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Abstract. We establish the stability of the class of manifol dswith positive p-curvature under surgeries
in codimension > p + 3. Asaconsequence of thisresult, we first obtain the classification of compact
2-connected manifolds of dimension > 7 with positive Einstein tensor; and secondly the existence
of metrics with positive Einstein tensor on any compact, smply connected, non-spin manifold of
dimension > 7 whose second homotopy group isisomorphic to Z».

Key words: curvature, Einstein tensor, surgery

1991 M athematics Subject Classification: 53B, 53C

1. Introduction and Statement of Results

The principal ingredient in the proof of the well known classification of compact
simply connected manifolds of positive scalar curvature (due to Gromov and L aw-
son [3] and completed later by Stolz [13] is the following surgery theorem due to
Gromov and Lawson [3] and Schoen and Yau [12]:

If a manifold M is obtained from a manifold NV by surgery in codimension > 3,
and N admits a metric of positive scalar curvature, then so does M.

This theorem implies that if M and N are compact, simply connected non-spin
manifoldsof dimension > 5, which represent the same classin the oriented bordism
ring, and N admits a metric of positive scalar curvature, then so does M .

Gromov and Lawson showed that a collection of oriented manifolds known to
generate the oriented bordism rings admits metrics of positive scalar curvature and
thus proved the following result:

Every compact simply connected n-manifold, n > 5, which is non-spin, carriesa
metric of positive scalar curvature.
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On the other hand, in the case of spin manifolds, Stolz [13] proved the following
result:

Let M be a simply connected, closed, spin manifold of dimensionn > 5. Then M
carriesa metric with positive scalar curvatureif and only if (M) = 0,

where a(M) isthe K O-characteristic number, see [5, 13].

In this paper, wefirst prove the following generalization of the previous surgery
theorem in the case of p-curvature, which isageneralization of the scalar curvature
proposed by Gromov (see next section):

MAIN THEOREM. If a manifold M is obtained froma manifold N by surgeryin
codimension > p + 3, and N admits a metric of positive p-curvature, then so does
M.

In particular, if X isa compact manifold which carries a Riemannian metric
of positive Einstein tensor, then any manifold which can be obtained from X by
surgeriesin codimension > 4 also carries a metric with positive Einstein tensor.

Using the same source of ideas, we are able to prove the following interesting
consequences of the main theorem:

THEOREM I. A compact 2-connected manifold of dimension > 7 admits a Rie-
mannian metric with positive Einstein tensor if and only if (M) = 0.

In particular, any compact 2-connected manifold of dimension 7 admitsa metric
with positive Einstein tensor.

THEOREM II. Any compact non-spin simply connected manifold V' of dimension
> 7, suchthat m, (V') = Z, admitsa Riemannian metric of positive Einstein tensor.

It is still an open question to find the classification of simply connected mani-
folds with positive Einstein tensor. This will be possible if one is able to prove
a generalization of the Lichnerowicz vanishing theorem to the case of Einstein
tensor.

The following generalization seems plausible:

Any compact spin® manifold with positive Einstein tensor does not admit any com-
plex harmonic spinor.

One can provethat thisistrue for Kahlerian manifolds of dimension 4 with canon-
ical spin® structures, see[5, 8].
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2. Thep-Curvature of a Riemannian Manifold

The p-curvatureis an extension of the scalar curvature proposed by Gromov. Since
it is not well known, we will explain its geometric meaning and its relation with
well known curvaturesin the following section.

2.1. DEFINITION

The p-curvature of an n-dimensional Riemannian manifold (M, g), denoted by
sp, 0 < p < n — 2, isafunction defined on the p-Grassmannian bundle of M as
follows:

Let P be ap-planein the tangent space T,, M of M at m; s,(P) isthe average
of the sectional curvature of (M, g) at m in the direction of P that is:

n

SP(P): Z Km(ejvek)a

Jk=p+1

where (e,41, . - -, e,) isan orthonormal basis of P (the orthogonal subspace to
PinT,, M) and K,, isthe sectional curvature of (M, g).

Inother words, s, (P) isthescalar curvature at m of the Riemannian submanifold
exp,,(V), where V is aneighborhood of 0in P+ C T;, M.

For p = 0 (respectively p = n — 2) it isthe scalar curvature of (M, g) (respec-
tively the sectional curvature). Furthermore, for p = 1, we have:

s1((es)) = scal — 2Ric(e;) = 2 (? - Ric(ei)) ,

where scal (respectively Ric) isthe scalar curvature (respectively the Ricci curva-
ture) of (M, g) and e; denoteaunit vector. Then one can consider the 1-curvature (up
to afactor 2) asthe quadratic form associated to the Einstein Tensor (scal /2)g—Ric.

However, for p = n — 4, the (n — 4)-curvature coincides with the isotropic
curvatureintroduced by Micallef and Moore [9] modul o the Weil-curvature, in fact
one can prove without difficulties that in the case of conformally flat manifolds
(i.e. the Weil curvatureis zero), the isotropic curvature is exactly (1/6)s,, 4.

EXAMPLES. If (M, g) isaRiemannian manifold with constant sectional curvature,
then s,, is constant for all p, and equal to:

sp=(n—p)(n—p-—1)k.
2.1f (M, g) isEinstein with constant r, then the 1-curvatureis also constant and
equal to:
s1=(n—2)r.

Remark. Note that the conversein these two examplesis also true, that is, if the
1-curvature is constant, then so isthe Ricci curvature, and if there exists p; p > 2,
such that s, is constant, then so is the sectional curvature.
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2.2. GEOMETRIC INTERPRETATION OF THE p-CURVATURE

The following proposition gives a geometric meaning to the p-curvature:

PROPOSITION. Let P beap-planein T,, M, then

5p(P) = lim 2~ 7) (1 vol(S" P 7(r)) )

0 ~ vol (Sm=P=1(r))

where vol (S"~P~1(r)) (respectively vol.(S"~P~(r)) is the volume of the sphere
Sn=P=Y(r) = {exp,,(z)/z € P, ||z|| = r} (respectively the Euclidean sphere
with ray r).

Proof. Thisfollows immediately from the fact that the p-curvature is the scalar
curvature of the Riemannian submanifold exp,,, (V') of (M, g). Then it suffices to
apply the well known result concerning the determination of the scalar curvature
by the volume of small spheres. O

Asimmediate corollaries of thisfact, we first obtain the following geometric char-
acterization of Einstein manifolds by the volume of small spheres:

COROLLARY 1. A Riemannian manifold (M, g) of even dimension 2p isEinstein
if and only if for every tangent p-plane P to M we have

vol (57 4(r)) = vol ($77(r)) + o(r”*),

where SP~1(r) (respectively S’fl(r)) isthe sphereof ray » and of dimensionp — 1
in P (respectively, in P1).

Proof. First, one can easily prove that (M, g) is Einstein if and only if for all
tangent p-planes P we have s, (P) = s,(P1), and then the result follows immedi-
ately from the previous proposition. O

COROLLARY 2. The p-curvature of an n-dimensional Riemannian manifold
(M, g) is positive (respectively negative) if and only if

Vol (S P=1(r)) < vol (S P~1(r)) (respectively > vol,(S™ 7 1(r)))

for all small spheresof dimensionn — p — 1, asin the proposition.

2.3. REMARKSON THE POSITIVITY OF THE p-CURVATURE

1. The p-curvature appears as the trace of the (p + 1)-curvature, in fact one can
easily provethat if (e,1,. .. ,e,) isany orthonormal basisof P+, then

n

Y. spral(Prex)) = (n—p = 2)s,(P).

k=p+1
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It follows that the positivity of the (p + 1)-curvature implies the positivity of the
p-curvature. In particular, it implies the positivity of the scalar curvature for all
0<p<n-—-2

2. The Riemannian product of any Riemannian manifold with a small round
sphere of dimension p + 2 has positive p-curvature.

3. Let ()\;), i =1,...,n, denote the eigenvalues of the Ricci form at a point
m € M, andlet \; denote amaximal one. Then the positivity of the 1-curvature at
m is equivalent to the following pinching condition

A<D A
i#]
In particular, a Kahlerian manifold with positive Ricci curvature has positive 1-
curvature. Furthermore, the converseistruein dimension 4. In fact, for aKahlerian
manifold each eigenvalue of the Ricci form has multiplicity at least 2.
4. In [6] we proved the following result:

Let (M, g) be a compact conformally flat n-manifold with positive p-curvature,
then H™(M,R) = Ofor (n — p)/2<m < (n+p)/2.

Since in the case of conformally flat manifolds the isotropic curvature coincides
with the (n — 4)-curvature (up to a constant 6), then the following result is an
immediate consequence of the previous one:

Let (M, g) be a compact conformally flat n-manifold with positive isotropic cur-
vature, then H™(M,R) =0for2<m <n — 2.

Thisresult wasfirst proved by Nayatani [11].

3. Proof of the Main Theorem

We proceed as in Gromov and Lawson’s proof for the scalar curvature [3]. Let
(X, g) be acompact n-dimensional Riemannian manifold of positive p-curvature,
and let S™ C X be an embedded sphere of codimension ¢ with trivial normal
bundle N = 8™ x RY. There exists g > 0 such that the exponential map

exp:S™ x Dirg) CN — X

is an embedding, wherefor any = € S™, z x D?(rg) isthe closed Euclidean ball
inR? = z x RY. Then let exp* g be the pull back to S™ x D(rg) of the metric g
on X viathe exponential map.

Let gV denote the natural metric on the normal bundle N = S™ x RY defined
using the normal connection. We also denoteby ¢V itsrestriction to the sub-bundles
S™ x DI(r) and 9(S™ x DI(r)) = S™ x S (r).
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LEMMA 3.1. Let g., ¢ < 7o, denote the induced metric on ™ x S7-1(¢) C
(S™ x D4(rp), exp* g). Then near ¢ = 0, g. is close to the natural metric gV on
S™ x 8971(¢) in the C? topology. Furthermore, the second fundamental form of
the hypersurface (S™ x S971(g), g.) in (S™ x D(rq), exp* g) hasthe following
form with respect to the decomposition into horizontal and vertical distributions
for the natural Riemannian submersion (S™ x S771(¢),¢V) — §™:

0 0
(o —%+0(s)>'

Proof. Notefirst that the two metrics g. and g¥ on S™ x S%~1(¢) differ only by
their restrictionsto S9~1(¢) [4], but theinduced metric (S7~1(¢), exp* g) converges
C? to the standard metric when e convergesto 0[3], which provesthefirst statement
of the lemma.

To prove the second one, let usfirst recall an elementary fact on the covariant
derivative

Dyy =3 (S xi % L s yixins | 2
7=1 \i=1 i,k=1
where
X:Z:Xii and Y:EYﬂ'i.
8xz~ 8£E]'

Hence the second fundamental form of S™ x S971(e) C (S™ x DY(ro)) for
the metric exp* g decomposes into two parts. The first part is exactly the second
fundamental form of S™ x S971(e) C (S™ x D4(ro)) for the natural metric ¢V,
that is

0 0
I
£

AndsincetheT'}; arethederivativesof themetric, it follows from thefirst statement
of the lemma, that the second part is

0 O
0 Of(e)
which completes the proof the lemma. O
Wenow defineahypersurface M in the Riemannian product (S™ x D%(rg), exp* g)
xR by therelation
M = {((z,v),t) € (§™ x D%(ro)) x R/(||v], ) € 7},
where y isacurvein the (r, t)-plane as pictured below:
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> t

The important points about -y is that it is tangent to the r-axisat ¢ = 0 and is
constant for t = £ > 0. Thus the induced metric on M extends the metric exp* g
on S™ x DY(rp) near its boundary and finishes with the product metric

O(S™ x DY(e),exp* g) x R = (S x 597 (e), exp* g) x R,

It follows from Lemma 3.1 that for large time (say for ¢ > t1), one can deform,
through metrics with positive p-curvature, the metric on the tubular piece to the
product of the natural metric gV on S™ x S9~1(¢) and R. This metric has positive
p-curvaturesinceq — 1 > p + 2 (see Lemma 3.2 below). For ¢ < ¢4 the metric on
M remains unchanged.

As in [3] we can homotope, using only Riemannian submersions, the metric
gV x R on the tubular piece for large ¢ (say t > t, > 1) to the standard product
metric on S™(1) x S71(e) x R through metrics with positive p-curvature for ¢
small enough. In fact, each metric is the one of atotal space of a Riemannian sub-
mersion having the standard sphere S7~1(¢) asfiber. Then it follows by Lemma3.2
below that they have positive p-curvature when ¢ is small enough.

LEMMA 32. Let 7 : (M,g9) — (B,§) be a Riemannian submersion, and let
g+ be the canonical variation of the metric g, i.e., the metric on M obtained by
multiplying the metric ¢ by ¢? in the vertical directions, see[1, p. 252] and [7].
Then:

(2) If the fibers (endowed with the induced metric) of = have positive sectional
curvatureand dimension > p + 2, thenfor all m € M thereexiststg > 0such
that for all 0 < ¢ < g, the metric g; has positive p-curvature on m.

(2) We have the same conclusion if the fibers have positive p-curvature and codi-
mension 1.

Proof. The proof of thislemmaisadirect but long calculation using the O’ Neill
formulas for the curvature. For a detailed proof, see[7].

The idea of the proof is that when ¢ is small, the sectional curvatures in the
vertical directions tend to high values and dominate the sectional curvaturesin all
other directions. Thenif p + 2 islessthan the dimension of the fibers, one can find,
in the orthogonal subspace of every p-plane, at least one 2-plane which projects
into a 2-plane in the vertical direction. The curvature in this direction will domi-
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nate the negative curvature of all other directions in the subspace orthogonal to the
p-plane. O

It remains for us to choose the curve «y such that the metric induced on M from
the product metric exp* g x R has positive p-curvature for all pointsm € M with
t < t1. Let usfirst calculate the p-curvature of M.

For every m € M, we have the following orthogonal decomposition of 7, M

ToM=R-7®H®T,5 (r),

where 7 is the unit tangent vector to the curve -y in the (r, ¢)-plane and the second
and third part are, respectively, the horizontal and vertical part for the natural
Riemannian submersion (S™ x S971(r),¢V) — SP. One can immediately prove
from Lemma 3.1 that the second fundamental form of the hypersurface M is of the
following form with respect to the previous orthogonal decomposition of T;,, M

O (—ITCHO(T)) sing

0

where £ denotes the curvature of the curve «y in the (r, ¢t)-plane and 6 denotes the
angle between the normal to M and the ¢-axis.

Now, let P+ denote the orthogonal to ap-planein T;,, M, dim P+ = n — p, and
let

V =Pt n(H e T, r)).
Notethat dimV > n — p — 1. The subspace V' itself decomposesinto
V=VnH)eW,

where I isthe orthogonal to V N # in P,
Then we have the following orthogonal decomposition of P,

PL=R-za(VNH)OW,

where R - z denotes the orthogonal subspaceto V in P (the vector z, if it is not
Zero, isaunit vector).

Since W anditsorthogonal projection onto 7;,,59~(r) havethesamedimension
by construction, onecan find an orthonormal basiswsy, . . . wy11 of W (k = dim W)
suchthat itsorthogonal projection onto 7;,59~(r) isformed by orthogonal vectors.
In fact, it sufficesto diagonalize simultaneously two inner productson 77, S9~(r).
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Set w; = a;x; + biy; wherefor al i« = 2,...,k+ 1, a; # 0and z; are
orthonormal vectorsin T;,,S?~(r). Then (y;) are orthonormal vectorsin H, but b;
can beO.

Finaly, let yx. 2, ..., y;+1 beanorthonormal basisof VNH (I = dimV’). Thus
(z; (wi)i=2.... k+1; (Yi)i=k+2,...1+1) iS an orthonormal basis of P+ and it follows
that

k+1 +1 k+1
ZKwaz—i—ZK xyz—i—ZK (w;, wy)
i=k+2 1,j=2
k+1j=l+1 +1
+>30 ) EMwiy)+ > KMy y))-
i=2 j=k+2 i,j=k+2

Set z = a1 + b1 + cy1, where z1 (respectively y1) is aunit vector in T;,, S~ (r)
(respectively in H).

Now by adirect computation using the Gauss equation and the previous calcu-
|ation for the second fundamental form of M, we obtain that

. m 1 .
KM(z,w;) = (1—a?sin?@) K" *P" (z, w;) 4 a2b? <—2 + O(l)) sin?@
r

+ a%a? <—% + O(r)) ksing.
KM(z,y) = (L—a?sin®0) K" (2, y3),
KM (w;,w;) = K" (wy, wy) + a,fajz- (T_lz + O(l)> sin?,
KM(wi,y;) = K5 P (wy, yy),

EM(yiy) = K5 (yi,y5),
where
acosf(0/0r) + bx1 + cyr
(1 - a?sin?9)1/2
We have indexed by M (respectively S™ x DY) the sectional curvature of M
(respectively S™ x D4Y). Hence the p-curvature of M is

SY(P) = s5"*P"(P)+ O(1)sin*0

xTr =

k+1 k+1
Za2b2+2a ( +0(1 ))sin29
i,j=2

k+1
a? (ZX; a%) <—% + O(’/’)) ksing,
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where P is the p-plane tangent to S x D? generated by (z, (w;), (y)), that is,
the orthogonal projection of P onto the tangent to S™ x D9,
Sincedm(V NH) <dim# =n — g we have

k=dimW =dimV —dm(VNH) >q—p— 1
Recall that for al i, a; # 0. Let a3 = min(a?) fori = 2,...,k + 1; hence

sy (P) > 55" *P"(P) + O(1) sin? 0

+afla—p-Dla—p-2) (5 +0() 5o

1 a? (lilaf) (—% + O(r)) ksing.
=2

Sinceq — p — 2 > 0, one can use exactly the same procedure of bending the curve
v asin[3] to find a curve such that £ < A/rq, for some constant A, and then the
p-curvature of M is positive.

This completes the proof of the main theorem. O

4. Proof of Theorem |

The proof uses the following lemmas:

LEMMA 4.1. Let (W, V, V') be an n-dimensional simply connected bordism, and
let p beaninteger,p <n — 4.

If YA < pwehave H, (W, V) = 0, then V can be obtained from V"' by surgeries
in codimension > p + 1.

Proof. Asaconsegquenceof thework of Smale[10], thereexistsaMorsefunction
f:W —[0,1] suchthat V = f~1{0} and V' = f~1{1}, with no critical points
of index < n — p — 1, see[14] for adetailed proof of thisfact.

Thus by Morse theory (see, for example, [2, p. 198]), the manifold V' can be
obtained from V' by surgeriesin codimension > p + 1. O

LEMMA 4.2. Every compact 2-connected manifold of dimension > 7, spin-
cobordant to a manifold with positive 1-curvature, admits a metric of positive
1-curvature.

Proof. Let V' be acompact n-manifold spin-cobordant to an n-manifold V" with
positive 1-curvature.

By asurgery in codimensionn — 1, we may assumethat V' is simply connected
(see the main theorem).

Let W be a spin manifold such that OW = V' — V’. One can kill 71(W') by
surgeries.

As a consequence of Whitney’s theorem, the homotopy groups (W) and
m3(W) are generated by embedded spheres, since dimW > 8. However, W is
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spin, thus every embedded 2-sphere has trivial normal bundles [8], and so we can
eliminate (W) by surgeries.

Furthermore, since every vector bundle over S° istrivial and dimW > 8, we
can eliminate 3(W') by surgeries. Hence one can assume that

m1(W) = mp(W) = m3(W) = 0.

1 < 3,and since V is 2-

Then by Hurewicz's theorem we have H;(W) 2
Then using the long exact

connected we aso have that H;(V) = 0, Vi <
sequence we obtain that

0,
2.

Hy(W,V) = Ha(W, V) = H3(W, V) = 0.

The lemmafollows immediately from Lemma 4.1 and the main theorem. O

Now, let M be a2-connected manifold of dimension > 7 (consequently it isaspin
manifold) such that a(M) = 0, then by Stolz'stheorem, stated in the introduction,
it admits a metric with positive scalar curvature. Due to another theorem of Stolz
(Theorem B in [13]), the manifold M is then spin-cobordant to the total space N
of afiber bundle with fiber HP? and structural group P.Sp(3). But the total space
N admits a metric with s; > 0 (see Lemma 3.2). It follows from Lemma 4.2 that
M also admits ametric with s; > 0.

Conversely, if M iswith s; > 0 then it is with positive scalar curvature and
hence a(M) = 0O, which proves Theorem |. O

5. Proof of Theorem |1

Let us start with the proof of the following lemma:

LEMMA 5.1. Let V' be a non-spin simply connected manifold of dimension > 7,
such that mo(V') =2 Z5.

If V is oriented-cobordant to a manifold with s; > 0, then it admits a metric
with s; > 0.

Proof. Let W be an orientable manifold such that OW = V — V', where V'
is a manifold with s; > 0. As in the proof of Theorem I, we can assume that
m1(V') = 0 and eliminate 71 (W) and w3(W') by surgeries.

Recall that we have the following commutative diagram
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we (V)
HQ(V) gﬂQ(V) Zs

Hy(W) = ma(W)
where w» (V') (respectively w»(W)) is the second Stiefel-Whitney class of V'
(respectively W) seen as an homomorphism on the homol ogy.

On the one hand, since V' is non-spin, w» (V') is surjective, then so is wo (W),
but the kernel of w, (W) is generated by embedded 2-sphere with trivial normal
bundle [8], thus we can kill it. Hence wo (W) will be an isomorphism.

On the other hand, since m2(V') = Z3, the homomorphism w» (V') is also an
isomorphism. It follows then that i, : Ho(V') — H2(W') isan isomorphism.

Furthermore, since m1 (W) = n3(W') = 0, the Hurewicz theorem implies that
H3(W)=0.

Consequently, the long exact sequence implies that H(W,V) = 0, YA < 3.
The lemmathen follows immediately from Lemma 4.1 and the main theorem. O

Now to prove Theorem 1, it sufficesby Lemmab.1 to note that the set of generators
for QZ°, given in [3], each of which carries a metric of positive 1-curvature. One
can do this easily using Lemma 3.2. O
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Appendix

One can easily adapt the proof of the main theorem to prove similar surgery results
for other curvature functions which are defined on p-planes.

In this Appendix, we state without proof other results for two natural curvature
functions:

1 Letry, 1 <p <n—1, bethefunction defined on the p-Grassmannian bundle
of a Riemannian manifold (M, g) of dimension n by

TP(P): Z K(eiafj)a

i€l jed
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where (e;);cr (respectively (f;);je.r) isany orthonormal basis of P (respectively of
P1), and K isthe sectional curvature of (M, g).

For p = litisthe Ricci curvature. It isrelated to the p-curvature of (M, g) by
the following formula

rp(P) = so — sp(P) — Snfp(PJ_)-
In the ssmemanner asin the proof of the main theorem one can provethefollowing

PROPOSITION. Let p beaninteger suchthat2 < p < n—2.lIfann-manifold M is
obtained froman n-manifold N by surgeryin codimension> max{p+2, n—p-+1},
and N admits a metric with r,, positive, then so does M.

2. Let k, bethe following function

kp: GPM — R,

ky(P) = Y. Ricer),

el

where (e;);cr isan orthonormal basisof P and RicistheRicci curvature. Forp = 1
(respectively p = n) it is the Ricci curvature (respectively the scalar curvature).
Similarly, we can prove the following

PROPOSITION. Let p be an integer such that 2 < p < n. If an n-manifold M
is obtained from an n-manifold N by surgery in codimension > minjn — p + 3,
max{p + 2,n — p + 1}], and N admits a metric with k,, positive, then so does M.

As aconseguence, one can prove the following results (see the proof of Theorems
land 1)

PROPOSITION. Let M be a compact 2-connected manifold of dimension > 7,
then the following conditions are equivalent

1. M admits a Riemannian metric with positive scalar curvature.

2. M admits a Riemannian metric with positive 1-curvature.

3. M admits a Riemannian metric with k,,_1 positive.

PROPOSITION. Any compact non-spin simply connected manifold V' of dimension
> 7, such that mo(V') = Z, admits a Riemannian metric with &,,_1 positive.
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