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Stability of the M2 phase of vanadium dioxide induced by coherent epitaxial strain
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Tensile strain along the cR axis in epitaxial VO2 films raises the temperature of the metal insulator transition and
is expected to stabilize the intermediate monoclinic M2 phase. We employ surface-sensitive x-ray spectroscopy
to distinguish from the TiO2 substrate and identify the phases of VO2 as a function of temperature in epitaxial
VO2/TiO2 thin films with well-defined biaxial strain. Although qualitatively similar to our Landau-Ginzburg
theory predicted phase diagrams, the M2 phase is stabilized by nearly an order of magnitude more strain than
expected for the measured temperature window. Our results reveal that the elongation of the cR axis is insufficient
for describing the transition pathway of VO2 epitaxial films and that a strain induced increase of electron
correlation effects must be considered.

DOI: 10.1103/PhysRevB.94.085105

The abrupt metal insulator transition (MIT) near room
temperature in VO2 is believed to be a cooperative Mott-Peierls
transition, which is further complicated by the appearance of
an intermediate insulating phase under certain conditions. This
monoclinic M2 phase is a known Mott insulator suggesting
that electron-electron interactions may play an important role
in determining the transition pathway [1–3]. In unstrained
stoichiometric VO2, the structural phase transition accom-
panying the MIT is from the high temperature rutile phase
to the monoclinic M1 phase, which causes both zigzagging
of the vanadium chains and the formation of V-V dimers along
the rutile c (cR) axis [4,5]. In the M2 phase, only half
the vanadium chains zigzag, while the other half form V-V
dimers [6,7]. This structure is known to be stabilized in
large single crystals at intermediate temperatures by low level
chemical doping (e.g., with Cr or Al) or uniaxial pressure along
the [110] direction, however the electron correlation effects
have not been simultaneously investigated [1,2,6,8–10].

Recently, uniaxial strain studies of VO2 nanobeams have
determined that VO2 has a triple phase point at 65 ◦C at
ambient pressure, where the two insulating monoclinic phases
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and the metallic rutile phase can coexist [11,12]. Applying
compressive strain along the cR axis lowers the transition
temperature (TMIT), whereas tensile strain along cR raises the
transition to the metallic phase with the M2 phase stabilized
between the M1 and rutile phases. In thin films, the M2 phase
has only been observed when using symmetry mismatched
substrates, which tend to have low lattice strain and high defect
concentrations [13–20]. Because of this, no clear relationship
between thin film strain and the stabilization of the M2 phase
can be deduced from existing reports. Understanding how
this phase can be stabilized with epitaxial strain is necessary
for a real understanding of how the MIT of VO2 can be
modulated.

Rutile TiO2 substrates, isomorphic to the metallic phase
of VO2, offer a means to obtain well-defined biaxial tensile
strain with lattice mismatches up to a few percent. It is well
known that TMIT can be tailored by ±40 ◦C by choice of
substrate orientation in thin (�40 nm) VO2/TiO2 films [21].
This correlates well with tensile or compressive strain along
the cR axis, however there has been no evidence of the M2
phase reported in these films.

Here we present a combined study of polarization and
temperature dependent soft x-ray absorption spectroscopy
(XAS) with hard x-ray photoelectron spectroscopy (HAXPES)
of high quality epitaxial VO2 films on TiO2(001) and (100)
oriented substrates. Using the sensitivity of XAS at the O
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FIG. 1. Schematic representations of the crystal structure of
epitaxial VO2 film grown on (a) TiO2(001) and (b) TiO2(100),
showing the orientation of the V-V dimers. (c) ADF STEM image of
a 7.5 nm VO2/TiO2(100) epitaxial film viewed along the [001] axis.

K edge to the presence of the V-V dimers, we are able to
distinguish between each of the three phases (M1, M2, and R).
We determine the VO2/TiO2(001) with a compressed cR are
absent of intermediate phases and maintain a MIT similar to
unstrained VO2, aside from the lowered TMIT. In stark contrast,
the VO2/TiO2(100) films with elongated cR have a stable M2
phase between the M1 and R endpoints, while the HAXPES
displays evidence of a more Mott-like transition with increased
electron correlation effects. These results are generally in
good agreement with nonthin film studies, however we note
a significantly larger strain than predicted is required to
stabilize the M2 phase for the same temperature window.
This discrepancy is attributed to additional consequences of
the biaxial nature of thin film epitaxial strain and reveals that
tailoring the MIT of VO2 is not exclusively determined by the
cR lattice constant.

A set of high quality epitaxial VO2 thin films were grown
on rutile (001) and (100) TiO2 single crystal substrates by
reactive MBE by a codeposition method under a distilled
ozone background pressure [22,23]. The XAS and HAXPES
presented here were collected from a representative 10 nm
VO2/TiO2(001) film and a 5 nm VO2/TiO2(100) film. These
thicknesses were chosen to ensure the cR lattice constant
is either contracted or elongated, respectively, as shown
schematically in Fig. 1. Details regarding sample growth and
characterization as well as spectroscopy measurements are
provided in the Supplemental Material [24]. Electrical trans-
port measurements of these films show a change in resistivity
of �R/R = 103.09 centered at 19.1 ◦C for VO2/TiO2(001) and
�R/R = 102.94 centered at 77.6 ◦C for VO2/TiO2(100). This
confirms a similar orientation-dependent tuning of the MIT as
previously reported [21]. XAS of the O K edge was measured
in total electron yield (TEY) mode. The photon energy axes
were calibrated using the Ti L2,3 and O K absorption edge
features of a rutile TiO2 single crystal. From prior studies
we have determined that for films of �5 nm thickness
there is no spectral contamination originating from the TiO2

substrate [25]. The HAXPES measurements were performed
using a photon energy of hν = 4 keV with a resolution of

0.45 eV. The binding energy axes were referenced to the Fermi
edge of Au foil.

For an in-depth analysis of the epitaxial nature of our
VO2/TiO2(100) films, STEM and high resolution XRD mea-
surements were conducted. Cross-sectional scanning trans-
mission electron microscopy (STEM) of VO2/TiO2(001)
specimens have previously shown abrupt interfaces and well-
defined epitaxial growth where (001) VO2 ‖ (001) TiO2

and [100] VO2 ‖ [100] TiO2 [22,26]. Here we confirm
VO2/TiO2(100) to have a similarly well-defined epitaxial
relation of (100) VO2 ‖ (100) TiO2 and [001] VO2 ‖ [001]
TiO2. Figure 1(c) shows an annular dark field STEM image
of a VO2/TiO2(100) specimen viewed along the [001] axis,
with a (100) film surface. The film has a top surface layer
which looks like it belongs to another phase. This is likely due
to ion milling damage induced during sample preparation.
The undamaged thickness of the film is 6.9–7.0 nm, and
the total thickness of the film is 7.5 nm. In addition to the
sharp and well-ordered interface, the whole of the film shows
comprehensive structure. As highlighted by the yellow lines,
the image shows the columns of vanadium ions maintain their
alignment with the titanium ions of the substrate all the way
to the damaged surface layer with no sign of dislocations.
Additionally, these films display a high quality interface with
limited titanium diffusion and maintain MITs in films as thin
as 1 nm [22,23,25].

Reciprocal space maps were measured around the (2,0,0)
specular and (2,1,1) off-specular Bragg peaks of the TiO2(100)
substrate and are shown in the Supplemental Material [24].
The VO2 Bragg peak is overlapped with TiO2 (2,1,1) peak in
the in-plane direction, confirming that the in-plane structure
of the VO2 film is fully strained to the in-plane structure
of the substrate. From analysis of the Kiessig fringes along
the (H,0,0) direction, using a pseudorutile unit cell, the
lattice constant along the surface normal is estimated to be
aR = 4.47 Å. This is in good agreement with the intensity
profile along the (H,1,1) direction. This indicates that the
out-of-plane lattice spacing is indeed contracted from its bulk
state in these strained films, demonstrating coherent epitaxial
strain. From this we confirm an in-plane tensile strain of
εcR

= 3.74% and εbR
= 0.86% up to a film thickness of 7.5 nm

in our VO2/TiO2(100) films.
In order to monitor the behavior of the V-V dimers across

the phase transformations of VO2 we employed soft XAS.
XAS at the O K edge probes the conduction band via dipole
transitions into the unoccupied O 2p density of states near EF .
Because of the high degree of O 2p–V 3d covalent mixing, this
technique is sensitive to the unoccupied V 3d states associated
with the formation of V-V dimers [27,28]. This so-called d‖
feature in the XAS spectrum emerges for the low temperature
insulating phase and is routinely considered a signature of the
monoclinic M1 structure. Furthermore, since only every other
vanadium ion chain forms V-V dimers in the M2 structure,
as compared to the full dimerization in the M1 structure, this
technique is expected to also be a sensitive probe of the M1/M2
phase transition.

First, polarization dependent XAS was performed for both
VO2 film orientations in the low temperature M1 phase (see
the Supplemental Material [24]). The general features in the
XAS spectra are consistent with previous studies and show
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FIG. 2. (Left) Temperature dependent O K-edge XAS measurements of VO2/TiO2(001) and VO2/TiO2(100) with (right) an expanded view
of the d‖ feature and its peak intensity as a function of temperature.

no observed energetic shifts or broadening of the unoccupied
bands owing to epitaxial strain [27–29]. Due to the highly
directional dx2−y2 orbital, the d‖ feature shows a strong angular
dependence and even completely disappears for polarization
geometry �E ⊥ cR . Because of this, the d‖ is slightly less
pronounced in the (001) oriented films owing to the constraints
of the near grazing incidence geometry required for �E ‖ cR .

Temperature dependent XAS measurements were then
carried out for both VO2 films and are shown in Fig. 2.
Each collected raw spectrum has been normalized to the local
maximum of the π* feature (∼529.5 eV), and are vertically
offset for clarity with temperature increasing from top to
bottom. Below these are each difference spectra to represent
the spectral changes as temperature is increased. This shows
the d‖ band as a symmetric peak centered at 530.5 eV in both
strain orientations.

To highlight the more subtle changes in the d‖ region, an ex-
panded view is also shown for each film orientation alongside
the integrated peak intensity as a function of temperature. The
error bars plotted for the integrated peak intensity represent a
99.6% confidence level. From this it is clear that the (001)
oriented films display only two phases. The d‖ feature is
identical at all lower temperatures and then vanishes near room
temperature and for all higher temperatures. This is consistent
with a transition from the M1 to R phase near room temperature
with no evidence of any intermediate phases. In contrast, the
(100) oriented films display more intricate changes as the
temperature is increased. At low temperatures the d‖ feature is
again observed as a symmetric peak, however, in this case, it
shows intermediate intensities before it completely vanishes.
The first reduction in intensity occurs before 40 ◦C and remains
as a stable plateau at least up to 80 ◦C. Subsequently, there

is an additional point at which the intensity is diminished
further before completely vanishing upon reaching the high
temperature phase. The endpoints are similar to the (001)
orientation and are consistent with the M1 and R phases.
The stable intermediate phase is interpreted as the M2 phase,
where the reduced intensity of the d‖ feature reflects the
decreased participation in the V-V dimerization. Following
this assignment, the single spectrum collected at 100 ◦C is
likely representative of spatial coexistence between the M2
and rutile phases [24]. This demonstrates that the intermediate
M2 phase can indeed be stabilized via coherent epitaxial strain
and is only observed in the (100) strain case, i.e., when the cR

lattice constant is elongated.
To confirm the assignment of the intermediate M2 phase

observed for the VO2/TiO2(100) we performed hybrid DFT
using the HSE06 functional [30] of the M1, M2, and R phases
of VO2 as described by Eyert [31]. Spin polarization was
explicitly included only for the M2 phase in order to obtain
a band gap, while the M1 and R calculations are not spin
polarized [31,32]. The t2g(π ) projected density of states for
both the M1 and M2 phase are presented in Fig. 3 (see the
Supplemental Material for details [24]). The dx2−y2 orbital,
associated with the d‖ feature in the O K edge, is found at
1.6 eV above EF in the M1 structure. For the M2 structure,
this dx2−y2 orbital is projected separately for each unique
vanadium atom; V1 representing the dimerized chains, and V2
representing the evenly spaced zigzagged chains. The behavior
of the unoccupied dx2−y2 orbital is clearly altered compared
to the M1 phase. The lower DOS of this orbital in the M2
phase indeed reflects the reduced participation in the V-V
dimerization, reaffirming that the d‖ feature is largely derived
from the dimerized vanadium ions.
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FIG. 3. The t2g(π ) projected DOS comparing the M1 and M2
phase calculated by hybrid DFT. The highlighted region indicates the
d‖ band in each structure arising from dimerized vanadium ions.

Further confirmation of the existence of the M2 phase in
the (100) strained films is supported by Landau-Ginzburg
theory. The predicted structural phase transformations in VO2

as a function of biaxial strain are described here using a
six-order Landau polynomial (see the Supplemental Material
for details [24])

F (η,ε) = A2(T − TC)η2 + A4η4 + A6η6

+ 1
2cijkl

(
εij − η2ε0

ij

)(
εkl − η2ε0

kl

)
, (1)

where TC is the Curie temperature under stress-free condition,
A2, A4, and A6 are constants, η is a normalized order
parameter describing the R to M1 transformation, R to M2
transformation, and M2 to M1 transformation, εij is the total
strain, ε0

ij is the stress-free transformation strain at transition
temperature T0, and cijkl is the elastic stiffness tensor [33].
For a thin film clamped on the substrate in the x1-x2 plane, by
applying the thin film boundary condition we obtain the new
transition temperature

T0 = (A4 + �A4)2

4A2A6
+ (TC + �TC), (2)

with �TC = T0
�H

[ c2
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2 (ε0
11

2 + ε0
22

2), where εS1 and
εS2 are substrate mismatch strain along x1 and x2 directions,
respectively. By rotating the coordinate system, we thus
can easily get the strain-temperature phase diagrams for
both strain cases reflecting epitaxial VO2 on TiO2(001) and
(100).

Comparing the tensile sides of each phase diagram in Fig. 4,
we find good qualitative agreement with experiment. As the
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FIG. 4. Transformation temperature as a function of mismatch
strain for (001) VO2 (top) and (100) VO2 (bottom) thin films. In the
(001) case, the epitaxial strain is equal in the aR and bR directions,
while in the (100) case, the x axis represents the epitaxial strain
along the bR direction (εS1), with the strain along cR direction (εS2)
fixed to 4.35εS1 in order to reflect the anisotropic epitaxial strain.
The white boxes (along with dotted lines to guide the eye) represent
experimentally determined transformation temperature values.

temperature increases, M1 transforms to R directly in (001)
films, while M1 transforms first to M2 and then to R in (100)
films. The M2 phase has a larger stress-free transformation
strain (1.57%) along cR than that of M1 (1.00%), thus the
large cR tensile strain of the (100) films should favor the M2
phase over M1 and stabilize it for a wide temperature range.
However, the epitaxial strain of a (100) film is very anisotropic,
i.e., 0.86% along the bR direction and 3.74% along cR , and
we find significant differences in experimental transformation
temperatures. For this measured temperature window in which
the M2 phase is stable, the strain on cR observed in our films is
nearly an order of magnitude higher than expected. This large
discrepancy indicates that the effects of biaxial epitaxial strain
alone are insufficient to accurately describe these phase trans-
formations. There may be additional consequences to the epi-
taxial strain, such as changes in bandwidth and thus correlation
strength that may have a large impact on the transformation
temperatures.

To investigate any such modification to the electronic
structure in the highly anisotropic VO2/TiO2(100) strain case,
we employed HAXPES. Figure 5 shows the HAXPES spectra
of the topmost valence band states for each film orientation
recorded both above and below their respective TMIT (as
determined from resistivity measurements). The valence band
of VO2 consists of a broad O 2p band (2–9 eV) and a smaller
feature near EF that is predominantly V 3d in character (see
the Supplemental Material for full VB spectra [24]). This V
3d feature displays dramatic changes across the MIT. Here we
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FIG. 5. Valence band HAXPES of VO2/TiO2(100) and
VO2/TiO2(001) collected above and below TMIT. (Bottom) HSE06
hybrid DFT calculations showing the total DOS for the M1 and R
phase. Solid bars indicate the coherent (red) and incoherent (black)
contributions to the V 3d feature.

also observe clear differences between the two strain cases.
The VO2/TiO2(001) spectra shows a single peak near 1 eV
in the insulating phase that shifts towards EF above TMIT

resulting in a clear metallic Fermi edge. This is consistent
with our hybrid DFT predicted spectra, and shows the (001)
oriented films are in good agreement with bulk VO2 and other
reports of VO2/TiO2(001) [28,29,34–36]. Also in the metallic
phase, there is some additional weight above 1 eV that is not
captured in the DFT band calculations. This broad feature
is the so-called “incoherent peak” associated with the lower
Hubbard band [35].

Now looking to the VO2/TiO2(100) spectra for the metallic
phase, this incoherent peak is much more pronounced and
is observed at the same binding energy as the insulating
peak, near 1 eV. In this case, there is only a small transfer
of spectral weight across the MIT resulting in small density
of states at EF in the metallic phase and is consistent with
previous observations of VO2/TiO2(100) films [25,37]. This
behavior is more typical of a Mott insulating system, indicating
that the electron correlations are more dominant in the (100)
oriented films [38,39]. Doping VO2 with tungsten has also
been observed to induce more Mott-like spectral signatures,
although in the present case these effects are purely strain
induced [40]. This increase in electron correlation effect is
likely a consequence of the distortion of the rutile phase
induced by the epitaxial strain in VO2/TiO2(100) films. We
consider this to be responsible for the discrepancy between
the predicted and observed phase transformation temperatures.
Further support is provided by a strain-induced orbital selective

Mott transition explicitly considering the effects of electron
correlations in VO2, as proposed by Mukherjee et al. [41].

We have demonstrated here that the intermediate M2 phase
can indeed be stabilized via coherent epitaxial strain where the
cR axis is elongated. This result can largely be explained by the
change in cR lattice constant, however the temperature window
in which the M2 phase is stable is quantitatively different
than predicted for VO2/TiO2(100) films. This discrepancy
is a consequence of the increased electron correlations in
the VO2/TiO2(100) films as compared to VO2/TiO2(001),
indicating that the more Mott-like MIT character needs to be
explicitly considered. Due to the well-defined epitaxial strain
in these films, we can now provide an explanation for the
inconsistent appearance of the M2 phase in thin VO2 films
where the biaxial strain and possible renormalization of the
electronic structure are not explicitly considered. This work
demonstrates that by use of epitaxial strain, it may be possible
to further strain-tune the degree of electron correlation in VO2.
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