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UK 
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Abstract. The stationary point used by Sherrington and Kirkpatrick in their evaluation of 
the free energy of a spin glass by the method of steepest descent is examined carefully. It 
is found that, although this point is a maximum of the integrand at high temperatures, it is 
not a maximum in the spin glass phase nor in the ferromagnetic phase at low temperatures. 
The instability persists in the presence of a magnetic field. Results are given for the limit 
of stability both for a partly ferromagnetic interaction in the absence of an external field 
and for a purely random interaction in the presence of a field. 

1. Introduction 

Experiments on dilute alloys of magnetic impurities in a non-magnetic metal and on 
other disordered or amorphous magnetic systems (see Mydosh 1977 for a review) 
have led to the suggestion that there is a spin glass phase of such systems, in which the 
spins are aligned in fixed but random directions below some critical temperature T,. 
Edwards and Anderson (1975) developed a theory of the spin glass which explained 
some of the observed features of the spin glass phase, such as the cusp in magnetic 
susceptibility at T,, but left some other features, such as the extreme sensitivity of this 
cusp to field strength and frequency, unexplained. For a system with energy of the 
form 

H = - JjjSiSj, si=*1 (11 
(ii) 

where the Jij are distributed randomly, the theory is essentially a mean field theory in 
which the quantity 

4 = CCSi>3, (2 1 
is studied. The thermal average of Si at a given site is squared, and the average of this 
square over the distribution of the Jii gives 4. This work also makes use of the replica 
trick, in which the logarithm of the partition function 2, whose average must be 
calculated to find the free energy is evaluated by finding the partition function of n 
replicas of the system, which is Z", and then using the limiting process 

In z = lim n - l ( ~ "  -1). 
" + O  
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Sherrington and Kirkpatrick (1975), which we refer to as SK, introduced a model 
for which one might expect mean field theory to be exact, since each of the N spins in 
the system was taken to interact with all the other spins. The Jii were taken to be 
independent random variables with a common mean Jo/N and a common variance 
J 2 / N .  This choice for the N dependence of the mean and variance ensures that the 
energy per spin remains finite when N becomes infinite. This model appeared to be 
exactly solvable when the replica trick was used, and the solution reproduced many of 
the desirable features of the Edwards-Anderson model. However, it gave a negative 
entropy at low temperatures, which cannot be correct for a model with discrete Ising 
model spins. The authors suggested that this resulted from an improper interchange 
of the two limits n + O  and N +m, and that the consequences were confined to low 
temperatures. 

Subsequent work on this model by Thouless ef  a1 (1977), which avoided the replica 
trick confirmed that the SK solution was correct above and near T,, but found very 
different behaviour at low temperatures. The differences all seem to be rdlated to the 
fact that the mean field on a particular spin has a normal distribution in the SK 
solution, but should have a different probability distribution at low temperatures. In 
that paper no general solution was found for intermediate temperatures, and, 
although the magnetic susceptibility was found, no study was made of the effect of a 
non-zero magnetic field. 

The SK model is worth further study both because of the information it may give 
about the hazards of the replica trick and because a sound mean field theory is a useful 
starting point for more detailed theories. Harris et a1 (1976) have used renor- 
malisation group methods for this type of problem, making use of the fact that the 
behaviour is supposed to be classical in six-dimensional space, and so it would be 
useful to understand what is contained in the ‘classical’ theory. Fisch and Harris 
(1977) have used power series methods to study the behaviour of q in a similar model 
in 6 - 6  dimensions, and find an anomalous behaviour for 4 dimensions. This work 
also calls in question whether q is the right order parameter to study. 

In this paper we show that there is an apparent instability in the SK solution. Not 
only is this instability present in the absence of an external field for all temperatures 
below T,, but it exists for the non-zero field, where the SK solution is analytic. We can 
therefore trace out the spin glass phase boundary as a function of magnetic field. The 
instability also exists at low temperatures in the ferromagnetic phase, if J is non-zero. 
The nature of the instability suggests that the symmetry between replicas should be 
broken in the spin glass phase, but we have not been able to exploit this idea to 
calculate the properties of the spin glass phase. 

2. Instability of the Sherrington-Kirkpatrick solution 

By using the replica trick, Sherrington and Kirkpatrick (1975) were able to perform 
the averaging over the Ai and the sum over sites and so express the free energy in the 
form 

F = -kT n-0 lim n-’ 1 exp (4(kT)’) - J’Nn I [(g) dy‘P8))(! (E)*” dxP] 
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where the indices a, run from 1 to n and refer to the replica number, (ap) denotes 
distinct pairs with a # p, and the trace is over the 2" values of the S" = *l. If it is 
assumed that the thermodynamic limit N + CO can be taken before the limit n + 0, then 
the method of steepest descent can be used, and the value of the integral over the y'"' 
and x u  is equal to the value of the integrand where the exponent has its maximum 
value. This leads to the result 

There is a stationary point of the expression in braces with all x u  and y'"' zero, and 
this solution gives the paramagnetic phase. There may also be non-trivial stationary 
points given by 

where q has the same meaning as in equation ( 2 )  and m is the magnetisation, where 
1 / 2  q =m 1 J dz e-''' tanh2(%z +*) 

I dz e-''' tanh($z +*) 
k T  ' 

112 

m =7 1 
(27r)' k T  ' 

(7) 

In the spin glass phase q is non-zero and m is zero, and this solution exists for T < J/k, 
while in the ferromagnetic phase m is also non-zero. 

To examine the question of whether equations (6) and (7) give a maximum of the 
expression ( 5 )  we write 

(8) X U  = x + € " ,  y ( " @ )  = + l("B' 

where x and y are the values given in equation (6) ,  and then ( 5 )  can be expanded up to 
second order in the quantities E" and ~'"@'. To this order the deviation of the 
expression in braces from its stationary value is equal to -$A, where 

This quadratic form should be positive definite for a stable solution of the problem. 
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The matrix G associated with this quadratic form has seven different types of 
matrix element. The coefficients of the E have the form 

G,, = 1 - (Jo/kT)( l  - ( S " ) 2 ) = A ,  

Gap = -(Jo/kT)((S"S') - (SQ)2) = B. 
(10) 

The cross terms have the form 

Ga(Qp) = G(,p), = JJ;" (kT)-f((SQ)(SQS')-(SB))= C, 

Gr(,p) = G(,p), = JJ;" (kT)-'((S')(SQSp) - (S"SpS'))  = D. 

The expectation values of spin operators that occur in these expressions are M and q, 
defined in eqclation (7) ,  and two closely related quantities 

(12) 

In the paramagnetic phase m, q, t and r are zero, and so the matrix is diagonal. The 
conditions for stability against ferromagnetism and spin glass formation are A > 0 and 
P >  0, or kT > Jo and kT > J, in agreement with SK. For the other phases it is 
necessary to find the eigenvalues of the matrix. Because of the symmetry of the matrix 
under permutation of the indices a complete set of eigenvectors can be found for 
general values of n, and these are given in the appendix, so there is no problem in 
making the analytic continuation to n = 0. There are at most five distinct eigenvalues. 
The eigenvectors that are symmetric under interchange of indices give (see equation 
(A.4)) for n = 0 

A = ;{(A - B + P - 4Q + 3 R ) * [ (A  - B - P + 4Q - 3 R >' - 8(C -D)2]  1'2}. (14) 

Eigenvectors that are symmetric under interchange of ali but one of the indices give 
two more eigenvalues for general n but for n = 0 these reduce to equation (14) (see 
equation (A.7)). Finally there are eigenvectors symmetric under interchange of all but 
two of the indices, and these give rise to the eigenvalue (see equation (A.9)) 

A = P - 2 Q  + R.  (15) 

The eigenvalues given in equation (14) can be related to the free energy given by 
SK. Comparison of our equations (lo), (11) and (12) with equations (9) and (10) of SK 
shows that 

A - B = (JoN)-'a2F/am2, 

p -4Q + 3R =: -(2kT/NJ2)a2F/aq2, 
C - D = -(kT/N2J2Jo) l J 2  a 2 Flamaq. 
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The condition that the product of the eigenvalues given in equation (14) is positive is 
equivalent to the condition that the SK solution gives a saddle point of the free energy, 
and this seems to be the case. We have not found any region in which the SK solution 
gives negative eigenvalues in equation (14), and the zeros give the phase boundaries 
given by SK. 

The condition that the eigenvalue given by equation (15) is positive can be written 
in the form 

by using equations ( l l ) ,  (7) and (13). This inequality is satisfied in the paramagnetic 
region, where k T  > J, but appears to be violated everywhere in the spin glass region. 
Close to T = J / k ,  4 is small, and the inequality becomes (3 2 >1-2q(&)2+7q2(&)4-. . , 

while equation (7) gives 

.T 

and substitution of this in (18) shows that the inequality is violated by terms of order 
42. At very low temperatures q is close to unity and the right-hand-side of the 
inequality (17) is of order k T / J ,  so it is certainly not satisfied. 

In the ferromagnetic phase this inequality is satisfied for high temperatures, but it 
is violated at low temperatures. The line of instability obtained by numerical evalua- 
tion is shown in figure 1; it should be noticed that even for Jo much greater than J the 
inequality (17) is violated at low temperatures, since for m and 4 close to unity and T 
small it gives 

k T  > $ ( ~ T ) - ' / ~ J  exp(-Ji/2J2). (20) 
The instability of the SK solution in this region becomes less surprising when it is 
noticed that the SK expression for the entropy of the ferromagnetic phase has a limit 
- (Nk/27r)  exp(-Jim2/J2) at zero temperature. It should also be noticed that the 

Paramagnetic 
I stable) 

Ferromagnet IC 
(stable) 

> 

-k 
2 

10 

(Unstable) 

1 2 5  
J, / J  

Figure 1. Phase diagram showing the limits of stability of the SK solution in the absence of 
a magnetic field. The broken curve is the SK phase boundary between the spin glass and 
ferromagnetic phases, which lies entirely in the unstable region. 
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instability of the ferromagnetic phase occurs for a non-zero magnetisation, and so 
presumably the spin glass phase can have non-zero magnetisation when Jo  is non-zero. 

Very similar arguments can be applied to this system in the presence of a magnetic 
field. We have carried out a detailed study for the case in which Jo is zero. The 
appropriate equations are obtained by replacing Jom by H everywhere, so that the 
stability condition (17) and the equation for q become 

Although there is no phase transition in the SK solution for non-zero field, these 
equations give a line of instability for all values of the field H. For small values of H 
this occurs for T close to T, = J /k  and 4 small, and a power series expansion can be 
used to get the condition 

H 2  > (4J2/3)(1 - T/T,P, 

k T  > $ ( 2 ~ ) - l ’ ~ J  exp(-H2/2J2), (23) 

(22) 
while for large fields T is small and q close to unity, so that the condition becomes 

in close analogy with (20). Again it is not surprising that the SK solution should be 
unstable in the presence of a field, since the zero temperature limit of the entropy is 
-(Nk/27r) exp(-HZ/J2). The result of a numerical evaluation of the line of instability 
given by (21) is shown in figure 2. 

kT /J  

Figure 2. Phase diagram showing the limit of stability of the SK solution for the paramag- 
netic phase in the presence of a magnetic field H in the case JO = 0. 

3. Discussioo 

We have shown that while at high temperatures the method used by SK to evaluate the 
free energy of a spin glass is consistent, in that the dominating extremum of the 
integrand is indeed a maximum, in the spin glass phase and in the low temperature 
part of the ferromagnetic phase it is not a maximum. This is consistent with the 
observatition made by SK that their solution must be wrong at low temperatures 
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because their entropy is negative. This method has enabled us to trace the instability 
of the paramagnetic phase in a magnetic field and of the ferromagnetic phase, but we 
have not been able to find an alternative solution for the spin glass phase. The nature 
of the instability may be significant, in that it breaks the symmetry between the 
replicas, but it is not obvious how to handle such a broken symmetry in a zero- 
dimensional space. 
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Appendix 

To find the eigenvalues of the matrix G whose elements are given by equations (lo), 
(11) and (12), it is necessary to exploit the symmetry of the matrix elements under 
permutation of the n indices. The order of the matrix is $n(n +I), and since the 
matrix is real symmetric this is the number of linearly independent eigenvectors to be 
found. It turns out that by considering three symmetry classes we can find the 
complete set of eigenvectors and the five distinct eigenvalues. 

The eigenvectors p of G have the form 

where {e(u? and ( 7 ) ( O L B )  are column-vectors with n and Bn(n - 1) elements respec- 
tively. To find the solutions of the eigenvalue equation Gp = Ap we first consider the 
vector p1 with elements given by 

= a, all a ; vCu8) = b, all (ap). 
Substitution of this in the eigenvalue equation gives 

[ A + ( n - l ) B - A ] a + [ ( n - l ) C + $ ( n  -l)(n-2)D]b=O, 

[2C+(n-2)D]a+[P+2(n-2)Q+$(n-2) (n-3)R - h ] b  =0 ,  

from which we get the two non-degenerate eigenvalues 

A = a [ A  + (n  - l)B + P + 2(n - 2)Q +$(n - 2) (n  - 3)R] 

*{ [A  + (n  - l )B-P-2(n -2)Q-$(n-2)(n -mi2 
+ 2(n - 1) [2c  + (n - 2 ) ~ ] ~ ) * / ~ ~  

a, for a = 8, E ( u ) =  b, for a z e p = 

q(uB)= c, for a or p = e, = d,  for a, p z e. 

Next we can consider the vectors p2 of the form 

These vectors span a 2n-dimensional invariant subspace, and therefore yield 2n 
eigenvectors, including those already obtained. To ensure orthogonality to the 
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eigenvectors P I ,  we take a = ( 1  - n)b, c = ( 1  -$n)d, and the eigenvalue equation then 
become 

(A-A - B ) a  +(n - 1 ) ( C - D ) c  = 0, 

n - 2  - ( C - D ) a  +[P+ (n  -4)Q - (n  -3)R -A]c = 0, 
n - 1  

which give two further eigenvalues 

A =%[A -B +P + (n  - 4)Q - ( E  - 3)R]  

* { [ A  -B -P- ( n  -4)Q + (n - 3)RI2+4(n -2) (C -D)z}1’2], (A.7) 

each with degeneracy n - 1 .  
Finally, the entire space can be spanned with vectors of tbe form 

a, for cy = 8 or v, E ( ~ ) =  b, for a # 8, v € ( Q )  = 
(A.8) pLC, 7 ) ( e Q ) = q ( 4 =  d, for a # 8, V, q(ps)  = e,  for cy, p + e, v. 

Orthogonality to the eigenvectors already found imposes the conditions a = i, = 0, 
c = (2 - n)d, d = 4(3 - n)e. Substitution of such a vector in the eigenvalue equation 
gives the equation 

h = P - 2 Q + R ,  (A.9) 
with degeneracy in(n - 3 ) .  These five eigenvalues are distinct in general although for 
n = 0 equations (A.4) and (A.7) coincide, while for n = 1 and n = 2 equation (A.9) 
coincides with one root of (A.4) and (A.7) respectively. 
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