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STABILITY OF THE PERIODIC SOLUTIONS TO FULLY
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Abstract. We study the stability properties of the periodic solutions to a class of non-
linear abstract parabolic equations:

u'(t) = J(t u(t))

where f: R x D — X is either periodic with respect to time or independent of time and D
and X are Banach spaces with D — X. We give applications to fully non linear parabolic
p.d.e. and systems.

0. Introduction In this paper we give stability and instability results for the periodic
solutions to a class of nonlinear equations in general Banach space X :

u'(t) = f(t,u(t)), teR (0.1)

Here f : Rx D — X, (t,z) — f(t,z), is a regular function, and D is a continuously
embedded (not necessarily dense) subspace of X. We assume a parabolicity condition: for
any t € R, z € D, the linear operator f;(t,z): D — X generates an analytic semigroup in
X, and the graph norm of f;(t, ) is equivalent to the D-norm. Equation (0.1) is an abstract
model for a large class of quasilinear and fully nonlinear parabolic p.d.e. (see §3).

The initial value problem for equation (0.1) has been studied in [DPG], [L5], [L3]. In
particular, in [L3] it is shown that for any ugp € D and ¢, € R such that the nec-
essary compatibility condition f(to,ug) € D holds, equation (0.1) has a local solution
u € C([to, to + 7[; D) N C*([to, to + 7[;, X) (with 7 = 7(to,uo) > 0) such that u(to) = uo.

The main results of this paper may be summarized as follows: assume that f is either
T-periodic with respect to time, or independent of time, and that (0.1) has a T-periodic
solution %, belonging to C*(R; D). Set A(t) = fz(¢t,u(t)), t € R. Then {A(t);t € R} is
a family of linear operators in L(D,X), each of them generates an analytic semigroup,
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and the function t — A(t) is a-Holder continuous and T-periodic; we denote by G(t, s) the
corresponding evolution operator (a construction of the evolution operator when the domain
of A(t) is not dense in X may be found in [AT2], [L1]). The spectra of the linear operators
V(t) = G({t+T,t), t € R, determine the stability properties of 7. If for each t the spectrum
o(V(t)) of V(t) is contained in a circle centered at 0 with radius p < 1 (this may happen in
the case that f is non autonomous), then % is exponentially asymptotically stable; if o(V (¢))
has some element with modulus greater than 1 and the rest of the spectrum is far from the
unit circle, then @ is unstable. In the autonomous case f = f(u), it can be shown, as
expected, that 1 is an eigenvalue of V' (¢) for every ¢, so that the previous arguments cannot
be used. We show that, if 1 is a simple eigenvalue and the rest of the spectrum of V (¢) lies
in a circle centered at 0 with radius p < 1, then @ is exponentially asymptotically orbitally
stable with asymptotic phase: this means that, denoting by I the orbit {u(¢);: ¢t € R}, there
is a neighborhood U of I" in D and there are w, M > 0 such that for any ug € U with
f(uo) € D, the solution u(-,ug) of w'(t) = f(u(t)), u(0) = ug, is defined for each t > 0,
and there is § = 6(ug) € [0, T[ such that ||u(t,ug) — u(t + 0)||p < Me~“*dist{ug,T'} (the
distance is in the D-norm). The corresponding instability result is the following: if o(V (t))
has some element with modulus greater than 1, and the rest of the spectrum (except the
point z = 1) is far from the unit circle, then % is orbitally unstable.

These results are quite similar to the well known ones about semilinear equations (see
[H]). Also the proofs follow the same ideas, but there are additional technical difficulties due
to the fully nonlinear character of equation (0.1). Let us consider, for instance, the proof
of the theorem about orbital stability, in the autonomous case. Let ug € D be close to
the orbit I', and such that f(up) € D. Since our equation is autonomous, we may assuine,
without loss of generality, that ug is close to @(0). Then, for any § € R, the difference
z(t) = u(t,up) — Ut + 9) satisfies

2'(t) = ['(@(t)2(t) + [f(@(t +0) + 2(t) — f(@(t +0)) - f'(@(t))=(t)]

. ) 02
= A(t)z(t) + g(t,2(¢),0), 0<t<r

o~

with 7 = 7(ug) > 0. To prove our theorem, it is sufficient to show that:

(i) if |0 is sufficiently small, then equation (0.2) has solutions defined in [0, o0[ and
decaying exponentially as t — +o0 in the D-norm;

(ii) if up is sufficiently close to @(0), then u(-,ug) — @(- + ) coincides with one of these
solutions in the interval [0, 7].

Concerning point (i), we try to solve (0.2) by the usual linearization procedure. We recall
that (under our assumptions on A(-)) if ¢ : [0, +oo[— X is any measurable and exponentially
decaying function, then all the exponentially decaying weak solutions of

V(t) = A@t)v(t) + o(t), t>0 (0.3)
are given by

v(t) = G(t0z1+/(‘tsP1 ds—/ G(t, s)Po(s)¢(s) ds,

t >0, J‘IEPI()
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where P;(s) (2 = 0,1) are the projections associated with the decomposition ({1}; o(V (s))\
{1}) of the spectrum of V (s). Therefore, we have to solve the equation

z(t) = G(t,0)z, —{—/O G(t,s)Pi(s)g(s, 2(s),0) ds
(0.5)

+00
- / G(t, 5)Po(s)g(s, 2(s).6) ds = (T 2)(1)

with z; and @ fixed. The first difficulty arises when we try to solve (0.5) by a fixed point
argument. Actually, since g(t, z, ) is defined for z € D (and not for z belonging to X, or to
some intermediate space between D and X), we must work in a space having the so called
maximal regularity property. If Y is a Banach space of functions defined in [0, +o00[ with
values in X, maximal regularity in ¥ means that, for any ¢ € Y, the solution v of equation
(0.3) with assigned initial value v(0) = z is such that both v" and A(-)v(:) belong to Y
(obviously, under the necessary compatibility conditions between = and ¢). In our case, Y
must be a space of functions decaying exponentially as ¢ — +o00, since we are concerned
with exponential stability of @. The maximal regularity property is not satisfied if we choose
Y = C,([0,+oof; X) = {w € C([0,400[; X); t — e“* w(t) is bounded in [0, +0o[}, for any
w > 0. It is satisfied if we choose

Y = Cg ([0, +o0f; X)

= {w : [0,400[— X: t — e  w(t) € C%([0,+00[; X)}, (0.6)

llwllca (0,400l x) = 1€ w(t)||ca (0,4 00[; X)

with w > 0 sufficiently small. In this case, the necessary compatibility condition between
z and ¢ is A(0)z + ¢(0) € D (0)(,00) (we recall that D 40 (v, 00) is a real interpolation
space between D and X). This condition is well understood for the linear equation (0.4).
It means simply that A(0)z; + P1(0)$(0) € D4()(e, 00), but it is almost impossible to
handle it in the nonlinear equation (0.5). Actually, to solve (0.5) by a fixed point theorem,
we should work in a subset U of functions z satisfying among others, also the nonlinear
condition

f(@(0) + 2(0)) € Da(oy(er, 0) (0.7)

and we shall show that, for any z € U, T z also (defined by (0.5)) belongs to U, and, in
particular, satisfies (0.7). Therefore, the choice Y = CZ ([0,+oo[; X) is not suited to our
purpose. The same difficulty arises also with the choice of any other space Y, such that
maximal regularity in Y requires compatibility conditions between z and ¢. This difficulty
is overcome by working in a space of functions which are not necessarily continuous up to
t = 0; i.e., working in the space Zg([O, +0o0[; X), defined by

2 (10, +00s X) = {w : [0, +o0[— X; wlo) € Z*((0, 1); X),
t — €' w(t)][1.000 € C¥([1, +00]; X)} (0.8)

wll za (0, +00f; x) = llwll zo(j0,1); x) + 1€ w(t)]| G ([1,400[; X)
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where, for g < t; we set

Z%([to, t1]; X) = {w € L®(to, t1,X) NC*([to + ¢, t1]; X) Ve €]0, t; — tol;

) (013) = 0 2P, Wl (e rorar x) <+ (09)
”w”ZO‘<[t0,t1];X) = ”w“OO + [w]Za([to,tl];X) *

Maximal regularity in Z2([0, +oof; X ) is proved (for each small w > 0) using previous
results ([L1], [L2]) about maximal regularity in Z* ([0, 1]; X) and in C*([to, +oo[; X).

Now the fixed point argument works, in spite of the somewhat complicated topology of
Z2([0, 400[; X). We are able to show that for any sufficiently small z; € DN P, (0)(z)
and ¢ € R, equation (0.5) has a unique solution 2z = z(-,7;,6) belonging to a ball in
z5 ( [0, +o0]; D). But our difficulties have not finished here. It remains to be shown that,
if uo is sufficiently close to @(0), then there are z; and 6 such that u(t,up) — u(t + ) =
z(t,x1,0) for 0 <t < 7, i.e., (by uniqueness) such that uy — u(8) = 2(0, z1, 6). To solve this
equation, we need sharp estimates about the Lipschitz dependence on (z1,8) of 2(0,z;,0) =
T — 0+°° G(0,8)Po(s)g(s, z(s), ) ds. These estimates are obtained using again the maximal
regularity property of Z2 ( [0, +oo[; X ), so that they require a lengthy calculation.

One may ask now if it is possible to find fully nonlinear abstract parabolic equations having
periodic solutions. The answer is yes. For instance, when f depends also on a real parameter
A, some of the classical bifurcation results about ordinary differential equations and systems
may be extended to our situation, both in the autonomous and in the nonautonomous
case. In particular, we consider the bifurcation of a branch of periodic solutions from a
stationary one, under nonresonance conditions in the nonautonomous case, and under Hopf
bifurcation assumptions in the autonomous case. Finally, we apply all the abstract results
to some parabolic fully nonlinear equations and systems.

1. Notations and preliminaries on linear equations Let X be a real or complex
Banach space with norm || - ||, and let ¢y < ¢{; € R, 0 < o < 1. We shall use the follow-
ing functional spaces whose definitions are well known: C*([to,¢1]; X), C**([to,t1]; X),
C(I; X), C'(I; X), where I is either [to,t1], or ]to, 1], [to, +00[, Jto, +00[, R. The space
Z*([to, t1]; X) has been defined in (0.9); we shall consider also its subspace

Za([to,tl];X) = {(bEC([to,td;X)ﬂCa([t()'*'C, tl]; X)VE 6]0, tl —-to[; ( )
1.1

EE.I(I)l" 60[¢]CQ ([to+€/2 ,to+e];X) = 0}

Finally, we shall use the spaces of exponentially decaying functions ij([O, +oo; X ) and
Z2([0, 4o00[; X) defined in the introduction, and the spaces C&(Jto, +oof; X), C&(] —
00, tol; X) which are defined similarly.

We shall deal with generators of analytic semigroups. A linear operator A : D(A) C X —
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X generates an analytic semigroup if!

there are w € R, 0 €|n/2, w], M > 0 such that the resolvent
set of A contains the sector S ={A € C; A #w , |arg(A —w)| <0 } and (1.2)
A = w)(A—A)"HLx) <M forany A€ S

Under assumption (1.2), one can show the existence of My, M, My > 0 such that
([t* AF e x) < Mge*t, t>0, k=0,1,2. (1.3)

Here and in what follows we refer to [Sin] for the properties of analytic semigroups in

the non-dense domain case. Due to estimates (1.3) and to the equality —e'z = Aetdz

(t > 0,z € X), it is not difficult to see that for any ¢ € X and « €]0,1], the function
#(t) = ez belongs to Z*([0,T]; X) for any T > 0, and if w < 0, then ¢ also belongs to
Z2,([0, +oo[; X). Analogously, one can easily show that for any z € D(A), T > 0, a €)0, 1],
#(t) = 'z belongs to 2*([0, T]; X).

The interpolation spaces D 4(a,00) (0 < o < 1) are defined by

Dy(a,00) = {z € X; [z]o = sup [t'"*Ae™z| < +00}
0<t<1 (1.4)

21D 4 (a,00) = 1]l + [z]a

Let now D be a Banach space being continuously embedded in X. Let us consider a family
of linear operators A(t) : D — X such that

for any t € R, A(t) satisfies (1.2), and the graph

1.5
norm of A(¢) is equivalent to the D norm || - || p; (L5)

there is T > 0, « €]0, 1] such that the function t — A(¢)

1.6
is T-periodic and belongs to C*([0,T); L(D, X)). (16)

Under assumptions (1.5) and (1.6), we shall give some existence and regularity results for
bounded solutions of equations

2(t)=A(t)z(t) +g(t), t>to (L.7)

w'(t) = A(t)w(t) + h(t), t<to (1.8)

where g and h belong to C(Jto, +oo[; X) and to C(] — 00, to; X) respectively. A function
z € C(Jto, +o0f; X) N C(Jto, +oo[; D) satisfying (1.7) is said to be a classical solution of
(1.7). If g is continuous up to ¢t = to and 2z belongs to C*([to, +oo[; X) N C([to, +oof; D)
(so that it satisfies (1.7) up to t = to), then z is said to be a strict solution of (1.7). Similar
definitions may be given for classical and strict solutions of (1.8).

IThrough the whole paper we consider only complex resolvents and spectra; even if X is a real Banach
space, for any linear operator L we denote by o(L) (resp. p(L)) the spectrum (resp. the resolvent set) of the
complexification of L.
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Under assumptions (1.5) and (1.6), there exists an evolution operator G(t,s) € L(X) (t >
; 0
s) such that éz(}(t, sjz = A(t)G(t,s)zfort > s, € X, G(t,7)G(r,8) = G(t,s)fort > r > s

and G(¢,t) = I for any t € R (see [L1], [AT 2]). The asymptotic behaviour of G(¢, s) may
be described in terms of the spectrum of the linear operators

V(s)=G(s+T,s), s€R. (1.9)
More precisely, we assume that there exists p > 0 such that
o(V(s))N{AeC; |[A|=p} =10 (1.10)
and we set o(V(s)) = 01(V (s)) Uo2(V(s)), where

{ a1(V(s)) =o(V(s)) N{A € C; |Al < p}
a2(V(s)) =a(V(s))N{A € C; Al > p}

02(V(s)) may be possibly empty, and one can easily show that it in fact does not depend
on s. Moreover we have:

(1.11)

{sup{|)\|; reo(V(s)), seR}=p1 <p (1.12)
inf{|\; A€o2(V(s)), s€cR}=py>p '
We can define two families of operators and the corresponding ranges:
1
Pi(s) = — (A=V(s))71d), s€R
21t J(0.p)
Xi1(s) = Pi(s)(X), seR (1.13)

PQ(S) =1—P1(S), seR
Xa(s) = Pa(s)(X), s€eR

For every s € R, X3(s) is included in D, and the restriction of G(t,s) to X2(s) may be
defined also for ¢ < s, still satisfying 2G(t,s)z = A(t)G(t,s)z for every z € Xa(s) (for
more details see [L 2]).

Let us consider now problems (1.7) and (1.8).

Proposition 1.1. Let (1.5), (1.6), and (1.10) hold with p < 1, and let w €]0, =T~ ! log p1|,
where p; is defined in (1.12). Then:
(i) If g belongs to Z&([to, +oo; X), then all the classical solutions z of (1.7) such that
t — e“'2(t) is bounded in [ty, +-00| are given by
o0

2(t) = G(t, to)z1 + t:G(t,S)Pl(s)g(s)ds— | Gts)Pa(s)g(s) ds, (1.14)

t>to, 21 € X1(to) 05,
where Py(s), Py(s), and X,(to) are defined in (1.13).
(il) If 21 € Xi(to) N D, then every z defined in (1.14) belongs to C([to, +0o[; X) N

Z3([to, +oo[; D), 2’ belongs to ZZ ([to, +oo[; X) and there is C; > 0 (not depending
on to, g, 1) such that
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||Z“Z3([to,+oo[;D) + ”zl“Zg([to,+oo[;x) < (HIl”D + Hg”Z:{([to}—»—oo[;x)) (1.15)

(iif) Ifg € C&([to, +oo[; X) and A(to)z1+g(to) belongs to D a(0)(cx, 00), then z is a strict
solution of (1.7) and belongs to ij([to, +oo[; D), 2’ belongs to C%([to, +ool; X).
There is C2 > 0 (not depending on tq, g, x1) such that

”Z”Ci‘.‘([to.+oo[:D) + ”Zl”()fj([l();+oo[;X) S

Callz1llp + 1P (t0) (A(t0) 21+ 9(t0)) Do a0) + Il o o

to,+oo[;X))

Let now (1.5), (1.6), and (1.10) hold with p > 1, and let w €]0, T~ log ps[. If h belongs
to C&(] — oo, to]: X), then all the classical solutions w of (1.8) such that t — e~“*w(t) is
bounded in | — 00; tp] are given by

w(t) = G(t, o)z + tG(t,S)Pg(S)h(S) ds + /t G(t,s)Py(s)h(s)ds

t <tyg, T2 € Xg(t()),

(1.17)

where P;(s), Py(s) and Xa(tg) are defined in (1.13). Any w given by (1.17) is also a strict
solution of (1.18); it belongs to C&(] — oo, to]; D) and w’ belongs to CZ(] — oo, to]; X).
There is Cs > 0 such that

+ [l

) < Calzall + ] (1.18)

”w“(,,‘g (]-oo.tn]:D) Cg(]—oo,to];x Cg(]—-oo,to];X))'
Proof: We have only to show (ii), since the other statements follow from [L2, §3]. Since z;
belongs to D, then z(tg) belongs to D; therefore z belongs to Z¢ ([to, to+1]; D), 2’ belongs

to Z%([to, to + 1]: X) and

+ 112l < const (||z(to)llp + gl 1.19)

”Z”Zﬂ([to,to-{—l];D) A ([to‘to+1];X) Za([to,to-i—l];x)) (
thanks to [L1, prop. 2.2]. Since z belongs to C*([to+1/2, to+1]; D)NC**([to+1/2, to+
1}; X) then, by lemma 1.1 of [L1], 2’(fy + 1) belongs to D 4(¢) (e, 00), and

|2’ (to + DD 4oy (a.00) < const (||z|| 1.20)

!
C"([t0+1/2,to+1];D) + Hz ”Ca([to+1/2,to+1];x)) (
Therefore, by [L2, prop. 3.10 (iii)], z belongs to C&([to + 1, +oof; D), 2’ belongs to
C&([to, +oof; X) and

+ 12l

12l (o1, o0t ) 1Ml (041, 00t x)

(1.21)
const ([|2(to + 1)[lp + [z’ (to + 1)l D40y (ar00) + ll9ll

ca ([to+1, +o0l; X))
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Recalling that ||G(¢, s)||L(x,(s); D) is bounded in {(¢,s) € R%, s> t}, we get

le(to)l1p < 1] + const sup [le=~)g(t) (12)
—Zto

Then (1.15) follows from (1.19)-(1.22) and (ii) is proved. i

We consider now the problem of finding T-periodic solutions to
u'(t) = A(t)u(t) + f(t), teR (1.23)
when f: R — X is T-periodic and o-Holder continuous. We replace assumption (1.10) by
1 belongs to the resolvent set of G(T',0). (1.24)

Also the following result is proved in [L2, prop. 3.14].

Proposition 1.2. Let (1.5), (1.6), (1.24) hold. Then for any T-periodic and a-Holder
continuous function f : R — X, problem (1.23) has a unique T-periodic strict solution u.
Moreover u belongs to C*(R; D) N C1*(R; X) and there is C4 > 0 such that

lullca®ip) + [/ lce(r:x) < Callfllce(r;x) - (1.25)

2. Stability and instability of periodic solutions.

(A) The nonautonomous case. Let f: R x D — X, (¢t,z) — f(t,z) be continuous
and T-periodic with respect to time; let tg < ;. Consider the equation

u'(t) = f(t,ult), to<t<t. (2.1)

A function u belonging to C([to,t1]; D) N C*([to,t1]; X) and satisfying (2.1) is said to be
a strict solution of (2.1). The existence of strict solutions of (2.1) may be proved under the
following assumptions on f :

Regularity- for any t € R, f(¢,-) belongs to C%(D; X);
there is a €]0, 1{ such that f(-,z), fz(-, ), fzz(-, z) are (2.2)

a-Holder continuous, locally uniformly with respect to z;

Parabolicity— for any ¢t € R and z € D, the operator
A = f.(t, z) satisfies (1.2), and the graph norm of A is (2.3)

equivalent to the D-norm.

Then the following result holds.
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Proposition 2.1. Under assumptions (2.2) and (2.3), for any to € R and ug € D such
that the necessary compatibility condition

f(to,u0) € D (2.4)

holds, equation (2.1) has a maximally defined strict solution u = u(-,ug) : [to, to + 7[— D
(1 = 7(to,up) > 0) such that u(to) = ug. u is the unique solution of the i.v.p. belonging to
2% ([to, to + &]; D) for any 6 €]0,7[. Moreover, for any § €)0, 7| there are pg, kg > 0 such
that:

(i) ifui € D, f(to,u1) € D and |lup — u1|lp = p < po then 7(u1) > & and |ju(t,uo) —
u(t,ur)l|p < pko for to <t <to+ 6.

(11) ifw € C’([t()7 t() + 5], X) N (}1 (]Lo, t() -+ (5], X) n Za([to, to + 6}, D) is such that
w(ty) = ug, w'(t) = f(t,w(t)) fortg <t <tp+ 6, and

|w - u(~,uo)llza([t0,to+5]; p) < po, then w(t) = u(t,uo) forto <t < to+ 6.

Proof: The proposition was proved in [L3], except statement (ii), which we show now. Fix
t1 €lto, to+6] and k > 0, and set Y = {z € Z*([to, t1]; D); [|2(-) —uol|Loo(to,e1; 0) < k}. If 3
and k are sufficiently small, then for every 2 € Y the function t — f(¢,2(t)) — Az(t) (where
A = fz(to,uo)) belongs to Z*([to, t1]; X). Therefore, if z € C*(Jto, t1]; X)NC([to, ta]; X) N
Y is a solution of 2'(¢) = f(t, 2(t)), to <t < 1, 2(tp) = ug, then z is a fixed point of the
operator ¢ : Y — Z*([to,t1]; D), ¢(2) = v, where v is the solution of

{ v'(t) = Av(t) + [f(t,2(t) — Az(t)], to <t <t
v(to) = uo

(v belongs to Z*([to,t1]; D) N C([te,t1]; X) N C*(Jto, t1); X) thanks to prop. 1 of [L3)).
In the proof of theorem 2 of [L3] it is shown that ¢ is a 1/2-contraction in the norm of
Z*([to, t1), D), provided t; —to and k are sufficiently small, so that ¢ has at most one fixed

point in Y. Let r = JJlw — u(-,uo)Hza([to,tOM];D). Then, if r and t; — ¢o are sufficiently

small, w), , , belongs to Y. Actually, lw — uo||Le(t0,t:; 0) £ 7+ [Ju(-; u0) — ol Lo (t0,¢,: D)
and u(-,ug) is continuous. Therefore both wy, and u(-,uo)“to,tl] are fixed points of ¢
belonging to Y, so that w(t) = u(t,ug) for t¢ < ¢t < ¢;. On the other hand, Wi s
belongs to C([t1, to + 6]; D) C 2*([t1, to+6); D) and f(t1, w(t1)) = w'(t1) belongs to D,
so that, due to the first part of the theorem, w coincides with u(-, ug) also in the interval
[t1, to+6].

Assume now that eq. (2.1) has a T-periodic strict solution @ belonging to Z*([0,T); D).
Then, using prop. 2.1, it is easy to see that @ belongs to C*(R; D) N C! *(R; X), so that
the family of operators

A(t) = fo(t,u(t)), teER, (2.5)

satisfies (1.5) and (1.6). Therefore the associated evolution operator G(¢, s) is well defined,
and so does the family V(s) = G(s + T, s), s € R (see sect. 1).
We give now a result of exponential asymptotic stability.
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Theorem 2.2. Let f:R x D — X (t,z) — f(t,z) be T-periodic w.r. to time and satisfy
(2.2), (2.3). Let @ be a T-periodic strict solution of (2.1), belonging to z*([0,T]; D). Define
A(t) by (2.5) and V (s) by (1.9), and assume that

sup{|Al; A€o(V(s)), seR}=p; <1 (2.6)

Then u is exponentially asymptotically stable: more precisely, for any w €]0, =T 1log p1|
there are 69, M > 0 such that for each to € R and uy € D satisfying (2.4) and such
that |[ug — U(to)|lp = 6 < 6o, then u(-,uq) is defined in [to, +oo[ and |ju(t,uo) — @(t)||p <
Mée~w(t=to)

Proof: Let to € R, ug € D be such that f(to,up) € D. Set 2(t) = u(t,uo) — U(t), t €
[to, to + 7(to, uo)[. Then z satisfies

Il

2(t) = fo(,7(1)2(8) + [f (¢, () + 2(t)) = £(8,T(t)) - fa(t,W(2))2(2)]

= A(t)2(t) + g(¢, ().
We shall show that z may be continued in [t + 7, +00], still satisfying (2.7), and that the

continuation decays exponentially as t — +oo provided ||ug — u(to)||p is sufficiently small.
To this aim we define the mapping

(2.7)

I': B(0,r) € Z3([to, +o0; D) — Z5([to, +oof; D), Tz=v (2.8)
where v is the solution of

{ V(t) = A(t)v(t) + g(t, 2(t), t>to

v(to) = uo — T(to) (29)

We have to show that I' is well defined, it maps B(0,r) into itself and it is a contraction if
r and ||ug — %(to)||p are small. The unique fixed point of T is then the desired extension of
u(:,uo) — ().

The function ¢(¢,z) : R x D — X has the following properties:

(i) g(t,z)=g(t+T,z), teR, z€D

ii su t,x =ki(r)—0asr—0
( ) tER,zGBI()O,r)CD”gz( )“L(D’X) 1( ) (2.10)
(iii) sup  [g(-,)lce(r; L(D,x)) = ko(r) > 0 asr—0

z€B(0,7r)CD

Let » > 0 be so small that

sup l9z2(t, 2)| (D, L(D,x)) = k3(r) < 400 (2.11)
teR,zeB(0,r)CD

Then for any 2y, ze € B(0,7) C Zg([to, +o00(; D) we have

e~ g(t, 21(t)) - glt, ()| < B (N |z (t) ~ 22()lp, t 2t (212)
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and, fort > s> tg:
et g(t, 21 (6) — g, 22(1)] - =) [g(s5, 21(5)) — g5, 22()]| =
I / ga (b, 021(1) + (1 — 0)25(£)) e~ (21 (1) — 22 (1))
— gz (s, 021(8) + (1 — 0)22(3))6“(S_t°)(z1(s) — 23(8))] do| <
1
| [ loxt oa(6)+ (1= )2a(0) = ga(s, 721(6) + (1 = 0)zal)]
0 1 (2.13)
) ew(t—to)(zl(t) — 29(t)) da” + || /0 O (s, oz1(s)+(1— 0')22(8))

et (20 (8) — 2(8)) — €T (21(s) — 2a(s))] do| <
1
[ka(r)(t — )™ + ks(r)/o [ollz1(t) = 21(s)llp + (1 = o) |22 (t) — 22(s)[| D) do]

le (=10 (2 () — 22 ()] + ka (r) || 7200 (21 (8) — 22(8)) — €% (21 (5) = 22(5))|
so that t — e*(t=%)[g(¢, 21 () — g(t, 22(t))] belongs to C*([to + 1, +o0[; X) and

[ew(t=0) (g(t, 21()) — g(t, z(t ]Ca([ml‘m[;x) <

[ka(r) + (w*(1 = a)' 7% + 1)rks(r)] S [[e#71) (z1(s) = 22(s))l (2.14)

+ku(r)lz1 - 22](;3 ([to+1, +o0f; D)

Analogously, setting w = 0 in 2.13, we get, for tg +¢/2 < s <t <tog+e 0<e<1:
e*|lg(t, 21(t)) = g(t, za(t)) — (5, 21(s)) + g(5, 22(s))|
< Alk1(r) +rk su z -2
() + ko], sup  lza(s) = 2als)lo (2.15)

+ha(r)ler - Zz]C“([to+E/2,to+e];D) p=9)

so that by (2.12), (2.14), (2.15) we have:
l|g(721()) - g(.’22(‘))”Z3([t0,+00[;X)
< [ka(r) + ko(r) + (W¥(1 = @) 7% + 1)rks(r)]flz1 = 2]

Let now r9 > 0 be such that

kl(ro) + k‘Q(To) + (wo‘(l - a)l_o‘ + 1)"‘0](33(7‘0) S 1/201 (217)
where C; is given in (1.15). Then, using (2.16), (2.6), (1.15) and the definition (2.8) of T
we find that:

(i) for any r < rp, I' is a contraction with constant 1/2 in
B(0,7) C Z%([to, +oo[; D)
(ii) for any r < 7o, if ||ug — U(to)||p < 7/2C4, then T’ maps
B(0,7) C Z%([to, +o0; D) into itself.
The statement of the theorem follows now easily, with 8 = r9/2C1 and M = 2C;. 1
Let us give now an instability result.

(2.16)
22 ([to, +o0[; D)
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Theorem 2.3. Assume the same hypotheses as in Theorem 2.2, except (2.6) which is
replaced by

or={xea(V(s)), |A>1, scR}#0 (2.18)

inf{|)\];/\€ag}i-p2>1. '

Then T is unstable. More precisely, there is € > 0 such that for any to € R there exists a
sequence {Tn} C D with lim =z, =u(tp) but sup |Ju(t,z,) — T(t)|| > e
n—-+00 t>t0

Proof:: Every p €]1, p2| obviously satisfies (1.10). Let P;(s), Px(s) (s € R) be defined
by (1.13). We shall show that for any {, € R, there is a backward solution of (2.1),
v :]—00,t0] — D, v # T, such that lim;— _ ||@(t) — v(t)||p = 0. We remark that if such a v
exists, then the difference 2(t) = v(t) — u(t) satisfies equation (2.7) in | — oo, ty]. Therefore,
in view of Proposition 1.1, we have to solve the integral equation

2(t) = G(t,to)za + | G(t,s)P2(s)g(s, z(s)) ds +/_ G(t,s)Pi(s)g(s,z(s))ds t <t

t

’ (2.19)

with 2 € X5(to) fixed. As in Theorem 2.2, we may solve (2.19) in a set of exponentially
decaying functions:

Y = B(0,r) C C%(] - o0, to; D) (2.20)

with w €]0, T~ log p2|. Here we do not need to set our problem in the space Z%(]—o0, to]; D)
because X3(to) C Dao)(e +1,00), so that G(-,¢p)z2 belongs to C¥ (] — 00, tg); D) for any
T9 € Xo.

Here we use the notations of Theorem 2.2. Since g satisfies (2.10), estimate (2.13) holds
for any z € Y and s < t < tg. Proceeding as in Theorem 2.2, it is easy to show that
(2.19) has a unique solution in ¥ provided r and ||z2|| are sufficiently small. Using again
estimate (2.13) it is possible to see that if zo # 0 then z does not vanish. More precisely,
we find 2(to) = z9 + Pi1(to)z(to) and ||Py(t0)2(to)|| < h(r), with h(r) independent on tg
and lim,_o h(r) = 0. The statement of the theorem follows, with ¢ = ||z2||/2 and z, =
U(to — nT) + 2(to — nT) = u(to) + z(to — nT). &

(B) The autonomous case. Here we use the same notations as in subsection 2A, with
obvious modifications. We assume that f : D — X is a C® function and we study the
stability properties of the periodic solutions of

w'(t) = flu(t)). (2.21)

The parabolicity condition (2.3) is assumed to hold. By Proposition 2.1, any T-periodic
solution @ € Z*([0,T]; D) of (2.21) belongs to C*(R; D)NC* *(R, X); in fact, it belongs to
CYA(R; D)NC?* P (R; X) for any 3 €0, 1] due to [L4]. Therefore, the derivative v(t) = @'(t)
satisfies

V(t) = f@H)(t), teR,

and it has the same period of @, so that 1 is an eigenvalue of V' (s) for each s € R, and
the stability theorem of subsection 2A cannot be used. Nevertheless, the following stability
result holds.
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Theorem 2.4. Let T be a T-periodic strict solution of (2.21), belonging to Z*([0,T]; D)
for some o €]0,1]. Let A(t) = f'(u(t)), t € R, and G(t,s) be the corresponding evolution
operator, and let V(s) = G(s + T, s), s € R. Assume that

{ (z) 1 is a simple eigenvalue of V(s), s€ R

. 2.22
(@) sup{IAf; A€oV {1}, s€R}=p <1 22
Then u is orbitally asymptotically stable with asymptotic phase. More precisely, for w €
10, =T~ log p1], denoting by I the orbit {u(t), t € R}, there are pg > 0, M > 0 such that
ifup € D, f(uo) € D, and dist (uo,T') = p < po, then the solution u(-,up) of u'(t) = f(u(t))
t > 0; u(0) = uo, is defined in [0, +oo[ and there is § = 8(ugy) € R such that

b

lu(t,uo) —u(t + 0)|lp < Mpe ™, t>0. (2.23)

Proof: Let Pi(s), P2(s) (s € R) be defined by (1.13), with any p €]p;,1[. Let uo € D
be close to I' and be such that f(ug) € Dj let u(-,ug) be the solution of (2.21) given by
Proposition 2.1. We may assume (replacing possibly u(t) by @(t + to), 0 < to < T) that ug
is close to (0). For any 8 € R the difference 2(t, ) = u(t, ug) — u(t + ) satisfies

%z(t, 0) = f'(u(t))z(¢,0) + [f(ﬂ‘(t +0) + 2(t,0)) — f(u(t+9)) - f’(a(t))z(t,a)]
= A(t)z(t,0) + g(t,2(¢,86),86), 0<t<r.

Therefore (see Prop. 1.1 (ii)), we look for a solution of

t +o00
z(t) = G(¢,0)zy +/O G(t,s)P1(s)g(s,2(s),0) ds — G(t,8)Py(s)g(s, 2(s),0)ds

t (2.24)
= (Fo 2)(t)

where z; € DN X;(0) is fixed in a ball B(0,r) C Z3([0, +oo[; D), 0 < a < 1. Since @
belongs to C*(R; D), it is not difficult to show that g: R x D x R — X satisfies

(1) gt +T, z,0) = g(t,z,0), ¢(¢t,0,00=0
1) su t,z,0 =Ki(r,§) -0 asr,0 -0
(&) tER,:cGB?O,r)CD ng( )”L(D’X) 1(r.6)
1 su -z, 0 =Ky(r,0) >0 asr, 6§ -0
( ) g;eB(O,I:)CD [gI( )]CQ (R;L(D,X)) 2( ) (225)
(1v) sup lgs(t, z,0)|| = K3(r) =0 asr — 0
t,0eR,z€B(0,r)CD
(v) sgg (96(-, z, 0)]CQ(R;X) < K4(r)|lzllp, z € B(0,r) C D.
For r > 0 define
Ks(r)= sup 9z2(t, 2,0)|lL(D,L(D,x))
OER, z€B(0,r)C (2.26)

Ke(r) = sup lg6<(t, z,0)||L(D.x)-
t,0eR,z€B(0,r)CD
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Then, using estimates (2.12), (2.14), (2.15), and (2.16), we find that Fy is Lipschitz contin-
uous, with Lipschitz constant ®(r, #), where

®(r,0) = Ki(r,0) + K3(r,0) + (w*(1 — a)'~* + 1)r K5(r). (2.27)
Therefore, if r <7y and |6| < 6y, where rg, § > 0 are so small that
<I>(r0,00) < 1/201, (228)

where (' is given in (1.15), Fy is a contraction with constant 1/2. Due to (1.15), we find
also that if ||z,|[p < r/2C}, then Fy maps B(0,7) C Z2([0, +oo[; D) into itself, so that it
has a unique fixed point z = 2(-,z1,6) in B(0,r), and z satisfies the inequality

|lz(- 21, 0)]] )< 2C1 ||z1|lp (2.29)

25 ([0, +oo; D
Now, we want to show that, if ug is sufficiently close to @(0), then there is 1 € B(0,r9/2C1)
C D and 8 € R near 0 such that

u(t,uo) =u(t +0) + z(t,z1,0) in [0,7], for some > 0. (2.30)

This will prove the theorem, since (2.30) defines an extension of u(, up) in [0, +00[ satisfying
estimate (2.23) with M = 2C;||P1(0)|L(p), thanks to (2.29) and to the equality z; =
P1 (0)2(0 T, 0)

Equality (2.30) is equivalent to

up = u(f) + 2(0,21,0) . (2.31)

Actually, since |lu(-,ug) — uo”za/2([0,ﬂ;D) and ||a(- + 6) — —d(o)uzaﬂ([oj];p
0 as t — 0, then both members of (2.30) are solutions of (2.21) belonging to ¥ = {we

C{10.T) X) N 10,7 X) 1 2572 (10.8: D): w(0) = w0, [00) = 0l 010105 ) < 0}

where pg is given by Proposition 2.1, with a replaced by a/2, provided %, r, 8, and |Jug —
%(0)||p are sufficiently small. Then equality (2.30) follows from (2.31), due to Proposition
2.1 (ii).

To solve (2.31), let us write it in a convenient way. Let ¢ € X* be such that P(0)z =
(z,9)@'(0) for any z € X. Recall that for any ¢t € R, X,(¢) is spanned by @'(t). Then (2.31)
is equivalent to equation G(z;,6) = (x1,6), where

) converge to

{ G+ (X1(0)N B(0,¢) € D) x [-6,6] = X1(0)N D x R (2.32)

G(z1,0) = (P1(0)(uo — u(0)), (uo —u(0) — 2(0,21,6) + 6 (0), ¢))
and ¢ €0, r0/2Cy], 6 €]0,00]. Recall that rg and 6 are such that (2.28) holds. Now we
prove that G is a contraction and maps (X1(0) N B(0,¢)) x [—4, 8] into itself, provided e, 6,

and |lup — T(tp)|[p are sufficiently small; B(0,¢) x [—6, 6] has the usual product norm. We
have

G(zl,ﬁl) — G(mg,ag) = ( - P (0) (5(61) — ﬂ(gg)) s <——U(01) +—’II(92) + (01 - 02)@'(0)

— 2(0,21,01) + 21 (0, 22, 02), ¢))
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and

| PL(0) (m(61) — (82))]|
- “pl 0)/0 [@ (0, + (1= 0)05) — @ (0)] do (8 — 92)HD (2.33)

(
< |IP(0)|| (D) [@]cw(r:D) 2% 6 |01 — B2,
0

—

=| [ (0) =W (ot + (1= 0)02), ¢) do(Os - b)) (2.34)
< lillx- [@oe (rix) 2% 6% |61 — b2,
|<Z(O,I2,92) —2(0,21,61), ¢>)‘ < ||ﬂ’(0)]|_1 HPg(O) [2(0,1’2,92) - z(O,zl,Gl)] H (2.35)
Using (2.24) and (1.15) we find, noting that z(-,z;,6;),i = 1,2, belongs to B(0,7) C
Z2([0, +oo[; D) and r = 2Cy € < 7o, |0:] < o,
et 02) = 22000 e )

< Ci(llz2 — zillp + llg(s 2(+ 22, 02),02) — g('aZ(',$1,91),91)||Zg([07+00[;x))

1 (2.36)
< Cuflez = zillp + Gll2( 22, 62) = 2020, 00)l| 5 (10, 4 (s 1)
+ 01”9(, z(~,z2,02),02) - g('a 2(', z2702)a 01)”23([&*_00[;)()
By (2.25) (iv) (v) and (2.26), we have:
|1g('az('7$2,92),92) - g(‘,z(w$2,02),91)||23([0,+00[;X) <
K3(T)|02 - 91| + [g('7 Z(‘v T2, 92)7 92) - g('a Z('v T2, 02), 01)]20 ([0,1];X)
+ [g(~,z(~,zg,02),02) - g('az('§12702)a01)]05([1’_’_00[;)() (237)

S K3(7‘)|02 - 01| + T(K4(T) + KG(T))|02 - 01|
+r(wKs(r) + Ka(r) + Ko (r) (@(1 — @)= + 1)) (62 — 6y
= K7(r)|02 — 01|

Then, by (2.36) and (2.37) we have

||Z(~,12,92)—Z(',.’El,gl)” ) S201(||232—1‘1”D+K7(7‘)|02 ——01|) (238)

zZ& ([0,+oo[; D
so that, using again (2.24) and (1.15), (2.29), (2.37), (2.38), we find

”PQ(O)(Z(O,ZQ,OQ) — z(O,z1,01)||
< Clng('vz('az%H?)?a?) - g('az(‘v $1761)701)||Z3([0’+00[ D) (239)

S Cl [‘1’(2016, 5)(201”1‘2 - zl“D + K7(T)|02 — 01]) + K7(T)|02 - 01]]
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where ® is defined in (2.27). Using (2.33)—(2.35), (2.39) and recalling that lim, 5_.o ®(r,6) =
0, lim, g K7(r) = 0, we find that G is a 1/2 contraction provided ¢ and § are sufficiently
small. Fixed such ¢ and §, since

G(0,0) = (P1(0)(uo — u(0)), (uo —u(0), ¢))

then, by (2.30), G maps (B(0,¢) N X1(0)) x [—6, §] into itself, provided

luo ~w(0)llp < max { (2121 (0)]l(p)) "€ (2llx-) " 6}.

In this case, G has a unique fixed point in (B(0,¢) N X1(0)) x [~6,6], and the proof is
complete. B

Now we give a result of orbital instability, which is stronger than the one of Theorem 2.3.
The proof is very similar to the one of [H, Theorem 8.2.4], so it is only sketched.

Theorem 2.5. Assume the same hypotheses as in Theorem 2.4, except (2.22) which is
replaced by

{ (@) o2={r€o(V(s)), A >1, s€R} #0 (2.40)

() inf{|Al; A€oz} =p2>1

Then u is orbitally unstable, i.e., there are § > 0 and a sequence {u,} C D such that
f(un) € D, dist(u,,T) — 0 as n — +o0, but

su dist(u(t,u,), ') > 6.

Proof: Let Pi(s), P2(s), and X,(s), s € R, be defined by (1.13), with any p €]1, po|.
Arguing as in Theorem 2.4 and using estimate (1.17) instead of (1.15), for every zo € X5(0)
sufficiently small, i.e., ||z2||p < r/2C3, we can find a solution w of

¢ ¢

w(t) = G(t,0)zg +/ G(t,s)Pi(s)g(s, w(s),0) ds-+-/ G(t,8)Pa(s)g(s,w(s),0)ds, t<0

* ° (2.41)

belonging to B(0,7) C C%(] — 0,0]; D), provided r is sufficiently small (g is the same as in

Theorem 2.4). Moreover, arguing as in the proof of (2.39), one can see that if |z2|| < r/2Cs,
then

[w(0) = z2llp < K(r)l|z2]l5  lim K(r) =0 (2.42)

Now set
u(t) =a(t) +w(), t<O0 (2.43)

Then u is a solution of (2.21) in ] — 00,0] which converges exponentially to @ as t — —oo.
Let us show that the distance between u(0) and I' is positive if r is small. For any ¢ € [0, T]
we have

14(0) = w(®)llp = [|7(0) + w(0) —u(t)||p
> |lzz =@ (0)t]lp — [lw(0) — z2llp — ||a(t) — w(0) — @'(0)t[lp
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so that, using (2.42) and recalling that ||zo—%'(0)t]|p > 0 because z; € X2(0), @' (0) € X;(0),
there are €, 6;, rq such that if r <ry and t € [0,¢]U [T — ¢, TY, then ||u(0) —a(t)||p > 6. If
t belongs to [¢, T — €], we have

[[(0) — u(t)l|p = 1(0) + w(0) —u(t)l[p 2 [[%(0) — u(t)llp - Nw(0)|lp > [u(0) —u(t)|p —r

so that there are ry, 63 such that if r < ry, then ||u(0) —T(t)||p 2 b2 fore <t < T — .
Therefore dist(u(0),I') > § = min{é,,82} if r is small. The statement of the theorem follows
now taking u, = u(—n), 6 = min{é;,é2}. I

Remark 2.6. We assumed that f(¢,z) in subsection A, f(z) in subsection B, are defined
for any z € D and satisfy (2.2), (2.3) in the whole space D. This was done just to simplify
notations. In fact we could assume that they are defined and satisfy (2.2), (2.3) only for z
belonging to some neighborhood of the orbit ' = {@(t), t € R}.

3. Examples and Applications In this section we give examples of fully nonlinear
abstract evolution equations having periodic solutions, whose stability properties are studied
using the results of Section 2. The usual bifurcation methods, both in the autonomous
and in the nonautonomous case are employed. These methods work in spite of the strong
nonlinearities thanks to maximal regularity properties stated in §1.

(A) The nonautonomous case. We consider a family of nonautonomous equations,
depending on a real parameter A, under nonresonance assumptions.

u(t) = f(Atu(t), (3.1)
where f:[-1,1] x R x D — X, (A t,z) — f(A, ¢, z) satisfies the following:

(a) (Regularity) f(-,t,-) belongs to C*([—1,1] x D; X) for any
t € R, and all the partial derivatives of f(-,¢,-) up to
order 3 are o-Holder continuous in ¢, locally uniformly
with respect to the other variables
(b) (Periodicity) There is T > 0 such that f(A,¢,z) = f(A,t + T, z) (3.2)
forany A € [-1,1], teR, z€ D
(c) (Parabolicity and nonresonance) The family {B(t); t € R},
B(t) = fz(0,t,0) satisfies the assumptions of Proposition 1.2
(d) f(0,t,0)=0forany t€R

Theorem 3.1. Under the assumptions (3.2), there exist Ag > 0 and rq > 0 such that for
any A € [—Xo,Ao) equation (3.1) has a unique T-periodic strict solution u satisfying the
inequality

lullce®:p) + 14 lcerix) < 1o (3.3)

Proof: Consider the Banach spaces

Y ={ueC*R;D)NC *(R; X); u(t)=u{t+T) forany teR}
Z={veC*R;X); v(t)=v(t+T) forany teR}
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and define a mapping F : [-1,1] x Y — Z by

Fu) =4 — f(A - u(?) (3.4)

Obviously, a function u € Y is a solution of (3.1) if and only if F(A,u) = 0. Since F(0,0) =0
by (3.2)(d), we have only to check that

(i) F belongs to C*([-1,1] x Y; Z)
(i) F,(0,0) is an isomorphism from Y onto Z.

Concerning (i), one can easily prove that there exist the Gateaux derivatives
Fax(Au) = =fa(A, - u()) (3.5)

Fu()Hu)v = - fz()‘v -,u(-))v (36)

and they are, in addition, continuous in [—1,1] X Y. The proof follows by straightforward
(but tedious) computations, involving assumption (3.2)(a). Let us check, for instance, (3.6).
To this end it is sufficient to prove that the Gateaux derivative of u — f(A,-,u(-)) at the
point u is the linear mapping v — fz (A, -, u(:))v. Actually, we have

Rt u(t) + ho(8) — F(A tu(t)] = fo (At u(t))o(t)
_h/ dr/ do [0 fas (M, u(t) + hrow(®)) (u(t), u(t))]
= ¢t

and ¢y converges to 0 in the C® norm as h — 0, thanks to assumption (3.2)(a )
Let us show (ii). By (3.6) we have F,,(0,0)v = v’ — A(-)v, where A(-) = f(0,-,0) satisfies
(3.2)(c). Then (ii) follows from Proposition 1.2. §

Example 3.2. Consider the problem of existence and stability of periodic solutions to

(3.7)

ug(t, ) = ¢ (Ault,z)) + Y(t)u(t,z) + An(t,z), teR, €
u(t,z) =0, teR, z€ 90

where A € R, 1 is a bounded open set in R™ with smooth boundary 0{1, and there are
a €]0,1[, T > 0 such that

(1) ¢€C*R), 6(0)=0, ¢'(0) >
(i) e C*?(R), Y({t)=v({t+T) forany teR (3.8)
(t17) neC? R xQ), n(t,z)=n(t+T,z)foranytc R, z€}

We recall that n € C%/2:%(R x {1) means that
sup { (|t = 5|72 + |z —y|7®)In(t,2) = n(s,9)|, t,s ER, t # 5, 2,y €0, z # y} < +oo.

Applying theorems 2.9 and 3.1 gives the following results.
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Proposition 3.3. Under hypotheses (3.8), assume in addition that

T
/0 (s)ds + T (0)u # 0 (3.9)

for any eigenvalue u of the Laplace operator A with Dirichlet boundary conditions. Then
there are Ag > 0, rg > 0 such that for any A € [—Xp, Ag] there is a unique solution u of (3.7)
such that .
(t,o)=a(t+T,z), teR, €0

a(t, ) € C**(Q) uniformly fort € R

&l

u(-,z) € CH*/2(R) uniformly for z € Q1 (3.10)
sup [lu(-, z)[|ca(r) + sup [[Au(-, z)|ca(r) < 1o
€N e

Moreover, if ¥(t) < 0 for any t, then T is exponentially asymptotically stable, in the sense
that there exist M > 0, r > 0 such that if there are to € R, A € [~ Ao, Ao, up € C**())
with
(@) wuo(z) = ¢(Aug(z)) + ¢(to)uo(z) + M(to,z) =0 for any z € 90
(b)  sup |uo(z) — WA, to, z)| <7, sup |Aug(z) — AN, tg, z)| <7 (3.11)
zeN z€Q

then problem (3.7) has a unique solution u : [ty, +00[x{) — R such that

u(to, ) = uo(z), €0
u(t,”) € C**(Q)) uniformly for t € R (3.12)
u(-,z) € CY*/2(R) uniformly for z €

and moreover

sup |u(t, z) — U(A, ¢, z)| + sup |Au(t, z) — Au(A, ¢, z)|
zeQl zeQ)

< Me==10)(sup lug(x) — (A, to.a)| + sup [ Ao (1) — AT 1o, 2)])
zeN zel

(3.13)

Proof: Let X = C({2) be endowed with the sup norm || ||o0, and let D = {£ € C(Q); A€ €
C(Q), &,, = 0} be endowed with the graph norm ||£]|p = [|€]lec + [|Allec (the Laplace
operator A is in the distributional sense). Set

f()"tag) :¢(A§())+w(t)é()+’\n(tv)’ A€ [_1’1]’ tER, EED (3'14)
Then f:][-1,1] x R x D — X satisfies (3.2)(a), and
fE(’\’t’ €)s :¢I(A€())§()+d)(t)§()a AE [—171]’ teR, §ceD (3.15)

For any A € [-1,1], t € R and small £ € D, fe(A,t,€) is an elliptic operator, thanks to
(3.8)(i), with continuous coefficients, so that (see [St]) its complexification satisfles (1.5).
Setting B(t) : D — X, B(t) = fe(0,¢,0), then the function R — L(D,X), t — B(t)
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is T-periodic and «/2-Hélder continuous thanks to (3.8)(ii). To fulfill the assumptions of
Theorem 3.1, it remains to check that 1 belongs to the resolvent set of J(T',0), where J (t,s)
is the evolution operator associated to the family {B(t); t € R}. Denoting by B: D — X
the Laplace operator A, and donoting by e!® the semigroup generated by B in X, we have

J(T.0) = efoT v(s)ds ;T¢'(0)B

Then the condition 1 € p(J( " 0)) is satisfied if and only if (3.9) holds. Existence and unique-
ness of a small T-periodic soi.  1T(A, ¢, z) of (3.7) follows now by Theorem 3.1. Concerning
the regularity properties of @, 1. is sufficient to remark that, since v(t) = @(), ¢, -) belongs to
CYo/2(R; X)NC/2(R; D), then v'(t) = (A, t, ) is bounded with values in Dp(o)(a/2, ),
(see lemma 1.1 of [L1]). In our case we have Dpg(o)(a/2,00) = Da(a/2,00) = {¢ €
C*(); &,, = 0} (see [L5]). This implies, if rq is sufficiently small, i.e., such that & (z)#0
for ~ro < 2 < 7, that AT(A,¢,) is bounded in C>*(Q?), and, by Schauder’s Theorem, that
u(A,t,-) belongs to C%*({1) and sup,cg [[T(, ¢, WMeoza@ < +oo.

Let us prove now the stability property of @ in the case 1(t) < 0. Setting A(t)¢ =
¢'(AT(A, t,-))AE + ¥(t)€ for t € R, € € D (see (3.15)), let G(t,s) (t > s) be the evolution
operator associated to the family {A(¢); t € R}, and let V(s) = G(s + T, s). Since the
inclusion D — X is compact, then for every s € R, V (s) is a compact operator, so that
its spectrum, except the point 0, consists of eigenvalues, not depending on s. If £ is an
eigenvector of V(0) with eigenvalue p, then V(0)¢ = pué = v(T,-), where v(t,z) is the
classical solution of

vi(t, z) = ¢’ (AT(A ¢, 2))Av(t, z) + Y(t)v(t,z), t>0,2€0)
v(0,2) = {(z), z€Q
v(t,z) =0, t >0, z €N

Since ¢'(AT(A, t,z)) > 0, if 1(¢) < 0 for any ¢, then the parabolic maximum principle holds,
so that ||(T,-)||ec < ||€]lcc and v(T,-) cannot coincide with ¢. Using again the maximum
principle, we can show that V(0) is a positive operator, so that its spectral radius is an
eigenvalue. But 1 is not an eigenvalue, so that p; = sup{|A|; A €o(V(s)), s€ R} <1, and
Theorem 2.2 may be applied to find (3.13). We recall that D = {¢ € C(Q); §,, = 0}, so
that condition (3.11)(a) implies f(X,tg,uc) € D.

The regularity properties (3.12) of u may be shown as the corresponding ones of #(), t, z).

(B) The autonomous case. We recall here a Hopf bifurcation theorem for fully non-
linear evolution equations
w'(t) = (X u(t)) (3.16)
where
(@) feC®([-L,1]xD; X); f(A,0)=0 for —1<A<1
(b) for any A € [—1,1], the linear operator A(A) : D — X, (3.17)
A(X) = fz(),0) satisfies (1.5).
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If X and D are real Banach spaces, we denote by D= {z +iy; z,y € D} and X =
{z +1y; z,y € X} their complexifications, and we denote by A()) : D — X the complexifi-
cation of A()), defined by A(A)(z +1y) = A(A\)z +1A(A\)y. We assume the Hopf bifurcation
hypotheses:

(a) =1 are simple isolated eigenvalues of A(0)

(b) 1 is a semisimple isolated eigenvalue of A0 (3.18)
with algebraic multiplicity 2.

Due to assumption (3.18)(a), there are Ao €]0,1] and two C* functions [~Xg, o] — R,
A — a(A), A = B()), such that

a(0)=0, B(0)=1 319
a(A) £48()) are simple isolated eigenvalues of A()) (3.19)

The usual transversality assumption is
a'(0) #0 (3.20)

The following theorem has been proved in [DPL].

Theorem 3.4. Let (3.17), (3.18), and (3.20) hold, and fix v €]0,1]. Then there exist
o0 > 0 and X : [—09,00] = R, 0 — Ao); p: [=00,00] = R, 0 — p(0); u : [~00,00] —
CY'(R;D)NCY(R; X), 0 — u(o)(:), such that

A(0) =0, p(0) =1, u(0)(t) =0 foranyt € R
for 0 # 0, u(o)(:) is a 2np(o)—periodic and (3.21)
nonconstant solution of (3.16) with A = A(o)

Moreover there is ¢g > 0 such that if A € [~1,1], p€ R and 7 € C?(R; D) N C}(R; X) is
a 2np-periodic function verifying

@(t) = fO,a(t), teR
£(0) = J 7).t ) )
Al < €0, |1 = 7] < €0y Tllcvwip) + 1T ller®m:x) < €0
then there exist § € R, o € [—0g, 09| such that
A= AMo), p=plo), u(t) =u(o)(t+0), t€R. ] (3.23)

To recognize the stability properties of u(o), we have to know the spectrum of V(s) =
G(s + 2mp(0), s), where G(t,s) is the evolution operator associated to the family A(t) =
fe(A(o),u(o)(t)), t € R. If V(s) is a compact operator; in particular, if the inclusion
D — X is compact, then its spectrum, except at most the point 0, consists of eigenval-
ues not depending on s. It is easy to see that z # 0 is an eigenvalue of V (0) if and only if
the problem

w' () = fz(A0),u(o)(t))w(t) — kw(t), teR (3.24)



274 ALESSANDRA LUNARDI

has a nontrivial 2mp(c)-periodic solution for £k = (2mp(c))~! log 2. Such a k is called a
Floquet exponent. It may be shown that, for o small, the spectrum of 17(0) is close to
the spectrum of €2™4(%). In particular, if we assume that o(e2™4(©)\{1} is far from the
unit circle, then, if |o] is sufficiently small, V(0) has two eigenvalues near 1, and the other
elements are far from the unit circle. As we have already seen, 1 is an eigenvalue of V (0), and
hence of V(O) We can solve our stability problem if we know that the other eigenvalue has
modulus less than or more than 1, or equivalently, if the corresponding Floquet exponent
k = k(o) has positive or negative real part. The following lemma states that k(o) is real for
lo| small, and gives information about the sign of k(o).

Lemma 3.5. Under the assumptions of Theorem 3.4 there are o7 > 0 and a continuous
function [—01,01] = R, 0 — k(0), such that

(¢) k(0)=0
(¢7) for any o € [—01,01], problem (3.24) has a nontrivial (3.25)
2mp(0)-periodic solution with k = k(o)
and
|k(o) + &/ (0)o A (0)| = ~(o)|oN (0)] (3.26)
with lims—o (o) =0. I
The proof is very similar to the corresponding one in the semilinear case (see [CR]), so it
will be only sketched in the appendix. Formula (3.25) implies that there is a neighborhood
of o = 0 in which k(o) and 6’ (0) have the same zeroes, and in which —k(o) and o/ (0)o M (o)
have the same sign, if they do not vanish. Computing the sign of &’(0)o )\ () is tedious but
not difficult, as we will see in example 3.7.

First we give an example of unstable periodic solutions of fully nonlinear parabolic equa-
tions.

Example 3.6. Let us consider the equation treated in [DPL]
u(t, z) = ¢(A ult, z), ug(t, z), uze(t, 7)) (3.27)

We are looking for periodic solutions of (3.27), both with respect to time and with respect
to space. To this aim we choose

{X = {¢: R — R continuous; £(z) = £(z + 27) for z € R} (3.28)

D=C*R)NX
We assume that (A, p) — @(),p) belongs to C*([—1,1] x R%; R) and ¢(},0) = 0, so that

the function f(A,u) = (A, u,u',u") belongs to C*°([~1,1] x D; X) and (3.17)(a) is satisfied.
Moreover, we assume the parabolicity condition

¢ps (A,0) >0 (3.29)
and the existence of h € Z such that

{ (a) ¢P1 (070) = h2¢pa (070)’ h¢p2 (an) =1

2 (3.30)
(b) ¢P1>\(Oa 0) 7& h ¢P3/\(070)
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Setting A(A) = fu(),0), we have
A€ = ¢p, (X, 0)€ + dp, (1,006 + 63 (X,0)€"
for any £ € D, so that the spectrum of /i()\) consists of the eigenvalues
n = 6p, (X,0) +indy, (A,0) — n?¢,,(A.0), n€Z (3.31)

By (3.30)(a), A(0) has a couple of conjugate eigenvalues on the imaginary axis, and no other
purely imaginary eigenvalue. Since (A(0))~! is a compact operator and A(0) generates
an analytic semigroup thanks to (3.29), condition (3.18)(i) holds. Then Theorem 3.5 is
applicable, so that equation (3.27) has small periodic solutions for suitable values of A near 0.
But these solutions are orbitally unstable, because (3.29) and (3.30)(a) imply ¢, (0,0) > 0,
so that /i(()) has a positive eigenvalue for n = 0. This implies that e!4(%) has an eigenvalue
with modulus greater than 1 for any ¢ > 0, and so does V(t), if A is sufficiently close to 0,
(we use the notation of Theorem 2.5). Then Theorem 2.5 applies. |

We finish the paper with an example of a nonlinear parabolic system having stable time-
periodic solutions.

Example 3.7. Let ® : [-1,1]xR3® — R, (A, p1,p2,p3) — ®(A,p1,p2,p3), ¥ : [-1,1]xR? —
R, (A, p1,p2) — V(A p1,p2) be C* functions, and consider the system

w(t, z) = 2N ult,z),v(t,2),uzz(t,2)), tER, 0<z <7
v(t,z) = ¥(\u(t,z),v(tz)), teR, 0<z <7 (3.32)
u(t,0) =ult,7)=0, teR

We assume that (3.32) has the stationary solution (u,v) = (0,0) and that (3.32) is parabolic
near (u,v) = (0,0); i.e

®(X,0) = ¥(A,0)=0; &,,(3,0)>0, -1<A<1 (3.33)

We choose X = C([0,7]; R) x C([0,7); R) and D = {(£,n) € C2([0,7); R) x C([0,7]; R);
€(0) = &(r) = 0}; X and D are endowed with the product norm. The function f :

L] D — X isdeined by /(% (61))(2) = (801 (). (). €"(2)). 0 €(x). () anc
belongs obviously to C*°([~1,1] x D; X). An easy computation shows that the spectrum
of A(\) = f(E,n)()‘ 0) consists of the point ug(A) = ¥p,(A,0) and of the eigenvalues i,
n € N, given by

1 2
2N =2{w &, —n?d,, + (¥ &, —n?
M+ ( ) 2{ p2 T Pp, —N7Pp, [( pe +Pp, — 1 @m) (3.34)

- 4(‘1>p1 Vp, — Pp, ¥y, — ”2‘1)123 ‘I’pz)]l/2}

where the derivatives @, , ¥ are evaluated at (A,0). Thanks to assumption @5, (},0) > 0,
it is easy to check that each A(X) satisfies (1.5). The Hopf bifurcation assumptions (3.18)
are satisfied if there is A € N such that

{ (a) g+ &) = h2®3; Uy — OV, = A2D30, + 1

#) U #0 (3.35)
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Here and in the following we set for brevity ®; = &, (0,0), ®;x = $,,1(0,0), j = 1,2,3,
and so on. Actually, (3.35)(a) implies obviously (3.18)(a), and (3.35)(b) implies that
o(A(0))\{+7, —3} is far from the imaginary axis. Set now X = Xg ® X; @ X2, where
X; = P;(X),j=0,1,2, and

1 ~ 1 ~
Py = _ -1 4, — — -1 =1 — .
0= 5= L O(z AO)~tdv Py = o L 2(z A(0))'dz, Pp=1-Py— P, (3.36)

7o and 2 are suitable paths a.ound {+1, —¢} and 0(A(0)) N {z € C; Re z > 0} respectively.
Then A(0) = Ao ® A1 ® Ag, v.here A; = A(0)P;. Since sup{Re z; z € 0(4;)} < 0 and
inf{Re 2; 2 € 0(A2)} > 0, then there are M, w > 0 such that ||e!41||,(x) < Me™“t and
(if Xa # {0}) |le*2||L(x) > Me“! for any ¢ > 0. In particular, the spectral radius of e2741
(respectively €2742) is less than 1 (respectively greater than 1), so that 1 belongs to the
resolvent set of both A4, and As. Since 1 is a semisimple eigenvalue of Ag with multiplicity
2, (3.18)(b) follows. The transversality condition (3.20) holds if

oy + 1x # W20y (3.37)

Therefore, under assumptions (3.33), (3.35), (3.37), the hypotheses of Theorem 3.4 are
satisfied, and system (3.32) has small time periodic solutions (u,v) for suitable values of A
near 0. We do not expect they are stable if A (given in (3.35)) is greater than 1, because in
this case we get Re p1 > 0. (p; is given in (3.34), see also example 3.6). Then from now on
we assume

(@) Uy+ &, =d3, BV +V2+1=0

(b) ¥y<0 (3.38)

(€) Wax+ ®yp # B3

so that the spectrum of 627“&(0), except the point 1, is strictly inside the unit circle. Our
goal is to compute the sign of a’(0)o A (o) for o near 0, see Lemma 3.5. The linear space
Xo is spanned by ag % tbg, with

ao(z) = (sinz, —¥1 ¥y /(1 + ¥3)sinz), bo(z) = (0, —¥/(1 + ¥3)sinz) (3.38)
In [DPL] it is shown that the solution u(o) of (3.15) is given by

u(o)(t) = o[v(0)(t/p(c)) + exp(t/p(c) A(0))ao] (3.40)

where A(o), p(o), v(o) are the solutions, near 6 =0, A =0, p=1,v =0, of G(o, A, p,v) =0,
with

G:[-1,1]x[-1,1] x[0,2] x V — {v e CY(R; X); v(t) =v(t+2r), teR}

1o d 140 tA(0) -
[0 (P ag +v) = pf (A, 0(e""Pag +v))] if o #£0 (3.41)

G(o, X, p,v) =

d ~ -
E(e“‘“))ao +v) — pfu(X,0)(e? gy +v) ifo=0
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and

V= {v € C'(R; D)NCYI(R; X);  w(t) = vt +2m),

22w 27T (342)
/ (6(2”_8)A(0) v(s), ag) ds = / (6(2“_3)A(0) v(s), bg) ds = 0}
0

0
(-,-) is the duality between X and X*, and ag, by € X* are such that

{ag, ag) = (bo, by) =1, (a0, by) = (bo, ag) = 0.
Differentiating (3.41) twice, we find

1

X(0) = T 40)

2
/ (@A £,,(0,0)(e** Y a0)* , ag) ds (3.43)
0

In our case we have et4(0ay = agcost — by sint, €40 by = agsint + by cost, and

((& /E )sinz dz
((&m),bp) = —/0[ Wog(z) — U7 (1 + ¥3)n(z)] sinz dz.

Therefore, using (3.42), we can compute A”(0), finding A”(0) = A(®, ¥), with

.1 _
A(D,¥) = —Z(‘I’u 4+ Way — @35) 7 [@111 — 3113 + 3P133 — Pass

— Uy U,(1 4 U2) 71 (2@ 112 + 20933 — 4@123) + WI(1 + U3) ! (@129 — Po3)
— U (14 U2) 7 55 4+ 20205 (14 U2) 72055 — U3(1 4 UF) 72 Wg0]
(3.44)

We have established the following result:
Proposition 3.8. Let ® : [-1,1] x R® - R, ¥ : [-1,1] x R? — R be C* functions
satisfying (3.33) and (3.38). Assume that A(®, ¥) # 0, A(®, V) is given in (3.44). Then there
is Ag > 0 such that if A(®, ¥) > 0 (respectively A(®,¥) < 0), for any X €]0, o] (respectively
[~Xo,0[), problem (3.32) has a small nonconstant periodic solution (ux(t),va(t)) with period
approaching 2 as A approaches 0. (U, T») is orbitally stable if (®1x + ¥\ —®31)A(D, U) >
0, it is orbitally unstable if (®15 + ¥2x — P3x)A(P, ¥) < 0. We mean smallness and stability

with respect to the norm ||(&,n)|l = [l€llc(jo,x)) + lInllcqo)- B

Appendix

Sketch of the proof of Lemma 3.5. We use the notation of Theorem 3.4. Let
F:[-00,00) x RXRxV —- C'(R; X) = {v € C'R; X); v(t) = v(t+27), t € R} be
defined by

F(o,k,n,2)(t) = %(em(o)ao + 2(t))
— p(0) fu(Ma), u(o)(p(o )))( 4@aq + 2(1)) (A.1)

+ k(4@ ag + 2(t)) —no~! —(u(0)(p(o)t))
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where V. C C7(R; D) is defined in (3.42), ag =+ by are the generators of Xy, defined in
(3.38). Then F(0,0,0,0) = 0, and the derivative of F' with respect to (k,n, 2), evaluated at
(0,0,0,0), is the linear operator

(k. 11, 2) — ("4 @ag)k + (€4 @bo)i) + 2 (t) — A(0)5(¢)

which is an isomorphism from R x R x V onto C7(R; X). Therefore for any o sufficiently
close to 0 there are k(o), n(o), 2(c) such that

F(o,k(0),n(0),2(0)) =0 (A.2)
If k(o) = 0 for some o, then (A.1) and (A.2) imply that both
wy (t) = exp (t/p(0)A(0))ag + 2(0)(t/p(c)) and we(t) = d/dt(u(o)(t))

are solutions of (3.24). By (3.40), w; and wy are linearly independent, so that 0 is a double
eigenvalue of V(0). If k(o) # 0, we can easily check taht the function w(o), defined by

w(o)(t) = exp (t/p(c)A(0))ao + 2(0)(t/p(0)) + n(o)(k(d))’la‘ldit(u(o)(t)) (A.3)

is a nontrivial 2mp(o)-periodic solution of (3.24). Therefore (3.25) is proved. To show (3.26),
let us differentiate with respect to o the equality

d

7 [o(w(@)(t) + 4 Qao)] = p(0)f (M), 0(v(0)(t) + €4 ag)) =0

where u(o) is given by (3.40). Now, subtract (A.2) from the resulting equality, to get

— K(0) [ @ag + 2(0)(1)] + (1(0) = 07/(0)/p(o)) [~ 4@ + Zu(o)(1)]

+aX(0)[~ p(e)o™" [ (Ao),a(v(o)(t) + €4 ag))] + A(a)(%(av(a)) +2(0))
=0

(A.4)

where A(o) : C'(R; D)NCH(R; X) — C7(R; X) is the linear operator defined by
(A0))(t) = ¥ (t) = p(0) fu(A(0),0(v(0) + 4 PVag))y(t), tER (A.5)

The linear mapping (k, €,y) — —h(e!4@ag + 2(0)(t)) + £( — !4 bg + (d/dt)v(0)(t)) +
A(o)y(t) is an isomorphism from R X R X V onto C?(R;X) for ¢ = 0, and it depends
continuously on o. Moreover, we have

-1 tA(0) o%f tA(0)
lim —p(0)o ™" f(A(0), o(v(0)(t) + 4 Vag)) = 3ras (0,00 Mao (A.6)

o0

The limit is in the C7(R; X) topology. Therefore there is a constant C > 0 such that for ¢
sufficiently small we have

k(o)| + In(e) — o0’ (0)/p(0)] + II%(OU(U)) +2(9)llov(r;p) < CloX'(0)] (A7)
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Set now for |o| small and t € R

g(a)(t) = _k(o-)etA(O)ao + (77(0) _ o.pl(o,)/p(o_))(__etA(O)bO)
+0N(0)[ = p(0)07 [r(A(0), 0(0(0) (t) + ¢4 PVag))]

By (A.4) and (A.6) we have, since v(0) = 2(0) =0,

lo(0) = A(@) (3 (00(0) + 2(0) o) = o(1)loN (o)

when ¢ — 0. Therefore, using (3.42), we get

[ 105, ) ds| = o(1)ioX (o).

Computing the integral, (3.26) follows.
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