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Abstract. We performed an asymptotic linear stability analysis of the static spike autosolitons
(ASs)—self-sustained solitary inhomogeneous states—in the Gray–Scott model of an autocatalytic
chemical reaction. We found that in one dimension these ASs destabilize with respect to pulsations
or the onset of traveling motion when the inhibitor is slow enough. In higher dimensions, the one-
dimensional static spike ASs are always unstable with respect to corrugation and wriggling. The
higher-dimensional radially symmetric static spike ASs may destabilize with respect to the radially
nonsymmetric fluctuations leading to their splitting when the inhibitor is fast or with respect to
pulsations when the inhibitor is slow.
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1. Introduction. Self-organization and pattern formation in nonequilibrium
systems are among the most fascinating phenomena in nonlinear dynamics [2, 7,
10, 20, 21, 22, 23, 25, 33]. Pattern formation is observed in various physical systems
including fluids; gas and electron-hole plasmas; various semiconductor, superconduc-
tor, and gas-discharge structures; some ferroelectric, magnetic, and optical media;
combustion systems (see, for example, [2, 21, 22, 23, 34]), as well as many chemical
and biological systems (see, for example, [2, 7, 10, 25, 33]).

Self-organization is often associated with destabilization of the uniform state of
the system [2, 22, 23]. At the same time, by applying a sufficiently strong perturbation,
one can excite large-amplitude patterns, including autosolitons (ASs)—self-sustained
solitary inhomogeneous states—when the uniform state of the system is stable [20, 21,
22, 23]. ASs are elementary objects in open dissipative systems away from equilibrium.
They share properties of both solitons and traveling waves. They are similar to solitons
since they are localized objects whose existence is due to nonlinearities of the system.
On the other hand, from the physical point of view, they are substantially different
from solitons in that they are dissipative structures; that is, they are self-sustained
objects which form in strongly dissipative systems as a result of the balance between
dissipation and pumping of energy or matter. This is the reason why, in contrast to
solitons, their properties are independent of the initial conditions and are determined
primarily by the nonlinearities of the system [6, 11, 15, 18, 20, 21, 22, 23]. ASs
can be static, pulsating, or traveling. As a result of their various instabilities, these
simplest localized patterns can spontaneously transform into complex space-filling
static or dynamic patterns, including complex pulsating and traveling patterns, or
spatiotemporal chaos [3, 6, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 27, 28, 35,
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38]. Thus it is the destabilization of ASs that is the main source of self-organization
in nonequilibrium systems with the stable homogeneous state [23].

An example of a system in which these self-organization scenarios are realized is
the classical Gray–Scott reaction-diffusion model. This model describes the kinetics
of a simple autocatalytic reaction in an unstirred flow reactor [8]. The reactor is a
narrow space between two porous walls. Substance Y , whose concentration is kept
fixed outside of the reactor, is supplied through the walls into the reactor at the rate
k0, and the products of the reaction are removed from the reactor at the same rate.
Inside the reactor, Y undergoes the reaction involving an intermediate species X:

2X + Y
k1→ 3X,(1.1)

X
k2→ inert.(1.2)

The first reaction is a cubic autocatalytic reaction resulting in self-production of
species X; therefore, X is the activator species. On the other hand, the production of
X is controlled by species Y , so Y is the inhibitor species. The equations of chemical
kinetics which describe the spatiotemporal variations of the concentrations of X and
Y in the reactor and take into account the supply and removal of the substances
through the porous walls take the following form:

∂X

∂t
= −(k0 + k2)X + k1X

2Y + DX∆X,(1.3)

∂Y

∂t
= k0(Y0 − Y ) − k1X

2Y + DY ∆Y,(1.4)

where now X and Y are the concentrations of the activator and the inhibitor species,
respectively, Y0 is the concentration of Y in the reservoir, ∆ is the two-dimensional
Laplacian, and DX and DY are the diffusion coefficients of X and Y .

In order to be able to understand various pattern formation phenomena in a
system of this kind, it is crucial to introduce the variables and the time and length
scales that best represent the physical processes acting in the system. First and most
important is the choice of the characteristic time scales. These are primarily dictated
by the time constants of the dissipation processes. For Y , this is the supply and the
removal with the rate k0, whereas for X this is the removal from the system and
the decay via the second reaction with the total rate k0 + k2. The natural way to
introduce the dimensionless inhibitor concentration is to scale it with Y0. Since we
want to fix the time scale of the variation of the inhibitor (with the fixed activator),
we will rescale X in such a way that the reaction term in (1.4) will generate the
same time scale as the dissipative term. This leads to the following dimensionless
quantities:

θ = X/X0, η = Y/Y0, X0 =

(
k0

k1

)1/2

.(1.5)

The characteristic time and length scales for these quantities are

τθ = (k0 + k2)
−1

, τη = k−1
0 ,(1.6)

l = (DXτθ)
1/2

, L = (DY τη)
1/2

.(1.7)

Naturally, one should require positivity of θ and η.
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Let us measure length and time in the units of l and τθ, respectively. Then (1.3)
and (1.4) can be rewritten in the dimensionless form as follows:

∂θ

∂t
= ∆θ + Aθ2η − θ,(1.8)

α−1 ∂η

∂t
= ε−2∆η − θ2η + 1 − η,(1.9)

where we introduced the following dimensionless parameters:

ε =

(
k0DX

(k0 + k2)DY

)1/2

, α =
k0

k0 + k2
, A =

Y0k
1/2
0 k

1/2
1

(k0 + k2)
.(1.10)

The parameters ε = l/L and α = τθ/τη are the ratios of the length and time scales
of the activator and the inhibitor, respectively, and A characterizes the degree of
deviation of the system from thermal equilibrium.

For A < 2, the system has only one homogeneous state θ = θh, η = ηh, where

θh = 0, ηh = 1,(1.11)

whereas for A ≥ 2 two other homogeneous states appear:

θh2,3 =
A∓√

A2 − 4

2
, ηh2,3 =

A±√
A2 − 4

2A
.(1.12)

It is easy to see that the homogeneous state θ = θh, η = ηh is stable for all values of
the system’s parameters. Thus self-organization associated with the Turing instability
of the homogeneous state θh = 0 and ηh = 1 is not realized in the Gray–Scott model.
Instead, for A < 2, self-organization may occur only as a result of the instabilities of
large-amplitude patterns already present in the system.

Let us emphasize that ε or α are the natural small parameters in systems of this
kind. Their relative smallness is in fact a necessary condition for the feasibility of
any patterns in systems with a unique homogeneous state [6, 11, 12, 13, 14, 15, 18,
20, 21, 22, 23]. Indeed, if the inverse were true, that is, if both the characteristic
time and length scales of the variation of the inhibitor were much smaller than those
of the activator, the inhibitor would easily damp all the deviations of the activator
from the homogeneous state, making the formation of any kinds of persistent patterns
impossible. This can be easily seen in the Gray–Scott model with ε � 1 and α � 1. In
this case, (1.9) reduces (on the time scales of order 1) to η = 1/(1 + θ2). Substituting
this into (1.8), we obtain

∂θ

∂t
= ∆θ +

Aθ2

1 + θ2
− θ.(1.13)

This equation possesses a simple variational structure

∂θ

∂t
= −δF

δθ
, F =

∫
ddx

(
(∇θ)2

2
−Aθ + A arctan θ +

θ2

2

)
.(1.14)

For A < 2, the functional F has a unique global minimum at θ = θh = 0, so any
initial condition will evolve to the homogeneous state θh. For A > 2, there are two
stable homogeneous states θ = θh and θ = θh3 (see above), so it is possible to have
waves of switching from one homogeneous state to the other [2]. It is easily checked
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that, in such a wave, the homogeneous state θh invades θh3 when 2 < A < 2.18, while
for A > 2.18 the homogeneous state θh3 invades θh.

Thus pattern formation in the Gray–Scott model is possible only when ε � 1
and/or α � 1. Therefore, it is advantageous to consider the extreme cases ε 
 1
and/or α 
 1. In [30], we showed that when ε 
 1, one can excite static spike
ASs in the Gray–Scott model in one, two, and three dimensions. These ASs have
the form of spikes of width of order 1 (in our units) and large amplitude in the
distribution of θ. For sufficiently small ε, Doelman, Kaper, and Zegeling proved
existence of these solutions in a certain parameter range in one dimension [5], and
Wei proved the existence of radially symmetric solutions in a certain parameter range
in two dimensions [41]. Hale, Peletier, and Troy constructed stationary solutions and
studied their stability in the Gray–Scott model with ε � 1 [9].

In the present paper, we perform a comprehensive asymptotic analysis of the
linear stability of the static spike ASs in the Gray–Scott model in one, two, and three
dimensions for ε 
 1. Our paper is organized as follows. In section 2, we study
stability of the one-dimensional static spike AS in higher dimensions, in section 3 we
do that for the three-dimensional radially symmetric static spike AS, in section 4 we
outline the stability analysis of the two-dimensional radially symmetric static spike
AS, and in section 5 we summarize our results.

2. Stability of the one-dimensional static spike AS. We start by analyzing
the one-dimensional static spike AS in higher dimensions. In one dimension, the
solution in the form of the static AS exists for Ab ≤ A ≤ Ad, where Ab =

√
12ε and

Ad � 1.35 for ε 
 1. For Ab ≤ A 
 Ad, the inner solutions θ̃, η̃ describing the spike
region are [30]

θ̃ =
3εA

A2
b

[
1 +

√
1 − A2

b

A2

]
cosh−2

(x
2

)
, η̃ =

A2
b

2εA2

[
1 +

√
1 − A2

b

A2

]−1

.(2.1)

For Ab 
 A 
 Ad, these functions become θ̃ = A
2 cosh−2

(
x
2

)
and η̃ = 3

A2 . For
A ∼ Ad, the inner solutions are found numerically.

The equations describing small deviations δθ = θ − θ0 and δη = η − η0 of the
activator and the inhibitor, respectively, from the distributions θ0(x) and η0(x) in the
form of the static one-dimensional AS are obtained by linearizing (1.8) and (1.9). (We
chose the axes so that θ0 and η0 depend only on x.) Let us take

δθ = δθkω(x)eiωt−iky, δη = δηkω(x)eiωt−iky,(2.2)

where ω is the complex frequency and k is the wave vector that characterizes the trans-
verse perturbations of the AS. Then, after some algebra, (1.8) and (1.9) linearized
around θ0 and η0 can be written as[

− d2

dx2
+ 1 + iω + k2 − 2Aθ0η0

]
δθkω = Aθ2

0δηkω,(2.3) [
−ε−2 d2

dx2
+ 1 + iα−1ω + ε−2k2

]
δηkω

= −A−1

[
− d2

dx2
+ 1 + iω + k2

]
δθkω.(2.4)

Equation (2.4) can be solved by means of Green’s function
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δηkω = −ε2

A
δθkω

−ε
(
1 − ε2 + iω − iε2α−1ω

)
2A

√
1 + iα−1ω + ε−2k2

∫ +∞

−∞
e−ε

√
1+iα−1ω+ε−2k2|x−x′|δθkω(x′)dx′.

(2.5)

This expression for δηkω can be substituted back into (2.3) to get a single integro-
differential equation in terms of δθkω alone:[

− d2

dx2
+ 1 + iω + k2 − 2Aθ0η0 + ε2θ2

0

]
δθkω

= −ε(1 − ε2 + iω − iε2α−1ω)θ2
0

2
√

1 + iα−1ω + ε−2k2

∫ +∞

−∞
e−ε

√
1+iα−1ω+ε−2k2|x−x′|δθkω(x′)dx′.

(2.6)

Equation (2.6) is the basic equation for studying the stability of the static one-
dimensional AS in higher dimensions. One has to solve this equation as an eigenvalue
problem: find the modes δθn and the values of ω = ωn(k) corresponding to them.
The instability of the AS will occur when the real part of γ = −iω is negative.
(Re γ is the damping decrement (decay rate) of a fluctuation.) We will use ω and
γ interchangeably throughout this paper. To analyze the stability of the static spike
AS in one dimension, one should simply put k = 0 in (2.6).

Note that since θ2
0 in the right-hand side of (2.6) is an exponentially decaying

function of x [30], a mode δθn can be unstable only if it is localized, since otherwise
we would have γ = 1 + k2 > 0. In other words, the unstable modes should be in
the discrete spectrum of the solutions of (2.6). Also note that since the static AS
is symmetric with respect to its center, the spectrum of the problem breaks up into
even and odd modes. For the purposes of notation, we will choose even (odd) values
of a nonnegative integer n to denote the even (odd) modes δθn ordered by Re γn.
Because of the translational invariance, the problem always has a zero eigenvalue
with the corresponding odd eigenfunction δθ = dθ0/dx. The analysis below shows
that qualitatively the first few modes δθn look like those shown in Figure 2.1.

Observe that the operator in the left-hand side of (2.6) is a Schrödinger-type
operator with the potential in the form of a well of depth and size of order 1. Indeed,
according to the results of [30], the characteristic length scale of the variation of θ0

is of order 1, and we have θ0 ∼ Aε−1 and η0 ∼ A−2ε in the spike, and so Aθ0η0 ∼ 1
and exponentially decays away from the spike. Also, the right-hand side of (2.6) is
multiplied by the function θ2

0, which also exponentially decays away from the spike.
Therefore, in solving this eigenvalue problem, one should know only the distributions
θ0 and η0 in the spike. So, for ε 
 1, we may use only the inner solutions θ̃ and η̃
obtained in [30] and set θ0 = ε−1θ̃ and η0 = εη̃ in (2.6).

2.1. Case α � 1 and k = 0: Stability of the AS in one dimension.
According to the general qualitative theory of ASs, the static spike AS should be
stable in the entire region of its existence for α � 1 in one dimension [21, 22, 23].
To see this, let us analyze (2.6) in the case α � 1 and k = 0. In this case, it can be
asymptotically written as[

− d2

dx2
+ 1 − γ − 2Aθ̃η̃ + θ̃2

]
δθ = − 1

2ε
θ̃2(1 − γ)

∫ +∞

−∞
δθ(x′)dx′.(2.7)
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c)

b)

a)

δθ

x

δθ
δθ

Fig. 2.1. A qualitative form of the lowest-lying modes δθn.

To see that the AS is stable in one dimension for Ab 
 A < Ad in the case of
sufficiently large α, we solved (2.7) numerically, using the asymptotic distributions
θ̃ and η̃ obtained in [30]. We solve this equation by discretizing the operators and
diagonalizing the obtained matrices for sufficiently small ε. This gives γn as functions
of A.

We found that the discrete spectrum of the problem contains at least one even
eigenvalue. The damping decrement Re γ0 is positive and goes to zero as A → Ad,
signifying the instability of the AS at this point. The corresponding eigenfunction has
two nodes with two distinct peaks and a deep trough between them (Figure 2.2(a)),
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Fig. 2.2. The form of the critical fluctuation δθ0 at A = Ad (a) and A = Ab (b).
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Fig. 2.3. The dependence Re γ0(A) for the static one-dimensional AS for A ∼ Ab (a) obtained
from the numerical solution of (2.8), and A ∼ Ad (b) obtained from (2.7).

suggesting that the instability at A = Ad will result in the local breakdown in the
AS center and its splitting. The latter is supported by the numerical simulations
[29, 39, 40].

When A ∼ Ab, (2.7) can be further simplified by using the analytical expressions
for θ̃ and η̃ from (2.1) [30] and ignoring the last term in the square bracket in its
left-hand side. So, (2.7) in the case A ∼ Ab asymptotically becomes

[
− d2

dx2
+ 1 − γ − 3 cosh−2

(x
2

)]
δθ

= −3A2(1 − γ)

8A2
b

[
1 +

√
1 − A2

b

A2

]2

cosh−4
(x

2

)∫ +∞

−∞
δθ(x′)dx′.(2.8)

Naturally, (2.7) in the case A 
 1 should give the same results as (2.8) in the case A �
Ab. The numerical analysis of this equation also shows that the damping decrement
Re γ0 > 0 for A > Ab and that γ0 → 0 as A approaches Ab. By direct inspection, the
corresponding eigenfunction at A = Ab is δθ0 = cosh−2(x/2). It has only one peak
(Figure 2.2(b)) and no nodes and results in the AS collapse at this value of A [29].

The damping decrements Re γ0(A) obtained from the numerical solution of (2.7)
and (2.8) are shown in Figure 2.3. This figure indicates that for sufficiently large α the
static spike AS in one dimension is indeed stable in the entire region of its existence.
Notice that it turns out that only at Ab < A < 1.06Ab or at 0.90 < A < Ad we have
Re ω0,2 = 0 so that there are two distinct localized modes δθ0,2 with different (real)
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values of γ. For all other values of A, we have Re ω �= 0, and there are two complex-
conjugate eigenfunctions corresponding to the two complex frequencies ω and −ω∗.
For Ab 
 A 
 Ad, we have Re γ0 � 1 and Re ω0 � 0.15.

Observe that (2.8) can be analyzed rigorously. This analysis turns out to be
rather involved, so we present it in Appendix A. It agrees with the conclusions of
this section concerning the case A 
 1. Note that Doelman, Gardner, and Kaper
independently showed stability of the one-dimensional static spike AS in a limited
region of the parameters by a direct solution of an equation equivalent to (2.8) [4].

2.2. Case α ��� 1 and k = 0: Instability with respect to pulsations.
The general qualitative theory of ASs suggests that for small enough values of α the
static spike AS may become unstable with respect to the fluctuations with Re ω �= 0,
resulting in the onset of the AS pulsations [21, 22, 23]. The analysis of (2.6) shows
that, in order for it to have a solution with Im ω = 0 and Re ω = ω0 �= 0, we must
have ε2 � α � 1 and ω0 ∼ 1. Let us introduce κ2 = ε2/α � 1. Then, dropping 1 in the
square roots in the right-hand side of (2.6) and putting k = 0, we get asymptotically[

− d2

dx2
+ 1 + iω0 − 2Aθ̃η̃ + θ̃2

]
δθ

= − (1 + iω0 − iκ2ω0)θ̃2

2κ
√

iω0

∫ +∞

−∞
e−κ

√
iω0|x−x′|δθ(x′)dx′.(2.9)

In order for the exponential in the right-hand side of this equation to decay at large
distances, we must choose the analytic branch of the square root that has a positive
real part for all values of ω0, which is achieved by making a branch cut along the
positive imaginary axis. Strictly speaking, the branch cut should begin at ω = iα (see
(2.6) with k = 0), which for sufficiently small α can be considered to be at zero in the
analysis of the dangerous modes.

To find the instabilities of the static spike AS with respect to pulsations, we first
solved (2.9) numerically using the inner solutions of [30] for A ∼ 1. This numerical
solution shows that the static spike AS indeed becomes unstable with respect to the
fluctuation δθ0, which looks like Figure 2.1(a), with Re ω = ω0(A) at α < αω(A) ∼ ε2.
The plots of αω(A) and ω0(A) are shown in Figures 2.4(a) and 2.4(b), respectively.
Alternatively, for a given value of α ∼ ε2, the static spike AS becomes unstable with
respect to pulsations when A < Aω � 1.

Equation (2.9) can be simplified in the case Ab 
 A 
 1 and ε2 
 α 
 1. In
this case, one can use the analytical expressions from (2.1) for θ̃ and η̃ in the limit
A � Ab and neglect the last term in the left-hand side of (2.9), the exponential, and
the term iκ2ω0 in its right-hand side. As a result, (2.9) can be written in this case as[

− d2

dx2
+ 1 + iω0 − 3 cosh−2

(x
2

)]
δθ

= −A2(1 + iω0) cosh−4(x/2)

8κ
√

iω0

∫ +∞

−∞
δθ(x′)dx′.(2.10)

One can see that the dependence on the system’s parameters enters this equation via
only the combination A2/κ = α1/2A2/ε. Solving (2.10) numerically, we obtain that
the AS destabilizes at

αω = 5.15 × ε2A−4, ω0 = 0.534, for Ab 
 A 
 1.(2.11)
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Fig. 2.4. The dependences αω(A) (a) and ω0(A) (b) for the static one-dimensional AS obtained
from the numerical solution of (2.9); the dependences αω(A) (c) and ω0 (d) are obtained from the
numerical solution of (2.13).

Note that (2.10) can be rigorously analyzed by the method similar to the one used
for (2.8). This analysis is presented in Appendix B. It yields the same conclusions
as above and in (2.11). The result of (2.11) is in agreement with that of Doelman,
Gardner, and Kaper obtained by a direct solution of an equation equivalent to (2.10) in
a limited parameter region [4]. Notice that this equation gives a good approximation
for αω only for A � 0.5 (see Figure 2.4(a)). Recalling that we must have A � Ab =√

12ε, we see that (2.11) can give a good approximation only for ε � 0.01 in a limited
range of A.

For Ab 
 A 
 1 and ε2 
 α 
 αω, it is easy to show that the AS is unstable.
For these values of A and α, the right-hand side of (2.10) is a perturbation, so to
the leading order δθ0 is given by (A.2). The solution of (2.10) in the first order of
perturbation theory with α/ε2 
 A4 then gives us

γ0 � −5

4
+

27π2
√

5

1024
A2α1/2ε−1 < 0.(2.12)

Notice that by equating this expression to zero, one gets the value of α which differs
from αω given by (2.11) by only 10%.

According to (2.11), when A decreases, the value of αω increases, and when A
reaches the value of order Ab, we must have αω ∼ 1, and so for these values of the
parameters one can no longer neglect 1 compared to α−1ω in the square roots in
(2.6). On the other hand, in this case, one can still use the same approximations as
in deriving (2.10), except we should now use the asymptotic expressions for θ̃ and η̃
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from (2.1) [30]. As a result, for α ∼ 1 and A ∼ Ab, we get asymptotically

(2.13) [
− d2

dx2
+ 1 + iω0 − 3 cosh−2

(x
2

)]
δθ

= − 3A2(1 + iω0)

8A2
b

√
1 + iα−1ω0

[
1 +

√
1 − A2

b

A2

]2

cosh−4
(x

2

)∫ +∞

−∞
δθ(x′)dx′.

The results of the numerical solution of this equation for αω and ω0 are presented
in Figures 2.4(c) and 2.4(d), respectively. From these figures, one can see that for
α > α0 � 0.33 the considered instability of the static spike AS cannot be realized for
any value of A. This result is in agreement with the general qualitative theory of ASs
[21, 22, 23].

2.3. Case α � 1 and k �= 0: Instability with respect to corrugation.
Let us now see what happens in higher dimensions when A ∼ 1 and α is sufficiently
large (so that the terms proportional to α−1 in (2.6) can be dropped) as the value of
k is varied. Let us consider the situation when ε 
 k � 1. Then one can neglect 1
compared to ε−2k2 in the square roots in (2.6) and write it asymptotically as[

− d2

dx2
+ 1 − γk + k2 − 2Aθ̃η̃ + θ̃2

]
δθk

= − θ̃2(1 − γk)

2k

∫ +∞

−∞
e−k|x−x′|δθk(x′)dx′.(2.14)

Note that for k ∼ 1 the coefficient multiplying the right-hand side of (2.14) becomes
of order 1. Here we should expect a corrugation instability with respect to the mode
δθ0 with some k = k0 ∼ 1 [21, 22, 23, 36]. Indeed, as the value of k increases, the
magnitude of the right-hand side of (2.6) decreases as 1/k, while the contribution to
the left-hand side of (2.6) increases as k2. Therefore, for some k = k0, the contribution
of both these two terms to (2.6) will be minimal so that we can get an instability:
Re γk0 < 0.

To show that there is indeed an instability at k ∼ 1, we solved (2.14) numerically
using the asymptotic distributions for θ̃ and η̃ obtained in [30]. Figure 2.5 shows the
solutions for Re γk obtained for a particular value of A = 1.2.

For k > 0.29, (2.14) has two localized even solutions and a continuous spectrum
of γk for A = 1.2, all having Re ω(k) = 0. The curve at the bottom of the figure
corresponds to δθ0, the curve in the middle corresponds to δθ2, and the curve on
the top is the bottom of the continuous spectrum. The corresponding eigenmodes
look like Figures 2.1(a) and 2.1(c), respectively. From Figure 2.5, one can see that
the AS is unstable with respect to δθ0 (the corrugation instability) for a range of
wave vectors k ∼ 1. When 0.05 < k < 0.29, the complex frequency ω(k) for the
modes δθ0,2 acquires a real part for A = 1.2. The corresponding eigenfunctions for
these modes, as well as γk, are complex-conjugate. The real and the imaginary parts
of these eigenmodes look like linear combinations of the functions shown in Figures
2.1(a) and 2.1(c). For yet smaller values of k, the real part of ω vanishes once again,
so we have two distinct solutions, with δθ0 and δθ2 looking like Figures 2.1(c) and
2.1(a), respectively. The latter is related to the presence of two distinct solutions
in the case of the one-dimensional AS studied in section 2.1, which is obtained from
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(2.14) in the limit k → 0. When the value of A is decreased below A = 0.90, these
two distinct solutions disappear, and the solution with a nonzero real part of ω(k)
goes all the way to k = 0.

The analysis of γk for different values of A shows that the static one-dimensional
spike AS in higher dimensions is unstable with respect to corrugation for all values
of A at which it exists. Note that, in the case Ab 
 A 
 1, it can be easily shown
that the AS is unstable with respect to the corrugation instability. Indeed, for A 
 1
and A2 
 k 
 1, the inner solution is given by (2.1) in the limit A � Ab, so one
can neglect the exponential in the right-hand side and the last term in the bracket
in the left-hand side of (2.14). Then the operator in the right-hand side of (2.14) is
a perturbation, so, in the zeroth approximation, δθ0 is given by (A.2). Then, in the
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first order of perturbation theory,

γ0(k) =

(
−5

4
+

75π2A2

2048k
+ k2

)(
1 +

75π2A2

2048k

)−1

,(2.15)

which is negative for A2 
 k � 1. The same conclusion can be made for A ∼ Ab along
the same arguments. Notice that according to (2.15) the fastest growing mode has
k � 0.60, which coincides with very good accuracy with the results of the numerical
solution of (2.14) (see Figure 2.5).

2.4. Case α � 1 and k �= 0: Instability with respect to wriggling. Let
us now turn to the mode δθ1. The numerical analysis of (2.7), which determines the
stability of the static AS in one dimension for α � 1, shows that, for k = 0, we have
γ1 = 0 and δθ1 = dθ̃/dx corresponding to the translational mode. This mode looks
like the one shown in Figure 2.1(b). Since this mode is degenerate, it is of special
interest to study the solutions of (2.6) for |γ| 
 1 and k 
 1. The small values of k
and γ introduce a weak perturbation to the operators in (2.6) with k = 0 and γ = 0.
Therefore, in the leading order of perturbation theory, we must multiply (2.6) by the
adjoint function δθ∗1 and integrate over x. As a result, in the first order in γk and k2,
we obtain

−γk + k2 +
γk
2

(1 − ε2α−1)

∫ +∞

−∞

∫ +∞

−∞
θ̃2(x)δθ∗1(x)|x− x′|δθ1(x′)dxdx′

=
ε

8α
(γk − αε−2k2)

∫ +∞

−∞

∫ +∞

−∞
θ̃2(x)δθ∗1(x)(x− x′)2δθ1(x′)dxdx′,(2.16)

where we expanded the exponential in (2.6) up to the second order in ε and used the

normalization
∫ +∞
−∞ δθ∗1δθ1dx = 1.

Recalling that δθ1 = dθ̃/dx, we can calculate the integral in the right-hand
side of (2.16). Using the symmetry properties of δθ1, we find this integral to be

2
∫ +∞
−∞ xθ̃2δθ∗1dx

∫ +∞
−∞ θ̃dx. For Ab 
 A ≤ Ad, we used the inner solutions obtained in

[30] to compute δθ∗1 numerically and found that this integral is negative for all values
of A. By a similar integration, one can show that the integral in the left-hand side
of (2.16) is also negative. Then, it is easy to see that when α � ε (otherwise, the
AS would be unstable in one dimension (see section 2.5 below)), for small values of
k, we will have γ1(k) ∼ −ε−1A2k2 < 0, so the one-dimensional static spike AS is in
fact always unstable with respect to the δθ1 mode with small k for A � Ab. These
fluctuations lead to wriggling of the AS [29, 32].

Moreover, it is possible to show that the static spike AS which is stable in one
dimension is in fact unstable with respect to wriggling for all values of A > Ab. Indeed,
for A ∼ Ab, the operator in the right-hand side of (2.6), which is the only non-self-
adjoint operator there, can be considered as a perturbation, and so to the leading
order δθ∗1 = δθ1, where δθ1 is given by (A.2) and θ̃ is given by (2.1). Substituting
this into (2.16), we obtain that for small values of k the damping decrement γk of the
fluctuations leading to wriggling is given by

γ1(k) � k2


1 − A2

A2
b

(
1 +

√
1 − A2

b

A2

)2

.(2.17)

From this equation, one can see that γ1(k) < 0 for small k, signifying an instability,
for A > Ab, and sufficiently small k. Thus, in summary, the one-dimensional static
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spike AS is always unstable in higher dimensions, and so the instabilities that are
realized for sufficiently small α are meaningful only for the one-dimensional system.
Note that the wriggling instability was found in [37] for a simplified version of the
Gray–Scott model.

2.5. Case α � 1 and k = 0: Instability with respect to the onset of
traveling motion. In addition to the instability of the AS with respect to wriggling,
another instability may be realized when α 
 1 [37]. As was already mentioned, for
k = 0, (2.16) has a simple zero solution for any α due to the translational invariance.
However, at some special value of α = αT , the solution γ = 0 may become doubly
degenerate. This will happen when the coefficient in front of γ in (2.16) vanishes.
If this is the case, in addition to the trivial solution, we will have another nontrivial
zero solution, for which the value of γ should change sign as the value of α passes
through αT . This signifies an instability that leads to the onset of traveling motion.
It is not difficult to see that this instability will occur when α < αT ∼ ε for A � 1.
In particular, when A 
 1, we can put δθ∗1 = δθ1, where δθ1 is given by (A.2), since
again the only non-self-adjoint operator is the operator in the right-hand side of (2.6)
and is small. After a little algebra, we obtain that the instability will occur at

αT =




ε2A2

A2
b

[
1 +

√
1 − A2

b

A2

]2
, A ∼ Ab,

1
3A

2ε, Ab 
 A 
 1.

(2.18)

Note that the last formula coincides with the expression for the bifurcation point
between the traveling and the static spike AS obtained by us in [29, 31].

To analyze the dependence αT (A) for A ∼ 1, we solved for the adjoint function
δθ∗1 numerically and then substituted it into (2.16). The resulting dependence αT (A)
is presented in Figure 2.6. Observe that for A < 1 the value of αT is given by (2.18)
with an accuracy better than 10%.
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2.6. Comparison of the pulsation and traveling instabilities. According
to (2.11) and (2.18), for A > 1.58ε1/6, we have αT > αω, so if one starts with the static
spike AS at A ∼ 1 and a sufficiently large value of α and then gradually decreases α,
the AS will destabilize with respect to the fluctuation δθ1 that looks like Figure 2.1(b)
and transform into traveling. If, on the other hand, we have A < 1.58ε1/6 at the start,
the AS will destabilize with respect to pulsations, with the corresponding eigenmode
looking like Figure 2.1(a). Also, according to (2.11) and (2.18), for α < αc = 0.83ε4/3,
the one-dimensional static spike AS will be unstable regardless of the value of A, and
so we conclude that this AS can be excited only when α > αc.

3. Stability of the three-dimensional radially symmetric static spike
AS. Let us now turn to the three-dimensional radially symmetric spike ASs. It turns
out that, up to the logarithmic terms, all the results on the stability of the two- and
three-dimensional radially symmetric static spike ASs have the same dependence on
ε, so we will concentrate mostly on the three-dimensional AS.

For the three-dimensional radially symmetric static spike AS, the small deviations
δθ = θ − θ0 and δη = η − η0 in the spherical coordinates can be taken as

δθ = eiωtYnm(ϑ, ϕ)δθnω(r), δη = eiωtYnm(ϑ, ϕ)δηnω(r),(3.1)

where Ynm are the spherical harmonics. In [30], we found that the radially symmetric
static spike ASs exist in the Gray–Scott model when A ∼ ε. Using the inner solutions
θ̃ = εθ0 and η̃ = η0 found in [30] and the variable Ã = ε−1A, we can write (1.8) and
(1.9) linearized around θ0 and η0 as[

− d2

dr2
− 2

r

d

dr
+

n(n + 1)

r2
+ 1 + iω − 2Ãθ̃η̃

]
δθnω = ε−1Ãθ̃2δηnω,(3.2) [

− d2

dr2
− 2

r

d

dr
+

n(n + 1)

r2
+ ε2 + iε2α−1ω

]
δηnω

= −εÃ−1

[
− d2

dr2
− 2

r

d

dr
+

n(n + 1)

r2
+ 1 + iω

]
δθnω.(3.3)

Equation (3.3) can be solved by means of Green’s function, which, in the case of the
operator in the left-hand side of (3.3) multiplied by r2, is (a similar Green’s function
was used in [27, 28])

Gnω(r, r′) =




In+1/2(εr
√

1+iα−1ω)Kn+1/2(εr
′√1+iα−1ω)√

rr′
, r ≤ r′,

In+1/2(εr
′√1+iα−1ω)Kn+1/2(εr

√
1+iα−1ω)√

rr′
, r ≥ r′,

(3.4)

where In+1/2(x) and Kn+1/2(x) are the modified Bessel functions. Solving (3.3) with
the use of (3.4), we obtain

δηnω = −εÃ−1δθnω − εÃ−1(1 − ε2 + iω − iε2α−1ω)

∫ ∞

0

Gnω(r, r′)δθnω(r′)r′2dr′.

(3.5)

Substituting this expression into (3.2), we obtain the following equation:[
− d2

dr2
− 2

r

d

dr
+

n(n + 1)

r2
+ 1 + iω − 2Ãθ̃η̃ + θ̃2

]
δθnω

= −θ̃2(1 − ε2 + iω − iε2α−1ω)

∫ ∞

0

Gnω(r, r′)δθnω(r′)r′2dr′.(3.6)
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This equation determines the complex frequencies of different fluctuations as the func-
tions of the control parameters and has to be solved as an eigenvalue problem. The
instability of the AS will occur when Re γ < 0, with γ = −iω.

3.1. Case α � ε2: Instability with respect to the non radially sym-
metric fluctuations. Let us first look at (3.6) at α � ε2. In this case, the terms
proportional to α−1 in the right-hand side of (3.6) can be neglected, so Green’s func-
tion Gnω can be expanded in ε. Then (3.6) becomes asymptotically[

− d2

dr2
− 2

r

d

dr
+

n(n + 1)

r2
+ 1 − γn − 2Ãθ̃η̃ + θ̃2

]
δθn

= − θ̃2(r)(1 − γn)

2n + 1

∫ ∞

0

gn(r, r′)δθn(r′)r′dr′,(3.7)

where

gn(r, r′) =

{
(r/r′)n, r ≤ r′,
(r′/r)n+1, r ≥ r′.(3.8)

The operator in the left-hand side of (3.7) is a Schrödinger-type operator with the at-
tractive potential −2Ãθ̃η̃, repulsive potential θ̃2, and the centrifugal potential
n(n + 1)/r2.

As in the case of the one-dimensional AS, the modes δθn that can lead to insta-
bilities are localized. The numerical solution of (3.7) shows that at α � ε2 the AS
is stable in a certain range Ãb < Ã < Ãc2. The value of Ãb � 5.8 coincides with the
boundary of existence of the AS [30] and corresponds to the fluctuation with n = 0.
This fluctuation leads to the AS collapse [29, 32]. At Ã = Ãc2 � 8.4, there is an
instability with respect to the mode with n = 2.

The presence of the localized solution δθn of (3.7) with γn = 0 for n > 0 signifies
an instability of the radially symmetric static AS with respect to the non radially
symmetric fluctuations resulting in the distortions of the spike and leading to its
splitting [29, 32]. It is clear that this instability will occur more easily at smaller
values of n. (Note that the case n = 1 corresponds to the translation of the AS as a
whole and therefore does not lead to any distortions.) The numerical solution of (3.7)
shows that the AS first becomes unstable with respect to the fluctuation with n = 2.
All other modes go unstable at higher values of Ã.

It is not difficult to show that for Ã � 1 the AS will be unstable with respect to
the fluctuations with n �= 0. Indeed, according to the results of [30], for these values
of Ã, the AS has the form of an annulus of large radius R ∼ Ã2. Using the analytical
expressions for θ̃ and η̃ obtained in [30] in this case, one can see that the leading
contribution to the potential in the left-hand side of (3.7) is V (r) ∼= −3 cosh−2

(
r−R

2

)
.

For R � 1 and 1 
 n 
 R, all of the other terms can be considered as a perturbation
to the Schrödinger operator with this potential, and so to the leading order of the
perturbation theory for the lowest eigenvalue of the Schrödinger operator we have
δθ = δθ0(r−R), where δθ0(x) is given by (A.2), and we moved the boundary condition
at r = 0 to minus infinity. In the first order of the perturbation theory, we obtain

γn �
(
−5

4
+

n2

R2
+

225π2

2048n

)(
1 +

225π2

2048n

)−1

.(3.9)

This equation shows that for R � 1 there is a range of values of n for which γn < 0.
The fact that the annulus must be unstable with respect to the shape deformations is
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Fig. 3.1. (a) The stability diagram for the three-dimensional radially symmetric AS. (b)
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instabilities of the static AS at Ã = Ãb and Ã = Ãc2.

an obvious consequence of its quasi-one-dimensional character (see section 2.3). It is
interesting to note that (3.9) with n = 2, together with the expression for R(Ã) from
[30], gives the correct value of Ãc2 with accuracy better than 5%.

Dynamically, when the value of A is increased beyond the value corresponding
to Ãc2, the buildup of the instability with n = 2 will result in splitting of the AS
[32, 38]. After such a splitting event, the two newborn ASs will go apart until they
are separated by a sufficiently large distance and then will split again. Thus the
considered instability will result in self-replication of ASs [29, 32, 38]. We would
like to emphasize that the character of the instability that leads to self-replication in
three-dimensional (and two-dimensional) systems is significantly different from that
in one dimension. In the former, the instability results in the buildup of the shape
distortion that eventually leads to splitting, while, in the latter, the instability leads to
the widening of the activator distribution profile and local breakdown in the AS center
(see section 2.1). Thus self-replication of the AS in one dimension is qualitatively
different from that in higher dimensions. Similar conclusions were made in a wide
class of reaction-diffusion models [26, 27, 28].

3.2. Case α ��� ε2: Instability with respect to pulsations and the onset
of traveling motion. According to the general qualitative theory of ASs, when α
becomes small, the AS may become unstable with respect to pulsations with Re ω �= 0.
The analysis of (3.6) with n = 0 shows that this instability may be realized only when
α ∼ ε2 and Re ω = ω0 ∼ 1. In view of this fact, we can drop 1 in the square roots in
(3.4). Equation (3.6) can then be solved numerically. The results of this numerical
solution are presented in Figure 3.1. The upper curve in Figure 3.1(a) shows the
critical values of αω for the onset of this instability for those values of Ã at which
the AS is stable at α � ε2. Figure 3.1(b) shows the frequency ω0 of the fluctuations
at the threshold of the instability. From Figure 3.1(a), one can see that the static
three-dimensional AS is unstable for all values of Ã if α < αc � 3.7ε2.

In addition to the modes studied above, we always have a dangerous mode δθ =
dθ̃/dr with n = 1 corresponding to translations. The analysis of (3.6) shows that, in
addition to the trivial solution, at some α = αT ∼ ε2, this equation can have another
solution with γ = 0. As in the case of the one-dimensional AS, this solution will
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signify the instability which results in the AS starting to move as a whole. To find
this instability point, we need to know the behavior of Green’s function G1ω(r, r′) at
small values of iω. Expanding the Bessel functions in (3.4) and finding the adjoint
function δθ∗1 numerically, we calculate the coefficient in front of iω in the first order
of the perturbation theory, keeping only the leading terms in ε. The above-mentioned
instability will be realized when this coefficient vanishes. The lower solid line in
Figure 3.1(a) shows the values of αT /ε

2 at which this happens. One can see that this
instability occurs when the AS is already unstable with respect to pulsations. Note
that the numerical solution of (3.6) shows that the instabilities with respect to the
fluctuations with n ≥ 2 always happen for significantly lower values of α.

4. Stability of the two-dimensional radially symmetric static spike AS.
Finally, we will briefly discuss the stability of the two-dimensional static spike AS
for ε 
 1. In the cylindrical coordinates r, ϕ, the small deviations δθ = θ − θ0 and
δη = η − η0 can be taken as

δθ = δθnω(r)eiωt−inϕ, δη = δηnω(r)eiωt−inϕ,(4.1)

where n is an integer.
The equation for δθnω is obtained by linearizing (1.8) and (1.9) around θ0 and η0

and eliminating δηnω by inverting the equation for δηnω. As a result, using the inner
solutions θ̃ = εθ0 and η̃ = η0 ln ε−1 and the variable Ã = A/(ε ln ε−1) obtained in [30],
we arrive at the following equation for δθnω:[

− d2

dr2
− 1

r

d

dr
+

n2

r2
+ 1 + iω − 2Ãθ̃η̃ + θ̃2

]
δθnω

= −θ̃2(1 − ε2 + iω − iε2α−1ω)

∫ ∞

0

Gnω(r, r′)δθnω(r′)r′dr′,(4.2)

where Gn(r, r′) is given by

Gn(r, r′) =

{
In(εr

√
1 + iα−1ω)Kn(εr′

√
1 + iα−1ω), r < r′,

In(εr′
√

1 + iα−1ω)Kn(εr
√

1 + iα−1ω), r > r′,
(4.3)

where In and Kn are the modified Bessel functions. The analysis of this equation can
be performed in the way completely analogous to that of (3.6). It is clear that the
instabilities of the two-dimensional static spike AS will be qualitatively the same as
those of the three-dimensional AS. We would like to emphasize that, as in the case
of the three-dimensional AS, splitting and self-replication of the static spike AS in
the two-dimensional system is related to the buildup of the fluctuation with n = 2
describing a nonsymmetric distortion of the AS. Because of the very slow convergence
of the asymptotic theory in two dimensions (recall that the small parameter here is
1/ ln ε−1), we will not present a detailed study of (4.2).

Note that Wei studied existence and stability of the two-dimensional radially
symmetric static spike ASs in the Gray–Scott model with A ∼ ε ln1/2 ε−1 [41]. This
regime differs from the one studied by us only by logarithmic factors. The stability
results of Wei agree with ours up to the logarithmic terms.

5. Conclusion. In conclusion, we performed a comprehensive linear stability
analysis of the static spike ASs in the Gray–Scott model for ε 
 1.

We found that the one-dimensional static spike ASs are stable in one dimension for
α > 0.33 in the entire region of their existence 3.46ε1/2 ≤ A ≤ 1.35. At A = 3.46ε1/2,
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the AS collapses into the homogeneous state, while, at A = 1.35, a local breakdown
in the center of the AS occurs, leading to its splitting [29, 30, 39, 40].

When the value of α is decreased, the AS can undergo two types of instabilities
in one dimension. If A < 1.58ε1/6, the AS destabilizes with respect to pulsations and,
after a few periods, collapses to the homogeneous state [29]. If, on the other hand,
A > 1.58ε1/6, the AS will destabilize with respect to the onset of traveling motion and
transform to a traveling AS [29]. At α < 0.83ε4/3, the static one-dimensional spike
AS is unstable for all values of the parameters.

The results on the existence of the static spike ASs and their stability in one
dimension obtained in the previous sections, together with the results of [31] on the
existence of the traveling spike ASs, are summarized in Figure 5.1. This figure shows
the domains of existence and the instability lines for the ASs in the lnα− lnA plane
in the limit ε → 0.

The analysis of stability of the one-dimensional static spike ASs (stripes) in higher
dimensions shows that these ASs are always unstable with respect to both the cor-
rugation and wriggling instabilities, which results in the granulation of the stripes
[29, 32].

The three-dimensional radially symmetric static spike ASs are stable in a narrow
range 5.8ε < A < 8.4ε when α � ε2. At A = 5.8ε, the AS collapses into the
homogeneous state, while, at A = 8.4ε, it destabilizes with respect to the deformation,
which leads to its splitting [29, 32]. When the value of α is decreased, at some αω ∼ ε2,
the AS undergoes a pulsation instability. For α < 3.7ε2, the three-dimensional radially
symmetric spike ASs are unstable for all values of the parameters. Similar conclusions
can be made about the two-dimensional radially symmetric ASs.
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Appendix A. Analysis of (2.8). Equation (2.8) is of the kind studied by Kerner
and Osipov in the case of the ASs in systems of small size [6, 11, 15, 18, 21, 22, 23].
Here we perform a rigorous analysis of (2.8) using their method.

Let us introduce the orthonormal basis set δθn of the eigenfunctions of the
Schrödinger operator in the left-hand side of (2.8)[

− d2

dx2
+ 1 − 3 cosh−2

(x
2

)]
δθn = λnδθn.(A.1)

This operator has three discrete eigenvalues

λ0 = − 5

4
, δθ0 =

√
15

32
cosh−3

(x
2

)
,

λ1 = 0, δθ1 =

√
15

8
tanh

(x
2

)
cosh−2

(x
2

)
,(A.2)

λ2 =
3

4
, δθ2 =

√
3

32

(
5 tanh2

(x
2

)
− 1
)

cosh−1
(x

2

)
,

and a continuous spectrum for λn > 1 [24].
Assuming for a moment that the problem is considered on a large but finite

domain, we can write the operators of (2.8) in this basis as

Bmn = (λn − γ)δmn + C(1 − γ)blmbrn,(A.3)

where δmn is the Kronecker delta,

bln =

∫ +∞

−∞
cosh−4

(x
2

)
δθn(x)dx, brn =

∫ +∞

−∞
δθn(x)dx,(A.4)

and

C =
3A2

8A2
b

(
1 +

√
1 − A2

b

A2

)2

.(A.5)

Observe that C is a monotonically increasing function of A ≥ Ab.
In terms of Bmn, (2.8) becomes

detBmn = 0.(A.6)

Note that, since by symmetry bln and brn are identically zero for odd functions δθn,
we immediately conclude that these functions are the solutions of (2.8) with γn = λn

corresponding to these functions.
It is not difficult to show that because of the special form of the second matrix

in (A.3) we have [6, 11, 15, 18, 21, 22, 23] (see also [1])

detBmn =

[
1 + C(1 − γ)

∑
n

an
λn − γ

]∏
n

(λn − γ),(A.7)

where an = blnb
r
n and the summation is over the even states only. Using (A.1), one

can bring the expression for an to a symmetric form which is convenient for further
calculations:

an =
2λn

λn − 1

[∫ +∞

−∞
cosh−2

(x
2

)
δθn(x)dx

]2
.(A.8)
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The values of a0 and a2 can be calculated explicitly with the use of (A.2):

a0 =
75π2

256
, a2 = −9π2

256
.(A.9)

The calculation of ak corresponding to the functions δθk of the continuous spectrum
(with the wave vector k and λk = 1 + k2) is rather involved. The functions δθk can
be written as linear combinations of the real and the imaginary parts of

u(y) = (1 − y2)ikF

(
2ik − 3, 2ik + 4, 2ik + 1,

1 − y

2

)
,(A.10)

where y = tanh(x/2) and F (α, β, γ, x) is the hypergeometric function [24], to obtain
the even functions δθk. The functions δθk should be normalized in such a way that
δθk(x) → cos(kx ± δ) as x → ±∞. Then, after calculating the respective integrals,
we arrive at

ak =
8π2k2(k2 + 1)

(16k4 + 40k2 + 9) sinh2(πk)
> 0.(A.11)

Naturally, in the infinite domain, one should replace the summation over the contin-
uous spectrum in (A.7) by integration:

∑
n → ∫∞

0
dk
π .

To study the unstable solutions of (A.6), we need to analyze zeros of the function

D(ω) = 1 + C(1 + iω)

(
a0

λ0 + iω
+

a2

λ2 + iω
+

∫ ∞

0

akdk

π(1 + k2 + iω)

)
(A.12)

in the lower half-plane of the complex frequency ω = iγ. This can be done with the
aid of the argument principle [6, 11, 15, 18, 21, 22, 23] which states that the number
of zeros N of the complex function D(ω) in this region of the complex frequency ω is
equal to

N = P +
1

2π
∆ argD(ω),(A.13)

where P is the number of poles there and ∆ argD(ω) is the change of the argu-
ment of the function D(ω) as ω winds around this region of the complex frequency
counterclockwise.

From the spectrum of the operator in (A.1), one can see that only the pole at
ω = iλ0 lies in the lower half-plane of the complex frequency, so we have P = 1
[6, 11, 15, 18, 21, 22, 23]. Let us see how the function D(ω) with ω real varies as ω
goes from +∞ to −∞. Since D(ω) is symmetric with respect to the real axis, one
needs only to analyze the case of positive ω. At ω = ∞, we have

D(∞) = 1 + C

(
a0 + a2 +

∫ ∞

0

akdk

π

)
> 0,(A.14)

where we used the explicit expressions for a0,2,k and λ0,2 to calculate the sign of D(∞)
and evaluated the integral in this equation to be

∫∞
0

π−1akdk � 0.12. On the other
hand, at ω = 0, we have

D(0) = 1 + C

(
a0

λ0
+

a2

λ2
+

∫ ∞

0

akdk

π(1 + k2)

)
= 1 − 8

3
C < 0(A.15)
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Re D

a)
b)

DIm
0

Fig. A.1. The behavior of the function D(ω) for the static AS (a) and for the small amplitude
solution from [30] (b).

for A > Ab. The latter expression can be obtained by recalling that at A = Ab, for
which C = 3/8, we have D(0) = 0 (see section 2), and C monotonically increases with
A.

It is not difficult to show that the imaginary part of D(ω) is negative for all ω > 0:

Im D(ω)

Cω
=

a0(λ0 − 1)

λ2
0 + ω2

+
a2(λ2 − 1)

λ2
2 + ω2

+

∫ ∞

0

k2akdk

π[(1 + k2)2 + ω2]

<
a0(λ0 − 1)

λ2
0 + ω2

+
1

λ2
2 + ω2

(
a2(λ2 − 1) +

∫ ∞

0

k2akdk

π

)
< 0.(A.16)

The last inequality is obtained by using the explicit expressions for a0,2,k, λ0,2 and
the evaluation of the last integral

∫∞
0

π−1k2akdk � 0.02. Note that, because of the
smallness of the contributions from the continuous spectrum, one can get very good
approximations for the solutions of (2.8) by restricting δθn to the discrete spectrum
only (see also [36, 37]).

From all this, we conclude that the function D(ω) has the form shown in Figure
A.1(a), so we have ∆ argD(ω) = −2π for the static spike AS. This means that
N = 0, and (2.8) does not have solutions with Re γ < 0. Note that the same line
of arguments shows that the asymptotic stability problem for the stationary solution
with the smaller amplitude for A ∼ Ab found in [30] always has a solution with
Re γ < 0 since in that case ∆ argD(ω) = 0 (see Figure A.1(b)). So this small-
amplitude solution is always unstable. These conclusions are in agreement with the
general qualitative theory of the ASs [21, 22, 23].

Appendix B. Analysis of (2.10). In this section, we use the method of the
previous section to analyze the solutions of (2.10). This method was used by Kerner
and Osipov for studying the instabilities of the static ASs for small values of α in
systems of small size [16, 19, 20, 21, 22, 23].
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After introducing the orthonormal basis set of the eigenfunctions of (A.1), we get
the following expression for Bmn from (2.10):

Bmn = (λn + iω)δmn + C
1 + iω√
iω + α

blmbrn,(B.1)

where now

C =
A2α1/2

8ε
;(B.2)

the rest is the same as in (A.3), and α → +0 (cf. (2.6); α will determine the proper
winding direction; see below). As in the previous section, we may write

detBmn =

[
1 + C

1 + iω√
iω + α

∑
n

an
λn + iω

]∏
n

(λn − γ),(B.3)

where an are given by (A.8). To analyze the solutions of (A.6) with these Bmn, we
will study zeros of the function

D(ω) = 1 + C
1 + iω√
iω + α

(
a0

λ0 + iω
+

a2

λ2 + iω
+

∫ ∞

0

akdk

π(1 + k2 + iω)

)
,(B.4)

where ak are given by (A.11), in the lower half-plane of the complex frequency ω by
using the argument principle ((A.13), in which, as before, P = 1). Of course, as in
the previous section, D(ω) should be symmetric with respect to the real axis.

For ω > 0, the real and the imaginary parts of D(ω) can be written as

(B.5)

Re

√
2ω

C
D(ω) =

√
2ω

C
+ (1 + ω)

(
a0λ0

λ2
0 + ω2

+
a2λ2

λ2
2 + ω2

+

∫ ∞

0

(1 + k2)akdk

π[(1 + k2)2 + ω2]

)

+ω(1 − ω)

(
− a0

λ2
0 + ω2

− a2

λ2
2 + ω2

−
∫ ∞

0

akdk

π[(1 + k2)2 + ω2]

)

and

(B.6)

Im

√
2ω

C
D(ω) = ω(1 + ω)

(
− a0

λ2
0 + ω2

− a2

λ2
2 + ω2

−
∫ ∞

0

akdk

π[(1 + k2)2 + ω2]

)

+ (ω − 1)

(
a0λ0

λ2
0 + ω2

+
a2λ2

λ2
2 + ω2

+

∫ ∞

0

(1 + k2)akdk

π[(1 + k2)2 + ω2]

)
.

Using the explicit expressions for a0,2,k and λ0,2 from the previous section, it is not
difficult to show that the expressions in the brackets in (B.6) are negative for all values
of ω. The analysis of (B.6) then shows that Im D(ω) should change sign only once
when 0 < ω < ∞. Let us denote the value of ω at which this happens as ω0. Note
that, according to (B.6), we must have ω0 < 1.

From the definition of D(ω), one can see that

D(ω) → 1 + C
1 ∓ i√

2|ω|

(
a0 + a2 +

∫ ∞

0

akdk

π

)
, ω → ±∞.(B.7)
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a) b)

Fig. B.1. A qualitative form of the function D(ω) for large values of C (a) and for small values
of C (b).

Since the expression in the brackets in this equation is positive, we will have Im D(ω) <
0 for sufficiently large ω > 0. On the other hand,

D(ω) → 8C(−1 ± i)

3
√

2|ω| , ω → ±0.(B.8)

Therefore, for sufficiently small ω > 0, we must have Im D(ω) > 0. Observe that
(B.8) was obtained for α = 0. When α is small but finite, the two branches in (B.8)
will actually get connected at Re D(ω) ∼ −α−1/2. Thus the qualitative behavior of
D(ω) should be the one shown in Figure B.1. Note that the function D(ω) can be
calculated numerically from (B.4) for any value of C and has indeed the form shown
in Figure (B.1).

The number of zeros of D(ω) in the lower half-plane of the complex frequency is
determined by Re D(ω0). According to (B.4), if C is sufficiently small, the first term
in (B.5) will dominate for ω = ω0, and so we will have Re D(ω0) > 0. In this case,
the change of the argument of D(ω) will be ∆ argD(ω) = 2π (Figure B.1(a)), so we
will have N = 2 and therefore an instability. On the other hand, if C is large, we
can neglect

√
2ω/C at ω = ω0 in (B.5). From (B.5) and the fact that ω0 < 1, one

can then see that Re D(ω0) < 0. In this case, the change of the argument will be
∆ argD(ω) = −2π (Figure B.1(b)), so the number of zeros in the lower half-plane is
N = 0, implying stability. From all of this, we see that as the value of C is decreased,
at some C = C0, a complex-conjugate pair of unstable solutions of (2.10) appears,
signifying a Hopf bifurcation. The numerical analysis of (B.4) shows that C0 � 0.2837,
which corresponds to αω � 5.15ε2A−4 and ω0 � 0.534, in excellent agreement with
the results of section 2.2.
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