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Abstract 

 

The spatial distribution of soil invertebrates is clumped with high-density patches alternating 

with low-density zones. Communities of these organisms are constituted by populations of 

different species assemblages. A high degree of spatio-temporal organization, with identified 

patches characterized by specific species assemblages, in which species coexist or co-occur 

according to assembly rules and/or competitive mechanisms for spatial and trophic resources 

occur. However, these studies have seldom been addressed. The spatio-temporal structure of a 

native earthworm community in a natural savanna and a grass-legume pasture in the Colombian 

“Llanos” was studied over a period of two years. A spatially explicit sampling design (regular 

grid) was used to unveil the distribution pattern of species assemblages in both systems by 

collecting earthworms from small soil cores (40x40x15 cm
3
) at three different sampling dates. 

Data collected from one metre square soil monoliths were also used in the analysis. Data were 

analyzed with the Partial Triadic Analysis and geostatistics (correlogram), while niche overlap 

was computed with the Pianka index. At the temporal scale of the sampling period earthworm 

communities displayed a similar stable spatial structure in both systems, characterised by an 

alternation of patches where different species’ assemblages dominated. In both systems, a clear 

spatial opposition occurred in the distribution of two medium-sized endogeic species, 

Andiodrilus sp. and Glossodrilus sp. throughout the whole study period. The computing of the 

Pianka index showed a high degree of niche overlapping in several dimensions (vertical 

distribution, seasonality of population density) between both species. The usefulness of the PTA 

and Pianka index in spatial ecology studies was shown in this study. A combination of novel 

tools (PTA) and classical ecological indices (Pianka) allowed for some important ecological 

interactions in the earthworm communities to be known. The inclusion of novel tools as the PTA 

in soil ecology studies will certainly improve our knowledge of earthworm communities’ 

dynamics. 

 

Key words: Earthworm assemblages, Spatial distribution, Partial Triadic Analysis, Correlogram, 

Niche overlap. 
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1. Introduction 

 

Soil biota have long been known to be spatially aggregated but recent studies have more 

precisely noted the various scales of spatial patterning (Decaëns and Rossi 2001, Ettema et al. 

1998, Jiménez et al. 2001, Robertson and Freckman 1995, Rossi 2003a, Rossi et al. 1997). The 

factors that cause and control these patterns are largely unknown and difficult to identify as 

spatial distribution originates from both environmental and internal population factors 

(Robertson and Freckman 1995, Rossi et al. 1997). The spatial distribution of soil invertebrates 

is also influenced, amongst other factors in a hierarchically nested scale (Lavelle 1996), by the 

plant cover, resulting in a horizontal mosaic of areas subjected to gradients of nutrient 

availability and microclimatic conditions (Lavelle 1983b). In tropical savannas this pattern is 

more conspicuous than in any other ecosystem since the strong and marked seasonality affects 

both temperature and moisture gradients. On the other hand, land use systems and agricultural 

practices, have been shown to directly affect soil resource patchiness (Robertson et al. 1993). 

Plant community composition and the distribution of soil living organisms may be affected by 

changes on soil heterogeneity (Tilman 1988), the type of agricultural practice determines plant 

community composition and soil nutrient status (Miles 1985, Wardle and Lavelle 1997). 

The spatial distribution of soil organisms is complex with high-density patches alternating 

with low-density zones. Moreover, patches of different species may also display different 

temporal distributions. A replicated spatial sampling in the same area for a given period of time 

allows for a better comprehension of population dynamics, since it adds a significant temporal 

dimension to the spatial pattern of the communities of soil organisms under study. However, 

only recent studies on the spatial and temporal distributions of soil organisms, i.e earthworms 

and nematodes, have been assessed (Decaëns and Rossi 2001, Ettema et al. 1998, 2000, Ettema 

and Yeates 2003, Rossi 2003c). Ettema et al. (2000) analysed jointly the spatial and temporal 

patchiness of a nematode community to obtain a higher precision in the analysis than it was 

reported in a previous paper (Ettema et al. 1998).  

Communities of soil invertebrates are constituted by populations of different species 

assemblages and show generally a high degree of spatio-temporal organization, with identified 

patches characterized by specific species assemblages, in which species coexist or co-occur 

according to assembly rules and/or competitive mechanisms for spatial and trophic resources. 
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Thus, these soil invertebrates create further heterogeneity in the soil due to their activities by 

adding trophic and spatial “hot spots” and modifying their own and other organisms’ resources 

(Anderson 1995, Jones et al. 1994). The spatial distribution of different taxa of soil biota has 

especially been addressed during the last decade (Adams 1998, Bigwood and Inouye 1988, Boag 

et al. 1994, Crist and Wiens 1996, Crist 1998, Delaville et al. 1996, Fromm et al. 1993, 

Nuutinen 1998, Poier and Richter 1992, Robertson 1994, Robertson and Freckman 1995, Rossi 

2003a, b, c, Rossi et al. 1995, 1997, Stein et al. 1992, Wallace and Hawkins 1994).  

The spatio-temporal distribution of earthworm communities has been analyzed using 

powerful and novel geostatistical tools and software that have been brought to soil biological 

studies (see Robertson 1987, Thioulouse and Chessel 1987, Thioulouse et al. 1997). One of the 

tools we have used in this study is the Partial Triadic Analysis (PTA) whose use in soil 

biological studies is relatively recent (Decaëns and Rossi 2001, Rossi 2003c). The PTA 

(Kroonenberg 1989, Thioulouse and Chessel 1987) is a multivariate method allowing to analyse 

a set of  T  data tables collected at  t  different sampling occasions (t1, t2, t3, etc) at the same  s  

location (see figure 1 in Rossi 2003c). This analysis of three-dimensional data arrays was 

developed by Escoufier (1973), although scarcely used in ecological studies, and afterwards it 

was called STATIS (“Structuration des Tableaux à Trois Indices de la Statistique”) by 

L’Hermier des Plantes (1976). It is a Principal Component Analysis (PCA) performed on 

matrices with a three dimensional data array. The PTA is fully described in Thioulouse and 

Chessel (1987) and Kroonenberg (1989). Examples in the field of soil ecology can be found in 

Decaëns and Rossi (2001) and Rossi (2003c). 

A statistical test aimed at determining possible autocorrelation in the common spatio-

temporal pattern of earthworm assemblages was also performed (Rossi 2003c). This was 

achieved by using the Moran’s  I  index (Moran 1950) for different sampling interval (see details 

in Sokal and Oden [1978]). The values of Moran’s  I  index are plotted in a graph called the 

correlogram (Legendre and Fortin 1989, Sokal and Oden 1978), the function on which the 

spatial pattern of the variable analysed and the scale at which it expresses is represented (Sokal 

and Oden 1978). The correlogram shows the changes of autocorrelation coefficients with 

increasing distance classes (Sokal and Oden 1978). The interpretation of correlograms is not 

easy since similar correlograms might be obtained from different spatial patterns (Legendre and 

Fortin 1989). Contrary to semi-variogram (a structure function used in Geostatistical analysis), 
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the correlogram allows testing for the presence of a significant spatial structure as well as 

describing its main characteristics (Legendre and Fortin 1989). Moran’s  I  index was then 

calculated for the factorial coordinates of the sampling points on the first axis of the PCA in the 

PTA, to describe the spatial structures common to the different dates (Rossi 2003c). 

To test the degree of niche overlap between species that might also be linked to opposite 

spatial distribution of earthworms the Pianka Ojk index was used. One of the first attempts to 

assess and quantify the concept of coexistence (co-occurrence?) within communities was 

performed by Pianka (1973, 1974). In an ecological study on Mexican desert lizard communities 

an index based on the proportion of a given resource exploited by the entire community was 

computed, that was capable of measuring the degree of similarity or overlap between species. 

Niche overlap does not necessarily mean total competition; for example, when a given resource 

is abundant in the ecosystems then two competitive species shall share it without any harmful 

consequence for both species (Pianka 1973). Potentially competing species can also coexist in a 

given habitat and avoid competitive exclusion by occupying spatially and/or temporally different 

areas. 

The present work is part of a more detailed study of earthworm communities from the 

Colombian savanna soils, and was especially designed to address their spatio-temporal 

distribution at the community level. It aimed at determining both spatial and temporal scales of 

variability vs. stability in species assemblages and functional groups in the natural savanna and 

in a grass-legume pasture over a period of two years. The hypothesis used refers to what extent 

the population of the earthworm community is in state of equilibrium or not throughout the 2-yr 

study period, and if there are changes in the spatial distribution of earthworms and their stability 

linked to land use management. Some of the results have been obtained from a reanalysis of 

previously used data set (matrices of temporal data tables). Although preliminary results already 

published have been included in this paper (Jiménez et al. 2001), the combination of all 

temporal data matrices and the use of new analytical methods, i.e. PTA, allowed us to address 

the temporal dimension of earthworm distribution, which was not possible in a previous paper.  

 

2. Materials and methods 
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2.1. Study site 

 

The study was carried out at the CIAT-CORPOICA Carimagua research station, in the 

well-drained isohyperthermic savannas of the Eastern Plains of Colombia (4 37’ N and 71 19’ 

W, 175 m altitude) between September 1993 and September 1995. Climate is subhumid tropical 

with a four-month dry period from December to March and an average yearly rainfall and 

temperature of 2,280 mm and 26°C, respectively (1972-1995, CIAT data). Native vegetation is 

characterised by open herbaceous savannas with scattered trees and bushes in the uplands 

(“altos”) and gallery forests and palm trees (“morichales”) in the low-lying savannas (“bajos”). 

Soils at the study site are well-drained silty clay Oxisols (Tropeptic Haplustox Isohyperthermic) 

in the uplands and Ultisols (Ultic Aeric Plintaquox) in the lowlands (USDA). They are 

characterized by their acidity (pH[H2O] = 4.5), a high Al saturation (> 80%) and low values of 

exchangeable Ca, Mg and K.  

In an upland Oxisol two plots were investigated: i) a 17-yr old grazed grass-legume pasture, 

in a two ha plot, that combines the African grass Brachiaria decumbens Stapf. cv. Basilisk 

(Poaceae), and the tropical herbaceous legume Pueraria phaseoloides Benth. CIAT 9900 

(Fabaceae). Cattle stocking rates were 1 animal ha
-1

 in the dry season and 2 animals ha
-1

 in the 

wet season (1 animal unit [AU] = 250 Kg live weight). Fertilizer was applied at the following 

rates (Kg ha
-1

): 44 K, 14 Mg and 22 S at pasture establishment and 10 P, 9 K, 92.5 Ca, 9 Mg and 

11.5 S each second year for the following 9 years since 1987 (Lascano and Estrada 1989) and, 

(ii) a native savanna as control where no management was conducted, e.g. burning or grazing, 

and where Andropogon bicornis L., Gymnopogon foliosus (Wild.) Nees, Panicum spp., 

Trachypogon spp. and Imperata brasiliensis Trin. were the most abundant plant species. 

 

2.2. Earthworm species 

 

In the natural savannas of Carimagua the earthworm community comprised 8 native species: 

Andiodrilus sp. (endogeic), Andiorrhinus sp.1 (endoanecic), Andiorrhinus sp.2 (endoanecic?), 

Aymara sp. (epigeic), Dichogaster sp. (epigeic), Glossodrilus sp. (endogeic), Martiodrilus sp. 

(anecic) and Ocnerodrilidae sp. (endogeic). All these species were also present in the grass-

legume pasture, where no alloctonous species were found. The main biometric characteristics, 
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adaptive strategies, biology of the reproduction and life cycle of the whole earthworm 

community are precisely described elsewhere (Jiménez and Decaëns 2000, Jiménez et al. 1998b, 

1999).  

 

2.3. Earthworm sampling 

 

Two sampling strategies were used in this study based on the data treatment: 

1) Spatially explicit sampling: Earthworms were sampled from 40x40x15 cm soil cores 

(monoliths) taken in 64 sampling points distributed every 10 m in the intersections of a regular 

70x70 m square grid. One soil core was sampled at each point and the soil placed on a plastic 

bag to manually identify and count in situ all the earthworm species and cocoons. These were 

later introduced together with the soil back into the monolith emplacement. Cocoons were not 

used in data analysis. Previous to the soil core extraction, the large tower-like fresh casts 

deposited by the anecic worm Martiodrilus sp. in the soil surface were counted within a 1m
2
 

metal frame. This allowed us to estimate the population density of the species during the rainy 

season in the first 10 cm of soil by using the direct positive relation (r = 0.907, P<0.01) between 

the number of individuals and the number of fresh casts present at the soil surface (Jiménez et 

al. 1998a,b). This was done easily as Martiodrilus sp. casts are easily distinguished from other 

surface depositions, either other earthworm casts or invertebrates’ biogenic structures. 

Each plot was surveyed following this sampling strategy at three different dates: September 

1993, October 1994 and June 1995 in the grass-legume pasture, and November 1993, November 

1994 and May 1995, in the native savanna. We set these sampling dates a priori since no 

knowledge on the biology and life cycle of the earthworm community allowed us to design the 

sampling campaign when some earthworms are more active in the soil. Furthermore, we later 

discovered that some species presented differences according to their age (Jiménez et al. 1998a, 

b), and because this sampling campaign was conducted within a more detailed study of the 

population dynamics of all earthworm species found in the area.  

This sampling procedure enabled us to use spatial statistics and to sample the same area 

during the two years of survey. A sample size of 64 values seems rather low but it is within the 

range generally considered large enough to allow the use of spatial statistics (Legendre and 

Fortin 1989, Rossi 1996, Webster and Oliver 1992). Soil monoliths at subsequent dates (two 
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more sampling dates) were taken in points separated about 50 cm along a spiral whose origin 

was represented by the point sampled at the first date. This displacement in space was however 

considered negligible at the scale of the plot, and sampling coordinates were taken as identical 

from one date to another.  

2) Monthly sampling: It was designed to study in detail the population dynamics and life 

history of all earthworm species (not shown here). A stratified random sampling procedure was 

performed during 17 months (from April 1994 to September 1995, except June 1994) in both 

systems. In each plot 81 10x10 m square quadrates were grouped into five distinct areas. Every 

month earthworms were hand sorted from five 1x1x0.5 m
3
 monoliths that were taken at the 

center of each quadrate (randomly selected a priori) in each area and in both plots. Sampling 

depth varied up to 80 cm to follow vertical seasonal variations of some species, i.e. Martiodrilus 

sp. (see Jiménez and Decaëns 2000, Jiménez et al. 1998b for details). Prior to monolith 

extraction the number of fresh surface casts deposited by Martiodrilus sp. were counted for the 

same reasons as those quoted for the spatially explicit sampling. Since the efficiency of 

earthworm extraction varies with earthworm size and a large number of individuals are not 

collected, two 20x20 cm cores were sampled 1 m aside the 1 m2 monolith for washing-sieving 

since a correction factor to density values for those species smaller than 0.2 g when adults was 

needed (after Lavelle 1978; Jiménez et al., 2006, data not shown). Earthworms were washed in 

water and introduced in formaline 4%. In the lab earthworms were counted to calculate 

population density for each species and age class. For biomass estimation complete specimens 

were weighed while the weight of fragmented worms (fresh weight in formaline, 15% lower 

than live weight on average) was estimated by their maximum preclitellar diameter measured in 

fragmented worms (according to Jiménez et al. 1998b). 

 

2.4. The Partial Triadic Analysis as a tool to analyse multivariate spatiotemporal variability 

 

As mentioned in the introduction the PTA is a multivariate method allowing to analyse a set 

of matrices with a three dimensional data array. Consider  n  observations (i.e. samples) on 

which  p  variables (the species abundance) were recorded at  T  different dates (n observations x 

p variables x T dates). The objective of the PTA is to extract a multivariate structure that is 

expressed through the different dates of the reorganized data arrays. Simply expressed, the PTA 
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can be seen as a three-step process. Only the first two steps were used in this work and will 

therefore be briefly described (Kroonenberg 1989, Thioulouse and Chessel 1987, Rossi 2003c). 

A first PCA is performed in order to establish the ordination of the different dates (Rossi 2003c). 

This analysis is called the Interstructure Analysis (IA). The IA allows a global description of 

sampling sites (stations) as a function of the typology of the different dates, and so extracts the 

common structure at different dates for any of the  p  variables. The objects of the latter analysis 

are the variables by samples. The scores of these objects upon the first axis of the PCA are kept 

for further analysis. They encapsulate certain information on the dynamics of the data tables 

across time.  

The second step is the compromise analysis (CA) and involves a PCA of a fictitious (virtual) 

data table constituted by the reorganisation of the variable-sample scores. This table is referred 

as to the compromise table (Rossi 2003c). The CA allows a multivariate synthesis of the 

information expressed through the first axis of the date ordination analysis. It shows generally 

ecological features that are common to the dates but not necessarily since dates may exhibit 

some changes (e.g. seasonal dynamics). This step allows a description of sampling sites as a 

function of the typology of variables and the identification of the variables responsible for the 

common structure of the different dates.  

Briefly, in this study data have been used as a chronological series of matrices of type, i.e, 

sampling points x variables (species). One matrix for each of the three years sampled. The 

analysis then is centered on the study of the structure of the different variables and their 

temporal variability, so on their stability (Thioulouse and Chessel 1987). All the computations 

involved in the PTA were directly processed with the module STATIS of the software ADE-4 

(Thioulouse et al. 1997). Similarly graphs were drawn using the various graphical modules of 

the ADE-4 software. 

 

2.5. Moran’s autocorrelogram 

 

A statistical test aimed at determining possible autocorrelation in the common spatio-

temporal pattern of earthworm assemblages was also performed (Rossi 2003c). As mentioned 

above the first axis extracted from the compromise PCA is given by values that maximizes the 

correlation among variables, and so could be used in the same manner as if these were original 
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values from the initial tables. The sample scores obtained can be used to examine the presence 

of spatial autocorrelation (Rossi 2003c). In this study we tested the autocorrelation in the species 

assemblage by analyzing only the sample score upon the first axis of the compromise analysis. 

The values of Moran’s  I  index are plotted in a graph called the correlogram (Legendre and 

Fortin 1989, Sokal and Oden 1978), the function on which the spatial pattern of the variable 

analysed and the scale at which it expresses is represented (Sokal and Oden 1978). The 

correlogram shows the changes of autocorrelation coefficients with increasing distance classes 

(Sokal and Oden 1978). Data were allocated to 9 distance classes for convenience. The lower 

and superior limits of each class, as well as the number of pairs of points are given in the Table 

I. A Bonferroni corrected probability method is assessed to test for overall statistical 

significance of correlogram when one or several computed coefficients are statistically 

significant at ’=/k, with  = 5% and k the number of distance classes employed (Oden 1984). 

Each coefficient was tested at the probability level of 0.05. The whole correlogram was 

considered statistically significant when at least one coefficient was significant at the Bonferroni 

corrected level of probability: 0.005 = 0.05 / 9 (9 = number of distance classes) (Cooper 1968). 

When autocorrelation is positive values in that distance class are similar to those obtained in 

neighbouring points indicating a spatially aggregated distribution.  

Moran's index was calculated using the “Autocorrélation 3.03” module of the “R Package” 

of Legendre and Vaudor (1991), and the normality of the frequency distribution of the data was 

tested with a Kolmogorov-Smirnov test before the computation of Moran’s index using the 

“VerNorm 3.0” module of the “R Package” (Legendre and Vaudor 1991). When necessary, the 

Box-Cox transformation was used to reduce the asymmetry of the frequency distribution (Sokal 

and Rohlf 1995). 

 

2.6. Niche overlap (Pianka index) 

The Pianka Ojk index ranges from 0 to 1 and the algorithm, a modification of the  

competition coefficient (MacArthur and Levins 1967), that can be estimated for two species or 

groups, i.e.  j  and  k, is: 
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, where  pij  and  pik  are the proportion of resource  i  used by species  j  and  k, respectively.  

In this study, a multidimensional niche overlap was calculated from the data obtained in the 

monthly sampling of 1m
2
 cores according to yearly average vertical stratification (cm) of 

population (percentage of individuals in each soil layer) and the seasonal variations in 

earthworm density (monthly number of individuals m
-2

 from July 1994 to June 1995) in both 

systems sampled.  

A biometric niche overlap index was also computed for the average length, weight and 

diameter of earthworms in addition to length/width and weight/width ratios. The size of the 

prostomium (where the mouth and first segment of body are) may determine to some extent the 

size of both organic and mineral particles earthworms ingest, so that differences in feeding 

regimes, of which only the diet of one species has been studied in detail (Mariani et al. 2001), 

might be observed. This index can then be considered as a trophic niche overlap index. Only the 

data collected from the 1m
2
 soil monoliths were used to compute the niche overlap in the 

following species: Andiodrilus sp., Andiorrhinus n.sp1., Aymara sp., Glossodrilus sp., 

Martiodrilus sp. and Ocnerodrilidae sp. (Andiorrhinus sp2. was only found in one sample during 

the whole study period). 

The total spatio-temporal niche overlap was calculated from each of the unidimensional 

niche overlap indices. This may be computed as the sum or the product of each single index, 

although none of them gives satisfactory results, because the sum over- and the product under-

estimates the actual value of the index (Pianka 1973, 1974). In this study we underestimated the 

Ojk index. 

 

3. Results 
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3.1. Partial triadic analysis 

 

a) Introduced pasture 

The descriptive statistics of the three temporal matrices is shown in Table II, and the 

interstructure analysis in figure 1. We only retained the first axis (44.9% of total variance) of the 

interstructure analysis since it was clearly higher than the subsequent values. The ordination of 

sampling dates within the plane formed by the axes of the PCA showed an “intertable size 

effect” (figure 1a). This means that all sampling dates presented the same sign in relation to axis 

I; in other words, we observed that all correlations among data tables were positive, the spatial 

pattern was the same from one sampling date to another. The structure extracted in the first axis 

indicates that a common spatial pattern across the different dates was detected. 

Mappings of the axial coordinates of the 64 sampling points upon the first axis of the IA 

revealed that the spatio-temporal distribution of earthworms was stable, at least during the 

sampling period (figure 1b). The pattern was more conspicuous for two species, i.e., 

Glossodrilus sp. and Andiodrilus sp. Populations of Glossodrilus sp. showed a well-delimited 

high-density U-shaped patch. Andiodrilus sp. had a patchy distribution within the plot with two 

high population density areas, one in the north-west corner and the other one at the south-east 

corner. These patches seemed to be in opposite areas to those occupied by Glossodrilus sp. 

Other patches were detected for Ocnerodrilidae sp., Martiodrilus sp. and Aymara sp., although 

these were small and barely distributed across the field. Ocnerodrilidae sp. was more abundant 

in the west zone of the field, while Martiodrilus sp. was present in the north half forming a V-

shape patch and a line that crossed the plot from west to east. Andiorrhinus sp. displayed a rather 

scattered distribution with a more conspicuous population density patch in the east zone of the 

field.  

In the CA the main spatio-temporal patterns of earthworm species and relationships among 

variables (population density) were highlighted by extracting only the first two axes, i.e 28.1% 

and 22.5% of total inertia, of the PCA performed on the compromise matrix. The first axis of the 

PCA revealed clearly an opposition between Glossodrilus sp. and Andiodrilus sp. (figure 2a). 

The mapping of the 64 sampling point coordinates onto the first axis showed the presence of an 

aggregated U-shaped zone of positive coordinate points, which corresponded to an area where 
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Glossodrilus sp. (black circles) was present and where, on the contrary, the distribution of 

Andiodrilus sp. (white squares) was not consistent (figure 2b). A high population density patch 

of Andiodrilus sp. dominated the south-east area (squares, negative scores), and the north-west 

was occupied by Glossodrilus sp. (circles, positive values). The second axis extracted from the 

compromise analysis was responsible for 22.5% of total inertia, and revealed a clear spatial 

opposition between two species assemblages: Andiodrilus sp. / Martiodrilus sp. / Glossodrilus 

sp. on one hand, and Andiorrhinus n. sp1. and Ocnerodrilidae sp. on the other hand. We 

observed no clear spatial pattern for the second axis. Axis II showed nearly the same structure to 

the one displayed in the first axis (since Glossodrilus sp. also had a strong positive correlation 

with this axis), and the distribution pattern of Andiodrilus sp. also contributed to this axis. In 

fact, the definition of axis II is given by the spatial pattern of these two species. Martiodrilus sp. 

and Andiorrhinus n. sp1. showed opposite patterns (they both participate in the definition of 

Axis II but in opposite directions). Finally, Aymara sp. and Ocnerodrilidae sp. did not contribute 

in the definition of the axes. A detailed contour map showing the spatial distribution of 

Glossodrilus sp. in the introduced pasture at two sampling dates can be consulted in Jiménez et 

al. (2001). 

 

b) Natural savanna 

The descriptive statistics of the three temporal data matrices is shown in Table II and the IA 

(figure 3). The first axis of the PCA was responsible for 38.4% of total data variability, and the 

inter-table size effect was also detected (figure 3a). Mapping of the axial coordinates of the 64 

sampling points for each species is shown in figure 3b. Population of Glossodrilus sp. was 

placed in a diagonal from the north-west to the south-east corner, being more abundant in the 

former. We also observed two high population density patches in the south area of the field for 

Andiodrilus sp. The epigeic Aymara sp. revealed a high population patch in the south-east corner 

of the field. For the rest of earthworm species we were unable to detect any spatial pattern, either 

because of a low population density or because of a weaker spatial autocorrelation level, except 

for Martiodrilus sp. in the south-west corner.  

The CA showed a decrease of “eigenvalues” so we extracted the first two axes, which 

explained 56.0% of total data inertia (33.1% and 22.9% for the first and second axis, 

respectively). Briefly, the ordination of species in the plane defined by these two axes revealed 
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the same general pattern that was observed in the introduced pasture, i.e. an opposite spatial 

pattern between population patches of Glossodrilus sp. and Andiodrilus sp. (figure 4a). 

Martiodrilus sp. was no longer associated with axis II because of its low and scattered 

population density in the native savanna (Jiménez et al. 1998a). Mappings of the 64 sampling 

point coordinates onto the first two axes (figure 4b) showed the spatio-temporal structure 

displayed by Glossodrilus sp. on the first axis (positive values, black circles) and Andiodrilus sp. 

(negative values, white squares). In other words, axis I showed the opposition between those 

areas occupied by Glossodrilus sp. compared with those areas where Andiodrilus sp. was 

dominant. An unclear and irregularly distributed pattern was observed for the second axis, 

although Aymara sp. and Ocnerodrilidae new genus sp. participated in the definition of this axis, 

whereas Martiodrilus sp. and Andiorrhinus sp. did not. This is the opposite result to that 

obtained in the grass-legume pasture. Here we observed the effect of land use system on the 

spatial distribution of several species that did not reach important population densities in the 

savanna. 

 

3.2. Correlograms 

 

In both plots studied the correlograms were statistically significant (P<0.0055). This means 

that the common spatial structure described by the PTA was also significant (figure 5a, b). 

Moran’s autocorrelogram calculated on the factorial coordinates of the first axis showed the 

existence of a significant spatial structure with three significant distance classes in the grass-

legume pasture (figure 5a) and only one statistically significant distance in the savanna (figure 

5b). Individual values of Moran’s  I  index were significantly positive for the first and five 

distance classes, and negative for the third one in the pasture. Theses alternating values of the 

Moran’s  I  index indicated the existence of two high-density patches of high population density 

of 20-30 m size, and a transition area between these two patches.  

 

3.3. Niche overlap 

 

Vertical niche separation among species was lower in the grass-legume pasture than in the 

natural savanna, although Pianka Ojk index for Martiodrilus sp. was very low in the savanna, due 
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to the irregular density data obtained. The index ranged from 0.51 to 0.99 (mean = 0.77) in the 

pasture and from 0.10 to 0.98 (mean = 0.57) in the savanna. 

The biometric niche overlap index ranged from 0.25 to 0.99 (mean = 0.69) and from 0.43 to 

0.95 (mean = 0.75) in the pasture and savanna, respectively. The lowest values were obtained 

between large species Andiorrhinus sp. and Martiodrilus sp. and the smallest earthworm found 

Ocnerodrilidae sp. in both systems (biometric data of Martiodrilus sp. were not measured in the 

savanna due to the low quantity of individuals collected in samples). 

Owing to the annual seasonal cycle of abundance the niche overlap index showed that 

populations of each species tended to be synchronized. In sites where a strong and rather long 

seasonality is present so varying soil moisture and organic matter content, as in Neotropical 

savannas, species are affected by the same environmental factors. The Pianka Ojk index ranged 

from 0.61 to 0.88 (mean = 0.74) and from 0.34 to 0.89 (mean = 0.66) in the grass-legume 

pasture and the natural savanna, respectively. 

The total spatio-temporal niche overlap was calculated as the product of each single Ojk 

index (vertical, size and population density). There was a greater spatio-temporal niche overlap 

in the pasture compared with the savanna. The Ojk index ranged from 0.13 to 0.73 (mean = 0.40) 

in the grass-legume pasture, whereas it ranged from 0.05 to 0.56 (mean = 0.32) in the natural 

savanna, respectively. 

We were able to distinguish two groups or assemblages of species: Andiodrilus / 

Andiorrhinus / Aymara / Glossodrilus, and Martiodrilus / Ocnerodrilidae sp. In the grass-legume 

pasture, Andiodrilus-Andiorrhinus (0.73), Aymara-Glossodrilus (0.65) Andiodrilus-Aymara 

(0.51) and Andiodrilus-Glossodrilus (0.49) showed the highest values of niche overlapping. The 

total niche overlap between Martiodrilus sp. and Ocnerodrilidae had a lower value (0.13) 

compared to the savanna, mainly due to differences in size and in the seasonal cycle of their 

population density. In the natural savanna the highest niche overlap within the first group was 

obtained for Aymara-Glossodrilus (0.56), Aymara-Ocnerodrilidae (0.54) and Andiodrilus-

Glossodrilus (0.52). Except for the Ocnerodrilidae earthworm, these species were usually 

concentrated during the rainy season in the topsoil and increased their population at the onset of 

the rainy season (Jiménez and Decaens 2000). Species within the second group showed a low 

niche overlap (0.27), although this value is probably underestimated due to the low density of 

Martiodrilus sp. in the savanna.  
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4. Discussion 

 

In this study we have demonstrated the existence of a clumped structured assemblage in the 

earthworm community studied in the natural savanna and the introduced grass-legume pasture, 

within a significant temporal stability of at least 2-yr. The common spatial structure observed 

across sampling dates seems to be explained by two medium-sized endogeic species that had 

opposite spatio-temporal distribution patterns. Population dispersal, reproduction, mortality and 

competition, and the effect of land use system seem to act at very different scales. Although the 

population internal factors may have an influence on their spatial pattern, the environmental 

heterogeneity (also affected by changes in land use) also exerts an influence. Understanding the 

drivers of such variability is subject of further study. This would also help to develop new 

insights in spatial soil ecology studies (Ettema and Wardle 2002). 

The range and scale of factors that determine the spatial distribution of soil organisms are 

not yet clearly understood. Decaëns and Rossi (2001) showed that the spatio-temporal 

distribution of earthworm assemblages determined some selected soil physico-chemical 

properties, rather than soil heterogeneity influenced the spatial distribution of earthworms. It is 

likely that both intra- and interspecific interactions may result in the clumped distribution 

commonly observed in soil organisms’ population. 

 

4.1. Species patterns 

The observation of the spatio-temporal structure of each species taken individually from the 

IA reveals that distribution of individuals was characterized by an alternation of population 

patches of high density (20-40 m) separated from each other by areas of low density. Besides, 

these alternating patches correspond to presumably species with a high degree of niche overlap. 

Species coexistence in a community is achieved through the exhibition of partly excluded spatial 

and temporal distribution.  

Two endogeic species like Glossodrilus sp. and Andiodrilus sp. presented a clearly clumped 

distribution that seemed to be highly stable across time. This pattern may be a consequence of 

both demographical and life history traits of these species. Whereas their high demographic rates 

allow them to increase rapidly their populations (Jiménez, unpubl.), their endogeic behaviour 
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and their medium size imply a low displacement capacity. Hence both species are likely to 

display markedly aggregated distribution, which is corroborated by the Morisita’s Id and Taylor 

b indices employed in a previous analysis (Jiménez et al. 2001).  

Very small species like Aymara sp. (epigeic) and the Ocnerodrilidae sp. (endogeic) also 

show a visible aggregated distribution, less evident than for the previous species. Both species 

are commonly found close to high rich-organic hotspots, such as fecal pellets, Coleopteran nests 

and cattle dung (coprophagy) (Jiménez et al. 1998b, Decaëns 2000). We hypothesize that their 

distribution reflect local spots of trophic resources availability, although this needs to be further 

assessed since it has not been measured in this study. An extremely marked seasonality 

determines the dynamics of the tropical savannas, and earthworms develop adaptive strategies to 

tolerate such extreme conditions and survive during this drastic season. This is costly in terms of 

energetic savings for soil organisms living in poor-resource acid-soils, either in terms of 

energetic trade-offs or in terms of compensatory changes in the biology of these organisms. 

These are species with a high population growth rate (r strategists), increasing their population 

rapidly at the onset of the rainy season. The patches of spatial pattern of these species may not 

last during the whole year and so be easily detected, especially when two of the sampling 

campaigns were conducted at the end of the rainy season. Aymara sp. showed one of the highest 

values of aggregation index in both systems studied (Jiménez et al. 2001). 

Martiodrilus sp. (anecic) and Andiorrhinus sp1. (endoanecic), although they significantly 

participate to the second axis of the compromise analysis in the pasture, display weak spatio-

temporal patterns. This may be interpreted as the result of a low but very effective demographic 

dynamics for both species. Martiodrilus sp. has been described as a K selected species regarding 

its adaptive strategies (Jiménez et al. 1998a), reproduction rates (Jiménez et al. 1999), and life 

history traits (in fact this species takes 4 years to reach maturity, Jiménez, unpubl.) and Taylor b 

and Morisita Id aggregation indices obtained for this species is the lowest obtained of the whole 

earthworm community (Jiménez et al. 2001). Additionally, both species are commonly observed 

at the soil surface after heavy rains that flood their semi-permanent U-shape vertical burrows 

(Jiménez and Decaëns, pers. obs.), behaviour that decreases markedly the temporal stability of 

population patches. In the savanna the density of both species was so low that no interpretable 

patterns could be provided. 
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In the natural savanna, the absence of a clear spatial distribution for some earthworm species 

in the upper right area of the plot might be due to the presence of the grass I. brasiliensis Trin. 

(with more than 50% of the right side of the plot invaded only by this plant; quantitative data are 

not shown). This grass has large straight sharp-pointed roots that can damage seriously the 

earthworm body. Only the Ocnerodrilidae sp. seems not to be affected by this feature (Jiménez, 

pers. obs.) 

 

4.2. Spatial pattern of the community 

 

The significance of the spatial distribution of the whole earthworm community has been 

detected by the correlogram (Sokal and Oden 1978). Following Legendre and Fortin (1989), the 

type of correlogram obtained in our study suggests that the spatial structure of earthworm 

assemblages was more easily detected and evident in the pasture than in the savanna. The 

introduction of pasture has affected the size of the spatial structure but not the short-term 

temporal stability of the spatial distribution. 

An alternation of population patches (20-40 m) where particular species assemblages 

dominate was clearly observed, and the overall pattern may be described at different levels of 

spatial organisation. These patterns have already been reported for the same earthworm 

community under different land use types (Decaëns and Rossi 2001) and in the African savannas 

of Lamto (Côte d’Ivoire) (Rossi 2003c). It must be stated, however, that this spatio-temporal 

structure only represents a low proportion of the total variability of the initial data matrix (50.6% 

of the 44.9% explained by the first interstructure axis in the pasture, and 56% of 38.4% 

explained by the first interstructure axis in the savanna, respectively). This means that despite a 

high stability of the spatio-temporal distribution in specific earthworm assemblages, some 

mobility seems to occur across the plots.  

In both plots, a common spatial structure observed across sampling dates seems to be 

explained by a spatial opposition between the two medium-sized endogeic species Glossodrilus 

sp. and Andiodrilus sp. A similar pattern was previously described by Decaëns and Rossi (2001) 

who showed the same opposite pattern between these two species across a range of different land 

use managements. Interestingly enough is the fact that both species present a high degree of 

niche overlap, which indicates a potential competition for resource between them. 
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Two alternative interpretations may be proposed to explain this pattern. First, spatial 

opposition may be the result of a mechanism of competitive exclusion. The presence of both 

species in the same plot would thus be attributed to co-occurrence mechanism within a 

community in a non-equilibrium stage (Tilman 1982, Chesson 1985, Ives 1988, Huston and 

DeAngelis 1994). This hypothesis, which has been proposed by Decaëns and Rossi (2001), 

implies a low temporal stability of the observed spatial opposition. Second, opposition may 

result from competition avoidance through spatial segregation mechanism. In this case species 

simultaneous presence would be related to true co-existence within a community at a stage of 

equilibrium (Chesson 1985, Ives 1988). This would thus imply a high correlation between 

earthworm an environmental heterogeneity, and a resulting temporal stability of the spatial 

patterns. There is no evidence in our data to support one of these two hypothesis, and further 

investigation will be needed to clearly understand the factors responsible for the observed 

patterns. 

The presence of different potentially competing species within a given patch (species 

assemblages) may also be interpreted in different ways whether the community is considered at 

an equilibrium or a non-equilibrium stage. Non-equilibrium hypothesis suggests that co-

occurrence of species within a patch mainly result from random factors and present a high 

temporal instability. On the opposite, the equilibrium hypothesis suggests that within patch co-

existence is a consequence of deterministic assembly rules, i.e. niche partitioning and/or small 

scale spatial partitioning (Atkinson and Sorrocks 1981). Both niche partitioning (Giller 1984), 

niche overlap reduction (Pianka 1973) and spatial partitioning, thanks to small scale 

environmental patchiness (Begon et al. 1996), has been proposed to explain co-existence 

mechanisms within soil communities (Atkinson and Sorrocks 1981). As long as heterogeneity is 

becoming complex, the number of species within a community increases, since the resource 

spectrum to be exploited by the community is wider. Those species that overlap “too much” in 

any niche dimension cannot coexist, and those that do coexist must differ in any resource use or 

niche dimension (e.g. body size or trophic morphology) that allows them to exploit different 

resources. In our study, species simultaneously present in a given patch had different sizes, 

feeding regimes and adaptive strategies (Jiménez et al. 1998b, Jiménez and Decaëns 2000, 

Mariani et al. 2001). In the case of Glossodrilus sp. and Andiodrilus sp., which can be 

temporarily present in the same patch despite their mutual spatial exclusion a reduction of their 
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niche overlap through slight differences in the vertical distribution, annual density cycle and size 

(data not shown) may be spatially and temporarily segregate species and allow their local co-

existence (Pianka 1973). 

More ecological data are needed, especially a comprehensive study of the feeding regime of 

these species to (i) plenty quantify the degree of niche partitioning, (ii) identify which species are 

competing, what kind of exclusion mechanisms occur, (iii) describe the assembly rules that allow 

co-existence in species assemblages, and (iii) assess and quantify the availability of resources 

exploited by the whole earthworm community. 

 

4.3. Niche overlap and competition 

 

There are few studies on earthworm communities where the Pianka niche overlap index has 

been employed. Lavelle (1983b) reported average vertical niche overlap values in African 

savannas of Lamto (Cote d’Ivoire) to be 0.47. Similar values were cited by Nemeth (1981) in the 

neotropical rainforest of Venezuela, i.e. 0.50, and Fragoso (1993) also in a tropical rainforest in 

the Chajul and Los Txutlas region of Mexico, obtained values for this index that ranged from 

0.48 to 0.75, respectively. The vertical niche overlap index obtained in our study was greater 

than in studies mentioned above. Earthworms were more abundant in the pasture topsoil than in 

the savanna. At Carimagua, litter quality material incorporated in the soil or root biomass (Rao 

1998, Thomas et al. 1995) may be factors responsible for the species aggregation observed. 

Earthworm communities from tropical sites have a greater niche overlap than those from 

temperate sites, due to the vertical distribution and the size of species (Fragoso and Lavelle 

1992). These authors concluded that earthworm communities from temperate sites present a diet 

based on litter and also they are of lower size (Fragoso and Lavelle 1992, Lavelle 1983b). 

Lavelle (1979, 1983b) reported average values of total niche overlap for the earthworm 

community from Lamto to be 0.35. Several aspects are distinguished between such community 

and the one studied at Carimagua. In the latter system species reduced their niche overlap 

through changes in the yearly seasonal density cycle, although most of them were placed in the 

topsoil during the rainy season (Jiménez and Decaens 2000). The reduction in total niche 

overlap is a consequence of the reduction of one or several resources exploited by the 

community (Pianka 1973). Competitors may be spatially and temporarily separated or excluded. 
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In this study Andiodrilus sp. and Glossodrilus sp., two endogeic species, were spatially 

segregated at short-temporal scale (two years). Both species reduce their niche overlap through 

slight differences in the vertical distribution, annual density cycle and size (data not shown). 

That might be the reason why both species, although spatially excluded from each other, can be 

temporarily present in the same area. At Lamto, however, species show a high niche overlap 

index and they reduce its competition through differences in the vertical distribution pattern 

(Lavelle 1983b). 

Finally, we have demonstrated the usefulness of niche overlap concept and its measure in 

soil ecology. Its relation to competition (interspecific) makes studies of niche overlap relevant, 

and that has been our main purpose here. Niche overlap refers to the utilization of some of the 

same resource types (so several dimensions) by two or more species of resource consumers. 

Two hypotheses related to the degree of niche overlap between Andiodrilus sp. and Glossodrilus 

sp. can be stated here: i) population of both species are in a non-equilibrium state what indicates 

that there is actual competition between them and they do not co-exist but co-occur (related to 

the concepts of coexistence vs. co-occurrence); hence, spatial structures are only stable at a short 

temporal scale; ii) both species are in an equilibrium-state, and they occupy different areas with 

specific soil properties (texture, organic matter content, root distribution), and they co-exist due 

to this soil heterogeneity. The latter hypothesis means that a higher temporal stability of 

population is occurring and that the size of their population patches corresponds to areas of the 

environmental heterogeneity of the same size. 

 

5. Conclusions 

 

We considered the persistence of the spatially separated distribution patterns of two earthworm 

genera, Andiodrilus sp. and Glossodrilus sp. as the most striking result of this study. The 

findings on the inter-specific competition have also been very useful to show the degree of niche 

overlapping between both species. There is a “spatial partitioning” pattern between two endogeic 

species with a very high degree of niche overlapping. Nonetheless, we do not conclude that a 

competitive exclusion process is occurring. Besides, this type of information is somehow rare 

and still absent in soil community ecology. The spatial ecology of soil organisms must be studied 

together with a complete and detailed assessment of the species ecology and biology when these 
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are not known, the feeding regimes, adaptive strategies and population dynamics of earthworm 

communities. Finally, in this study we have shown the usefulness of some novel tools in spatial 

ecology studies. The comparison of results obtained by the two main methods used, the PTA 

together with correlogram, and the Pianka index, was insightful and allowed for some important 

ecological interactions in the earthworm communities to be known. Furthermore, the observation 

that the type of land use system (savanna or pasture) changes the structure and patterns of the 

earthworm community is a unique and important finding for soil ecologists.  
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Table I 

Lower and upper limits and number of pair points for each 

of the 9 distance classes employed for computing the 

correlograms. Distance class is 11 m.  

Distance 

classes 

Number of pair 

points 

Inferior  

limit (m) 

Upper  

limit (m) 

1 112 0 11 

2 194 11 22 

3 460 22 33 

4 346 33 44 

5 380 44 55 

6 276 55 66 

7 178 66 77 

8 60 77 88 

9 10 88 99 
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Table II 

Descriptive statistics (number of individuals m
-2

  standard deviation) obtained for each 

earthworm species in the savanna and pasture (data from the explicit spatial sampling). 

Species Savanna    Pasture   

 November  

1993 

November  

1994 

May  

1995 

September  

1993 

October  

1994 

June  

1995 

Andiodrilus sp. 2.0 ± 4.4 2.8 ± 5.2 2.5 ± 4.4 3.5 ± 6.1 4.4 ± 8.7 6.2 ± 13.0 

Andiorrhinus sp. 0 0 0.1 ± 0.8 1.4 ± 3.5 0.2 ± 1.1 0.4 ± 1.5 

Aymara sp. 0 1.4 ± 3.6 7.8 ± 9.5 0 0.5 ± 1.6 13.5 ± 17.3 

Glossodrilus sp. 46.3 ± 39.7 19.0 ± 19.7 30.5 ± 25.9 66.6 ± 55.5 36.9 ± 23.5 102.5 ± 68.4 

Martiodrilus sp . 0 0.1 ± 0.8 0.7 ± 2.6 1.0 ± 2.5 1.9 ± 4.6 14.5 ± 14.9 

Ocnerodrilidae sp. 2.0 ± 6.6 3.1 ± 3.2 7.0 ± 11.8 0 6.6 ± 10.6 18.8 ± 23.5 
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Legends to figures 

 

Fig. 1. Results from the interstructure analysis; (a) ordination of sampling dates on the 

factorial plan defined by the first two axes of the PCA on the interstructure matrix (b) maps 

of the factorial coordinates of the 64 sampling points on the first axis of the interstructure 

analysis for each of the six species in the pasture. Glo: Glossodrilus sp., Aym: Aymara sp., 

And: Andiodrilus sp., Mar: Martiodrilus sp.; Ocn: Ocnerodrilidae sp.; Anr: Andiorrhinus sp1. 

(circles and squares represent positive and negative scores and the surface is proportional to 

the corresponding value). 

 

Fig. 2. Results of the compromise analysis from the pasture; (a) correlation circle showing the 

ordination of variables (species) on the factorial plan defined by the first two axes of the PCA 

on the compromise matrix. Inside the squares some data regarding the life history traits of 

species have been included: weight, demography strategy; adaptive strategy and yearly 

average vertical distribution in the soil (data from Jiménez and Decaëns 2000; Jiménez et al. 

1998a, b, 2000), (b) maps of the factorial coordinates of the 64 sampling points on the first 

two axes of the PCA on the compromise matrix (circles and squares represent positive and 

negative scores respectively and the surface is proportional to the corresponding value). 

 

Fig. 3. Results from the interstructure analysis; (a) ordination of sampling dates on the 

factorial plan defined by the first two axes of the PCA on the interstructure matrix (b) maps 

of the factorial coordinates of the 64 sampling points on the first axis of the interstructure 

analysis for each of the six species in the natural savanna. Glo: Glossodrilus sp., Aym: 

Aymara sp., And: Andiodrilus sp., Mar: Martiodrilus sp.; Ocn: Ocnerodrilidae sp.; Anr: 

Andiorrhinus sp1. (circles and squares represent positive and negative scores respectively and 

the surface is proportional to the corresponding value). 

 

Fig. 4. Results of the compromise analysis from the savanna; (a) correlation circle showing 

the ordination of variables (species) on the factorial plan defined by the first two axes of the 

compromise matrix, (b) maps of the factorial coordinates of the 64 sampling points on the 
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first two axes of the PCA on the compromise matrix (circles and squares represent positive 

and negative scores respectively and the surface is proportional to the corresponding value). 

 

Fig. 5. Moran’s  I  index and correlograms computed from the factorial coordinates of the 64 

sampling points on axis 1 of the PCA on the compromise-matrix in the pasture (a) and in the 

savanna (b) ( = not significant;  = significant). 
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