar are the

residual parametric errors combined in quadrature, δX�
μ are

the shifts due to the choices ξ ¼ 2�1, and δXtru are the

truncation errors induced by those in Table I. The coef-

ficients in Eq. (7) are collected in Table II. ~Mcri
t is 0.20 GeV

larger than Mcri
t , and ~Mcri

H is 0.40 GeV smaller than Mcri
H .

These shifts reflect the scheme dependence. μcrit and μcriH fall

slightly short of MP, for which log10MP ¼ 19.086, where

the SM definitely ceases to be valid, while ~μcrit and ~μcriH lie

appreciably beyond MP, which is an inherent problem of

Ref. [20] and was cured there by the ad hoc introduction of

some new dimension-six operator. In the remainder of this

Letter, we concentrate on the approach based on Eq. (2) [5].

To assess the significance of the higher-order corrections

that were not yet included in Ref. [5], namely the fullOðα2Þ
terms in δiðμÞwith i ¼ W;Z;H; q [12,14], theOðααsÞ term
in δαsðμÞ [13], and theOðα4sÞ terms in δαsðμÞ [17] and δqðμÞ
[18], we switch them off one at a time. The resulting central

values and scale dependencies of the critical parameters are

also contained in Table II. TheOðα2Þ terms in δiðμÞ [12,14]
shift Mcri

t and Mcri
H by −0.11 and þ0.24 GeV, respectively,

and reduce their scale uncertainties by almost a factor of 3.

On the other hand, the Oðα4sÞ terms in δqðμÞ [18] produce
larger and opposite shifts in Mcri

t and Mcri
H , namely þ0.20

and −0.42 GeV, respectively, but merely reduce their

scale uncertainties by less than 10%. The OðααsÞ [5]

and Oðα4sÞ [17] terms in δαsðμÞ are much less significant.

TABLE I. Coefficients in Eq. (6). The entries in the last row are given in units of GeV.

x x0 Δxαs ΔxMW
ΔxMH

ΔxMt
βx δxμ δxtru

g 0.35838 −3.8 × 10−6 −2.3 × 10−4 −2.5 × 10−6 þ7.1 × 10−5 þ2.1 × 10−3 8.5 × 10−5 6.4 × 10−4

g0 0.64812 þ8.5 × 10−7 þ1.2 × 10−4 −6.6 × 10−7 −9.8 × 10−6 −5.2 × 10−3 5.8 × 10−5 1.0 × 10−3

gs 1.16540 þ2.7 × 10−3 þ8.9 × 10−8 þ7.8 × 10−8 −4.0 × 10−5 −7.2 × 10−2 5.6 × 10−5 � � �
yt 0.93517 −3.6 × 10−4 −1.3 × 10−7 −8.6 × 10−6 þ5.1 × 10−3 −5.2 × 10−2 8.0 × 10−4 1.2 × 10−3

yb 0.01706 −5.7 × 10−5 −5.1 × 10−10 þ1.3 × 10−7 −2.4 × 10−7 −9.2 × 10−4 2.5 × 10−4 1.1 × 10−3

λ 0.12714 −6.2 × 10−6 −4.2 × 10−7 þ8.2 × 10−4 þ6.4 × 10−5 −2.0 × 10−2 5.8 × 10−4 5.5 × 10−4

m 131.86 −2.6 × 10−3 −4.4 × 10−4 þ3.8 × 10−1 þ1.2 × 10−1 þ2.6 7.3 × 10−1 4.1 × 10−2

TABLE II. Coefficients in Eq. (7) and central values with scale dependencies obtained upon switching off the Oðα2Þ terms in

δiðμÞwith i ¼ W;Z;H; q, theOðααsÞ andOðα4sÞ terms in δαsðμÞ, and theOðα4sÞ terms in δqðμÞ one at a time. The unit of mass is taken to

be GeV.

X X0 ΔXαs
ΔXM δXpar δXþ

μ δX−
μ δXtru δ

Oðα2Þ
i δ

Oðααs;α
4
s Þ

αs δ
Oðα4sÞ
q

Mcri
t

171.44 0.23 0.20 0.001 −0.36 0.17 −0.02 171.55−0.47þ1.04 171.43−0.36þ0.17 171.24−0.38þ0.19

log10 μ
cri
t

17.752 −0.051 0.083 0.007 0.007 −0.006 −0.002 17.783þ0.062
−0.008 17.754þ0.007

−0.006 17.751þ0.007
−0.007

Mcri
H

129.30 −0.49 1.79 0.002 0.72 −0.33 0.04 129.06þ0.95
−2.14 129.32þ0.73

−0.33 129.72þ0.76
−0.38

log10 μ
cri
H

18.512 −0.158 0.381 0.008 0.173 −0.082 0.008 18.495þ0.226
−0.531 18.518þ0.174

−0.082 18.602þ0.184
−0.094

~Mcri
t

171.64 0.23 0.20 0.001 −0.36 0.17 −0.02 171.74−0.46þ1.04 171.63−0.36þ0.17 171.43−0.37þ0.19

log10 ~μ
cri
t

21.442 −0.059 0.094 0.005 −0.083 0.022 0.002 21.485−0.085þ0.343 21.445−0.083þ0.022 21.441−0.072þ0.014

~Mcri
H

128.90 −0.49 1.79 0.003 0.73 −0.34 0.04 128.67þ0.95
−2.15 128.92þ0.73

−0.34 129.32þ0.76
−0.38

log10 ~μ
cri
H 22.209 −0.181 0.436 0.007 0.092 −0.062 0.013 22.201þ0.146

−0.171 22.217þ0.094
−0.062 22.312þ0.113

−0.082
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All these observations approximately carry over to ~Mcri
t

and ~Mcri
H .

Apart from the issue of gauge dependence, our analysis

differs from that of Refs. [10,11] in the following respects.

In Refs. [10,11], the OðααsÞ term in δαsðμÞ [13] and the

Oðα4sÞ terms in δαsðμÞ [17] and δqðμÞ [18] were not

included; μthr was affected by the MMC
t variation, which

explains the sign difference in the corresponding shift in

Mcri
H ; and the scale uncertainties were found to be approx-

imately half as large as here for reasons unknown to us.

In Fig. 1, the RG evolution flow from μthr to μcri and

beyond is shown in the ðλ; βλÞ plane. The propagation with

μ of the 1σ and 3σ confidence ellipses with respect toMMC
t

and MH tells us that the second condition in Eq. (2) is

almost automatic, the ellipses for μ ¼ 1018 GeV being

approximately degenerated to horizontal lines. For default

input values, λðμÞ crosses zero at μ ¼ 1.55 × 1010 GeV.

The contour of Mcri
t approximately coincides with the right

envelope of the 2σ ellipses, while the one of Mcri
H , which

relies onMMC
t , is driven outside the 3σ band as μ runs from

μcriH to μthr.

Our upgraded and updated version of the familiar phase

diagram [10,11,20,24] is presented in Fig. 2. Besides the

boundary of the stable phase defined by Eq. (2), on which

the critical points with Mcri
t and Mcri

H are located, we also

show contours of λðμ0Þ ¼ 0 and βλðμ
0Þ ¼ 0. The demar-

cation line between the metastable phase and the instable

one, in which the lifetime of our vacuum is shorter than the

age of the Universe, is evaluated as in Ref. [20] and

represents the only gauge-dependent detail in Fig. 2. The

customary confidence ellipses with respect to MMC
t and

MH, which are included Fig. 2 for reference, have to be

taken with caution because they misleadingly suggest that

the tree-level mass parameter MMC
t and its error [2]

identically carry over to Mt, which is actually the real

part of the complex pole position upon mass renormaliza-

tion in the on-shell scheme [25]. In view of the resonance

property, a shift of order Γt ¼ 2.00 GeV [2] would be

plausible, which should serve as a useful error estimate for

the time being.

In conclusion, we performed a high-precision analysis of

the vacuum stability in the SM incorporating full two-loop

threshold corrections [5,12–14], three-loop beta functions

[6], and Oðα4sÞ corrections to the matching and running of

gs [7,17] and yq [8,18], and adopting two gauge-indepen-

dent approaches, one based on the criticality criterion (2)

for λðμÞ [5] and one on a reorganization of VeffðHÞ so that

its minimum is gauge independent order by order [20]. For

the Mt upper bound we thus obtained Mcri
t ¼ ð171.44�

0.30þ0.17
−0.36Þ GeV and ~Mcri

t ¼ ð171.64� 0.30þ0.17
−0.36Þ GeV,

respectively, where the first errors are experimental, due

the 1σ variations in the input parameters [2], and the second

ones are theoretical, due to the scale and truncation

uncertainties. In want of more specific information, we

assume the individual error sources to be independent and

FIG. 1 (color online). RG evolution of λðμÞ from μthr to μcri and

beyond in the ðλ; βλÞ plane for default input values and matching

scale (red solid line), effects of 1σ (brown solid lines) and 3σ

(blue solid lines) variation in MMC
t , theoretical uncertainty due to

the variation of ξ from 1=2 to 2 (upper and lower black dashed

lines with asterisks in the insets), and results for Mcri
t (green

dashed line) and Mcri
H (purple dashed line). The 1σ (brown

ellipses) and 3σ (blue ellipses) contours due to the errors in

MMC
t andMH are indicated for selected values of μ. The insets in

the upper right and lower left corners refer to μ ¼ MMC
t and

μ ¼ 1.55 × 1010 GeV, respectively.

FIG. 2 (color online). Phase diagram of vacuum stability (light-

green shaded area), metastability, and instability (pink shaded

area) in the ðMH;MtÞ plane, contours of λðμ
0Þ ¼ 0 for selected

values of μ0 (purple dotted lines), contours of βλðμ
0Þ ¼ 0 for

selected values of μ0 (solid parabolalike lines) with uncertainties

due to 1σ error in α
ð5Þ
s ðMZÞ (dashed and dot-dashed lines), critical

line of Eq. (2) (solid green line) with uncertainty due to 1σ error

in α
ð5Þ
s ðMZÞ (orange shaded band), and critical points with Mcri

t

(lower red bullet) and Mcri
H (right red bullet). The present world

average of ðMMC
t ;MHÞ (upper left red bullet) and its 1σ (purple

ellipse), 2σ (brown ellipse), and 3σ (blue ellipse) contours are

marked for reference.
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combine them quadratically to be on the conservative side.

The 0.20 GeV difference between the central values ofMcri
t

and ~Mcri
t indicates the scheme dependence, which arguably

comes as a third independent source of theoretical uncer-

tainty. As our final result, we hence quote the combined

value M̂cri
t ¼ ð171.54� 0.30þ0.26

−0.41Þ GeV, which is compat-

ible withMMC
t ¼ ð173.21� 0.87Þ GeV at the 1.3σ level. In

view of this and the present lack of knowledge of the

precise relationship between and MMC
t and Mt mentioned

above, the familiar notion [10,11] that our vacuum is

metastable is likely to be premature [24].
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