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The Schwarzschild–de Sitter solution in the Einstein theory with a positive cosmological constant
� = m2/α becomes an exact solution to the de Rham–Gabadadze–Tolley (dRGT) nonlinear
massive gravity theory with the mass parameter m when the theory parameters α and β satisfy
the relation β = α2. We study the perturbative behavior of this black hole solution in the nonlin-
ear dRGT theory with β = α2. We find that the linear perturbation equations become identical
to those for the vacuum Einstein theory when they are expressed in terms of gauge-invariant
variables. This implies that this black hole is stable in the dRGT theory as far as the spacetime
structure is concerned, in contrast to the case of the bi-Schwarzschild solution in the bi-metric
theory. However, we have also found a pathological feature that the general solution to the per-
turbation equations contain a single arbitrary function of spacetime coordinates. This implies
a degeneracy of dynamics in the Stückelberg field sector at the linear perturbation level in this
background. The physical significance of this degeneracy depends on how the Stückelberg fields
couple observable fields.
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1. Introduction

One of the biggest problems in cosmology is to explain the current accelerated expansion of the
universe. In the standard theory of gravity, i.e. general relativity, this reduces to the cosmological
constant (�) problem or the dark energy problem [1,2] if we require spatial homogeneity (cf. Refs. [5,
24,25]). Beside this standard approach, many alternative theories have been suggested in order to
solve this problem. Among the most popular, we have modified gravity theories (MOG) [6–9], non-
localities [10–13], and massive gravity theories [14], which are just large-scale modifications of
gravity.

In order for such a theory to be a real theory of nature, it must be consistent with all the observed
features. In particular, it must be consistent with the “observed” existence of astrophysical black
holes. In many cases, this requirement leads to non-trivial constraints. For example, it was recently
claimed that the bi-Schwarzschild solution is unstable against a spherically symmetric perturbation
in the bi-metric theory of gravity [15]. Motivated by this, the stability of the Schwarzschild–de Sitter
black hole was analyzed in the framework of the linear massive gravity theory by Brito, Cardoso,
and Pani [16,17]. They found that the black hole is unstable generically, but becomes stable when
the mass of the graviton takes the particular value m2 = 2�/3. In this case, the theory is inside

© The Author(s) 2014. Published by Oxford University Press on behalf of the Physical Society of Japan.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Funded by SCOAP3

7

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2014/2/023E02/1535637 by U

.S. D
epartm

ent of Justice user on 16 August 2022



PTEP 2014, 023E02 H. Kodama and I. Arraut

the regime of partially massless gravity, where the Vainshtein mechanism seems to be unnecessary
since the van Dam-Veltman-Zakarov (vDVZ) discontinuity no longer appears [18–20]. However,
it has been demonstrated that the partially massless theories of gravity have several problems of
consistency [21,22].

In the present paper, we analyze the stability of the Schwarzschild–de Sitter solution in the frame-
work of the nonlinear de Rham–Gabadadze–Tolley (dRGT) massive theory of gravity. We do not
introduce the cosmological constant as an extra parameter of the theory, but instead, we utilize the
fact that the Schwarzschild–de Sitter black hole is an exact solution to the nonlinear dRGT theory if
the parameters α = 1 + 3α3 and β = 3(α3 + 4α4) of the theory satisfy the relation β = α2. For this
parameter choice, the mass term of the theory behaves exactly as the cosmological constant term in
the Einstein theory for a spherically symmetric geometry, as pointed out by Berezhiani et al. [23]. We
exhaust all Schwarzschild–de Sitter-type solutions to the nonlinear dRGT theory in the unitary gauge
for the Stückelberg fields assuming β = α2. We find a family of solutions that are gauge-equivalent
to the standard Schwarzschild–de Sitter solution if we neglect the non-trivial transformation of the
Stückelberg fields. In the massive gravity theory, they should be regarded as different solutions
because, if the metrics are put into the standard Schwarzschild–de Sitter form, the Stückelberg fields
behave differently.The solution obtained in Ref. [23] is one solution in this family that is regular at
the future horizon. There exists no solution that is regular at both the future and past horizons.

We consider linear perturbations of this background solution in the framework of the nonlinear
dRGT theory only assuming the parameter relation β = α2. Hence, we generally expect to obtain
perturbation equations that are different from those in the Einstein theory with the cosmological
constant. In fact, we do if we do not impose the constraint coming from the Bianchi identity on the
mass term. However, when we impose that constraint, the extra terms are required to vanish. Hence,
we obtain perturbation equations that are identical to those in the Einstein theory with a cosmological
constant and some additional constraints on the metric perturbation variables that correspond to
the gauge-dependent parts in the Einstein theory. From this result and the Birkhoff theorem for the
Einstein theory, we can easily find the general solution to the perturbation equations and deduce the
stability of the black hole against linear perturbations concerning the spacetime structure. However,
we also find that this general solution contains an arbitrary function of the spacetime coordinates that
reduces to a part of the gauge transformation freedom in the absence of the Stückelberg fields. In the
gauge in which the background metric takes the standard Schwarzschild–de Sitter form, this freedom
goes to the Stückelberg fields. Hence, we cannot determine the behavior of the fields by initial data
alone. Along with this general argument, we point out that the general solution to the vector-type
perturbation equations contains a family of stationary modes that correspond to the rotation of a
black hole in the Einstein theory.

The paper is organized as follows. In Sect. 2, we summarize the basic part of the dRGT nonlinear
massive gravity formalism that is relevant to the present paper. In Sect. 3, we show that the mass
term in the field equation of the dRGT theory becomes identical to the cosmological constant term
for an arbitrary spherically symmetric metric in the unitary gauge for the Stückelberg fields when the
theory parameters satisfy the relation β = α2, and that as a consequence the Schwarzschild–de Sitter
spacetime becomes an exact solution in the dRGT theory for this parameter relation. We also develop
details of the Schwarzschild–de Sitter solution in the dRGT theory. In Sect. 4, we give a brief review
of the gauge-invariant formulation for perturbations of a black hole. In Sect. 5, we derive perturbation
equations for the Schwarzschild–de Sitter-type background in the dRGT theory, and then, in Sect. 6,
we introduce gauge-invariant variables for the present system by treating the Stückelberg fields as
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dynamical and expressing the perturbation equations in terms of them. In Sect. 7, we summarize
and conclude. In Appendix A, we show that there exist other parameter choices for which the dRGT
theory admits a Schwarzschild–de Sitter-type solution and exhaust all possibilities.

2. The dRGT theory

In the standard formalism of the dRGT theory, the action is given by [14]

S = 1

2κ2

∫
d4x

√−g(R + m2U (g, φ)) (1)

with the effective potential depending on two free parameters as

U (g, φ) = U2 + α3U3 + α4U4. (2)

The dependence of each term Un on the metric g and the Stückelberg field φa is determined in terms
of the matrix Q = (Qμ

ν) defined by

Q = 1 − M , (M 2)μν = gμλ fλν, (3a)

fμν = ηab∂μφa∂νφ
b, (3b)

as

U2 = Q2
1 − Q2, (4a)

U3 = Q3
1 − 3Q1 Q2 + 2Q3, (4b)

U4 = Q4
1 − 6Q2

1 Q2 + 8Q1 Q3 + 3Q2
2 − 6Q4, (4c)

where

Qn = Tr(Qn). (5)

The potential U is unique. It is impossible to add polynomial terms without introducing
a ghost [14,23].

By taking a variation of the action with respect to the metric, we obtain the field equation

Gμν = −m2 Xμν, (6)

where

Xμν = δU

δgμν
− 1

2
Ugμν. (7)

Its mixed components X = (Xμ
ν) = gμλXλν can be explicitly expressed in the matrix form in terms

of the matrix Q as

X = χ0 + χ1Q + χ2Q
2 + χ3Q

3, (8)

where

χ0 = −β

3
Q3 + α + βQ1

2
Q2 − Q1 − α

2
Q2

1 − β

6
Q3

1, (9a)

χ1 = 1 + αQ1 + β

2
(Q2

1 − Q2), (9b)

χ2 = −α − βQ1, (9c)

χ3 = β, (9d)

with

α = 1 + 3α3, β = 3(α3 + 4α4). (10)

Throughout the present paper, we use α and β instead of α3 and α4.
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In this generally covariant formulation, we can regard the Stückelberg fields as either dynamical
or non-dynamical. This is because the dynamical equation for φa obtained from the action by a
variation with respect to φa is practically equivalent to the consistency equation obtained from (6)
by the Bianchi identity.

To see this, we use the diffeomorphism invariance of the mass term of the action,∫
d4x ′√−g′U (g′, φ′) =

∫
d4x

√−gU (g, φ). (11)

For an infinitesimal coordinate transformation

δx = ζμ, δgμν = −2∇(μζν), δφ = −ζμ∂μφ, (12)

this equation leads to

0 =
∫

d4x
√−g

(
−m2∇ν Xμνζμ − δU

δφ
∇μφζμ

)
. (13)

Because ζμ is an arbitrary vector field, we obtain

m2∇ν Xν
μ = −∂μφa δU

δφa
= ∂μφa∇ν

(
δU

∂(∂νφa)

)
. (14)

Therefore, if the field equation (6) holds, the left-hand side of this equation should vanish due to the
Bianchi identity ∇νGν

μ ≡ 0. Because ∂μφa is a regular matrix, this constraint is equivalent to the
Euler equation for the Stückelberg field,

∇μ

(
∂U

∂(∂μφa)

)
= 0. (15)

3. The Schwarzschild–de Sitter solution

If the Schwarzschild–de Sitter solution satisfies the field equations in massive gravity, the tensor Xμν

becomes a constant multiple of gμν for that metric [23]:

m2 Xμν = �gμν. (16)

Conversely, if a solution to the field equations (6) satisfies this relation, it must be a solution to
the vacuum Einstein equations with �. Hence, if it is spherically symmetric, the solution must be
diffeomorphic to the Schwarzschild–de Sitter solution. Note that this does not imply the unique-
ness of the solution because, although the matrices of the two solutions are related by a coordinate
transformation, the Stückelberg fields may not be related by the same transformation.

In this section, we examine under what conditions (16) holds for spherically symmetric spacetimes.
In particular, we show that if the parameters α3 and α4 satisfy the relation

β = α2, (17)

any spherically symmetric metric of the form

ds2 = gtt (t, r)dt2 + 2gtr (t, r)dtdr + grr (t, r)dr2 + r2S(t, r)2d�2
2 (18)

satisfies the condition (16) with

� = m2 1 − S0

S0
= m2

α
, (19)

if S(t, r) is a constant given by

S = S0 := α

α + 1
. (20)

Note that the cosmological constant � is different from zero for any finite value of α if m2 �= 0.
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To prove this, we work in the unitary gauge in which the Stückelberg fields φa are given by

φ0 = t, φ1 = x = r cos θ, φ2 = y = r sin θ cos φ, φ3 = z = r sin θ sin φ (21)

in the Cartesian Minkowski coordinates. In this gauge, the reference metric fμν in the spherical
coordinates is given by

fμνdxμdxν = −dt2 + dr2 + r2(dθ2 + sin2 θ dφ2). (22)

Hence, for the metric (18), the matrix M 2 defined by (3a) is given by

M 2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

−gtt gtr 0 0
−gtr grr 0 0

0 0
1

S2 0

0 0 0
1

S2

⎞
⎟⎟⎟⎟⎟⎟⎠

. (23)

From this, we find that the matrix Q can be expressed in the form

Q =

⎛
⎜⎜⎜⎜⎜⎜⎝

a c 0 0
−c b 0 0

0 0 1 − 1

S
0

0 0 0 1 − 1

S

⎞
⎟⎟⎟⎟⎟⎟⎠

, (24)

where a, b, and c are expressed in terms of the metric coefficients as

1 − a = 1

M1
(−gtt + (−g(2))

−1/2), (25a)

c = − gtr

M1
, (25b)

1 − b = 1

M1
(grr + (−g(2))

−1/2), (25c)

with

M1 = (−g(2))
−1/2

(
−gtt + grr + 2(−g(2))

1/2
)1/2

, (26)

g(2) = gtt grr − g2
tr . (27)

We can also express gμν in terms of the components of Q as

gtt = − (1 − b)2 − c2

[(1 − a)(1 − b) + c2]2 , (28a)

grr = (1 − a)2 − c2

[(1 − a)(1 − b) + c2]2 , (28b)

gtr = − c(2 − a − b)

[(1 − a)(1 − b) + c2]2 , (28c)

gθθ = r2S2, gφφ = r2S2 sin2 θ. (28d)

In particular,

(−g(2))
−1/2 = c2 + (1 − a)(1 − b). (29)
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If we substitute the expression for Q in terms of a, b, c, and S into (8), we get

Xt
t = −bF3 − (F1 + 1)

(S − 1)

S
, (30a)

Xt
r = cF3, (30b)

Xt
t − Xr

r = (a − b)F3, (30c)

Xt
t − X θ

θ = F1

(
a − 1 + 1

S

)
+ F2

(
ab + c2 − b

(S − 1)

S

)
, (30d)

where F1, F2, and F3 are functions of S defined by

F1 = α + 1 − α

S
, (31a)

F2 = α + β − β

S
, (31b)

F3 = F1 + (S − 1)

S
F2. (31c)

Now, it is easy to see that all of F1, F2, and F3 vanish if the relations (17) and (20) hold. This
means that X = (Xμ

ν) becomes a multiple of the unit matrix:

Xμ
ν = 1 − S

S
δμ

ν. (32)

Note that this holds independent of the functional dependences of a(t, r), b(t, r), and c(t, r).
If we require that the metric (18) be a solution of the field equations (6) with (17), owing to the

Birkhoff theorem for the Einstein vacuum system, it must be isomorphic to the Schwarzschild–de
Sitter solution in the standard form for which gtt = − f (r), gtr = 0, and grr = 1/ f (r) with f (r) =
1 − 2M/r − �r2/3. The above result means that gtt , gtr , and grr obtained from this standard form by
arbitrary change of time coordinate t → T (t, r) also satisfy the field equations (6). Because we have
already fixed the spacetime coordinates by the unitary gauge condition (21), these solutions obtained
from the standard form by fixing the Stückelberg fields and applying the coordinate transformation
only to the metric should be regarded as being mutually inequivalent.

Finally, we notice that the above parameter relation is not the only case in which a metric isomorphic
to the Schwarzschild–de Sitter solution satisfies the field equation (6). In Appendix A, we exhaust
all such possibilities.

4. Gauge-invariant formulation for black hole perturbations

In this section, we introduce some notations to describe perturbations of a black hole spacetime
and its gauge-invariant treatment, previously formulated in Refs. [24–28]. We start from a general
spherically symmetric background metric given by

ds2 = gμνdxμdxν = gab(y)dyadyb + r2(y)d�2, (33)

where gab is the metric of a 2D spacetime N 2 and

d�2 = γi j dzi dz j = dθ2 + sin2 θdφ2 (34)

is the metric of a unit two-sphere S2, whose Ricci tensor is given by R̂i j = γi j .
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We denote the covariant derivative, connection coefficients, and curvature tensors as

∇μ; �
μ
νλ, Rμνλσ (35)

for the 4D whole spacetime,

Da; �a
bc, Rabcd (36)

for the 2D spacetime N 2, and

D̂i ; �̂i
jk, R̂i jkl = γikγ jl − γilγ jk (37)

for the 2-sphere S2.
The spherical symmetry of the background requires the background energy–momentum tensor to

be given by

Tab = Tab(y), Tai = 0, T i
j = P(y)δi

j . (38)

4.1. Tensorial decomposition of perturbations

We classify perturbation variables into two different types according to their tensorial behavior on
S2 so that we get a decoupled closed set of differential equations for each type of perturbations.
For this purpose, we decompose the tensors hab(y), hai (y), and hi j (y) on S2 defined by the metric
perturbation hμν = δgμν as

hμνdxμdxν = habdyadyb + 2hai dyadzi + hi j dzi dz j (39)

into these irreducible tensorial components as follows.
First, hab are scalar with respect to transformations over S2. Next, the vector hai on S2 can be

uniquely decomposed into the scalar ha and the divergence-free vector h(1)
ai as

hai = D̂i ha + h(1)
ai ; D̂i h(1)

ai = 0, (40)

up to the addition of arbitrary functions only of y to ha , which correspond to the exceptional l = 0
mode (S-mode) in the harmonic expansion explained later. This implies that this exceptional mode
for ha is spurious and should be discarded.

Finally, the 2-tensor hi j on S2 can be decomposed into three parts as

hi j = 2D̂(i h
(1)
T j) + hLγi j + L̂i j h

(0)
T ; D̂i h(1)

T i = 0, (41)

where

L̂i j = D̂i D̂ j − 1

2
γi j 	̂. (42)

For this decomposition, h(0)
T is uniquely determined up to functions belonging to the kernel of the

operator L̂i j , which consists of the S-mode (l = 0) and the l = 1 modes in the harmonic expansion.
Similarly, h(1)

T i is unique up to a combination of the Killing vector of S2 with arbitrary functions of
y as coefficients. This corresponds to the exceptional mode with l = 1 in the harmonic expansion.
These exceptional modes are spurious, like the S-mode for ha , and should be discarded in physical
arguments. With this understanding, the scalar components (hab, ha, hL , hT ) of the metric perturba-
tion hμν describe the scalar perturbation, and the vector components (h(1)

ai , h(1)
T i ) describe the vector

perturbation.
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In a similar way, we can decompose the energy–momentum perturbations as

δT a
i = D̂iδT a + δT (1)a

i ; D̂iδT (1)a
i = 0, (43a)

δT i
j = δT (1)i

j + δPδi
j + L̂i

jδT (0)
T , (43b)

where

δT (1) j
j = 0, D̂ j T (1)i

j = 0. (44)

Hence, the scalar and vector components of the perturbation of the energy–momentum tensor consist
of (δTab, δT a, δP, δT (0)

T ) and (δT (1)a
i , δT (1)i

j ), respectively. There exist spurious exceptional modes

in δT a and δT (0)
T as in the metric perturbation decomposition.

4.2. Gauge-invariant variables

The Einstein equations are invariant under the diffeomorphism generated by any vector field ζ M . The
perturbation variable hμν and its image hμν − £ζ gμν obtained by an infinitesimal diffeomorphism
should represent the same physical situation. Then, we have an ambiguity since there are infinite
varieties of values for the perturbation variables representing the same physical situation. One way
to remove this redundancy is to construct gauge-invariant variables and express the perturbation
equations in terms of them. This automatically extracts the physical degrees of freedom related to
the perturbations.

We start from the gauge transformation laws for perturbation variables. First, for the infinitesimal
gauge transformation δxμ = ζμ, the metric perturbation hμν transforms as

hab → hab − Daζb − Dbζa, (45a)

hai → hai − r2 Da

(
ζi

r2

)
− D̂iζa, (45b)

hi j → hi j − 2D̂(iζ j) − 2r(Dar)ζaγi j . (45c)

Next, the perturbation of the energy–momentum tensor, δTμν , transforms as

δTab → δTab − ζ c DcTab − Tac Dbζ
c − Tbc Daζ

c, (46a)

δT a
i → δT a

i − T a
b D̂iζ

b + P D̂iζ
a, (46b)

δT i
j → δT i

j − ζ d Da Pδi
j . (46c)

These transformation laws can be translated to those for the perturbation variables describing each
type of perturbation by decomposing the vector field ζμ into vector and scalar components as

ζa = Ta, ζi = Vi + D̂i S; γ i j D̂i V j = 0. (47)

Now, we execute this translation and construct gauge-invariant variables for each type of perturbation.
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4.2.1. Vector perturbations. For vector perturbations, the above gauge transformation law for the
metric perturbation can be translated into irreducible vector components as

h(1)
ai → h(1)

ai − r2 Da

(
Vi

r2

)
, (48a)

h(1)
T i → h(1)

T i − Vi . (48b)

From this, it follows that the combination

F (1)
ai = h(1)

ai − r2 Da

(
h(1)

T i

r2

)
(49)

is gauge invariant for generic modes. On the other hand, for the exceptional mode, h(1)
T i does not exist,

and only the combination

F (1)
abi := 2r2 D[a

(
r−2 F (1)

b]i

)
(50)

is gauge invariant.
In contrast to the metric perturbation, δT a

i and δT i
j for a vector perturbation of the energy–

momentum tensor become gauge invariant by themselves:

τ
(1)a
i := δT (1)a

i , (51a)

τ
(1)i
j := δT (1)i

j . (51b)

For the exceptional perturbations, τ
(1)i
j does not exist.

Note that any gauge-invariant variable for a generic vector perturbation can be expressed as a
linear combination of (F (1)

ai , τ
(1)a
i , τ

(1)i
j ) and their derivatives. Further, we can express the perturba-

tion variables (h(1)
ai , δT (1)a

i , δT (1)i
j ) in terms of these three gauge-invariant variables and h(1)

T i . Under

gauge transformations, h(1)
T i just transforms like ζi . Hence, if we express this variable in terms of the

gauge-invariant variables, the gauge is automatically specified. The exceptional perturbations should
be treated with more care.

4.2.2. Scalar perturbations. For scalar perturbations, the scalar components of the metric pertur-
bation transform as

hab → hab − 2D(aTb), (52a)

ha → ha − Ta − r2 Da

(
S

r2

)
, (52b)

hL → hL − 2r(Dar)Ta − �̂S, (52c)

hT → hT − 2S. (52d)

If we define Xμ = (Xa, Xi = D̂i X L) as

Xa := −ha + r2

2
Da

(
hT

r2

)
, X L := −hT

2
, (53)

Xμ just transforms like Xμ → Xμ + ζμ:

(Xa, X L) → (Xa + Ta, X L + S). (54)
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Hence, we can define the following set of gauge-invariant variables for a generic metric perturbation:

F (0)
ab = hab + 2D(a Xb), (55a)

F (0) = hL + 2r(Dar)Xa + �̂X L . (55b)

For the exceptional modes, these are not gauge invariant.
Similarly, for generic matter perturbations, we can construct the following basic gauge-invariants:

�
(0)
ab = δTab + Xc DcTab + Tac Db Xc + Tbc Da Xc, (56a)

�
(0)a
i = D̂iδTa + T a

b D̂i Xb − P D̂i Xa, (56b)

�
(0)
L = δP + Xa Da P, (56c)

�(0) = δT (0)
T . (56d)

For the exceptional modes, some or all of these are not gauge invariant. Further, for the S-modes,
�

(0)
ai and �

(0)
i j do not exist, and for the exceptional modes with l = 1, �

(0)
i j does not exist.

As in the vector case, any gauge-invariant for generic scalar perturbations can be expressed as a
combination of the variables (F (0)

ab , F (0), �
(0)
ab , �

(0)a
i , �

(0)
L , �(0)) and their derivatives. Further, when

we express the metric and matter perturbation variables in terms of these gauge-invariants and Xμ,
we can fix the gauge by specifying Xμ as a linear function of the gauge-invariant variables. In the
next section, we work in the unitary gauge to derive perturbation equations for the Schwarzschild–de
Sitter black hole in the dRGT theory, and then, in Sect. 6, we will express the perturbation equations
obtained there in gauge-invariant form using the formulation explained here.

4.3. Harmonic expansions

In practical arguments, it is often more convenient to use the harmonic expansions for perturbation
variables and their gauge-invariant combinations. We also use them in subsequent sections. So, we
here give some expressions for scalar and vector harmonic expansions relevant to the analysis in our
paper; more details can be found in Refs. [24–28].

First, in order to expand vector perturbations, we use the irreducible harmonic vectors defined by
the eigenvalue problem

	̂Vi = −k2
vVi , D̂iV

i = 0. (57)

For S2, the eigenvalue k2
v is given by

k2
v = l(l + 1) − 1, l = 1, 2, . . . . (58)

Note that Vi is proportional to εi j D̂ j
S where S is some scalar harmonics with the same l. The lowest

mode with l = 1 is exceptional because it can be shown to be a Killing vector field on S2 and satisfies

Vi j := − 1

kv

D̂(iV j) = 0. (59)

The basic variables for vector perturbations can be expanded in terms of the vector-type harmonic
basis as

h(1)
ai = r faVi , h(1)

T i = −r2

kv

HT Vi , (60)
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and correspondingly, the gauge-invariant variables are expanded as

F (1)
ai = r FaVi , τ

(1)a
i = rτ a

Vi , τ
(1)i
j = τT V

i
j , (61)

for the case of generic modes satisfying mV := k2
v − 1 = (l + 2)(l − 1) > 0, where the indices of

the harmonic tensors are lowered and raised by γi j . Here and in the following, we omit the index for
the harmonic basis and the corresponding summation symbols for simplicity.

For the exceptional modes with mV = 0, i.e. l = 1, there is only one gauge-invariant:

F (1)
ab i = r F (1)

ab Vi ; F (1)
ab = r Da

(
Fb

r

)
− r Db

(
Fa

r

)
. (62)

For scalar perturbations, we use a basis for the scalar harmonic functions satisfying the eigenvalue
problem

	̂S = −k2
s S; k2

s = l(l + 1), l = 0, 1, 2, . . . , (63)

and the associated vector and tensors defined by

Si = − 1

ks
D̂iS, Si j = 1

k2
s

L̂i jS. (64)

In terms of these harmonic tensors, the perturbation variables for scalar perturbations can be
expanded as

hab = fabS, ha = − r

ks
faS, (65a)

hL = 2r2 HLS, hT = 2
r2

k2
s

HT S, (65b)

δTab = τabS, δT a = − r

ks
τ a

S, (65c)

δP = τLS, δT (0)
T = r2

k2
s
τT S, (65d)

and the corresponding gauge-invariant variables are

F (0)
ab = FabS, F (0) = 2r2 FS, (66a)

�
(0)
ab = �abS, �

(0)a
i = r�a

Si (66b)

�
(0)
L = �LS, �(0) = r2

k2
s
τT S. (66c)

For exceptional modes, τT does not exist for the l = 0 and l = 1 modes, and �a does not exist for
the l = 0 modes.

5. Perturbation analysis in the dRGT formalism

In this section, we derive perturbation equations for the Schwarzschild–de Sitter solution in the dRGT
theory with nonlinear mass terms.

5.1. Background solution

As we have shown in Sect. 3, when the theory parameters α and β satisfy the relation (17), the
Schwarzschild–de Sitter solution in the form (18) with S = S0 becomes an exact solution to the field
equations of the dRGT theory in the unitary gauge (21) for the Stückelberg fields φa . In this form of
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the solution, the extra constant factor S0 appears in front of the angular part of the metric. In studying
perturbations of this background, we remove this constant factor by the coordinate transformation
S0r → r so that we can use various formulas for perturbations from the literature:

ds2 = gab(y)dyadyb + r2(dθ2 + sin2 θdφ2), (67)

where the index a and b run over 0 and 1 with y0 = t and y1 = r . This coordinate transformation
transforms the unitary gauge condition (21) on the Stückelberg field to

φ0 = t, φ1 = x = r

S0
cos θ, φ2 = y = r

S0
sin θ cos φ, φ3 = z = r

S0
sin θ sin φ (68)

in the Cartesian Minkowski coordinates, and the reference metric fμν to

fμνdxμdxν = −dt2 + dr2

S2
0

+ r2

S2
0

(dθ2 + sin2 θ dφ2). (69)

The metric (67) should be obtained from the standard form for the Schwarzschild–de Sitter solution

ds2 = − f (r)dt2 + dr2

f (r)
+ r2d�2

2; f (r) = 1 − 2M

r
− �

3
r2 (70)

by a coordinate transformation t → T0(t, r), where T0(t, r) is an arbitrary function of t and r with
∂t T0 �= 0. Hence,

gtt = − f (r)(∂t T0)
2, gtr = − f (r)∂t T0∂r T0, grr = − f (r)(∂r T0)

2 + 1/ f (r). (71)

Thus, the background solution has a degeneracy represented by an arbitrary function of t and r even
under the spherical symmetry requirement. This degeneracy cannot be gauged away because of the
existence of the Stückelberg fields. This implies that the dRGT theory is dynamically pathological
at this background. We will see that this degeneracy extends to freedom represented by an arbitrary
function of full coordinates at the linear perturbation level.

The above r -coordinate rescaling also affects the Q matrix. Because the dRGT theory has general
covariance, (g∗ f∗) = (gμα fαν) transforms as

g∗ f∗ → T −1g∗ f∗T ; T =

⎛
⎜⎜⎜⎝

1 0 0 0
0 1/S0 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎠ . (72)

Because the mixed tensor Q should behave exactly as g∗ f∗ under a coordinate transformation, the
r -rescaling transforms Q from the old value Q′ to

Q = T −1Q′T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a
c

S0
0 0

−S0c b 0 0

0 0 1 − 1

S0
0

0 0 0 1 − 1

S0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (73)
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Note that, due to the r -rescaling, the expression for gab in terms of a, b, and c is modified as
follows:

gtt = − (1 − b)2 − c2

[(1 − a)(1 − b) + c2]2 , (74a)

S2
0 grr = (1 − a)2 − c2

[(1 − a)(1 − b) + c2]2 , (74b)

S0gtr = − c(2 − a − b)

[(1 − a)(1 − b) + c2]2 , (74c)

S−1
0 (−g(2))

−1/2 = c2 + (1 − a)(1 − b). (74d)

Similarly, a, b, and c are expressed in terms of the new metric gab as

1 − a = 1

M
¯ 1

(−S0gtt + (−g(2))
−1/2), (75a)

c = − gtr

M
¯ 1

, (75b)

1 − b = 1

M
¯ 1

(S−1
0 grr + (−g(2))

−1/2), (75c)

with

M
¯ 1 = (−g(2))

−1/2
(
−gtt + S2

0 grr + 2S0(−g(2))
1/2
)1/2

, (76)

g(2) = gtt grr − g2
tr . (77)

5.2. Perturbation of X

Now, we calculate the perturbation of the tensor X = (Xμ
ν ) corresponding to the metric perturbation

hab = fab(t, r)Y, hai = r fa(t, r)Yi , hi j = 2r2 [HLYγi j + HT Yi j
]
, (78)

where Y , Yi , and Yi j represent the corresponding tensors for either the scalar or vector harmonics.
For vector perturbations, the terms in proportion to Y do not exist.

First, from (8), a perturbation of the matrix X is determined by δQ as

δX = δχ0 + δχ1Q + δχ2Q
2 + χ1δQ + χ2δQ

2 + χ3δQ
3. (79)

Here, δχn is a linear combination of δQn , which is given by

δQn = n

2
Tr
[
h∗

∗Q
n−1(1 − Q)

]
, (80)

where h∗∗ is the matrix notation for the mixed tensor hμ
ν .

In general, δQ is determined as the solution to

(1 − Q)δQ + δQ(1 − Q) = −δ(M 2) = h∗
∗M

2. (81)

In solving this, it is important that the background metric g and the matrix M = g∗ f∗ are the direct
sum of 2D submatrices,

g = g(1)(t, r) ⊕ g(2)(θ, φ), (82a)

M = M(1) ⊕ M(2), (82b)

because the calculations of δQa
b , δQa

i , and δQi
j decouple from each other, except for the calculation

of δQn , which can be directly calculated by the above formula. The results for δQn are given in
Appendix B.
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First, the angular part δQi
j can be easily calculated because 1 − Q(2) = (1/S0)I2:

δQi
j = 1

2
S0hi

k(M
2)k

j = 1

S0
(HLY δi

j + HT Y i
j ). (83)

The corresponding components of δX are expressed in terms of this as

δXi
j =

{
δχ0 + δχ1

(
1 − 1

S0

)
+ δχ2

(
1 − 1

S0

)2
}

δi
j

+
{

χ1 + 2χ2

(
1 − 1

S0

)
+ 3χ3

(
1 − 1

S0

)2
}

δQi
j . (84)

The result of the calculation is

δXi
j = w(r)(HLδi

j Y − HT Y i
j ), (85)

where

w(r) = 1 + α

α

{
β(c2 + ab) + α(a + b) + 1

}
. (86)

Next, for the t − r part, solving the matrix equation

(δa
c − Qa

c )δQc
b + δQa

c(δ
c
b − Qc

b) = −δ(M 2)a
b = f a

c(M
2)c

bY, (87)

we obtain

δQ(1) = − 1

2(2 − TrQ(1))

[
δ(M 2

(1)) + det(1 − Q(1))(1 − Q(1))
−1δ(M 2)(1)(1 − Q(1))

−1
]

= 1

2(2 − a − b)

[
h∗

∗M
2
(1) +

{
c2 + (1 − a)(1 − b)

}
(1 − Q(1)) f ∗∗h∗∗(1 − Q(1))

]
. (88)

Inserting this into

δXa
b = δχ0δ

a
b + δχ1 Qa

b + δχ2(Q
2)a

b + χ1δQa
b + χ2(δQ

2)a
b + χ3(δQ

3)a
b, (89)

we find

δXa
b = 0. (90)

Finally, because (Qn)a
i = 0 for the background Q, we have

δXa
i = χ1δQa

i + χ2δ(Q
2)a

i + χ3δ(Q
3)a

i . (91)

Here,

δ(Q2)a
i = (1 − 1/S0)δQa

i + Qa
bδQb

i , (92a)

δ(Q3)a
i = (1 − 1/S0)

2δQa
i + (1 − 1/S0)Qa

bδQb
i + (Q2)a

bδQb
i . (92b)

Hence,

δXa
i =

{
χ1 + (1 − 1/S0)χ2 + (1 − 1/S0)

2χ3

}
δQa

i

+ {χ2 + (1 − 1/S0)χ3} Qa
bδQb

i + χ3(Q
2)a

bδQb
i . (93)

Now, (81) for δQa
i reduces to[

(1 + 1/S0)δ
a
b − Qa

b
]
δQb

i = r

S2
0

f aYi . (94)
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Hence, we obtain

δXa
i = 1

S2
0

[ {
χ1 + (1 − 1/S0)χ2 + (1 − 1/S0)

2χ3

}
δa

b

+ {χ2 + (1 − 1/S0)χ3} Qa
b + χ3(Q

2)a
b

] (
[1 + 1/S0 − Q(1)]

−1
)b

c f cYi . (95)

By inserting the above background value for Q(1), we find that this vanishes identically:

δXa
i = 0. (96)

5.3. Vector perturbations

For vector perturbations, the metric perturbation hμν = δgμν has the harmonic expansion

hab = 0, hai = r faVi , hi j = 2r2 HT Vi j . (97)

Similarly, a vector perturbation of the energy–momentum tensor

κ2τμ
ν := κ2δT μ

ν = −m2δXμ
ν (98)

has the harmonic expansion

τ a
b = 0, τ a

i = rτ a
Vi , τ i

j = τT V
i
j , (99)

where τ a and τT are gauge invariant.
From the calculations in the previous section, we obtain

τ a = 0, (100a)

κ2τT = m2w(r)HT . (100b)

These source terms have to satisfy the Bianchi identities, which for a vector perturbation reduce
to [24–28]

Da(r
3τ a) + (l + 2)(l − 1)

2[l(l + 1) − 1]1/2 r2τT = 0 ⇒ (l − 1)w(r)HT = 0. (101)

Because w(r) �= 0 for β = α2, it follows that HT = 0 for l ≥ 2. Hence, the perturbation equations are
identical to those for the vacuum Einstein system, and, for l ≥ 2, we obtain the additional constraint
HT = 0. This implies that the general solution to the perturbation equation is given by

fa = Fa, HT = 0 (102)

where Fa is the gauge-invariant variable for vector perturbations satisfying the perturbed vacuum
Einstein equations

1

r3 Db
(

r3 F (1)
ab

)
− mv

r2 Fa = −2κ2τa = 0, (103a)

kv

r2 Da(r Fa) = −κ2τT = 0. (103b)

In particular, we can conclude that the system is stable for vector perturbations.
For the exceptional mode with l = 1 for which HT does not exist, Fa is not gauge invariant and

transforms for ζ a = 0, ζ i = LV
i as

δFa = −r Da L . (104)
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We know that the general solution for l = 1 in the Einstein case is a linear combination of this gauge
mode and the rotational perturbation corresponding to the angular momentum component in the Kerr
metric [25–28]. Hence, the general solution in the present case is given by

fa = −r Da L − 2aM

r
∂aT0(t, r). (105)

In particular, this shows that the dRGT theory admits a rotational black hole solution at the linear
perturbation level.

5.4. Scalar perturbations

For scalar perturbations,

δXab = δgac Xc
b + gacδXc

b = �

m2 fabS. (106)

Hence, the perturbation of the effective energy–momentum tensor is given by

τab = −� fab, (107a)

κ2τ a = 0, (107b)

κ2δP = −m2w(r)HL , (107c)

κ2τT = m2w(r)HT . (107d)

The corresponding standard gauge-invariant variables are

κ2�ab = κ2τab − 2�D(a Xb) = −�Fab, (108a)

κ2�a = κ2τa = 0, (108b)

κ2�L = −m2wHL , (108c)

and τT . These should satisfy the conservation laws [24–28]

1

r3 Da(r
3�a) − ks

r
�L + k2

s − 2

2ksr
τT = 0, (109a)

1

r2 Db

[
r2(�b

a + �Fb
a )
]

+ ks

r
�a − 2

Dar

r
�L = 0, (109b)

where k2
s = l(l + 1). These reduce to

− 2l(l + 1)HL = (l + 2)(l − 1)HT (l ≥ 1), (110a)

HL = 0. (110b)

Hence, for all modes including the case l = 0, 1 for which HT does not exist, we obtain the constraint
HL = HT = 0, and the perturbation equations are identical to those for the vacuum Einstein system
with �, which has the structure

Eab = 2κ2�ab = 0, (111a)

Ea = 2κ2�a = 0, (111b)

EL = 2κ2�L = 0, (111c)

− k2
s

r2 Fa
a = 2κ2τT = 0, (111d)

where Eab, Ea , and EL are tensors written as differential linear combinations of the gauge-invariants
Fab and F . In particular, no instability occurs. The general solution for l ≥ 2 is expressed in terms of

16/25

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2014/2/023E02/1535637 by U

.S. D
epartm

ent of Justice user on 16 August 2022



PTEP 2014, 023E02 H. Kodama and I. Arraut

the gauge-invariant quantities satisfying the perturbation equations for the vacuum Einstein system
with � as

f r = k F, (112a)

fab = Fab − 1

k
[Da(r fb) + Db(r fa)], (k > 0) (112b)

HL = HT = 0, (112c)

where f t (t, r) is left as an arbitrary function. This corresponds to the freedom associated with the
infinitesimal coordinate transformation, δt = T t

S, δr = 0, δzi = 0:

δg fab = −DaTb − DbTa, δg fa = k

r
Ta, δg HL = δg HT = 0. (113)

The exceptional modes with l = 0, 1 should be treated with care. First, for the S-mode with l = 0,
the variables fa and HT do not exist. Hence,

Fab = fab, HL = 0. (114)

Now, Fab is not gauge invariant, and transforms as

δg fab = −DaTb − DbTa, (115a)

δg HL = −1

r
T r = 0. (115b)

The residual gauge freedom is represented by δt = T t (t, r). This result is consistent with the
existence of the degeneracy represented by the single function T0(t, r) in the background solution.

Because the solution satisfies the Einstein equations, from the Birkhoff theorem, we know that
the general solution is a linear combination of the above gauge transformation from the background
solution and the perturbation corresponding to the variation of the mass parameter in the background
metric,

ftt = δM∂M gtt , (116a)

frr = δM∂M grr , (116b)

ftr = δM∂M gtr , (116c)

HL = 0. (116d)

Next, for the l = 1 mode, there exists no HT again, but now we have fa . However, due to the
absence of HT , F and Fab are not gauge invariant, and transform under δya = T a

S and δzi =
L(t.r)Si as

δg F = −k

2
L − r

k
gra Da L , (117a)

δg Fab = −1

k
[Da(r

2 Db L) + Db(r
2 Da L)]. (117b)

L is restricted by the condition HL = 0 as

δg HL = −k

2
L − 1

r
T r = 0. (118)
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Because we know that the corresponding solutions with l = 1 to the vacuum Einstein system are
exhausted by (F, Fab) obtained from the trivial solution (0, 0) by the above gauge transformation
[24], the general solution to our perturbation equations with l = 1 is given by

fab = −DaTb − DbTa, (119a)

fa = −r Da L + k

r
Ta, (119b)

HL = 0, (119c)

where

L = − 2

kr
T r . (120)

6. Gauge-invariant formulation for perturbations in the dRGT theory

Because the dRGT theory is a completely general covariant theory if the Stückelberg field is treated
as a dynamical one, the perturbation equations can also be written in the gauge-invariant form by
introducing gauge-invariant variables for the perturbation of the Stückelberg field φα .

Let us denote a perturbation of φα as

σα = δφα. (121)

Then, from the general theory, its gauge transformation under the coordinate transformation
δgxμ = ζμ is given by

δgσ
α = −$ζ φ

α = −ζμ∂μφα. (122)

In the unitary gauge, the background value of φα is

φt = t, φr = r

S0
, φθ = θ

S0
. φϕ = ϕ

S0
. (123)

Hence, for δg ya = T a, δgzi = LY i , σ a transforms as

δgσ
t = −T t

μ
, δgσ

r = −T r

S0
, (124a)

δgσT = − L

S0
, (124b)

where

σ i = σT Y i . (125)

6.1. Vector perturbations

For vector perturbations, we have

σ a = 0, σ i = σT V
i . (126)

From

δg fa = −r Da L , δg HT = kL , (127)

we can construct a gauge-invariant variable

σ̂T = σT + 1

kS0
HT (128)
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for generic modes with l ≥ 2, in addition to the standard gauge-invariant variable for the metric,

Fa = fa + r

k
Da HT . (129)

Then, the source term for the massive gravity equation can be expressed in terms of this as

τ a = 0, κ2τT = m2w(r)kS0σ̂T . (130)

Hence, in terms of the gauge-invariant σ̂T , our result is expressed as

σ̂T = 0 (l ≥ 2). (131)

This implies that the dynamical degree of freedom of the Stückelberg field is completely suppressed,
and the perturbation of the metric behaves in exactly the same way as for the Einstein gravity.

For the exceptional modes with l = 1, we only have a single gauge-invariant quantity

F̂a = fa − S0r∂aσT . (132)

Our analysis shows that, for l = 1, the general solution for Fa is given by

F̂a = −r Da L − 2αM

r
∂aT0, (133)

where L(t, r) is an arbitrary function and α is an arbitrary constant corresponding to the angular
momentum parameter. Thus, a functional degeneracy appears.

6.2. Scalar perturbations

For generic modes (l ≥ 2) of scalar perturbations, we adopt the gauge-invariant variables for σα

defined by

σ̂ t = σ t + Xt

μ
, (134a)

σ̂ r = σ r + Xr

S0
, (134b)

σ̂T = σT + 1

kS0
HT . (134c)

In terms of these, the source terms corresponding to δX are expressed as

κ2�ab = −�Fab, (135a)

κ2�a = 0, (135b)

κ2�L = m2w(r)

(
kS0

2
σ̂T + S0

r
Dar σ̂ a − F

)
, (135c)

κ2τT = m2w(r)kS0σ̂T . (135d)

We have found that all of these gauge-invariant source terms vanish, hence

σ̂ r = r

S0
F, σ̂T = 0, (136)

but σ̂ t (t, r) can be an arbitrary function. Hence, the functional degeneracy appears even for generic
modes.
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For the exceptional modes with l = 1, F , Fab, σ̂ a , and σ̂T are not gauge invariant because we have
to set HT = 0 in their definitions and transform as

δg F = −k

2
L − r

k
Dr L , (137a)

δg Fab = −1

k

{
Da(r

2 Db L) + Db(r
2 Da L)

}
, (137b)

δgσ̂
t = − r2

μk
Dt L , (137c)

δgσ̂
r = − r2

S0k
Dt L , (137d)

δgσ̂T = − L

S0
. (137e)

However, we can construct the following basic gauge-invariants from these:

F̂ = F − S0r

k
DrσT − kS0

2
σT , (138a)

F̂ab = Fab − S0

k

{
Da(r

2 Db(σT )) + Db(r
2 Da(σT ))

}
, (138b)

σ̃ t = σ̂ t − S0r2

μk
Dt (σT ), (138c)

σ̃ r = σ̂ r − r2

k
Dr (σT ). (138d)

The perturbation equations for these variables are obtained by the replacements

F → F̂, Fab → F̂ab, σ̂ a → σ̃ a, σ̂T → 0. (139)

Hence, the general solution for this case is expressed in terms of these variables as

F̂ = −k

2
L − r

k
Dr L , (140a)

F̂ab = − 1

k2

{
Da(r

2 Db L) + Db(r
2 Da L)

}
, (140b)

σ̃ a = 0, (140c)

where L(t, r) is an arbitrary function.
Finally, for the exceptional modes with l = 0, from the gauge transformation formula

δg fab = −DaTb − DbTa, (141a)

δg HL = −1

r
T r , (141b)

we can construct the following gauge-invariants from fab, HL , and σa:

F̂ab = fab − Da σ̃b − Dbσ̃a, (142a)

F̂ = HL − S0

r
σ r , (142b)

where

σ̃ t = σ t , σ̃ r = S0σ
r . (143)
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We have shown that the general solution for l = 0 can be expressed in terms of these gauge
invariants as

F̂tt = δM∂M gtt + 2 f Ṫ t , (144a)

F̂tr = δM∂M gtr + f (h′Ṫ t + ∂r T t ) − f ′T t , (144b)

F̂rr = δM∂M grr + 2h′ f ∂r T t , (144c)

F̂ = 0, (144d)

where T t is an arbitrary function of t and r , and δM is an arbitrary constant corresponding to the
mass variation.

7. Summary and conclusions

In the present paper, we first looked for the parameter relation for which the nonlinear massive gravity
theory admits the Schwarzschild–de Sitter black hole as an exact solution systematically. We found
that, when the parameters satisfy the relation β = α2, there exists a family of solutions parameterized
by an arbitrary function T0(t, r), which are isomorphic to the Schwarzschild–de Sitter spacetime but
are not equivalent if the configuration of the Stückelberg fields is taken into account.

We next investigated the perturbative stability of this family of Schwarzschild–de Sitter-type black
holes in the framework of the dRGT formulation of the nonlinear massive gravity with β = α2. We
found that the perturbative equations derived from the field equations of the dRGT theory become
identical to the perturbation equation for the vacuum Einstein theory with cosmological constant if we
take into account the consistency condition obtained from the field equations by the Bianchi identity.
This consistency condition is essentially equivalent to the field equation for the Stückelberg field.
This implies that the Schwarzschild–de Sitter black hole solution is stable in the nonlinear massive
gravity theory as far as the spacetime structure is concerned, at least at the linear perturbation level,
in contrast to the bi-Schwarzschild solution in the bi-metric theory.

In spite of this stability result, we found a pathological feature of the black hole solution in the
dRGT theory with the parameter relation β = α2; the general solution to the perturbation equations
contains an arbitrary function of the spacetime coordinates. This implies that the predictability of
dynamics is lost at least at the linear perturbation level around this black hole solution. This degen-
eracy can be removed by coordinate transformations if we neglect the Stückelberg fields. Hence, the
pathology appears to come from the dynamics of the Stückelberg fields. Because the Schwarzschild–
de Sitter black hole becomes an exact solution only when higher-order mass terms exist, there is a
possibility that this pathology might be removed at the nonlinear level of perturbations.
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Appendix A: The other parameter choices admitting the Schwarzschild–de Sitter
solution

In this appendix, we exhaust all possible choices of the parameters in which X becomes a constant
multiple of the unit matrix as m2 Xμ

ν = �δ
μ
ν , assuming that the spacetime metric takes the spherically
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symmetric form (18) and the Stückelberg fields satisfy the unitary gauge condition (21). We use the
same notations as in Sect. 3.

i) c = 0, a = b. In this case, the condition

Xt
t − X θ

θ = (F1 + aF2)

(
a − 1 + 1

S

)
= 0 (A1)

implies a = 1 − 1/S or a = −F1/F2, if we exclude the case F1 = F2 = 0 discussed in Sect. 3.
Then, from Xt

t = �/m2 = const., if follows that S is constant. Hence, the metric must rep-
resent a flat spacetime and � = 0. Because the metric (18) with constant coefficients has
vanishing curvature if

g(2) = S2gtt ⇔ S2
{
(1 − b)2 − c2

}
= 1 (A2)

in general, in the present case, we obtain the constraint a = b = 1 − 1/S. The corresponding
flat metric should have the form

ds2 = S2(−dt2 + dr2 + r2d�2). (A3)

No constraint on α and β is required, but the value of S is restricted from the condition
Xt

t = 0 to

S = 1,
3α + 2β ±

√
9α2 − 12β

2(3 + 3α + β)
. (A4)

The case a = −F1/F2 can be included in this solution as a special case.
ii) c = 0, a �= b. In this case, we obtain F3 = 0 from Xt

t = Xr
r ; hence, S must be constant. From

this it follows that Xt
t = (1/S − 1)(F1 + 1) = const. Next, from

0 = Xt
t − X θ

θ = (F1 + bF2)(a − 1 + 1/S), (A5)

we obtain a = 1 − 1/S or b = −F1/F2, if we exclude the case F1 = F2 = 0 discussed in
Sect. 3. Because c = 0, T0 should be a function only of t from (71). Hence, if a = 1 − 1/S =
const., the metric should be flat because gtt is constant from (28). Then, from (A2), we obtain
b = 1 − 1/S = a, contradicting the assumption. Next, when b = −F1/F2 = const., we find
that the metric is flat and a is constant again. Now, from Xt

t = −(F1 + 1)(1 − 1/S) = 0 we
obtain two constraints F1 = −1, F2 = S/(S − 1) because S = 1 leads to F3 = 1. This means
that b = 1 − 1/S. This leads to the contradiction due to the regularity condition (A2). Thus,
this case has no other solution than those discussed in Sect. 3.

iii) c �= 0, a = b. In this case, F3 = 0 is required, and from Xt
t = const., it follows that S is

constant. Then, from

0 = Xt
t − X θ

θ = F2

{
(a − 1 + 1/S)2 + c2

}
, (A6)

we obtain F2 = 0. Hence, this case is a special case of the case with F1 = F2 = 0 discussed
in Sect. 3.
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iv) c �= 0, a �= b. Again, we obtain F3 = 0 and S = const. If F2 = 0, this case reduces to the class
F1 = F2 = 0 discussed in Sect. 3. Next, when F2 �= 0, the constraint

0 = Xt
t − X θ

θ = F2

[
(a − 1 + 1/S)(b − 1 + 1/S) + c2

]
(A7)

leads to

0 = c2 + (1 − a − 1/S)(1 − b − 1/S) = c2 + (1 − a)(1 − b) − 2 − a − b

S
+ 1

S2 . (A8)

This should be satisfied by a, b, c corresponding to the Schwarzschild–de Sitter metric

ds2 = − f (Sr)dT0(t, r)2 + S2dr2

f (Sr)
+ S2r2d�2. (A9)

From the general formula in Sect. 3, we obtain

c2 + (1 − a)(1 − b) = 1

S|Ṫ0|
, (A10a)

2 − a − b = M1 = 1

S|Ṫ0|

(
f Ṫ 2

0 + S2

f
− f (T ′

0)
2 + 2SṪ0

)1/2

, (A10b)

where Ṫ0 = ∂t T0, T ′
0 = ∂r T0, and f = f (Sr) is understood. Inserting these into the above

constraint, we obtain

(T ′
0)

2 = 1 − f (Sr)

f (Sr)

(
S2

f (Sr)
− Ṫ 2

0

)
. (A11)

Hence, in this case, no relation is imposed on α and β, but instead the gauge transformation
function T0(t, r) is constrained. The value of S is determined by F3 = 0 as

S = α + β ±
√

α2 − β

1 + 2α + β
, (A12)

and the corresponding cosmological constant is given by

� = −m2
(

1 − 1

S

)(
2 + α − α

S

)
. (A13)

The condition � �= 0 is given by

β �= 3

4
α2 ⇔ � �= 0. (A14)

Note that (A11) has a solution for T0 locally with respect to r at most in general. One
exception is the solution

T0 = St ±
∫ Sr ( 1

f (u)
− 1

)
du. (A15)

Interestingly, this corresponds to a Finkelstein-type time coordinate that is regular at the future
horizon or the past horizon.

Finally, to summarize this appendix, we give an exhaustive list of the spherically symmetric solu-
tions isomorphic to the Schwarzschild–de Sitter solution and the corresponding parameter constraints
in the dRGT massive gravity theory:

◦ Solution F: The solution with a flat metric. The metric form should be that of (A3) with S given
by one of the values in (A4). No constraint on the parameters α and β is required.
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◦ Solution SdS-I: The Schwarzschild–de Sitter-type solution discussed in Sect. 3. The cosmolog-
ical constant is given by � = m2/α, and the metric is given by (A9) with S = α/(1 + α). The
parameters are constrained as β = α2, but the function T0(t, r) can be arbitrary.

◦ Solution SdS-II: The Schwarzschild–de Sitter-type solution whose metric is given by (A9) with
constant S given by (A12) and the cosmological constant (A13). The parameters α and β are
weakly constrained as β < α2, but the function T0 is constrained to those satisfying (A11).

Appendix B: Explicit forms for δ Q1, δ Q2, and δ Q3

δQ1 = 2(α + 1)

α
HLY + 1

2

{
(a − 1)3 − c2(2a + b − 3)

}
htt

+ α2

2(α + 1)2

{
−(b − 1)3 + c2(a + 2b − 3)

}
hrr

+ αc

α + 1

{
c2 − (a2 + b2 + ab − 3a − 3b + 3)

}
htr , (B1)

δQ2 = − 4(α + 1)

α2 HLY +
{

c4 − (3a2 + b2 + 2ab − 6a − 3b + 3)c2 + a(a − 1)3
}

htt

+ α2

(α + 1)2

{
−c4 + c2(a2 + 3b2 + 2ab − 3a − 6b + 3) − b(b − 1)3

}
hrr

+ 2αc

α + 1

{
c2(2a + 2b − 3) − a3 − b3 − ab(a + b)

+3a2 + 3b2 + 3ab − 3a − 3b + 1
}

htr , (B2)

δQ3 =6(α + 1)

α3 HLY + 3

2

{
c4(3a + 2b − 3)

− c2(4a3 + b3 + 2ab2 + 3a2b − 9a2 − 3b2 − 6ab + 6a + 3b − 1) + a2(a − 1)3
}

htt

− 3α2

2(α + 1)2

{
c4(3b + 2a − 3)

− c2(4b3 + a3 + 2ba2 + 3b2a − 6ab − 9b2 − 3a2 + 6b + 3a − 1) + b2(b − 1)3
}

hrr

+ 3αc

α + 1

{
− c4 + c2(3a2 + 3b2 + 4ab − 6a − 6b + 3) − a4 − b4 − ab3 − a3b − a2b2

+ 3a3 + 3b3 + 3ab2 + 3a2b − 3a2 − 3b2 − 3ab + a + b
}

htr . (B3)
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