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Abstract. This note deals with systems of hyperbolic conservation laws that are

endowed with a generalized kinetic relation and develop phase transitions. The L1-

Lipschitzean continuous dependence of the solution from the kinetic relation is proved.

Preliminarily, we rephrase several results known in the case of standard conservation laws

to the case comprising phase boundaries.

1. Introduction. This paper deals with conservation laws in presence of phase tran-

sitions. More precisely, we deal with the system

dtu + dx[f(u)]= 0 (1.1)

with t E [0, +oo[, x £ R, u G 12, /: i—> R™ and $7 C R™, under the assumption that SI

be the disjoint union of two open sets, which we refer to as phases, i.e.,

n = n0u fix. (1.2)

A phase transition is a jump discontinuity in a solution u to 1.1 between states u(t,x—)

and u(t, x+) belonging to different phases.

Physical models leading to this setting are provided by liquid - vapor phase transitions,

elastodynamics, or combustion models; see [2, 7, 8, 9, 19, 20] and the references therein.

Typically, in the case 1.2 the Riemann problem for 1.1 turns out to be underdetermined

and further conditions need to be supplemented. Physically, various criteria have been

devised: viscosity [20], viscocapillarity [19], or other kinetic conditions [2], From an
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analytical point of view, the above criteria can be described through the generalized

kinetic condition

"J/ (u(t,x—), u(t5 a;+)) = 0 (1.3)

for a given smooth function ^ having a suitable number of components.

When no phase transitions develop, 1.1 generates the so-called Standard Riemann

Semigroup, or SRS for short; see [5, 15] and the references therein. Phase transitions,

when present, depend on the particular admissibility criterion 1.3 chosen. Hence, the

solution operator generated by 1.1-1.3 is referred to as the *1'-Riemann Semigroup, or

^RS; see [7]. For the sake of completeness, we note here that 1.3 can be substituted by

constraints on the structure of the solution, as in [8].

The aim of this paper is first (in Sec. 2) to extend several results obtained in the case

of the SRS to the case of systems endowed with a generalized kinetic relation. Secondly,

in Sec. 3, we study the dependence of the solution u to 1.1-1.3 on the flow / and, in

particular, on the function 'P. We shall prove that the solution u in L1 is a Lipschitz

continuous function of / and ^ in C1. The last section is devoted to examples of possible

applications of these results.

2. Notations and Preliminary Results. On the system (1.1) we require that

(1): / is of class C3, the n x n matrix Df(u) is strictly hyperbolic both in Slo and in

Sli; i.e., Df has n real distinct eigenvalues and each characteristic field is either

genuinely nonlinear or linearly degenerate.

For i = 1 ,...,n and u G Q, denote by Ai(u) and r,(u) the i-th eigenvalue and the

corresponding right eigenvector of the n x n matrix A{u) = Df(u). The indexes are

chosen so that Ai_i(-u) < A;(it) for all u and i. If the i-th characteristic field is genuinely

nonlinear, the eigenvector is normalized so that VAi(u) ■ Ti(u) = 1. Denote by A an

upper bound for |Aj (u)l. for all i = 1,..., n and u £ Q. We refer to [5, 11] for the basic

definitions related to conservation laws. In particular, below we mean entropic in the

sense specified by Lax inequalities [5, Formula (4.38)].

Let u: [0,+oo[ x R i—> fl be a weak solution to 1.1, entropic both in fl0 and in 1

and such that u(t, ■) £ BV for all t. A Lipschitz-continuous curve x = p(t) is a phase

boundary if the traces

u{t,p{t)—) = lim u(t,x) and u(t,p(t)+) = lim u(t,x)
x—>p(t) — X—>p(t)+

are in different phases. The phase boundary x = p(t) is of type (j, h) [13] at time t if

(2.1)
Aj_i {u(t,p{t)-)) < p(t) < Aj(u{t,p(t)-)) ,

Ah(u{t,p(t)+)) < p(t) < Ah+i(u(t,p(t)+)) .

The above inequalities mean that the characteristics entering into the phase boundary

are precisely those numbered by j, j +1,..., n on the left and 1,2,... ,h on the right. The

usual Lax shocks of the A;-th characteristic family behave as a (fc, k) phase boundary. The

stability of (2,1) phase boundaries is considered in [7] in the framework of elastodynamics

and liquid-vapor systems.
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Fig. 1. (a) Characteristics and a (j, h) phase boundary, (b) Solution

to a Riemann problem. The phase boundary is represented by a thick

line, the other waves by thin lines.

The requirement that a solution u with a phase transition between the states ul G fio

and ur G be a weak solution to 1.1, implies that the Rankine-Hugoniot conditions [5,

§4.2] between ul, ur and the speed p of the transition be satisfied.

In 2.1 we neglect the sonic case in which one of the inequalities is replaced by an

equality. This situation can be treated, for example, as in [8, 9].

2.1. The Riemann Problem. Let ul G and ur G and assume that the Riemann

problem

dtu + dx [/(«)] = 0

ul if x < 0 (2-2)

ur if x > 0

admits a weak solution consisting of a (j, h) phase boundary x = At that satisfies the

Rankine - Hugoniot condition

f(u1)- f(ur) = A- (ul-ur). (2.3)

If j > h, attempting to solve any small perturbation of 2.2 leads to an underdetermined

problem; see [13]. Indeed, further j — h conditions need to be supplemented through the

introduction of an admissibility function : (f^o x U x fl0) i—> R-5-'1. We assume

throughout that ^ is of class C2 and, in order to respect the x —> —x symmetry of 1.1,

we also require that

V(ul,ur) = V{ur,ul). (2.4)

Definition 2.1. Given problem 1.1 together with an admissibility function : (f2o x

fil) U (fii x fig) * R-7'-'1, a phase transition in a weak entropic solution u to 1.1 is

admissible if 1.3 is satisfied at almost every point of the phase boundary. A -admissible

solution to the Riemann problem

dtu + dx [/(u)] = 0

ul if x < 0 (2.5)

ur if x > 0

u(0, x) =

u( 0, x) =

with data in different phases is a self-similar weak solution to 1.1 consisting, from left to

right,

(1) if ul e fio and ur G fii, of j — 1 Lax waves in f2o, a ^-admissible phase boundary,

and n — h Lax waves in fix;
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(2) if ul 6 fix and ur E Ooi of n — h Lax waves in a ^-admissible phase boundary,

and j — 1 Lax waves in Qo-

Above, by Lax waves we mean the usual (possibly null) simple waves that constitute the

Lax [16] solution to Riemann problems.

The local well-posedness of the Riemann problem 2.5 near y} and ur requires suitable

compatibility conditions between / and \I>. A sufficient condition, obtained in [10], is

(2): iP: (fio x Qi) U (fij x f20) > ~R,J~h is of class C1, satisfies 2.4 and the matrix

(A-Aiki (A-A [u] (A-A h+1)rh+1 ... (A - A„)r„

D^r:i ... D1frj_1 0 -D2Vrh+1 ... -D2^rn

is invertible.

Above, Di'i' (resp. D2^) is the (j — h) x n matrix of the partial derivative of VP with

respect to the first (resp. second) argument ul (resp. ur), evaluated at (ul,ur). Similarly,

Ai,..., Aj_i and the corresponding eigenvectors are computed at u , while A^+i,..., Xn

as well as their related eigenvectors are evaluated at ur.

A direct application of the implicit function theorem leads to the following proposition.

Proposition 2.2. Let assumption (1) hold. Fix two states ul & fio and ur € such

that (2) holds. Then, for all it', ur in suitable neighborhoods of ul and ur, the Riemann

problem 2.5 admits a unique ^-admissible solution in the sense of Definition 2.1.

When ul and ur are in the same phase, a Lax solution to 2.2 may not necessarily exist,

for the jump ||u( — wr|| may well be large. It is then natural to look for a solution to 2.2

containing two different phase transitions. Such a solution models the nucleation of two

phase boundaries. A solution to 2.2, and hence also of its perturbation 2.5, is obtained

by gluing solutions of type (1) and (2) above. Note that the two phase boundaries need

not be of the same type (j, h); hence, a wide variety of cases may appear. The extension

of the Proposition above to the case of nucleation (and even to the case of several phase

boundaries) follows easily, simply assuming the stability condition (2) on each of the

phase boundaries in the solution to the unperturbed problem 2.2; see [7, 17, 18].

2.2. The -Riemann Semigroup. In this first part, most of the proofs are omitted, for

they usually follow from the corresponding ones related to the SRS and full references

are provided. In this section we consider (j, h) phase boundaries, for fixed j and h, j > h.

Definition 2.3. System 1.1 and condition 1.3, with the admissibility function "I*: (f2ox

f^i) U (fii x n0) i—► satisfying 2.4, generate a $-Riemann Semigroup ("fRS)

S: [0, +oo[ x V h-> D if the following holds:

(1) V is a non-trivial domain in BV(R);

(2) 5 is a semigroup: So = Id and StoSs = St+s;

(3) S is L1-Lipschitzean: there exists a positive L such that for all u, w £ V,

||Stii - S*H|l1 < L ' (llu - HIll + \f - sl) >

(4) if it £ P is piecewise constant with jumps at, say, Xj, j = 1,..., m, then for t

small, Stu coincides with the gluing of the ^-admissible solutions to the Riemann

problem 2.5 with ul — u(xj-) and ur = u(xj+).
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In the case of the Standard Rieraann Semigroup (SRS) (see [5]), (1) above amounts to

asking that V contains all functions with suitably small total variation. In [7], this condi-

tion is replaced by the assumption that V contains, at least, all BV-small perturbations

of the Riemann data 2.2. Note also that, due to the uniform continuity implied by (3),

S can be uniquely extended to the L1 closure of V.

A first result towards the construction of a 'I'RS was obtained in [7] in the case n = 2.

In the general case n > 2, the techniques used in [7, 17, 18] allow to prove the following

result. Denote by M. the set of smooth increasing diffeomorphisms Rm R,

Theorem 2.4. Assume that /: Ho Ufii h Rn satisfies (1). Fix j, h £ {1,... ,n} with

j > h and let $: (fio x ^i) U (f2i x Qq) i—> RJ~'1, ul £ Hq and ur £ such that (2)

holds. Let u be the 'F-admissible solution to 2.2.

Then, the problem 1.1-1.3 generates a ^RS S: [0, +oo[ x T> i-> V with the following

properties:

(1) t i—* Stu is a weak solution to 1.1-1.3;

(2) there exists a S > 0 such that V contains all u: R i—> 0, for which 3/x £ M. with

||u(-) - u(l,/x(-))||Li < °°, TV{u(-) - u{l,n(-))} < 6; (2.6)

(3) for every u £ V, Stu is the limit of front tracking approximations;

(4) there exists a map p: [0,+oo[ h-> R whose graph x = p(t) supports the phase

boundary, p is Lipschitzean, and p has bounded variation.

We remark that the above theorem also ensures the structural stability of the phase

boundary with respect to all perturbations having suitably small total variation.

Note also that in the case of nucleation, i.e., of two phase boundaries in the solution

to 2.2, Theorem 2.4 still holds, provided the so-called strong non-resonance conditions

are imposed on /, and on the data ul, ur; see [6, Formula (2.13)], [7, Formula (2.12)],

[17, Formulas (1.11)—(1.12)], and [18, Formulas (2.12)-(2.13)].

Essentially, as in the case of the SRS, when Theorem 2.4 applies, then the ^RS is

unique and its orbits yield solution to 1.1—1.3.

Theorem 2.5. With the same assumptions of Theorem 2.4 above, call S: [0,+oo[x£> h-»

V the ^RS constructed therein. Call S: [0,+oo[ xPhP another *I/RS, with PDP,

Then, for all u £ V,

Stu = Stu for all t > 0.

The proof follows the lines of [5, Theorem 9.1],

Once a 'I'RS is constructed as limit of wave front tracking approximations, the problem

of characterizing the 'I'RS can also be solved, again as in the case of the SRS. Indeed,

consider a trajectory t i—> Sf.u of the *I/RS S. Fix a point (r, £) and denote =

limx_,£-j- u(t, x). We define:

• the function U^u.T ̂  is the "f-admissible solution to the Riemann problem with

initial data (m~,m+);
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• the function U*U,T ̂ is the solution to the linear initial-value problem

dtw + A (u(t, £)) dxw = 0

w(t, x) = u(t, x).

Theorem 2.6. Assume that 1.1 generates a "JRS S: [0, +oo[ x I) h D. Then, the

orbits t i—> Stu are admissible solutions to 1.1. Moreover, for all u G T>, the function

u(t, x) = Stu satisfies the following estimates:

(A) for every r > 0, £ G R and p sufficiently small, there exists a constant C > 0 such

that

I r£+p-h\

hj h'\ K +

f^-j-p—hX

dx
. 11 v ' ' ' ( U'.T.t I v ' J'

) — p-\-h\

<C-TV{u(r);]e-/9^[U]^$ + /!»[} ;

(B) for every r > 0, there exists a constant C such that, for every £ G ]a, b[ and

h G 0,(6-a)/2A

1

h

rb—hX

/ u(t + h,x) - U(U.T ̂(r + h,x) dx < C ■ TV {u(t); ]a, &[}
> a+h\

Conversely, if u: [0, T] >—> V is L1-Lipschitz continuous and satisfies (B) together with

(C) for every r > 0 and £ G R

ri+hx1 fl;+n «
lim - / u(t + h,x) - Ufu.r£)(h,x - £)
^o+ n J'

dx = 0,
h-

then u coincides with a trajectory of the 'I'RS, i.e., u(t, ■) = Stu(0, ■).

The proof is analogous to the one given in [5, Theorem 9.2] and is here omitted.

3. The Stability of the \E<RS. This section, inspired by [4], studies the dependence

of a 'I'RS on the flow / in 1.1 and on the admissibility function \£ in 1.3.

Let Hyp(fi0 U fii) be the set of couples (/, \I>) with /: fi0 U R™ and : (f20 x

fii) U (fii x fio) ^ R-'-'1 that generate a "J/RS : [0, +oo[ x T>f<^ i—> Call

pf'* the set of pairs (ul,ur) such that the Riemann data ul\j ^ Qj + itrXjQ

. Moreover, 7^/'*: i—► is the Riemann solver defined by / and \I>; that is,

x i—>7If,9 (ul, ur) is the 'I'-admissible solution to the Riemann problem 2.5 evaluated at,

say, time t = 1.

Let (gi,$i) and (32,^2) be in Hyp(f2) with Z) V92'$2. Define

\\TZ9l^(ul ur) - TZ92'^2(ul ur>)ll
d((g1,<f>1),(g2,$2)) = sup II L-!_L _ ' J|Il1 . (3.1)

J>92>^2 u^~ — u

A map of this kind was first introduced in [3]. Note that d is not a distance because

d((gi, $1), (32, $2)) = d((gi + Ci, (g2 + C2, K2$2)), for all constants Ci, C2, A'i,

and K2.

The following result is proved as in [4, Theorem 2.1].
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Theorem 3.1. Let (gi,$i) G Hyp(O) for i = 1,2. Denote for brevity Sl, V, and Li

the respective $ii?5"s, the domains, and Lipschitz constants. If V1 D V2 then, for every

u G X>2,

< Lx-d((9l, $0,(52, <f2))- f TV(S2tu)dt. (3.2)
./o

The above estimate 3.2 does not allow an immediate understanding of which norms

of / and <3/ have a role in bounding the dependence of Sl on (<7j,4>j). We therefore

provide the following more explicit result. Below, if <t>: i—> R™, we denote ||</>||ci =

supuen(||0(«)|| + \\D(j)(u)\\). The closed sphere in R" centered at u with radius S is

denoted by B(u,S).

Corollary 3.2. Assume that /: fioUfti i—> R" satisfies (1). Fix j, he {1,..., n} with

j > h, K > 0 and choose \Jr: (Qo x ^l) U (f2i x fio) i—> Tl?~h, ul in f2o> and ur in such

that (2) holds. Then, there exist positive C, M, and 6 such that:

(1) (/, G Hyp(fi0 U fii) and if u G with u(R) C B(ul,S) U B(ur,5) and

TV(«) < K, then for a.e. t > 0, S/'*u(R) C B(ul, 8)\jB{ur, 5) and TV(S/'*u) <

M. Moreover, D B(ul,5) x B(ur,S);

(2) if (g, $) is such that ||g - /||cl < 6 and ||5> - \I/||Ci < 6, then (g, $) G Hyp(f2)

and V9D B(ul, 6) x B{ur, 6);

(3) if, for i = 1,2, (&,$<) are such that \\gi - f\\ci < S, ||$j - #||cl < S, and

D1 DD2, then for all u G T>2,

ll^tl~~ ̂"IIl1 - C ' (11-91 ~~ 5211c! + ll^i - ^*2He1) ' * ■ (3-3)

Proof. (1) and (2) follow from Theorem 2.4 and the implicit function theorem. Ac-

cording to Theorem 3.1, we need to prove that

d ((<7i, $i), (<721 $2)) < C • (Hffi - g2He1 + ll^i _ *^2He1) •

In turn, the latter estimate holds provided

||TC2(w',0-^V,"r)||Li

< C ■ (\\g! - g2\\Ci + ||$]. - $2||cl) • \\ur -u
(3.4)

for all (ul,ur) G V2. It is sufficient to verify 3.4 in the case that 1Z2(ul,ur) has a single

jump. If this jump is a Lax shock, then the same computations in [4] apply. Therefore,

we assume that lZ2(ul,ur) consists of a <E>2-admissible phase boundary.

Let x = A2t be the support of the <J>2-admissible phase boundary in u2 = 1Z2(ul,ur).

With reference to the pair (<71, ̂j), let <7 1—> (ua, a) be the Lax shock-rarefaction curve

of the £-th family exiting ua parametrized by, say, arc length. Similarly, a h-> CJ(u0,(t)

is the £-th Lax curve entering u0, that is, if ul = Cj(u0,a) and ur = ua, then 2.5 is

solved by a single Lax £ wave. Then, TZl(u\ur) attains the states

vo = ul wh = C^+1(wh+1,ah+i)

■ n v 1 = £-i(v0,cr 1) . ...
inO0 lnfii ,

Wn-i = Cn(wn,an)

Vj-1 = £+_1(Uj_2,CTj-_i) wn = ur
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with, moreover,

Ai • (wh - vj-1) = f{wh) - f(vj_i)

$1 (Vj-i,wh) = 0.

Then

K2(ul,ur)-1l\ul,ur)\\

/min{Ait,A2t}
\\n2{ul ,ur){t) - nl{ul ,ur){t)\\dt

-oo

<

+

J Ai

A21

TZ2{ul,ur){t) -TZ\u\ur){t)\\dt

r-too

+ / \\ll2{ul,ur)(t) --R\ul,ur)(t)\\dt
J max! Ai

t

+00

.l\

' max{Ait,A2^}

3-1

< 0 ^ \\v( — u
e=i

+ 0{l) (\\g2 - Sillc1 + 11^2 - ^lllc1)
(3-1 n—1 \

• (X!lk~u'll + X!iiw«~urii)
\£=1 £=h J

n— 1

+ o(i)]TlK-<ul
l=h

< C(l) (1192 — fflllc1 + 11^2 - ^lllc1 + 1) '
\*=1 £=/i+l /

Let Ei(ul, ur) = (ct 1,..., <Tj_i, c/1+1,.. ■, ff„) denote the vector of the wave sizes. Note

that E1 is implicitly defined through g1 and <&\ Moreover, E2(ul,ur) = (0, so

that

\\TZ2{ul,ur) -TZ\ul,ur)\\

< 0(l)(\\g2-g1\\cl + \\$2-<S>1\\c, + \)(E1(ul,ur)-E2(ul,ur))

< C(l) (1152 Pi lie1 + 11^2 - ^1 He1 + 1)

•sup ||El{ul,ur) - E2(ul,ur)||co
■p2

< 0(1) (Hsa-si||Ci + 11*2-$i||Ci)>

where the last estimate follows from the Lipschitzean dependence of the implicit function

upon the defining function. Now, 3.4 directly follows choosing 5 sufficiently small also

with respect to ||u' — ur||. □

Note that the bound 3.3 differs from the analogous one in [4], Indeed, consider the

case $1 = ^ = $2, that is, the admissibility function is the same for both flows. The

estimate obtained in [4] is

\\Slu - S?u||L1 < C ■ (||£>01 - £>32|lc°) 'f- ■ (3-5)
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The estimate 3.3 implies 3.5 as soon as is connected, thanks to an elementary argument.

However, an estimate like 3.5 may not hold in the present case where SI is the disjoint

union of two phases. In fact, consider the case

9i — /, 92 —
f in

f + c in

for a constant c / 0. The semigroup generated by is different from the semi-

group generated by (32,^)1 since the Rankine-Hugoniot conditions differ on all phase

transitions. Hence, estimate 3.5 may not hold and needs to be replaced by 3.3.

4. Applications. In this section we show some applications of Corollary 3.2. The

first example concerns the system

f dtv-dxa(w) = 0 , .

\ dtw-dxv = 0. [ '

This is a standard model [11] for longitudinal motions of an elastic bar with unit cross-

sectional area; here v is the particle velocity, w is the strain, and a = a(w) is the

stress function. In order to model phase transitions the function a must be chosen

non-monotone; we assume that it is the cubic stress

o(w) = <jm + k{w - a) (w - ) (w - b),

with a < b and am, k real numbers; see [22]. I11 this case £Iq = R x ] — 00, a[, Qi =

R x ]/3, +oo[, where a and (3 are respectively the maximum and minimum of a. An

explicit kinetic condition for (2,1) phase boundaries is obtained in [22] by looking at

travelling waves of an enlarged system where viscosity and a strain-gradient term are

present. This condition is 1.3 with

™+) = 3 (1 - 3) (4^ " f^)2 + (2£^F)2 - 1 ■ (4-2)

Above to = 77/y/e, where 77 (resp. e) is the viscosity (strain-gradient term) coefficient. A

straightforward computation shows that

36

(b — a)2 (pi + 2 V2C5)
1 1"72 _ 7^2

where C5 = sup{|w++w~ — (a + 6)|; | < <5}. A semigroup for a large class of sys-

tems including 4.1 was constructed in [7], under generalized kinetic relations comprising

4.2. Then 3.3 applies.

Also in the case that the stress function a is trilinear, an explicit kinetic condition is

at disposal, [1]. An estimate analogous to that above, though a bit more complicated,

can be given as well.

Finally we consider weak deflagrations within the following standard [8, 9, 12, 14]

combustion model. At time t = 0, burnt gas covers the half-line x < 0, while unburnt
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gas fills x > 0. In Eulerian coordinates,

dtP + dx{pv) = 0

dt(pv) + dx(pv2 + p) = 0 (4.3)

dtE + dx(Ev + pv) = 0

where p is the density, v is the velocity, m = pv is the momentum, p is the pressure,

E = pe + pv2/2 is the total energy, and e is the total internal energy. We assume that

£
i for burnt gas

e + q for unburnt gas

where e = -p is the internal nonchemical energy. We assume q > 0; that is, the

reaction is exothermic. Explicit values for q can be found, for instance, in [12]. The

boundary between the two gases, namely, the reaction front, can be considered as a (3, 2)

phase boundary in the case of weak deflagrations; see [14, Figure 4.7.2]. The Riemann

problem in this case is 1-underdetermined and a kinetic condition was proposed in [21].

This condition is of the form r>+ + K(T+— A = 0 where ii+ and T+ are the velocity

and the temperature of the unburnt gas, A the propagation speed of the front, K and Q

constants. We assume for simplicity Q = 1/2 (laminary flames). Under a 7-law for the

pressure, the kinetic condition above reads

  
^U(u~,u+) = —— + uVe+ — A(u~, ti+)

P+

where lj = K^J7 — 1; see [9]. Then

II^U! - $w2||Ci = (SUP v^ + sup V\/e+ j ■ (wi - UI2). (4.4)

Therefore Corollary 3.2 applies and 3.3 measures the distance between two solutions.

Notice that since the difference in 4.4 is computed only for the states on the right, the

remark after the end of the proof of Corollary 3.2 applies and the term sup \/e+ can be

estimated by sup || V||.
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