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Stability of the Gyroid Phase in Diblock nearyN ~ 60, possibly due to excessive packing frustration
Copolymers at Strong Segregation induced by the narrowing interfac&sThis notion was strength-

ened by subsequent corrections to the original SST as well as
Eric W. Cochran,* T Carlos J. Garcia-Cervera$ and analyses of the limiting behavior of SCFT gl — o.131417
Glenn H. Fredrickson*:t+ On the other hand, a recent experimental study by Davidock
et al. presented a compelling case thai®@oes in fact persist
well into the strong-segregation regime using a model system
designed to have minimal kinetic barriers to equilibraitn.
Nonetheless, such evidence must be interpreted with a degree
of caution since true thermodynamic equilibrium can be difficult
to achieve even in intermediately segregated experimental
systems®

) ] ] In the present Communication we readdress this issue using

The self-assembly behavior of linear AB diblock copolymers  gcpET, with the dual purpose of attending to the question of
has been studied extensively over the past three decades, fromye highyN stability of 220 as well as showcasing significant
both experimental and theoretical perspectiéS. In the advances in addressing the numerical hurdles encountered in
canonical theory, two independent parameters, the copolymergqying the SCFT equations. The reader is directed elsewhere
composition/f, and the degree of segregatiomN, govern the ¢4, 3 || description of the SCFT treatment of block
selection of the stable phase. While the three classical phases copolymers:—5153637Here, we begin with the field-theoretic
lamellae (L), hexagonally packed cylinders (H), and body- jamjitonian H for an incompressible diblock copolymer
centered spheres f&)—occupy the majority of the phase melt:36
diagram, the double-gyroid phase?), which occurs over only
a narrow range of, has occupied a disproportionate amount of HIw, w ] 5
researchers’ attentiof-2> The intriguing topology of this ;zlfdr [W_—_|_ W ] —InQw,w] (1)
network structure has inspired a diverse array of potential nksT V N "
applications ranging from high-performance separation mem-
branes to photonic crystals. Heren is the number of chaing,is the Flory segmentsegment

Unfortunately, the practical applicability of% in the AB interaction parametel is the system volume, and is the
system appears limited due to the question of the stability of humber of segments per copolymer; andw- may be viewed
the phase in the strong-segregation regime. The majority of as fluctuating pressure and exchange chemical potential fields,
experimental reports of & involved specimens prepared in  respectively. The pressure field enforces incompressibility, while
the weak-to-intermediate segregation regime (A0yN < the exchange field is conjugate to the composition pattern in
40)18-21 In addition, many of these tended to form hexagonally the melt. Q is the single-chain partition function, which is
perforated lamellae (HPL) for largesN, although this phase  computed according t® = (1N)/dr q(r,1). The forward
was later shown to be metastabte®202®Moreover, studies  propagatom(r,s) represents the statistical weight of segments
that did in fact report & at stronger segregation were prepared |ocatedsN units along the chain contour at pointwheres =
by solvent-casting, which is known to encourage the formation o represents the tail of the A block asd= f is the junction
of kinetically trapped structuregs:242729 between the A and B blocks. Using the flexible Gaussian-chain

The theoretical community has also presented discouragingmodel, q satisfies the modified diffusion equation (MDE):
evidence. Olmsted and Miln&B! argued using the strong-

segregation theory (SST) of Semehthat (F3Cis unstable with
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\ . o aq(r,s) _ 22 _
respect to the classical phases, although this calculation imposed s Ry Va(r,s) — wi(r) q(r,s)
a wedge-shaped interfacial geometry that may be unrealistic; S
Likhtman and Semem@&¥performed an SST calculation without i=A O=<s<f
assuming an interfacial geometry and concluded that bicon- i=B f<s<1
tinuous phases were stable only in the presence of added T T
homopolymer. In 1994, Matsen and Schick presented a power- q(r,0)0=1 (2)

ful, fully spectral implementation of Helfand’s self-consistent-

field theory (SCFTY> that first demonstrated the stability of wherewa = (wy+ — w_), wg = (W+ + w_), andRy is the
Q%0 for yN < 201 In 1996, Matsen and Bates continued the unperturbed radius of gyration. The normalized segment density
calculation toyN = 40, where the sharpening of the interfaces operators (volume fractiongh and pg follow from functional
began to require a prohibitive number of basis functions and derivatives ofQ with respect towa andwg and the familiar
caused numerical stability issu¥sOn the basis of the mono-  factorization property ofj.

tonic reduction of the &° stability region and the SST

prediction, these researchers speculated that #évindow __0lnQ_ 1 fd +
converged to a triple point with the classical L and H phases palr) = W, - VQfo s dr.s) a(r.s)
T Materials Research Laboratory. ry=— 0InQ = 1. r (r
* Department of Chemical Engineering. Ps(r) owg  VQJf ds ofr,s) a(r.) (3)
§ Department of Mathematics.
* Authors  for correspondence. E-mail:  ecochran@iastate.edu, )
ghf@mrl.ucsb.edu. The reverse propagatay!(r,s), obeys (2) withq'(r,1) = 1.
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Within mean-field theory, the free energycorresponds to
the HamiltoniarH evaluated at an appropriate saddle-point field

configuration %, w_"] in which the forces vanish, i.e.

[a—y
[—)

oH

5_W+=PA(r) +pg(r) —1=0

(4)

2

OH _ SO F (pe(r) = pa(1) =0

ow_

(5)

AF, KT/1000

The calculation of saddle-point field configurations requires
repeated evaluations of the forces, (4) and (5), which in turn
through eq 3 rely on an accurate and efficient solution of the
MDE (2). For strongly segregated systems, the sharpness of
the A/B interface imparts a significant degree of stiffness to

the SCFT equations, (4) and (5), as well as the numerical iy e 1 Stability of the H and L phases with respect 6%t various
evaluation of the propagatorgr,s) andq'(r,s) . We address  gegrees of segregationyN = 40 (@), 60 (), 80 (a), and 100 ©).
the latter issue by discretizing in space using collocation and a Solid (AF = Fy — Fg29) and dashedAF = F. — Fg%) curves are
plane-wave basis and solve the MDE by means of a semiimplicit Provided to guide the eye.

method. The Laplacian operator is treated implicitly with a

-5 T T
0.3 0.32 0.34

f

100 [T
fourth-order backward differentiation formula (BDF4), whereas C ]
the source term is discretized explicitly using fourth-order F 3
accurate AdamsBashford® SOF ]
25 4 1 2 oo f ]
l_zqn+1 - 4qn + 3qn+1 - :_gqn72 + anf3 = AsV On1 — XN E E

ASV\(qn-H + 4Qn - 6qn—l + 4Qn—2 - qn—3) (6) 40 E E
In this expressiongy.; denotegy(r,s + iAs), andAsis the step 20 3 E
size. The initial values required to apply this formula are : . , DI . ]
obtained using backward Euler and Richardson’s extrapolation. 00 02 04 06 08 1

The resulting scheme is fourth-order accurate and uncondition- f

ally stable. Moreover, it produces a fast decay of high-frequency Figure 2. Revised diblock copolymer phase diagram, adapted from
modes, which makes it an ideal candidate for stiff equations, ref 16, that accounts for the®®phase boundary calculations that appear
in particular in combination with spectral collocation methods in Table 1. G? and CPS refer to the spherical phases witBm and

of the Fourier typ&83°Using this scheme, the average error in
q(r,1) was roughly 0.001% atN = 80 and a step size dfs =

0.001; second-order methods, such as the operator splitting

scheme of Rasmussen and Kalosa®asguiredAs < 107° to
obtain the same level of accuracy.

We first calculated the saddle-point configuration wial3d
symmetry of arf = 0.35 diblock atyN = 20, using a function
proportional to the firstta3d harmonic (112) as the initial
condition for w—; wy was initially set to zero. (L and H

close-packed (fcc or hexagonal) symmetry, respectively.

Table 1. Phase Boundaries of &°in AB Diblocks in the Strong
Segregation Regime

XN fu Q%0 fL/Qzao Af
20 0.338 0.37% 0.03%
40 0.315 0.336 0.02%
60 0.31% 0.32§ 0.01%
80 0.308 0.324 0.015

100 0.306 0.32% 0.01%

calculations were initialized in an analogous manner.) For other when the interfaces are both sharp and geometrically compli-
coordinates in phase space the converged solution for an adjacentated as is the case in the present calculations.

point served as an excellent initial condition. Saddle points were

calculated using the semiimplicit Seidel relaxation method
proposed by Ceniceros and Fredrick8dn update the pressure
field in Fourier space while the exchange field was relaxed in

In Figure 1, we plot the free energy per chain of the H and
L phases with @ as the reference state. These curves show
Q2%%0js stable with respect to these competing phases by no more
than 0.007gT per chain; by comparisom\Fps—g2° ~ 14kgT

real space using an explicit forward Euler scheme. The period atyN = 100, so the disordered phase is highly unstable at strong

of the unit cell was optimized concurrently with the field
relaxation by minimizing the microscopic strédsalso via an
explicit scheme.

Each calculation utilized a step size &6 = 1072 along the
chain contour and a spatial resolutidx < 0.1Ry (for the 3D
Q230 simulations this amounts te2 x 1P plane waves). The
calculation proceeded iteratively until the magnitudes of the
forces, (4) and (5), were at most ®kgT per chain. This degree

segregation. Figure 2 shows the corresponding phase boundaries,
which are summarized in Table 1, on a revised diblock
copolymer phase diagram. Our calculations of the composition
boundaries of &P at yN = 20 coincide precisely with those
reported by Matsen and Batésut deviate slightly ayN =

40, where the Matsen and Bates calculation began to encounter
numerical difficulties. AyN is raised into the strong segregation
regime, we find that the width of the stability window

of precision was reached in roughly 2500 iterations, which for approacheaf ~ 0.015 byyN = 80. In Table 2, we show that

a single 3D gyroid calculation required roughly 72 h of real this window broadens significantly with the introduction of
time using 32 Intel 3.06 GHz Xeon processors in parallel. This conformational asymmetry.

complement of numerical approaches has proven to an effective The stability of complex phases such ag*Qin block
strategy for solving the SCF equations and remains stable evencopolymers stems, in part, from the intermediate degree of
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Table 2. Phase Boundaries of &°in AB Diblocks with
Conformational Asymmetry

X N bA/ bBa fH/Q23° ](|_/QZ3'J Af

40 0.67 0.411 0.438 0.02%
40 1.00 0.315 0.336 0.02%
40 1.50 0.239 0.26% 0.026
80 0.67 0.422 0.442% 0.02%
80 1.00 0.308 0.324% 0.015
80 1.50 0.204 0.234 0.026

aThe ratio of the Kuhn segment length of blocks A and B, which is a
measure of the conformational asymmetry.

interfacial curvature compared with neighboring L and H phases;
this feature leads to an optimal degree of interfacial area and
packing frustratior#® This argument has been widely accepted
for the presence of @in the diblock phase diagram for weak-
to-intermediate segregation. At strong segregation, packing
frustration in @%° should indeed be exacerbated by the
narrowing of the interfacial thickness. This is likely the cause
of the gradual contraction of the?® region fromyN = 20 to

xN = 80. However, our results show that ngét = 80 this
exacerbation is nearly balanced with the packing frustration of
the H phase and the interfacial area of lamellae, indicating that
Q230 survives over a narrow range of composition deep into
the strong segregation regime. Conformational asymmetry
evidently broadens this range, indicating that packing frustration
is alleviated more efficiently in &P° than in its competitors.

Here we caution that these results should not be construed

as evidence per se that®is stable in the stricgN — o limit
(in the SST this limit is approached quite slowly, d¢-1/3),13
but rather as an indication that it might be. These calculations
are in accordance with recent experimental evidéhead
demonstrate that the standard model for block copolymers

contains the necessary physical ingredients to account for the

presence of &P at strong segregation.
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