
Iowa State University

From the SelectedWorks of Eric W. Cochran

March, 2006

Stability of the gyroid phase in diblock
copolymers at strong segregation
Eric W. Cochran
Carlos J. Garcia-Cervera
Glenn H. Fredrickson

Available at: https://works.bepress.com/eric_cochran/16/

http://www.iastate.edu
https://works.bepress.com/eric_cochran/
https://works.bepress.com/eric_cochran/16/


Stability of the Gyroid Phase in Diblock
Copolymers at Strong Segregation

Eric W. Cochran,* ,† Carlos J. Garcia-Cervera,§ and
Glenn H. Fredrickson*,†,‡

Materials Research Laboratory, Department of Chemical
Engineering, and Department of Mathematics,
UniVersity of California, Santa Barbara, California 93106

ReceiVed December 28, 2005
ReVised Manuscript ReceiVed February 27, 2006

The self-assembly behavior of linear AB diblock copolymers
has been studied extensively over the past three decades, from
both experimental and theoretical perspectives.1-25 In the
canonical theory, two independent parameters, the copolymer
composition,f, and the degree of segregation,øN, govern the
selection of the stable phase. While the three classical phasess
lamellae (L), hexagonally packed cylinders (H), and body-
centered spheres (Q229)soccupy the majority of the phase
diagram, the double-gyroid phase (Q230), which occurs over only
a narrow range off, has occupied a disproportionate amount of
researchers’ attention.18-25 The intriguing topology of this
network structure has inspired a diverse array of potential
applications ranging from high-performance separation mem-
branes to photonic crystals.

Unfortunately, the practical applicability of Q230 in the AB
system appears limited due to the question of the stability of
the phase in the strong-segregation regime. The majority of
experimental reports of Q230 involved specimens prepared in
the weak-to-intermediate segregation regime (10< øN <
40).18-21 In addition, many of these tended to form hexagonally
perforated lamellae (HPL) for largerøN, although this phase
was later shown to be metastable.15,16,20,26Moreover, studies
that did in fact report Q230 at stronger segregation were prepared
by solvent-casting, which is known to encourage the formation
of kinetically trapped structures.22,24,27-29

The theoretical community has also presented discouraging
evidence. Olmsted and Milner30,31 argued using the strong-
segregation theory (SST) of Semenov7 that Q230 is unstable with
respect to the classical phases, although this calculation imposed
a wedge-shaped interfacial geometry that may be unrealistic;
Likhtman and Sememov32 performed an SST calculation without
assuming an interfacial geometry and concluded that bicon-
tinuous phases were stable only in the presence of added
homopolymer. In 1994, Matsen and Schick presented a power-
ful, fully spectral implementation of Helfand’s self-consistent-
field theory (SCFT)1-5 that first demonstrated the stability of
Q230 for øN e 20.15 In 1996, Matsen and Bates continued the
calculation toøN ) 40, where the sharpening of the interfaces
began to require a prohibitive number of basis functions and
caused numerical stability issues.16 On the basis of the mono-
tonic reduction of the Q230 stability region and the SST
prediction, these researchers speculated that the Q230 window
converged to a triple point with the classical L and H phases

nearøN ∼ 60, possibly due to excessive packing frustration
induced by the narrowing interfaces.33 This notion was strength-
ened by subsequent corrections to the original SST as well as
analyses of the limiting behavior of SCFT asøN f ∞.13,14,17

On the other hand, a recent experimental study by Davidock
et al. presented a compelling case that Q230 does in fact persist
well into the strong-segregation regime using a model system
designed to have minimal kinetic barriers to equilibration.34

Nonetheless, such evidence must be interpreted with a degree
of caution since true thermodynamic equilibrium can be difficult
to achieve even in intermediately segregated experimental
systems.35

In the present Communication we readdress this issue using
SCFT, with the dual purpose of attending to the question of
the highøN stability of Q230 as well as showcasing significant
advances in addressing the numerical hurdles encountered in
solving the SCFT equations. The reader is directed elsewhere
for a full description of the SCFT treatment of block
copolymers.1-5,15,36,37Here, we begin with the field-theoretic
Hamiltonian H for an incompressible diblock copolymer
melt:36

Heren is the number of chains,ø is the Flory segment-segment
interaction parameter,V is the system volume, andN is the
number of segments per copolymer;w+ andw- may be viewed
as fluctuating pressure and exchange chemical potential fields,
respectively. The pressure field enforces incompressibility, while
the exchange field is conjugate to the composition pattern in
the melt. Q is the single-chain partition function, which is
computed according toQ ) (1/V)∫dr q(r ,1). The forward
propagatorq(r ,s) represents the statistical weight of segments
locatedsNunits along the chain contour at pointr , wheres )
0 represents the tail of the A block ands ) f is the junction
between the A and B blocks. Using the flexible Gaussian-chain
model,q satisfies the modified diffusion equation (MDE):

where wA ) (w+ - w_), wB ) (w+ + w_), and Rg is the
unperturbed radius of gyration. The normalized segment density
operators (volume fractions)FA andFB follow from functional
derivatives ofQ with respect towA and wB and the familiar
factorization property ofq.

The reverse propagator,q†(r ,s), obeys (2) withq†(r ,1) ) 1.
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Within mean-field theory, the free energyF corresponds to
the HamiltonianH evaluated at an appropriate saddle-point field
configuration [w+

/ , w_
/
] in which the forces vanish, i.e.

The calculation of saddle-point field configurations requires
repeated evaluations of the forces, (4) and (5), which in turn
through eq 3 rely on an accurate and efficient solution of the
MDE (2). For strongly segregated systems, the sharpness of
the A/B interface imparts a significant degree of stiffness to
the SCFT equations, (4) and (5), as well as the numerical
evaluation of the propagatorsq(r ,s) and q†(r ,s) . We address
the latter issue by discretizing in space using collocation and a
plane-wave basis and solve the MDE by means of a semiimplicit
method. The Laplacian operator is treated implicitly with a
fourth-order backward differentiation formula (BDF4), whereas
the source term is discretized explicitly using fourth-order
accurate Adams-Bashford38

In this expression,qn+i denotesq(r ,s + i∆s), and∆s is the step
size. The initial values required to apply this formula are
obtained using backward Euler and Richardson’s extrapolation.
The resulting scheme is fourth-order accurate and uncondition-
ally stable. Moreover, it produces a fast decay of high-frequency
modes, which makes it an ideal candidate for stiff equations,
in particular in combination with spectral collocation methods
of the Fourier type.38,39Using this scheme, the average error in
q(r ,1) was roughly 0.001% atøN ) 80 and a step size of∆s )
0.001; second-order methods, such as the operator splitting
scheme of Rasmussen and Kalosakas,40 required∆s < 10-5 to
obtain the same level of accuracy.

We first calculated the saddle-point configuration withIa3hd
symmetry of anf ) 0.35 diblock atøN ) 20, using a function
proportional to the firstIa3hd harmonic (112) as the initial
condition for w-; w+ was initially set to zero. (L and H
calculations were initialized in an analogous manner.) For other
coordinates in phase space the converged solution for an adjacent
point served as an excellent initial condition. Saddle points were
calculated using the semiimplicit Seidel relaxation method
proposed by Ceniceros and Fredrickson41 to update the pressure
field in Fourier space while the exchange field was relaxed in
real space using an explicit forward Euler scheme. The period
of the unit cell was optimized concurrently with the field
relaxation by minimizing the microscopic stress,42 also via an
explicit scheme.

Each calculation utilized a step size of∆s ) 10-3 along the
chain contour and a spatial resolution∆x < 0.1Rg (for the 3D
Q230 simulations this amounts to∼2 × 106 plane waves). The
calculation proceeded iteratively until the magnitudes of the
forces, (4) and (5), were at most 10-5 kBT per chain. This degree
of precision was reached in roughly 2500 iterations, which for
a single 3D gyroid calculation required roughly 72 h of real
time using 32 Intel 3.06 GHz Xeon processors in parallel. This
complement of numerical approaches has proven to an effective
strategy for solving the SCF equations and remains stable even

when the interfaces are both sharp and geometrically compli-
cated as is the case in the present calculations.

In Figure 1, we plot the free energy per chain of the H and
L phases with Q230 as the reference state. These curves show
Q230 is stable with respect to these competing phases by no more
than 0.007kBT per chain; by comparison,∆FDIS-Q230 ≈ 14kBT
atøN ) 100, so the disordered phase is highly unstable at strong
segregation. Figure 2 shows the corresponding phase boundaries,
which are summarized in Table 1, on a revised diblock
copolymer phase diagram. Our calculations of the composition
boundaries of Q230 at øN ) 20 coincide precisely with those
reported by Matsen and Bates16 but deviate slightly atøN )
40, where the Matsen and Bates calculation began to encounter
numerical difficulties. AsøN is raised into the strong segregation
regime, we find that the width of the stability window
approaches∆f ≈ 0.015 byøN ) 80. In Table 2, we show that
this window broadens significantly with the introduction of
conformational asymmetry.

The stability of complex phases such as Q230 in block
copolymers stems, in part, from the intermediate degree of

Figure 1. Stability of the H and L phases with respect to Q230 at various
degrees of segregation:øN ) 40 (0), 60 (]), 80 (4), and 100 (O).
Solid (∆F ) FH - FQ230) and dashed (∆F ) FL - FQ230) curves are
provided to guide the eye.

Figure 2. Revised diblock copolymer phase diagram, adapted from
ref 16, that accounts for the Q230 phase boundary calculations that appear
in Table 1. Q229 and CPS refer to the spherical phases withIm3hm and
close-packed (fcc or hexagonal) symmetry, respectively.

Table 1. Phase Boundaries of Q230 in AB Diblocks in the Strong
Segregation Regime

øN fH/Q230 fL/Q230 ∆f

20 0.3380 0.3750 0.0370
40 0.3153 0.3367 0.0217
60 0.3113 0.3285 0.0172
80 0.3088 0.3242 0.0154

100 0.3065 0.3219 0.0153
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interfacial curvature compared with neighboring L and H phases;
this feature leads to an optimal degree of interfacial area and
packing frustration.33 This argument has been widely accepted
for the presence of Q230 in the diblock phase diagram for weak-
to-intermediate segregation. At strong segregation, packing
frustration in Q230 should indeed be exacerbated by the
narrowing of the interfacial thickness. This is likely the cause
of the gradual contraction of the Q230 region fromøN ) 20 to
øN ) 80. However, our results show that nearøN ) 80 this
exacerbation is nearly balanced with the packing frustration of
the H phase and the interfacial area of lamellae, indicating that
Q230 survives over a narrow range of composition deep into
the strong segregation regime. Conformational asymmetry
evidently broadens this range, indicating that packing frustration
is alleviated more efficiently in Q230 than in its competitors.

Here we caution that these results should not be construed
as evidence per se that Q230 is stable in the strictøN f ∞ limit
(in the SST this limit is approached quite slowly, asøN-1/3),13

but rather as an indication that it might be. These calculations
are in accordance with recent experimental evidence34 and
demonstrate that the standard model for block copolymers
contains the necessary physical ingredients to account for the
presence of Q230 at strong segregation.
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Table 2. Phase Boundaries of Q230 in AB Diblocks with
Conformational Asymmetry

øN bA/bB
a fH/Q230 fL/Q230 ∆f

40 0.67 0.4112 0.4381 0.0270
40 1.00 0.3153 0.3367 0.0217
40 1.50 0.2394 0.2658 0.0264
80 0.67 0.4221 0.4429 0.0208
80 1.00 0.3088 0.3242 0.0154
80 1.50 0.2079 0.2345 0.0266

a The ratio of the Kuhn segment length of blocks A and B, which is a
measure of the conformational asymmetry.
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