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We explore the regime of operation of the modulator stage of a recently proposed laser-plasma
accelerator scheme [Phys. Rev. Lett. 127, 184801 (2021)], dubbed the Plasma-Modulated Plasma
Accelerator (P-MoPA). The P-MoPA scheme offers a potential route to high-repetition-rate, GeV-
scale plasma accelerators driven by picosecond-duration laser pulses from, for example, kilohertz
thin-disk lasers. The first stage of the P-MoPA scheme is a plasma modulator in which a long,
high-energy ‘drive’ pulse is spectrally modulated by co-propagating in a plasma channel with the
low-amplitude plasma wave driven by a short, low-energy ‘seed’ pulse. The spectrally modulated
drive pulse is converted to a train of short pulses, by introducing dispersion, which can resonantly
drive a large wakefield in a subsequent accelerator stage with the same on-axis plasma density
as the modulator. In this paper we derive the 3D analytic theory for the evolution of the drive
pulse in the plasma modulator and show that the spectral modulation is independent of transverse
coordinate, which is ideal for compression into a pulse train. We then identify a transverse mode
instability (TMI), similar to the TMI observed in optical fiber lasers, which sets limits on the energy
of the drive pulse for a given set of laser-plasma parameters. We compare this analytic theory with
particle-in-cell (PIC) simulations and find that even higher energy drive pulses can be modulated
than those demonstrated in the original proposal.

INTRODUCTION

In a laser-plasma accelerator (LPA), plasma oscilla-
tions are driven by pushing free electrons away from an
ultrashort laser pulse via the ponderomotive force. The
heavier ions remain approximately stationary relative to
the electrons, thus the electron-ion charge separation col-
lectively forms a strong electric field which can be used
to accelerate charged particles. The plasma wave driven
in this way will have a phase velocity set by the group ve-
locity of the laser pulse, which is well suited for the accel-
eration of relativistic charged particles. The accelerating
gradients achievable by LPA are set by the wavebreaking
field E0 = meωpc/e and can be on the order of 100 GV/m
[1], three orders of magnitude larger than those possible
in radio-frequency cavities. Here the plasma frequency
ωp = (nee

2/meε0)1/2, where ne is the electron density.

Efficient excitation of the plasma wave by a single laser
pulse requires that the duration of the pulse is less than
half the plasma period Tp = 2π/ωp. For plasma densities
of interest Tp is in the 100 fs range, and hence single-
pulse LPAs first became practical with the development
of chirped pulse amplification (CPA) [2], which allowed
joule-scale pulses to be compressed to sub-picosecond du-
rations. Ever since, most experimental demonstrations
of LPAs have used high intensity ultrashort laser pulses
from Ti:sapphire CPA laser systems. However, these sys-
tems suffer from low (∼ 0.1-10 Hz) repetition rates [3]
and poor (< 0.1%) electrical-to-optical energy efficien-
cies [4]. Despite the advantages gained by being much
more compact, the low efficiency and repetition rate of
the laser drivers used today severely limit the number

of applications for which LPAs offer an advantage over
conventional, radio-frequency particle accelerators.

It is important, therefore, to consider alternative laser
systems and/or develop novel approaches for driving
LPAs. Contemporary thin-disk lasers are efficient and
can already provide joule-scale pulses at kHz repetition
rates [5–7]. However, they cannot drive a LPA directly
since the small bandwidth of their gain media limits the
duration of the pulses they generate to [8–10] τ & 1 ps,
which is much longer than the plasma period. We note
that pulses from thin-disk lasers have been compressed
to a duration below 100 fs, following spectral broadening
via self-phase modulation in a gas [11]. However, to date
this approach has been limited to pulse energies below
120 mJ.

With the objective of applying the desirable features
of thin-disk lasers to LPAs, some of the present au-
thors recently proposed a scheme, illustrated in Fig.
1, for converting picosecond-duration pulses to a train
of shorter pulses that could be used to resonantly ex-
cite a plasma wave [12]. In this scheme, which we call
the Plasma-Modulated Plasma Accelerator (P-MoPA), a
high-energy, picosecond-duration ‘drive’ pulse is modu-
lated spectrally by co-propagating it in a plasma channel
with a low amplitude (∼ 1%) plasma wave driven by a
low-energy, short ‘seed’ pulse. To first order, the spectral
modulation takes the form of a set of sidebands of angu-
lar frequencies ωm = ωL+mωp0, where ωL is the angular
frequency of the input drive pulse, m = ±1,±2,±3, . . . is
the sideband order, and ωp0 is the plasma frequency on
the axis of the plasma channel. The spectrally-modulated
drive pulse is converted into a temporal modulation by
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passing it through a dispersive optical system that re-
moves the relative spectral phase, ψm = −|m|π/2, of
each sideband. This forms a train of short pulses, spaced
temporally by Tp0, which can resonantly drive a large am-
plitude plasma wave in a plasma accelerator stage with
the same axial density as the modulator.

In our earlier work a one-dimensional (1D) fluid model,
and 2D particle-in-cell (PIC) simulations were used to
demonstrate the operation of the plasma modulator and
accelerator stages, and to show that GeV-scale energy
gains could be obtained from existing thin-disk laser sys-
tems. In this paper we derive a full 3D theory of seeded
spectral modulation and we use this to establish the use-
ful operating regime for the modulator stage in the P-
MoPA. We find that the range of operation of the mod-
ulator is determined by the onset of the transverse mode
instability (TMI), similar to the TMI observed in high
power fiber laser systems [13–17]. This analysis is used
to establish the regime of parameter space for which the
modulator can be operated successfully. The results of
the 3D analytic theory are compared with particle-in-cell
(PIC) simulations, and are found to be in good agree-
ment. We find that even higher energy drive pulses can
be modulated than those considered in the original pro-
posal.

THE PLASMA MODULATOR

Seeded Spectral Modulation in Plasma Channels

Propagation of the envelope of a laser pulse in an ax-
isymmetric plasma channel of electron density n0(r) =
n00 + δn0(r) with a small wake δn(r, ξ; |a|2) can be ap-
proximately described by the paraxial wave equation [18–
21] (see Supplemental Material [22] for its derivation)

[
i

ωL

∂

∂τ
+

c2

2ω2
L

∆⊥

]
a =

ω2
p

2ω2
Ln0

[
δn0(r) + δn(r, ξ; |a|2)− n0(r)|a|2/4

]
a (1)

where a(r, θ, ξ, τ) is the envelope of the pulse’s normalized
vector potential, ωL is the laser frequency and the propa-
gation is described in co-moving coordinates ξ = z− vgt,
τ = t, with vg/c = (1 − ω2

p0/ω
2
L)1/2 defined as the

group velocity of electromagnetic plane waves in uni-
form plasma of density n00, corresponding to the on-axis
plasma channel frequency ωp0 = ωp(r = 0). This group
velocity may differ from the group velocity of a tightly
focused laser pulse [23, 24]. Nonlinearities come from
weakly relativistic effects as well as from interaction be-
tween the pulse and its own excited wake.

Successful seeded spectral modulation requires rela-
tivistic and self-wake effects to be negligible, which re-

duces Eq. (1) to a linear paraxial wave equation

[
i

ωL

∂

∂τ
+

c2

2ω2
L

∆⊥

]
a =

ω2
p

2ω2
Ln0

[
δn0(r) + δn(r, ξ; |as|2)

]
a

(2)

where as denotes the seed pulse envelope, whose intensity
we assume to be unchanging relative to the modulating
drive pulse envelope a. We also demand that the chan-
nel is matched to the spot size w0 of the seed and drive
pulses. A matched parabolic channel and its respective
unperturbed Gaussian drive pulse envelope take the form
[24–26]

n0(r) = n00 + ∆n(r/w0)2

a(r, ξ, τ) = a0f(ξ) exp

(
− r

2

w2
0

− iωLτ
2c2

ω2
Lw

2
0

)
(3)

where ∆n ≡ (πrew
2
0)−1 is the channel depth parame-

ter, re is the classical electron radius and 0 ≤ f(ξ) ≤ 1
is the slowly-varying longitudinal envelope of the drive
pulse. Assuming the seed wake is small relative to the
channel depth parameter |δn(r, ξ; |as|2)| � ∆n, we can
apply time-independent perturbation theory to Eq. (2),
yielding the following modulation to the total phase of
the laser pulse

Φ(ξ, τ) = kLξ −
2c2τ

ωLw2
0

(
1 +

〈
δn(r, ξ; |as|2)

∆n

〉

⊥

)
(4)

where kL = ηωL/c is the laser wavenumber with the on-
axis plasma index of refraction η = (1− ω2

p0/ω
2
L)1/2 and

〈(. . .)〉⊥ = (4/w2
0)
∫∞
0

(. . .) exp(−2r2/w2
0)rdr denotes the

intensity-weighted transverse average. Using this expres-
sion we can also retrieve the shift in instantaneous fre-
quency

∆ω(ξ;Lmod)

ωL
= −Lmod

2c2

ω2
Lw

2
0

〈
∂

∂ξ

δn(r, ξ; |as|2)

∆n

〉

⊥
(5)

where Lmod = vgτ is the modulator length. This predicts
that the spectral modulation amounts to a radial averag-
ing of the longitudinal gradient of the wake weighted by
the transverse intensity profile of the drive pulse. This
independence of the spectral modulation of radial posi-
tion is desirable as it allows the spectral modulation to
be converted into a temporal one by applying the same
chromatic dispersion across the entire cross-section of
the modulated pulse. Figure 2 shows the results of a
2D PIC simulation which demonstrates that the spectral
modulation is indeed independent of the transverse co-
ordinate, despite the fact that the amplitude and phase
of the plasma wave does depend on the radial coordi-
nate, as predicted by Eq. (5). Figure 2 also shows sup-
pression of the spectral modulation towards the tail of
the drive pulse, which is most apparent in the plot of
the retrieved instantaneous frequency. This is also ex-
pected from Eq. (5), since the large curvature of the
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FIG. 1. [Color online]. Outline of the P-MoPA scheme from the original proposal [12]. A short, low energy seed pulse excites
a small wake in the modulator stage which spectrally modulates a long, high energy drive pulse into interleaving redshifted
(Stokes) and blueshifted (anti-Stokes) pulse trains whilst maintaining a smooth envelope. Chromatic dispersion is then applied
to the spectrally modulated drive pulse to compress it into a multipulse train, which can then be used to resonantly drive a
wakefield in the accelerator stage with the same density as the modulator.

wavefronts of the plasma wave towards the tail of the
drive pulse leads to a reduction in the spectral modula-
tion when the longitudinal gradient of the wave is aver-
aged radially. Note that in the Supplemental Material
[22] we compare the results of PIC simulations in 2D
and cylindrical geometry. All PIC simulations presented
in this paper were performed with axial plasma density
n00 = 2.5× 1017 cm−3, seed and drive laser wavelength
λL = 1030 nm, seed pulse FWHM duration τseed = 40 fs
and modulator length Lmod = 110 mm. A complete list
of simulation parameters is included in the Supplemental
Material [22].

Channel Suppression of Spectral Modulation

As observed in Fig. 2, Eq. (5) implies that the spec-
tral modulation of the drive pulse is limited by wave-front
curvature of the plasma wave. For low amplitude wakes
this curvature is dominated by the transverse profile of
the plasma channel. For square channels the wake has
flat phase fronts over most of the transverse profile of the
lowest-order mode of the channel. However, for chan-
nels with a curved transverse profile, such as parabolic
channels, the wave-fronts of the plasma wave are curved,
which can strongly suppress the spectral modulation.

Figure 3 shows the results of 2D PIC simulations that
compare the performance of a modulator with square and
parabolic plasma channels. It can be seen that for the
square channel the wave-fronts of the plasma wave are
flat across most of the channel width, and as a conse-
quence the pulse train generated by removal of the side-
band spectral phase exhibits strong temporal modulation
over the entire duration of the pulse train. In contrast,
the wave-fronts of the wake driven in a parabolic channel
of 30 µm matched spot size are strongly curved, and this
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FIG. 2. [Color online]. 2D PIC simulation of the modulator
stage in a matched parabolic plasma channel of matched spot
size w0 = 30 µm with Wseed = 50 mJ and Wdrive = 0.6 J,
τdrive = 1 ps. The top panel shows the on-axis longitudinal
intensity profiles |a|2 for the seed and drive pulses. The middle
panel plots the on-axis instantaneous frequency calculated by
a Hilbert transform. The bottom panel displays the full 2D
distributions of the relative amplitude δn/n00 of the plasma
wave and the relative frequency modulation ∆ω/ωL.

curvature increases towards the tail of the drive pulse.
As a consequence, the generated pulse train does not ex-
hibit complete intensity modulation near its tail, which
would reduce the amplitude of the plasma wave it could
drive in the accelerator stage. As shown in Fig. 3, in-
creasing the matched spot size of the parabolic channel
to 50 µm reduces the wake curvature, which leads to im-
proved modulation of the generated pulse train. We note
that the deleterious effects of wave-front curvature would
be even more pronounced in 3D geometry (see Supple-
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FIG. 3. [Color online]. Comparison of the performance of
modulators with plasma channels of different transverse pro-
files each with wall thicknesses of 20 µm (see Supplemental
Material for their parameterizations [22]). The left panels
show the transverse electron density (blue) and normalized
guided intensity (black) profiles of the channels for: top, a
square channel of diameter 30 µm; middle, a parabolic chan-
nel of matched spot size 30 µm; bottom, a parabolic channel
of matched spot size 50 µm (with (50/30)2× more seed and
drive pulse energy to account for the larger spot size). The
middle panels show the relative wake amplitudes δn/n00 at
the end of the modulator, calculated by 2D PIC simulations.
The right panels show the on-axis pulse envelopes |a| at the
end of the modulator before (dashed blue) and after (solid
orange) the expected [27] sideband spectral phase ψm was
removed (see Supplemental Material [22]).

mental Material [22]).

STABILITY OF THE PLASMA MODULATOR

It is important to understand the extent to which in-
stabilities will arise in the modulator, and the range of
laser and plasma parameters for which any deleterious
effects arising from them can be avoided. Since we do
not want to waste any of the drive pulse energy within
the modulator stage, we would like its envelope to re-
main smooth as it propagates. Although the specific set
of parameters used in the original P-MoPA proposal [12]
were shown to work in simulation, for the scheme to be
practical we want a large, well-defined parameter space
where it is stable.

Increasing the drive pulse energy Wdrive eventually
disrupts the plasma modulator with a TMI via a self-
modulation mechanism. This instability drives time-
varying wakes which excite higher order transverse chan-
nel modes. The results of PIC simulations demonstrating
this phenomenon are given in Fig. 4. It can be seen that
the Stokes sidebands become more defocused towards the
trailing end of the pulse, thereby exciting higher order

transverse modes, whereas the anti-Stokes-shifted light
remains relatively well focused. This asymmetry between
the Stokes and anti-Stokes light leads to the formation
of low-contrast pulse trains in the modulator, with the
Stokes-shifted radiation forming a train off-axis, and the
anti-Stokes light forming a train on-axis. This effect be-
comes worse with increasing drive pulse energy, and can
be seen to be especially bad for the 2.4 J pulse, which
has undergone severe transverse break-up and has been
strongly redshifted. This difference in behaviour between
the Stokes and anti-Stokes sidebands has previously been
observed as the result of relativistic effects [28]. As shown
in the Supplemental material [22], a similar effect is pre-
dicted in the non-relativistic regime when non-paraxial
effects are accounted for.

Envelope Self-Modulation and Raman Forward
Scattering

We now consider the stability of picosecond-scale
pulses propagating in long unperturbed plasma channels,
i.e. in the absence of a wake driven by a seed pulse. As
discussed by Mori [29], as long as 1/kLw0 � ω2

p/ω
2
L is

satisfied, the following parameter determines whether a
laser pulse will be dominated by Raman forward scatter-
ing (RFS) or envelope self-modulation (SM) instabilities:

Γ ≡ P

1 TW
· τL

1 ps
·
(

ne
1× 1019 cm−3

)5/2

·
(

λL
1 µm

)4

(6)

where P is the peak laser power and τL is the laser du-
ration. When Γ ≥ 3, RFS dominates, whereas SM dom-
inates when Γ ≤ 0.4. Substituting laser-plasma parame-
ters used by Jakobsson et al [12], we find Γ = 6.3× 10−5

and 1/kLw0 = 55× 10−4 � ω2
p/ω

2
L = 2.4× 10−4, mean-

ing that we are well in the SM-dominated regime. The
maximum growth rate and e-folding number of envelope
SM in a uniform plasma is given by [30, 31]

γSM =
1

8
a20
ω2
p

ωL
(1 + a20)−3/2, Ne,SM = γSMTint (7)

where Tint = Lmod/c is the interaction time.The param-
eters used by Jakobsson et al [12] yield ∼ 1.3 e-foldings,
and hence SM could become problematic, especially if we
try to include more energy in the drive pulse.

Transverse Mode Stability Condition

For a pulse propagating in a waveguide, the growth
of SM is complicated by oscillations in the spot size of
the mode, which arise from excitation of more than one
waveguide mode. This becomes relevant when the SM
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FIG. 4. [Color online]. 2D PIC simulations of the intensity profiles, |a|2, of drive pulses at the exit of the modulator with a
channel of square cross-section with w0 = 30 µm and Wseed = 50 mJ, for various energies and durations of the drive pulse. The
top row displays the intensity profiles decomposed into its redshifted Stokes (ω−ωL) < −ωp0/2, central |ω−ωL| < ωp0/2, and
blueshifted anti-Stokes (ω − ωL) > ωp0/2 components; the bottom panel displays the full intensity profile of the drive pulse.

growth rate is slower than the spot size oscillation fre-
quency [32] γSM < ωw = 4c2/ωLw

2
0. In this section

we consider the effects of the plasma channel on self-
modulation.

Consider coupling a slightly unmatched drive pulse
into a parabolic plasma channel so it undergoes small
spot size oscillations, and assume that no centroid oscil-
lations are present, so that only radial Laguerre-Gaussian
modes LGp0(r) are excited (see Supplemental Mate-
rial [22]). Neglecting relativistic effects, applying time-
dependent perturbation theory to Eq. (1), the coeffi-
cients αp(ξ, τ) of each radial Laguerre-Gaussian mode p
at longitudinal coordinate ξ are found to evolve according
to:

i

ωc

∂αp(ξ, τ)

∂τ
=

∑

n

αn(ξ, τ)
〈

LGp0

∣∣∣δn+ δnNL

∆n

∣∣∣LGn0

〉
ei(p−n)ωwτ ,

a(r, ξ, τ) = e−iωcτ
∑

p

αp(ξ, τ)LGp0(r)e−ipωwτ (8)

where δn is the fixed seed wake, δnNL is the self-wake
of the drive pulse, and ωw and ωc = ωw/2 are the spot
size and centroid oscillation frequencies respectively [32].
Coupling the drive pulse into a slightly unmatched chan-
nel corresponds to following set of initial conditions

α0 = a0f(ξ), α1 = εwa0f(ξ), αp 6=0,1 ≈ 0 (9)

where εw = −δw/w0 � 1 is the channel spot size mis-
match parameter. In order to solve Eq. (8), the self-wake
δnNL must be known. We estimate the self-wake as fol-
lows. We first assume that the self-wake can be neglected,
and calculate the intensity modulation of the drive pulse
caused by the seed wake only. We then use this inten-
sity modulation to calculate the self-wake it would ex-
cite. This estimate of the self-wake can then be used to

define the plasma modulator stability condition, which
sets bounds on the laser-plasma parameters to prevent
nonlinear self-modulation from exciting transverse mode
transitions.

We will work in the shallow channel limit ∆n � n00,
which allows us to neglect the effects of the channel on
wake structure [33]. This gives a seed wake of the form
[18]

δn(r, ξ) = δns cos(kp0ξ)LG2
00(r) (10)

where kp0 = ωp0/vg and δns denotes the on-axis seed
wake amplitude. As the drive pulse should remain pri-
marily in the fundamental mode, we can approximate Eq.
(8) as a two-level system comprising the LG00 and LG10

modes with transitions between them driven by the seed
wake

i
∂α0

∂τ
= 2Ωs cos(kp0ξ)

(
α0 + 1

2α1e
−iωwτ

)
,

i
∂α1

∂τ
= 2Ωs cos(kp0ξ)

(
1
2α0e

iωwτ + 1
2α1

)
(11)

where Ωs = (ω2
p0/8ωL)(δns/n00) is the rate of spectral

modulation parameter. Note that since we are using the
paraxial description, we are implicitly assuming symme-
try between the Stokes and anti-Stokes sidebands (see
Supplemental Material [22] for the non-paraxial descrip-
tion). We can already see from these expressions that
the first radial mode spectrally modulates half as fast
as the fundamental, as it is more sensitive to the ra-
dial drop-off of the seed wake amplitude ∼ LG2

00(r).
This asymmetry, coupled to spot size oscillations, is one
of two effects contributing to plasma-resonant modula-
tions of the drive pulse intensity which excite a self-
wake. Since the spot size oscillation frequency is nec-
essarily much higher than the spectral modulation rate,
i.e. ωw � Ωs, as a consequence of the seed wake being
small relative to the channel depth parameter, we can
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integrate Eq. (11) by assuming most of the light remains
in the fundamental mode to find a first order solution

α0 = α
(0)
0 (ξ, τ) + α

(1)
0 (ξ, τ), α1 = α

(1)
1 (ξ, τ). This yields

the following intensity modulation

|a(r, ξ, τ)|2
|a0|2f2(ξ)

=

{
1− 2

(
εw +

Ωs cos(kp0ξ)

ωw

)
(cos[Ωsτ cos(kp0ξ)]− 1)

}
LG2

00(r)

+

{
2εw cos [Ωsτ cos(kp0ξ)− ωwτ ] +

2Ωs cos(kp0ξ)

ωw
(cos [Ωsτ cos(kp0ξ)− ωwτ ]− 1)

}
LG00(r)LG10(r) . (12)

We see from Eq. (12) that the drive pulse is modulated
radially, longitudinally, and temporally. This modulation
can be physically understood by splitting it into three ef-
fects which can be isolated by setting certain terms to
zero. The first is a longitudinally uniform spot size oscil-
lation of amplitude δw, which can be recovered by setting
Ωs = 0. The second comes from coupling between the δw
spot size oscillations and the seed wake spectral modu-
lation due to the effect mentioned earlier where higher
order radial modes spectrally modulate slower than the
fundamental mode in the ∼ LG2

00(r) seed wake. The
third depends purely on the seed wake, which can be
seen when setting εw = 0. The seed wake introduces lo-
cal variations in the matched spot size as it perturbs the
channel plasma density, varying the spot size longitudi-

nally in ξ and temporally in τ .
To estimate the self-wake δnNL that would be excited

by this intensity modulation, we are only interested in
keeping terms resonant with the plasma ∼ cos(kp0ξ + φ)
which excite the largest amplitude self-wake. We also
only consider propagation times up to Ωsτmod ∼ 1/2, as
this provides sufficient spectral modulation for compres-
sion into a pulse train which roughly coincides with the
minimum modulation required to reach the accelerator
stage wake amplitude plateau discussed by Jakobsson et
al [12]. With both of these considerations in mind, we can
Taylor expand the cos [Ωsτ cos(kp0ξ)− ωwτ ] terms in Eq.
(12) to first order in Ωsτ . This gives the plasma-resonant
part of the intensity modulation and the approximate
self-wake it would excite [34]

|a(r, ξ, τ)|2res = |a0|2f2(ξ)

(
2εwΩsτ sin(ωwτ) +

2Ωs [cos(ωwτ)− 1]

ωw

)
cos(kp0ξ)LG00(r)LG10(r) ,

δnNL(r, ξ, τ)

n00
=

e2

8π2m2
eε0c

5

ωp0Wdrive(ξ)λ
2
L

πw2
0

(
2εwΩsτ sin(ωwτ) +

2Ωs [cos(ωwτ)− 1]

ωw

)
sin(kp0ξ)LG00(r)LG10(r) (13)

where Wdrive(ξ) indicates the total energy of the drive
pulse contained between its head and coordinate ξ. To
prevent self-modulation driving transverse mode transi-
tions (and to make this calculation self-consistent), we
require that the self-wake effect on the LG00 → LG10

transition must be negligible throughout the full propa-
gation in the modulator, resulting in the constraint

∫ τmod

0

dτ

τmod

〈
LG10

∣∣δnNLe
iωwτ

∣∣LG00

〉
�
〈
LG10

∣∣δn
∣∣LG00

〉
.

(14)

Substituting Ωsτmod = 1/2 and Eq. (13) into this con-
straint yields the plasma modulator transverse mode sta-

bility condition

∣∣∣∣∣
δw/w0

δns/n00
+
k2p0w

2
0

8

∣∣∣∣∣
ωp0Wdriveλ

2
L

πw2
0

� Pmod ,

Pmod =
32π2m2

eε0c
5

e2
≈ 220 GW . (15)

This sets a limit on the total energy of the drive pulse
Wdrive for a given plasma density, spot size, laser wave-
length, seed wake and channel spot size mismatch. For
the laser-plasma parameters used by Jakobsson et al [12],
taking δns/n00 ∼ 2.5% and δw/w0 ∼ 12% from the PIC
simulations therein, the requirement of Eq. (15) becomes
37 GW � 220 GW, which is satisfied. Hence, in this
regime we do not expect the self-modulation effects to
be debilitating to the plasma modulator. In PIC simu-
lations, we have found that even letting the LHS of Eq.
(15) go up to ∼ 70 GW remains stable enough for com-
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FIG. 5. Calculated intensity profiles, |a|2, of drive pulses
at the exit of the modulator before (top) and after (bot-
tom) compression into a pulse train for drive pulses of energy
Wdrive = 1.2 J and FWHM duration: (a) 0.25 ps, (b) 1 ps, (c)
2 ps and (d) 4 ps. For these 2D PIC simulations the modula-
tor was taken to have a square cross-section with w0 = 30 µm,
and the seed pulse to have an energy of Wseed = 50 mJ.

pression into a pulse train despite the excitation of the
first radial mode being non-negligible. Figure 5 shows the
calculated intensity profiles, |a|2, of drive pulses at the
exit of the modulator before and after compression into a
pulse train (by removing the expected [27] sideband spec-
tral phase ψm of a pulse without TMI (see Supplemental
Material [22])) for drive pulses of energy Wdrive = 1.2 J
and various pulse durations. It can be seen that, despite
the pulse duration varying by a factor of 16, they each
undergo the same amount of spot size oscillation driven
transitions to higher order transverse modes. This is in
agreement with Eq. (15), which is independent of the
drive pulse duration. As a consequence, for drive pulses
of duration 1, 2 and 4 ps, the transverse structure of the
pulse at the end of the modulator is identical. For drive
pulses of 250 fs duration, the structure is also similar, but
in this case the pulse duration is only approximately two
plasma periods long, and hence the assumption of small
bandwidth breaks down. We note also that Fig. 5 shows
that in each case the spectrally-modulated drive pulse
can still be compressed into a well-defined pulse train
suitable for the accelerator stage, despite the transverse
structure that it has developed.

For most practical applications, the spot size oscilla-

tions will be determined by the mismatch between the
transverse amplitude profile of the lowest-order chan-
nel mode, and that of the drive pulse at the channel
entrance. However, even in the limit of a perfectly
matched channel, small spot size oscillations can arise
from other sources, such as ponderomotive and relativis-
tic self-focusing [35, 36]. In addition, the k2p0w

2
0/8 term

in Eq. (15), which comes from the seed wake forming a
plasma-resonant variation in matched spot size, ensures
that there will always be an upper limit on the drive pulse
energy.

There are two ways that excitation of higher order
transverse modes can be mitigated, other than ensur-
ing that Eq. (15) is satisfied. However, each of these
comes at a cost. First, the treatment above assumed
propagation in a shallow channel. For deeper channels,
i.e. ∆n ∼ n00, the self-wake will be partially suppressed
by the off-resonant plasma wave, and the difference in
spectral modulation rate of the higher-order mode and
the fundamental will be decreased due to the radial com-
ponent of the seed wake. This allows for more energy
to propagate in the modulator without transitions to
higher order modes. However, channels of this form
also suppress the spectral modulation towards the tail
of the pulse, as shown in Fig. 3, which is detrimental to
pulse compression. Another option would be to use a
leaky channel that leaks higher order modes faster than
the fundamental mode [37, 38]. However, this approach
would have reduced efficiency, since drive pulse energy
transferred to higher order modes would be lost.

CONCLUSION

We have derived a full 3D analytic theory of seeded
spectral modulation, and have used this to establish the
useful operating regime for the modulator stage in the
P-MoPA. This model is found to be in very good agree-
ment with those obtained from 2D PIC simulations of
the modulator.

The analytic theory leads to several important conclu-
sions. First, the spectral modulation of the drive pulse
is independent of radial distance from the axis of the
modulator channel. This ensures that, after leaving the
modulator, the entire spectrally-modulated pulse can be
compressed by a simple optical system that removes the
spectral phase accumulated in the modulator. Second,
curvature of the seed-pulse-driven plasma waves is shown
to reduce the degree of spectral modulation, and hence
the modulation of the pulse train that is generated after
compression. This finding establishes limits on the shape
of the channel used in a P-MoPA modulator.

We also explored limits to the operating parameters
of a seeded modulator set by the self-modulation of
the drive pulse and excitation of higher-order transverse
channel modes. We found that the operation of the mod-



8

ulator is limited by the onset of the transverse mode
instability (TMI), similar to the TMI observed in high
power fiber laser systems. An analysis of the excitation
of higher-order modes allowed the identification of a con-
dition on the energy of the drive pulse, the relative am-
plitude of oscillations in its spot size, and the relative
amplitude of the seed-pulse-driven wake, that must be
satisfied for stable operation.

Finally we emphasize that the results presented here
show that the modulator in a P-MoPA can exhibit stable
operation over a much broader range of operating param-
eters than considered in the original proposal [12]. This
includes operation at higher drive pulse energies, which
bodes well for the development of high-repetition-rate,
GeV-scale P-MoPAs.
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PARAXIAL DESCRIPTION OF PULSES IN
PLASMA CHANNELS

The Envelope Model

Considering only the high frequency fields associated
with the laser pulse, from Ampère’s law we find that the
normalized vector potential a = eA/mec evolves accord-
ing to the wave equation

[
∂2

∂t2
− c2∆ +

ω2
p

n0γ
(n0 + δn)

]
a = 0 (SM–1)

where γ = (1 + p2 + a2)1/2, p = γmevhf and vhf rep-
resents the high frequency quiver velocity of electrons
which ignores the low frequency bulk fluid velocity from
a wakefield response, n0 is the unperturbed pre-formed
plasma channel density and δn represents the change in
density due to the wake driven by the laser pulse. We
have also assumed that the electrostatic response is small
compared to the transverse current. To construct an en-
velope model for the laser evolution, consider a pulse of
the form

a = êLa(r, θ, z, t) exp[i(kLz − ωLt)] (SM–2)

where the laser frequency and wavenumber in free space
ωL, kL are constants and êL is the polarization of the
laser, which we will treat as linearly polarized throughout
this paper. It is convenient to shift from the lab frame
axial coordinate z and time t to co-moving coordinates
ξ = z − vgt, and τ = t, where vg/c = (1 − ω2

p0/ω
2
L)1/2

is defined as the group velocity of electromagnetic plane
waves in uniform plasma at the on-axis plasma channel
density n00 = n0(r = 0), ωp0 = ωp(r = 0), which may
differ from the group velocity of a tightly focused laser
pulse [1]. Substituting a pulse of this form into Eq. (SM–
1) in the weakly relativistic and linear wake limit yields
the following expression for the evolution of the envelope
a(r, θ, ξ, τ)

[
− 2iωL

∂

∂τ
− 2vg

∂2

∂ξ∂τ
− c2∆⊥ +

∂2

∂τ2

− (c2 − v2g)
∂2

∂ξ2
+
ω2
p

n0

(
δn0 + δn− n0|a|2/4

) ]
a = 0

(SM–3)

where ∆⊥ ≡ (1/r)(∂/∂r)(r∂/∂r) + (1/r2)∂2/∂θ2 and
δn0(r) = n0(r) − n00. This PDE, coupled to a self-
consistent wake solution for δn, fully describes the evo-
lution of the laser envelope in the axisymmetric, weakly
relativistic, quasi-static linear wakefield regime.

The Paraxial Approximation

To further simplify Eq. (SM–3) to the paraxial ap-
proximation, we assume that the discrepancy between
the group velocity and speed of light in vacuum is negli-
gible (vg ≈ c) and that the pulse envelope has a large
enough longitudinal extent that the term ∂2/∂ξ2 can
be neglected. We also assume that the envelope evo-
lution is slow relative to the carrier frequency so that the
terms vg∂

2/∂ξ∂τ and ∂2/∂τ2 time derivative terms can
be dropped. This yields a generalized nonlinear parax-
ial wave equation in an axisymmetric plasma channel
n0(r) = n00 + δn0(r)

[
i

ωL

∂

∂τ
+

c2

2ω2
L

∆⊥

]
a =

ω2
p

2ω2
Ln0

[
δn0(r) + δn(r, ξ; |a|2)− n0(r)|a|2/4

]
a (SM–4)

where the nonlinearities come from relativistic effects and
the interaction between the pulse and its own excited
wake.

Matched Plasma Channels

Using Eq. (SM–4) we can derive the form of the
matched plasma channel, which confines a Gaussian
beam with a constant spot size as it propagates. Assum-
ing no contributions from relativistic self-focusing nor
from plasma wakes, this yields the linear paraxial wave
equation in a channel

[
i

ωL

∂

∂τ
+

c2

2ω2
L

∆⊥

]
a =

ω2
pδn0(r)

2ω2
Ln0

a . (SM–5)
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Substituting a Gaussian pulse with a fixed spot size w0

yields the following stable solution

a(r, ξ, τ) = a0f(ξ) exp

(
− r

2

w2
0

− iωLτ
2c2

ω2
Lw

2
0

)
,

n0(r) = n00 + ∆n(r/w0)2 , ∆n = (πrew
2
0)−1 (SM–6)

where the longitudinal profile of the pulse, 0 ≤ f(ξ) ≤ 1,
is assumed to be sufficiently slowly varying for the parax-
ial approximation to hold, n00 is an arbitrary on-axis
density and re is the classical electron radius. This re-
sult for the matched channel can also be shown to confine
all Laguerre-Gaussian modes with envelope solutions of
the form

apm(r, θ, ξ, τ) =

αpm(ξ) exp

(
−iωLτ(2p+ |m|+ 1)

2c2

ω2
Lw

2
0

)
LGpm ,

LGpm(r, θ) =
√

p!

(p+ |m|)!

(√
2 r

w0

)|m|
exp

(
− r

2

w2
0

+ imθ

)
L|m|p

(
2r2

w2
0

)
,

〈LGp′m′ |(. . .)|LGpm〉 ≡
2

πw2
0

∫ 2π

0

dθ

∫ ∞

0

rdrLG∗p′m′(. . .)LGpm (SM–7)

where the integers p ≥ 0 and m are the radial and az-

imuthal indexes respectively and the L
|m|
p functions are

the generalized Laguerre polynomials. Note that it is
the interference between the fundamental and first az-
imuthal and radial modes that set the laser centroid and
spot size oscillation frequencies ωc = ωw/2 = 2c2/ωLw

2
0

respectively.

2D SLAB VS 3D CYLINDRICAL GEOMETRY

To justify the use of 2D PIC simulations to study the
stability of the plasma modulator, we outline the pulse
propagation theory in 2D slab geometry. The physical
description of seeded spectral modulation in 2D slab and
3D cylindrical are similar, but they have some key differ-
ences which come from the transverse Laplacian opera-
tor ∆⊥ taking a different form. The matched parabolic
channel for a Gaussian beam with spot size w0 still takes
the same form n0(x) = n00 + ∆n(x/w0)2, but the con-
fined modes are instead described by Hermite-Gaussian
functions

al(x, ξ, τ) = αl(ξ) exp

(
−iωLτ(l + 1)

2c2

ω2
Lw

2
0

)
HGl ,

HGl(x) =

√
1

2ll!
exp

(
− x

2

w2
0

)
Hl

(√
2x

w0

)
,

〈HGl′ |(...)|HGl〉 ≡
√

2

πw2
0

∫ ∞

−∞
dxHG∗l′(...)HGl (SM–8)

where integer l ≥ 0 is the transverse index and the
Hl functions are the (physicist’s) Hermite polynomials.
Note that the laser centroid and spot size oscillation fre-
quencies are the same in both 2D slab and 3D cylin-
drical geometry, so we would expect processes tied to
spot/centroid oscillations to behave similarly in 2D and
3D. However, the rate of spectral modulation does de-
pend on the dimensionality. For example, consider the
shallow channel limit ∆n� n00 where the seed wake can
be written in the form

δn = δns cos(kp0ξ)





1 1D

e−2x
2/w2

0 2D

e−2r
2/w2

0 3D

(SM–9)

where δns denotes the on-axis seed wake amplitude. As-
suming that the modulating drive pulse remains in the
fundamental channel mode, the spectral modulation rate
parameter Ωs is given by

Ωs =
1

4

ω2
p0

ωL

δns
n00





1 1D

〈HG0|e−2x
2/w2

0 |HG0〉 = 1/
√

2 2D

〈LG00|e−2r
2/w2

0 |LG00〉 = 1/2 3D

(SM–10)

hence 2D PIC simulations are expected to spectrally
modulate ∼

√
2 times faster than predicted by 3D cylin-

drical theory (and ∼
√

2 times slower than 1D theory).
The suppression of spectral modulation by wake

phase-front curvature caused by the plasma chan-
nel, as described in the paper, also changes depend-
ing on the dimensionality. This is again primarily
caused by the difference between 〈HG0|δn(x, ξ)|HG0〉
and 〈LG00|δn(r, ξ)|LG00〉, resulting in the suppression
towards the pulse tail being more pronounced in the 3D
cylindrical case. There is also a smaller effect due to
differences in the wake structure itself between 2D and
3D.

SPECTRAL PHASE FOR PULSE TRAIN
FORMATION

As derived previously in 1D by Jakobsson et al [2],
to first order the spectral modulation takes the form of
a set of sidebands of angular frequencies ωm = ωL +
mωp0, where m = ±1,±2,±3, . . . is the sideband order.
These sidebands will each have a relative spectral phase
ψm = −|m|π/2. With a more detailed analysis, which
can be derived from Eq. (SM–26) assuming a narrow
bandwidth τ−1drive � ωp0 and that light only remains in
the fundamental channel mode, the full relative spectral
phase of the modulated drive pulse before compression
into a pulse train can be approximately described by the
following nearest integer staircase function

ψ(ω) = −
∣∣∣∣nint

(
ω − ωL
ωp0

)∣∣∣∣
π

2
. (SM–11)
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To form a pulse train, we wish to remove this spectral
phase from the pulse. However, it is not practical to re-
move a spectral phase of this form with a dispersive optic.
Instead, we can take advantage of the narrow bandwidth
of each of the sidebands to approximately remove this
spectral phase by applying a continuous dispersion func-
tion of the form

ψopt(ω) = +

∣∣∣∣
ω − ωL
ωp0

∣∣∣∣
π

2
. (SM–12)

This form of ψopt(ω) was used in the main paper to eval-
uate the pulse trains that can be formed from the spec-
trally modulated drive pulses.

NON-PARAXIAL DESCRIPTION OF SEEDED
SPECTRAL MODULATION IN PLASMA

CHANNELS

Unlike the paraxial equation, this description will in-
clude group velocity dispersion as well as asymmetries
between the dynamics of the generated Stokes and anti-
Stokes sidebands in the plasma modulator. We will start
by following the procedure outlined by [1] for deriving the
non-paraxial description of pulses in fully ionized plasma,
but here we will include contributions from a parabolic
plasma channel and a seed wake. We begin with the full
3D wave equation for a laser pulse propagating in a fully
ionized plasma

(
∆− 1

c2
∂2

∂t2
− k2p

)
a = 0 (SM–13)

where a = eA/mec is the normalized vector potential
and we have neglected higher order plasma source terms
from having a finite electrostatic potential [3]. We now
switch to new coordinates ξ = z − ct, η = (z + ct)/2,
which yields

(
2
∂2

∂ξ∂η
+ ∆⊥ − k2p

)
a = 0 . (SM–14)

We seek envelope solutions in the form a =
[a exp(ikLξ) + c.c.] êL/2 where kL is a constant. This
yields the envelope PDE
[
2

(
ikL +

∂

∂ξ

)
∂

∂η
+ ∆⊥ − k2p

]
a(r, ξ, η) = 0 . (SM–15)

We then take the Fourier transform in the variable ξ and
apply the convolution theorem

[
2i (kL + k)

∂

∂η
+ ∆⊥

]
ak =

(
k2p
)
k
∗ ak ,

ak(r, k, η) =
1√
2π

∫ ∞

−∞
dξe−ikξa(r, ξ, η) ,

(f ∗ g)(k) :=
1√
2π

∫ ∞

−∞
f(k′)g(k − k′)dk′ (SM–16)

where we have included a 1/
√

2π normalization in the
definition of the convolution for notational convenience.
Ignoring relativistic effects, we can split k2p(r, ξ, η) into
contributions from a pre-formed axisymmetric plasma
channel n0(r) and a plasma wake δn(r, ξ, η)

[
i(1 + k/kL)

1

kL

∂

∂η
+

1

2k2L
∆⊥ −

2

k2Lw
2
0

n0(r)

∆n

]
ak =

2

k2Lw
2
0

(
δn(r, ξ, η)

∆n

)

k

∗ ak (SM–17)

where ∆n ≡ (πrew
2
0)−1 is the channel depth parameter.

Ignoring the wake for now, a matched parabolic channel
n0(r) = n00 + ∆n(r/w0)2 can guide any linear combina-
tion of Laguerre-Gaussian modes of the form

apmk (r, θ, k, η) = αpmk (k) exp[−ik̃pmk (k)η]LGpm(r, θ) ,

k̃pmk (k) =
2

kLw2
0

2p+ |m|+ 1 + n00/∆n

1 + k/kL
,

LGpm(r, θ) =
√

p!

(p+ |m|)!

(√
2 r

w0

)|m|
exp

(
− r

2

w2
0

+ imθ

)
L|m|p

(
2r2

w2
0

)
.

(SM–18)

Assuming that k/kL � 1 remains valid for the majority
of the pulse ak, (i.e. for pulse durations that are not
too short relative to the laser cycle period), we can also
write the Laguerre-Gaussian mode solutions in real space
to first order in the form

apm(r, θ, ξ, η) = αpm(ξ) ∗
(

exp[−ik̃pmk (k)η]
)
ξ

LGpm(r, θ)

≈ αpm(ξ + k̃pm0 η/kL) exp(−ik̃pm0 η)LGpm(r, θ) ,

k̃pm0 /kL =
ω2
p0

2k2Lc
2

+ (2p+ |m|+ 1)
2

k2Lw
2
0

(SM–19)

where αpm(ξ) is the inverse Fourier transform of αpmk (k).
This describes the first order group velocity dispersion
and wavenumbers of Laguerre-Gaussian modes due to
the on-axis plasma density and finite spot size effects.
We can see that for a pulse primarily in the fundamen-
tal mode, after every spot size oscillation the first ra-
dial mode will fall behind the fundamental mode by a
laser wavelength (and similarly for centroid oscillations).
Hence we eventually need to take this group velocity dis-
persion into account if the pulse propagates over many
spot size oscillations in a long plasma channel.

If we can treat the wake contribution as a small pertur-
bation to the matched parabolic plasma channel, we can
use time-dependent perturbation theory to calculate the
transitions between the channel modes with the following
expression



4

i(1 + k/kL)
∂αpmk (k, η)

∂η
exp(−ik̃pmk η) = kc

∑

p′m′

〈
LGpm

∣∣∣
(
δn(r, ξ, η)

∆n

)

k

∗
(
αp

′m′

k (k, η) exp(−ik̃p
′m′

k η)
) ∣∣∣LGp′m′

〉

(SM–20)

where kc = kw/2 = 2/kLw
2
0 are the centroid and spot

size oscillation wavenumbers respectively.
Assume that the short seed pulse has the same wave-

length as the drive pulse, has many laser cycles in its
duration, is in the fundamental mode and does not ap-
preciably deplete. The seed pulse will then have a group
velocity of

vg,s/c = 1− k̃000 /kL = 1− ω2
p0

2k2Lc
2
− 2

k2Lw
2
0

. (SM–21)

Note that the group velocity is slowed by both plasma
and finite spot size effects. This means that in general
the seed wake will be in the form

δn(r, ξ, η) = δn(r, ξ + k̃000 η/kL) . (SM–22)

We now choose to work in the shallow channel limit
∆n � n00 to ignore the non-separable transverse wake
structure introduced by the channel [4]. Note that using
a square-like channel would achieve a similar effect, but
would have Bessel modes rather than Laguerre-Gaussian
modes. The wake excited by the seed pulse considering
both plasma and finite spot size effects on its group ve-
locity in this limit takes the form

δn(r, ξ, η) = δnsLG2
00(r) cos

[
kp0

(
ξ + k̃000 η/kL

)]
.

(SM–23)

Substituting this seed wake into Eq. (SM–20) yields the
non-paraxial plasma modulator equation

i
1 + k/kL

kL

∂αpmk
∂η

=
1

4

ω2
p0

k2Lc
2

δns
n00

∑

p′m′

αp
′m′

k±kp0 exp
[
−i
(
k̃p

′m′

k±kp0 − k̃
pm
k ± (kp0/kL)k̃000

)
η
]
〈LGpm|LG2

00|LGp′m′〉 (SM–24)

where we can now clearly see that the seed wake modulating a pulse with an initially short bandwidth will generate
Stokes and anti-Stokes sidebands in k-space separated by integer multiples of kp0. Assuming that k, kp0 � kL, the
wavenumber shifts approximate to

(
k̃p

′m′

k±kp0 − k̃
pm
k ± (kp0/kL)k̃000

)
/kc ≈ [2(p′ − p) + (|m′| − |m|)] (1− k/kL)∓ (2p′ + |m′|) (kp0/kL) . (SM–25)

Using this expression and assuming that most of the light remains in the fundamental mode and that no azimuthal
modes are present, we can approximate the plasma modulator equation as a two-level system of the fundamental and
first radial modes

i
1 + k/kL

kL

∂α00
k

∂η
=

1

8

ω2
p0

k2Lc
2

δns
n00

(
α00
k±kp0 + 1

2α
10
k±kp0 exp [−ikw (1− k/kL ∓ kp0/kL) η]

)
,

i
1 + k/kL

kL

∂α10
k

∂η
=

1

8

ω2
p0

k2Lc
2

δns
n00

(
1
2α

00
k±kp0 exp [ikw(1− k/kL)η] + 1

2α
10
k±kp0 exp [±ikw (kp0/kL) η]

)
(SM–26)

which to zeroth order in k/kL and kp0/kL gives the same
result given by the paraxial equation used in the paper
(apart from the slightly different propagation variable η).
However, to first order we see symmetry-breaking be-
tween the Stokes and anti-Stokes sidebands which was
not captured by the paraxial equation. We see here that
the Stokes sidebands are generated faster by the seed
wake and also undergo faster spot size oscillations and

transverse mode transitions than the anti-Stokes. This
asymmetry in the dynamics between the Stokes and anti-
Stokes sidebands is necessary to explain the transverse
separation of Stokes and anti-Stokes light observed in
PIC simulations in the regime where the self-wake of the
modulating drive pulse is no longer negligible.
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PARTICLE-IN-CELL SIMULATIONS

Two-dimensional simulations were performed with the
PIC code WarpX (version 22.07) [5]. Results from eight
simulations are included in the paper with laser-plasma
parameters and respective figures outlined in Table I. All
of these eight simulations were performed at an on-axis
density of n00 = 2.5× 1017 cm−3 in a modulator of length
Lmod = 110 mm with seed and drive pulses with the same
wavelength λL = 1030 nm and spot size w0 = 30 or 50
µm. The seed and drive pulses were polarized out of
and in the plane of simulation respectively. All simula-
tions had a longitudinal resolution of ∆z = λL/50 and
transverse resolution of ∆x = λL/2.5 using a second or-
der Yee field solver and perfectly matched layer (PML)
transverse boundary conditions. The transverse window
size for all simulations was at least 2.67w0 away from
the axis. The “square” and “parabolic” plasma channels

were parameterized in the following form

nsquare0 (r)− n00
∆n

=





(r/w0)10 0 ≤ r < 1.2w0

1.210 1.2w0 ≤ r < 1.2w0 + d

1.210
(
1− r−1.2w0−d

d

)
1.2w0 + d ≤ r < 1.2w0 + 2d

0 r ≥ 1.2w0 + 2d

nparabolic0 (r)− n00
∆n

=





(r/w0)2 0 ≤ r < 2w0

4 2w0 ≤ r < 2w0 + d

4
(
1− r−2w0−d

d

)
2w0 + d ≤ r < 2w0 + 2d

0 r ≥ 2w0 + 2d

(SM–27)

where d = 10 µm. Note that all simulations were initial-
ized with a laser pulse with a gaussian transverse profile
of spot size w0, which differs slightly from the fundamen-
tal guiding mode of the square channel.

PIC Simulation Parameters
Simulation Figures w0 (µm) Wseed (mJ) Wdrive (J) τseed (fs) τdrive (ps) Channel
(i) 2, 3 30 50 0.6 40 1.0 parabolic
(ii) 3, 4a 30 50 0.6 40 1.0 square
(iii) 3 50 139 1.67 40 1.0 parabolic
(iv) 4b, 5b 30 50 1.2 40 1.0 square
(v) 4c 30 50 2.4 40 4.0 square
(vi) 5a 30 50 1.2 40 0.25 square
(vii) 5c 30 50 1.2 40 2.0 square
(viii) 5d 30 50 1.2 40 4.0 square

TABLE I
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