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STABILITY OF THE TRAVELLING WAVE SOLUTION
OF THE FITZHUGH-NAGUMO SYSTEM

BY

CHRISTOPHER K. R. T. JONES1

Abstract. Travelling wave solutions for the FitzHugh-Nagumo equations have been
proved to exist, by various authors, close to a certain singular limit of the equations.
In this paper it is proved that these waves are stable relative to the full system of
partial differential equations; that is, initial values near (in the sup norm) to the
travelling wave lead to solutions that decay to some translate of the wave in time.
The technique used is the linearised stability criterion; the framework for its use in
this context has been given by Evans [6-9]. The search for the spectrum leads to
systems of linear ordinary differential equations. The proof uses dynamical systems
arguments to analyse these close to the singular limit.

1. Introduction. Travelling waves play a central role in the theory of reaction-diffu-
sion equations. Many techniques have been developed to find such waves, i.e., prove
their existence; see Conley and Gardner [4], Gardner and Smoller [16], and Dunbar
[5] for recent results. However, the equation of their stability relative to the PDE has
remained fairly open. Scalar equations are now well understood; see Fife [12], Fife
and McLeod [13], and Bramson [1]. For systems, the only fully established results
involve assumptions on the nonlinearity that permit the application of a maximum
principle type argument, i.e., some monotonicity; see Klaasen and Troy [19], and
Gardner [15]. Feroe [11] has performed some numerical calculations on the stability
problem for the FitzHugh-Nagumo equations with a special assumption of piecewise
linearity on the nonlinear term.

In this paper I shall prove a stability result for the FitzHugh-Nagumo equations.
These equations are a paradigm example of a system of equations to which the
maximum principle is difficult to apply; see Terman [22].

The FitzHugh-Nagumo equations are the following system of reaction-diffusion
equations:

(1.1) u, = uxx+ f(u)-w,        w, = e(u - yw).

The function

(1.2) f(u) = u(u-a)(\-u)

is a cubic, where a < 1/2. The constants e and y are positive. I shall be interested in
the case e •« 1 and y <sc 1 ; y is often assumed to be zero.
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432 C. K. R T. JONES

These equations were originally formulated as a simplification to the Hodgkin-
Huxley equations for nerve conduction; see FitzHugh [14] and Nagumo et al. [21].
They have since become a central example in reaction-diffusion equations.

A solution to (1.1) is determined by an initial value

(1.3) u(x,0) = u0(x),       w(x,Q) = w0(x),

where x ranges over R. In the nerve conduction case the variable x is the distance
along the nerve fiber.

The initial value problem (1.1), (1.3) can be solved (at least for small time) in
many different function spaces; see Rauch and Smoller [22]. A natural one for our
purposes is the space

BC(R, R2) = { u: R -* R21 u is bounded and uniformly continuous}

supplied with the supremum norm.
A travelling wave for (1.1) is a solution that is a function of the single variable

£ = x — et, i.e., («(£), w(£)) satisfies

(1.4) - cu' = u" +f(u)-w,    -cw' = e(u-yw)        (' = d/d£).

A travelling pulse is a travelling wave that satisfies (u, w) -» (0,0) as £ -» + oo.
For the nerve conduction problem, (0,0) is the rest state and the nerve impulse is

such a travelling wave.
The existence of a relevant travelling pulse, for some value of c, has been proved

by many authors for e •« 1; see Carpenter [2], Conley [3], Hastings [17] and Langer
[20]. Whether there exists such a pulse for e not necessarily small is an open
question. The significance of e small is that (1.4) then becomes a singular perturba-
tion and the pulse is constructed by piecing together solutions of certain reduced
systems. The most explicit construction is given by Langer [20].

Call this travelling pulse (ut(£), we(£)). I shall be interested in its stability relative
to the original PDE (1.1). If (1.1) is recast in a moving coordinate frame, i.e., in
terms of variables £ = x — ct and /, it becomes

(1.5) ut = w£i + c«£ + f(u) — w,        w, = cwç + e(u — yw).

The travelling wave is an equilibrium (time independent) solution of (1.5). The fact
that any translate of a travelling wave is also a travelling wave must be taken into
account when defining stability. In the following:

U=(u,w)    and    l/€(£) = KUW£))-
Definition. The travelling wave, for fixed e > 0, is said to be stable if there exists

S > 0 so that if t/(£, /) is a solution of (1.5) and there is a £, so that ||i/(£ + /V,,0) -
Ut(i-)\\x < 8, then there is a k2 such that

(1-6) \\u(i + k2, t) - UM)L - o
as / —» +0O.

This says that if a solution to (1.5) starts near some translate of the travelling
wave, it tends to some other translate of it as / -* + oo. A standard technique for
determining stability is to use the linearised criterion. If the right-hand side of (1.5)
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STABILITY OF THE TRAVELLING WAVE SOLUTION 433

is linearised about its equilibrium solution t/e(£), the resulting operator is

^)-h+T/'(",,,rl'\r>      \       cr( + e(p - yr)       J

where

(^)(£)eBC(R,R2).

The linearised criterion for stability of the travelling pulse is that the spectrum of
L (except for 0) lies in a left half-plane {X: ReX < a} where a < 0, and 0 is a
simple eigenvalue. Note that 0 must be in the spectrum because the translate of a
travelling wave is another travelling wave. 0 being a simple eigenvalue means that
this is the only neutral effect. This paper is devoted to proving

Theorem. Let L be given by (1.7), L: BC -» BC. Then
(1) there exists a < 0 so that a(L) \ {0} c {X: Re X < a};
(2) 0 is a simple eigenvalue.

Whether linearised stability implies stability relative to the full (nonlinear) equa-
tions, in the sense of the definition above, is a separate question. Henry [18] has
some general theorems but these require a sectorial operator, and L is not sectorial
as it has some spectrum that is asymptotically vertical; see §3.

In [8] Evans proved a "linearised stability implies stability" theorem for "nerve
impulse equations". This is a class of equations that includes the FitzHugh-Nagumo
system with the stated parameter values. The theorem in [8], in fact, states that the
linear PDE is stable if the above described conditions on the spectrum hold. There is
then a result in [6] which states that the travelling wave is stable for the full PDE.
Using this, the following can be concluded from the theorem.

Corollary. If e «: 1, t/e(£) is stable in the sense of the definition.

In the next section the construction of the travelling pulse solution, found by the
authors mentioned, is sketched. A theorem is then proved that gives an exact
description of the fact that the pulse approaches the singular orbit as e —► 0.

The spectrum of L falls naturally into two pieces: the normal spectrum, consisting
of eigenvalues of finite multiplicity; and the essential spectrum, which is the rest. It
is shown in §3 that the essential spectrum lies in a half-plane {X: ReX < a) for
some a < 0. This essentially follows from proving that the system (1.1) is stable at
(0,0), which is an assumption Evans makes for the theorem referenced above from
[8].

In the set {X: Re X > a} an analytic function, due to Evans, D(X) can be defined.
The zeroes of D(\) are eigenvalues of L. The description of D(X) is also given in §3.

D(\) is used to approximately locate the eigenvalues of L. They must lie close to
the eigenvalues for a certain reduced system that is associated with some pieces in
the singular travelling wave (e = 0).

The reduced system is analysed in §4 and this approximate location of the
eigenvalues of the full system is proved in §5.
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434 C. K. R. T. JONES

It then follows that the only danger to stability comes from eigenvalues that lie
near zero. In §6 I prove that there are at most two eigenvalues near zero. This is a
computation of the winding number of D applied to a small circle about 0 (actually,
it is not D, but an analytic continuation D). Since D is analytic, this winding number
measures the number of zeroes inside the circle. It is proved that this winding
number is exactly 2.

Zero is of necessity an eigenvalue, due to translation of the waves. Therefore, the
other eigenvalue is real. In §7 the proof is completed by showing that this other
eigenvalue is negative. Evans derived a very beautiful technique for determining this
kind of information. He showed that the sign of the quantity (í//í/X)D(X)|x_0 is
determined by the direction in which the stable and unstable manifolds cross in the
construction of the pulse. This is determined by using Langer's construction of the
pulse.

Acknowledgement. I am very grateful to R. Pego for pointing out the incorrect-
ness of the proof in §7 of an earlier version of this manuscript. I am also grateful to
him for making very helpful suggestions as to how to correct it.

I am very grateful to Professors C. Conley, J. Evans, N. Fenichel, P. Fife and D.
Terman for sharing with me some of their insights on this and related problems.

2. Description of the pulse. The travelling pulse satisfies (1.4), rewritten as a
system

(2.1) u' = v,   v' = —cv — f(u) + w,    w' = — (e/c)(u — yw).

The phase space of (2.1) is R3. The origin (0,0,0) is a critical point of (2.1) and the
pulse solution is a homoclinic orbit to the origin.

This homoclinic orbit is constructed for e «: 1. Langer describes the limiting
behavior of this orbit, as e -* 0, in some detail in his §2. I shall review this
description, using his notation as much as possible.

When £ = 0 each plane w = constant is invariant for (2.1). There exist values wmax
and wmin, with wmin < 0, so that if wmin < w < wmax then the reduced system

(2.2) u' = v,       v' = -cv - f(u) + w

has three critical points. When w = 0 there is a c* < 0 for which there exists a
heteroclinic orbit, called JF, joining (0,0,0) to the right-most critical point (1,0,0).
For c* there is a w* for which an orbit, called JB, exists to (2.2) joining the right to
the left critical point. F and B stand for front or back; an explanation for this will be
given after the pulse is described further.

The singular limit of the homoclinic orbit (e -* 0) consists of four pieces:
(i)-/F;

(2) ££ = {(u, v, w): v = 0, 0 < w < w* and w is the largest root of w = /(«)};
(3)7B;
(4) E* — {(u, v, w): v = 0, 0 < w s£ w* and u is the smallest root of w = /(«)};

see Figure 1.
Let 50 = JF U ££ U JB U El c R3. 50 is the singular orbit. It is called singular

because ££ and E* consist of critical points. The existence theorem says that, given
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STABILITY OF THE TRAVELLING WAVE SOLUTION 435

any neighborhood N of 50, there is an e0 so that (2.1) has a solution for some
c = c(e) for all e e [0, e0], which is homoclinic to (0,0,0) and lies entirely in N.
Moreover, c(e) -» c* as e -> 0. Call this orbit of (2.1), Sr

This picture is not new to Langer's proof but was already in the earlier proofs.
Langer's contribution was to add that if N is a small enough neighborhood of S0,
there is a unique solution for each e for unique c.

Langer uses a transversality argument. He shows that two certain manifolds
intersect transversely in (u, v, w, c)-space for e = 0; therefore, they still intersect for
e small. The uniqueness follows from the transversality. For the stability proof, some
information about the nature of this transversality will play a central role; see §7.

If the pulse solution is graphed with U as a function of £, a profile is obtained that
looks like a nerve impulse but with a long latent period in the middle. The part close
to Jr is the front and that close to JB is the back.

I shall need a more explicit description of Se. This is contained in the following
theorem.

Theorem 2.1. If e0 is sufficiently small, there exists a homeomorphism h: S1 X
[0, £0] -* U St, where the union is taken over e e [0, e0].

Proof. Firstly, parametrise S0 in any way, i.e., choose a map h0: S1 -» 50. I shall
show this can be extended.

Let U0, [/,, U2, U3 denote the four corners of S0; see Figure 2. Define B c R3 by
B= [-Yi.Ti)x[-Y2>?2] X[-V3-Y3]-

Let 5, = U, + B; see Figure 2. Choose the y, linearly related so that JF and JB cross
35, through faces parallel to the u = 0 plane and ££, E£ cross through faces parallel
to w = 0.

Let b¡, i = !,..., o, be the successive intersection points of3(fi0u£, Uß,uß3)
with 50 starting at Jv n B0 and proceeding in a counterclockwise direction. Set

MF = [(u,v,w): m = 0 and v2 + w2 < yF}.

Figure 1
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436 C. K. R. T. JONES

Now choose yF so that b1 + MF c 3Z?0 and b2 + MF c 3f?,. Similarly, set

MR = {(u, v,w) : w = 0 and m2 + t>2 < yR}.

Choose yR so that ¿>3 + MK c dBx and b4 + MK c 3B2. Define MB and ML simi-
larly to MF and MR, respectively; again choose yB and yL so that the obvious
conditions are satisfied.

Let iF = yF\{i0Uß,}; form a tube about J¥ by setting

*F =    U   O + Mp).
yeyF

Define A^R, NB and AY in the obvious fashion. Let

N = B0 U N¥ U 5, U NK U B2 U NB U ß3 U jVl.

A/ is a neighborhood of S0 formed out of tubes joining boxes that cover each corner.
The size of the neighborhood is determined by yx, say, since each of the other y's

is related to it. Let k = y,; then N = N(k) and, as k -> 0, N -* S0 as a set.
Consequently, for fixed k, there is an e0 > 0 so that Sc c A^ for all e e [0, e0].

By the chosen parametrisation of S0, h \ S1 x {0} = h0 is already defined. Now I
shall extend h0 to S1 X [0, e0]. Let (6, e) G S1 X [0, e0]; there are two cases to
consider.

Case I. /jo(0) 9È B, for any ». Then h0(8) 6 AiF u JVR U iVB U jVl. Let M9 =
h0(6) + MF and set h(0, e) = Se n M9.

A priori, the right-hand side is just a set. But from the equation «' = v in (2.1) it is
clear that it contains just one point and so the map is well defined.

Case II. h0(6) G fi;. Consider Bx\ the others are analogous. Form a rectangle Ms
in R3 as follows. Let Pe = plane containing h0(6) and the line u = «¡ — y,, w = y3,
where t/, = («,, i;1? w,) is the corner point. Let Me = Pe n Ä1# Define /j(ö, e) = 5t
n M„.

Figure 2
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STABILITY OF THE TRAVELLING WAVE SOLUTION 437

It is considerably harder to see that h is well defined in this case due to the
subtlety of the behavior of the wave near the corners. B0 is actually straightforward
because of the approximation of the stable and unstable manifolds by the eigen-
spaces.

Let A0(öj) = b2 and hQ(82) = Z>3; these are the entrance and exit points of S0
through Bv\ shall prove the following lemma.

Lemma 2.1. // k is sufficiently small (and consequently e0), Se n Me contains a
unique point for 8\ < 8 < 82.

Proof. I shall divide this into two cases. Choose 8 so that h0(6) g Jf n Bx but
8 ¥= 0j and h0(8) ¥= I/,. Let me = slope of Me projected onto (u,w) space; see
Figure 3. Reset y, and y3, if necessary, so that m-e > /'(0) + 8 for some 8 > 0.

Let ne = normal to Me with a positive u component. It suffices to show that

(2-3) ne-(u[(i),v'M),w'M)) >0
for any 8 g [Gesuch that (m£(£), i>t(£), %(£)) g Me.

Case LOG [0V 8]. Suppose (2.3) were violated for all k > 0 with some 6 in [0,, 0];
then there would be a sequence of points on St as e -» 0 for which (2.3) failed. These
would converge to a point h0(6) on S0. In fact, h0(6) g Jf and, by continuity of the
vector field (call it V),

«•■ r(Ao(*))«0.
Since h0(8) g Jf this is impossible unless /io(0) = t/,, but it cannot be in Case I.

Case II. 8 G [8, 82]. To obtain information about the derivative along Sf, consider
the variational equations

(2.4) 8u'= 8v,    8v'= -c8v - f'(uc)8u + 8w,   8w' = -(e/c)(8u - y8w).

If e is small and Uc g 5,, (2.4) is well approximated by the system linearised at Í/,
with e = 0;

(2.5) 8u' = Sv,    8v' = —c8v — f'(ux)8u + 8w,    8w' = 0.

Because they are linear, both (2.4) and (2.5) induce flows on S2 by equating two
vectors in R3 \ {0} if one is a positive multiple of the other. The flow of (2.5) is

Figure 3
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438 C. K. R. T JONES

qualitatively the same as the linearisation at rest. It has one unstable subspace and
two stable ones. Let these be spans of the eigenvectors Xx (unstable), X2 and Xy

The associated flow on S2 has two attracting critical points, two repelling ones,
and two saddles; see Figure 4. These come from the eigenspaces. Let X2 be the
eigenvector that gives the saddle. Set C = span{ X2, X3} n S2 and let V be a given
neighborhood of C in S2.

If L>(£) = t/;(£)/|t/t'(£)|, this satisfies the flow induced on S2 from (2.4). If e0 is
small enough, Í7E(£) g V, while C/t(£) G Bx; otherwise, it would be driven to some
neighborhood of spanfA^} flS2, since these two points are attractors for the flow
on S2 derived from (2.5). If this happened, t/e(£) would leave Bx other than through
the top, which it does not.

Consider the vector (i^(£), we'(£)). Since we'(£) > 0, if (2.3) were violated it is easy
to check that 0 > <(£)/«;(£) > /'(0) + 8 for 8 g [8, 82}. But this is impossible if e0
is small enough, because (2.5) is then well approximated by (2.4) and, inside C,
span{ Xx} D S2 is a pair of attracting points. Moreover, ^ = ( — 1,0, -f'(ux)). This
completes the proof of the lemma.

Returning to the proof of Theorem 2.1, it is now known that h(6, e) is well
defined. It is obviously one-to-one, since the M/s are all disjoint. Because S1 X [0, e0]
is compact, it remains to show that h is continuous. By Langer's proof, since it uses
the implicit function theorem, h is continuous in e for each 0. By continuity of the
flow this is uniform in 6; full continuity therefore follows.

3. Essential spectrum and the definition of £>(X). Firstly, I shall give the definitions
used in splitting up the spectrum. Let B be a Banach space and L: B -» B a linear
operator.

Definition. X g C is said to be in the normal spectrum, denoted an(L), if it is an
isolated eigenvalue of finite multiplicity.

The essential spectrum, ae(L), is the complement of this in o(L), i.e., ae(L) =
a(L)\on(L).

Now let L be the linearised operator about the travelling wave given by (1.7) and
let B = BC(R, R2). In this section I shall prove that oe(L) is bounded away from the
imaginary axis in the left half-plane. Also I shall define Evans' analytic function
Z)(X), which is the tool for finding eigenvalues.

Figure 4
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STABILITY OF THE TRAVELLING WAVE SOLUTION 439

Consider the equation

(3.1) (L-X/)(^) = 0

where (?)(£) g Bc, complexified B. Rewrite (3.1) as a system

p' = q,
(3.2) q'=-cq+(x-f'(u))p + r,

r'= -(e/c)p+((\ + ey)/c)r.

I   have  dropped   the  e  on   Ue,   so  with  a   slight   abuse  of  notation,   £/(£) =
(«(£), t;(£), w(£)) is the underlying travelling wave.

Let z = (p, q, r) g C3 and write (3.2) as
(3.3) z' = Az,
where

/       0 1
(3.4) A =   A-/'(«)     -c

-e/c 0

Equation (3.3) is a nonautonomous one on C3. As £ -» + oo, m(£)
(3.3) is asymptotically autonomous and the asymptotic system is

(3.5) z' = A0z,

where

0
1

(X + ey)/c

\

0; therefore

(3-6) A0 =
0 1 0

X-/'(0)     -c 1
\    -e/c 0       (X + ey)/cj

The set S = {X g C: A0 = A0(X) has an imaginary eigenvalue} will determine the
necessary information about ac(L).

Lemma 3.1. If e > 0, C \ S has a component G for which there exists an a < 0 such
that {X: ReX > a} c G.

Proof. Let P = P(a, e, X) = det (A0 - al). Then

(3.7) P = (a2 + ca+ /'(0) - X)((X + ey)/c - a) - e/c.

Fix e > 0. S consists of those X for which

(3.8) P(a, e, X) = 0
for some a g /R. If e = 0, the set of X's for which P(ir, 0, X) = 0, for some t g R, is
easily seen to be the imaginary axis union the parabola Re X = -(Im X)2/c2 + /'(0).

For (3.8) the solutions X will be near this curve and near the imaginary axis. The
latter are the only ones to worry about. For fixed t, at e = 0,

dX =   _ 3P   /3P
de ~      3e / 3X '

Now

3P/ax = (-T2 + /'(o))/c,
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*(î)

since/'(0) < 0, 3P/3X ¥= 0, and X is a function of e for fixed a = it near £ = 0 such
that X(0) g /R. For each fixed t this gives all X's for which A0(X) has an imaginary
eigenvalue because (3.7) is quadratic in X.

Since

d\/de= -(y+l/(r2-/'(0)))<0,
the set of X's near the imaginary axis lies in the left-hand plane. If y > 0 is fixed, the
curve thus defined is bounded uniformly away from the imaginary axis. This proves
the lemma.

The point of this lemma is that there is no essential spectrum of L in G. Evans
shows this for his more general class of problems in Theorem 3 of [8]. The idea is
fairly standard and worth explaining briefly.

Set L = L0 + R, where

o.,,       M?)-('"+.ty(o)vi\r>      \      cp' + e(p-yr)      j

and

(/'(«) -/'(o))/

L0 is the linearisation about the rest state and R is the perturbation due to the wave.
a(L0) has actually been found in Lemma 3.1. The equation (L0 —X/)(f) = 0
becomes z' — A0z when rewritten as a system.

It is a standard computation to see that a(L0) = S. R is a relatively compact
perturbation of L0. It follows that any component of C \ S is entirely the essential
spectrum, or the only spectrum in it is normal. Evans further shows that if X < 0 and
large, it is not an eigenvalue. It follows that the only spectrum in G is normal. This
kind of argument establishes the following lemma.

Lemma 3.2. o(L) n G c on(L).

Remarks. (1) a = a(e) and tends to 0 as e -* 0, so there is not a right half-plane
whose boundary is bounded to the left of the imaginary axis independently of e.

(2) S contains a curve that is asymptotically vertical, thus preventing L and L0
from being sectorial.

Lemmas 3.1 and 3.2 show that ae(L) causes no problem for stability. Hence, I
need only be concerned with locating eigenvalues. As stated earlier, this is done by
defining an analytic function D(X) whose domain is G.

Consider again A0, given by (3.6). I claim that if X g G, ^0(^) has only one
eigenvalue of positive real part. It is easy to check this for e = 0 from the definition
of G. It therefore follows for e > 0. Call this eigenvalue a + = a+(X, e). Its associated
eigenvector can be written

X+= (l,a + , -e/[ca + -(X + ey)]).
Since P(a, e, X) = 0 simplifies as e -» 0, a+ can be given explicitly in the limit

« + (X,0) = (-c+(c2-4(/'(0)-X))1/2)/2.
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(3.11) B =

In the following, assume e # 0. I shall motivate the definition of D(X) by seeing
what it means to look for an eigenvalue. An eigenvalue of L in G is a X for which
there is a solution of (3.2) that is bounded at + oo. For it to be bounded at - oo, it
must be asymptotic to the unstable eigenspace.

By Evans [9] there is a unique solution f(X, £) to (3.3) that satisfies

f(X,£)-X+e"^0
as £ -» - oo faster than eRea £. Furthermore, f(X, £) is a C3-valued analytic
function of X G G for each fixed £.

This function f(X, £) is therefore a candidate to be an eigenfunction and, up to a
scalar multiple, it is the only one.

To see if it is bounded at + oo, one uses the adjoint to (3.3),

(3.10)
where B = —A*, so

0      f'(u)-X e/c
-1 c 0
0 -1 -(X + ey)/c,

The asymptotic system for (3.10) is

(3.12) z*' = B0z*,

where B0 is the same as B but with u replaced by 0. Obviously B0 = -A*0, and the
eigenvalues of B0 are the negatives of the complex conjugates of the eigenvalues of
A0. B0 therefore has a unique eigenvalue of negative real part in G; call it
ß~= ß~(X, e) = -5+. Its associated eigenvector is

Y= (\,(c - ß-)\ [(/?- c)(/r+(X + ey)^)}-1).

(3.10) therefore has a unique solution n(X, £) satisfying

n(X,£)- Yeß £^0

as £ -» + oo faster than eKeß £. Furthermore, tj(X, £) is a C3-valued analytic
function of X for each fixed £.

Definition. The function £>(X) = f(X, £) • t,(X, £).
One checks easily that this is well defined, i.e. independent of £:

^Z>(X) = ^f(X,£)-7,(X,£) + f(X,£).^„(X,£)

= AC ■ v + Ç ■ Bn = AC ■ v - $ ■ A*v
= 0.

I shall collect the important properties of Z>(X).
Properties of D(X). (1) D: G -» C is analytic.
(2) Zeroes of D(X) are eigenvalues of L.
(3) The order of a zero is equal to the algebraic multiplicity of the eigenvalue.
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(1) follows from the fact that f and rj are analytic functions of X, into C3, for each
fixed £. The reason for this can be seen from the proof of Lemma 3.3 below. (2) has
a very pretty geometric interpretation. Since (3.3) is linear, its solution operator takes
planes to planes (a plane being a two-dimensional complex subspace of C3). The
information as to how this occurs is contained in the adjoint equation (3.10). In fact,
the normal to a plane evolving under (3.3) will satisfy (3.10) if its complex amplitude
is determined appropriately. The eigenvector Y~ is exactly the one that is normal to
the stable subspace for (3.5). If D(X) = 0 then, as £ -* + oo, f(X, £) is perpendicular
to Y~ and so is asymptotic to the stable subspace of (3.5). Therefore, f(X, £) -» 0 as
£ -» + oo and one has an eigenfunction; X is therefore an eigenvalue. It is not hard
to see that this is the only way a bounded, uniformly continuous solution of (3.3) can
be found. (3) is somewhat more difficult to see and I refer to Evans [9].

I shall need, in §5, an analytic continuation of D(X) to a right half-plane {X:
Re X > b}, where b < 0 and independent of e. I shall prove this as a lemma which
includes the proof of (1).

Lemma 3.3. There exists b < 0, independent of e, and an analytic function D(X) on
the set G = {X: Re X > b} so that D\c = D.

Proof. It will be obvious from the construction that D extends D. The problem
with D is that the boundary of its domain G collapses onto the imaginary axis as
e -» 0. The proof is then to produce f(X, £) and tj(X, £), satisfying their respective
defining conditions. This is possible on a set of the form G.

The eigenvalue a+(X, e) can be extended to a set of the form G for some b < 0
independent of e. This cannot be done preserving the condition that a + is the unique
eigenvalue of positive real part, but it can be done with a + the eigenvalue of largest
real part.

In a strip H = (X: b < ReX < 0}, if e = 0 there are three distinguished eigenval-
ues:

„ + = (_c +(c2 _ 4(r(0) _ X))1/2)/2,    «° - X/c,

«-=(-c-(c2-4(/'(0)-X))1/2)/2,

where a branch of the square root that is continuous near arg z = 0 is being used. It
is clear that b can be chosen so that Re a + > Re a0 > Re a" for X G H. One checks
easily that if e ■« 1 and X s H there are eigenvalues of A0—a+(X, e), a°(X, e) and
a~(X, e)—corresponding to each of these. Furthermore, |9a+/3e|, |3a°/3e| and
|9a~/9e| are bounded independently of X G H. It follows that e > 0 can be chosen
so that

Rea + (X,E) > max{Rea0(X,E),RecT(X,£)}

for all X g H.
Under these conditions f(X, £) can be constructed. The construction of tj(X, £) is

analogous with one added difficulty; see comment at end. The construction follows
Evans.
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Write (3.3) as

z' = A0z + P(£)z.

It is easy to check that there exists C, k > 0, so that

(3.13) \\P(t)\\<Cekt   for£<0.

Define the iteration scheme:

(3.14) UX,£) = *+e<^,

f„(X, £) = X+ea^ + /*    exp(/l0(£ - s)) P(s)^„_x(X, s) ds.

That f„(X, £) is well defined for X g G and an analytic function, for fixed £, is
established inductively. The following estimates are shown to hold at the same time.
Fix X0 g G. There exists a neighborhood N of X0 and constants C,, C2 independent
of n so that for £ < £*, some £*,

(1) |UX,£)l<C,exp(T-£),

(2) |f„(X,£)-*V"^|<C2exp(T+£),

where t = ïnîXeN (Rea+(X)} and t + = supXeN (Rea+(X)}. I shall drop men-
tioning the dependence of a + on e.

The key point is that for X g G, a+(X) is the eigenvalue of largest real part.
Consequently, ||exp(y40(X))|| < exp(Rea+(X)).

Choose N so that t_+ k > r+. Suppose (1) hold up to n — 1; then

|/£    exp(A0U-s))P(s)!;n_x(X,s)ds

< CCxjl    exp(Rea + (X)(£ - s) + ks + r~s) ds.
J — oo

This integral converges uniformly for all \€JV, which shows that f„(X, £) is well
defined and analytic in X g G. By setting

C2 = CCx/(t~+ k - t + ),

(2) holds. To check (1):

K(X,£)|<|jr|exp(Rea+£) + C2exp(T+£).

As long as C2 is chosen larger than lÀ^I, £* can be picked so that

(|^+|+C2exp(T+-T-)£)<C2

for all £ > £*. It is trivial that (1) and (2) are satisfied for n = 0.
By a very similar inductive argument, N, £* and C3 can be found so that

sup |r„ + 1(X,£)-UX,£)|<-^exp(T + £).
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It follows that fn(X, £) -* f(X, £), for each fixed £, uniformly on compact subsets
of G. ¡¡(X, £) is therefore analytic and satisfies the integral equation

ax, £) = X+ exp(«+£) + [(    exp(A0U - s))P{s)¡;{\, s) ds
•'-oo

and therefore satisfies (3.3).
By letting n -» oo in (2) above, f(X, £) is seen to satisfy the defining condition of f

in the set G.
The distinguished solution to the adjoint equation, tj(X, £), is constructed in the

same way. However, in this case k -* 0 as e -* 0. The size of N will therefore depend
on e. For fixed e > 0, the construction goes through and n(X, £) is analytic in G.
Obviously T) does not exist for e = 0, although f does.

D(X) is then set as f(X, £) • t/(X, £).

4. Analysis of the reduced system. The zeroes of D(X) (or D) will be related to the
eigenvalues of the reduced systems, that is, the linearisation of the PDE about the
front or the back. I shall redevelop the theory of the preceding section for the
reduced system. It is slightly different because the underlying wave is heteroclinic
rather than homoclinic. The necessary information about the zeroes of the reduced
Z)-function can then be given, as the stability is well understood in these cases; see
Fife and McLeod [13].

I shall consider a system which is exactly the one for the front, but the analysis for
the back only requires appropriate reinterpretation.

Consider the PDE (in a moving frame with speed c)

(4.1) u,~u(( + cu( + /(«)>

where/(w) is given by (1.2). The travelling wave equation is

(4.2) u'= v,       v' = —cv — f(u).

As mentioned in §2, there exists c* so that (4.2) possesses a solution («R(£), i>R(£))
so that

("r> vr) ~* (0.0)    as£ -► - oo        and        (uR,i>R)-»(l,0)    as £ -> +oo.

Linearise (4.1) about this wave:

(4.3) LRp=p" + cp'+f'(uR)p.

Let a(LR) be the spectrum of LR relative to B = BC(R,R). Write (LR - XI )p = 0
as a system

(4.4) p' = q,        q'= -cq+(X-f'(uK))p.

This has an asymptotic system at - oo,

(4.5) p' = q, q'=  -cq+(X-f'(0))p,
which I write as

z' = M0z.

Set S0 = {X: M0(X) has an imaginary eigenvalue}.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



STABILITY OF THE TRAVELLING WAVE SOLUTION 445

There is an analogous picture at + oo, where 0 is replaced by 1 throughout the
above. Then C\S0 U S, has a component GR, containing the right half-plane, so
that o(LR)nGRCon(LR).

The function that plays the D(X) idle can now be formulated. M0 has eigenvalues
and associated eigenvectors:

p+     (Refi + >0)      Ar-,
p~     (Re/i"<0)     A£,

where

ft±={-c±(c2 + 4(/'(0)-X)1/2)}/2,       AR± = (1,M±).

Write (4.4) as z' = Mz. Then for X G GR, there is a unique solution of z' = Mz so
that

fA(X,£)-A¿e"+£-0   as£- -oo

faster than e*****, and £R(X, £) is analytic in X.
The adjoint equation is

z*' = Nz*,

where N = — M*, and this has an asymptotic system

(4.6) z*' = Nxz*,

where Nx = — M*. Nx has eigenvalues and eigenvectors:

r + = -/¡+,     (Re^+>0)     Y¿ ={l,(c-v + yl),

v-= -Ji\     (Rer-<0)     YR=(l,(c-p-yl).

Also there is a unique solution of (4.6), tjr(X, £), so that

7,R(X,£)- r¿e'"<-0   as£- +00

faster thane Re" £, and it is analytic in X. DR(X) is then defined as fR(X, £) • i)R(X, £).
It has domain GR.

The stability of the travelling wave is well understood; see Fife and McLeod [13]. I
shall translate the known facts into properties of DR(X). This may seem to be
backwards, but it is through DR(X) that these known results will be used.

Fads about DR(X). (1) DR(0) = 0.
(2) DR(X) * 0 for X g {X: Re X > d}, some d < 0, except at 0.
(3)(<//¿X)DR(A)|x_0>0.
(1) follows from the standard feature of translation of waves. By a maximum

principle argument, 0 is the eigenvalue of largest real part and there are only finitely
many eigenvalues in GR; (2) therefore follows. I shall prove (3) directly in the
following lemma.

Lemma 4.1. (d/dX)DR(X)\x_0 > 0.
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Proof. To compute (d/dX)DR(X) at X = 0, it suffices to consider X real. So
rR(X, £) G R2 and t,r(X, £) g R2. Let fR = (rR, 8R) and t,r = (/•*, 8R) in polar
coordinates on the plane. Then

£R(X) = rRrRcos(0R-0R).

Since DR(0) = 0, one computes

^-Z)R(X)= -rRrRsin(0R-0R){^0R-^0R

where the right-hand side can be evaluated at any £. Since 8R — 8R = — tr/2, at
X = 0

w;DR(X)--rRrR(^R-¿«í

From (4.6)

and

¿X"Rl'V- 'R'R\gX»R gX"R/-

8R -» arctan   —-      as £ -* + oo

3X \ c - v_ ¡      ^\ (c - p)2 + 1

since dp_/dX < 0.
It follows that

lim    —02 < 0.
{-» +O0 3X"R

To check the term involving 30R/3X, one computes

(4.7) 0R = -csin0Rcos0R +(X -/'(mr))cos2 0R - sin20R

for 8R as a function of £. From (4.7), if 30R/3X = 0,

(4.8) {30r/3X}' = cos20r >0.
By the same kind of argument as above,

lim    ^r-0R > 0,
£—-oo   "A

and so, from (4.7) and (4.8),

TTT-0R > 0    for all £, lim    infrT0R>O.
OA £-.+oo O»-

It follows that 30R/3X > 0, as desired.
If e = 0 and w = 0 in (2.1), one obtains the system (4.2) coupled with the equation

w' = 0. JF is a trajectory of (2.1) in this invariant plane. The system restricted to this
plane fits exactly into the form described in this section.

If e = 0 but w = w* (see §2), the equation for the back trajectory is obtained; it is

(4.9) u' = v,       v' « —cv — f(u) + wt,       w' = 0.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



STABILITY OF THE TRAVELLING WAVE SOLUTION 447

If the third coordinate is dropped, one obtains a system that is analogous to the
above reduced system. The nonlinearity/(«) - w* has the graph given in Figure 5.
The situation has merely been reversed; the right and left critical points have their
roles interchanged. An analytic function is then defined for which the properties
given for DR(X) still hold.

5. Approximate location of eigenvalues. In this section I shall prove that any points
in o(L) n G must he close to eigenvalues of one of the reduced systems. It then
follows that the only dangerous eigenvalues are close to zero.

The trajectories JF and JB described in §2 are, respectively, travelling waves for the
PDEs

«, = U^ + C*Uç + f(u),     U, = Mi{ + C*«£ + f(u) — W*.

As solutions to these equations call them mf(£) and uB(£), fixing some point at
£ = 0, say mf(0) = a and nB(0) = 0. Let LF and LB be the linearised operators about
these solutions. Let aF = a(LF) and oB = a(LB) relative to B = BC(R, R).

Recall that G = {X: ReX > 6}. It is obvious that b can be chosen so that
G c GF n GB, where GF = domain of DF, GB = domain of DB, and DF and DB are
the analytic functions for the front and back as given in §4.

Let V — Vs = union of open balls of radius 8 about each point in(aFUaB)nG.
This section is devoted to proving the following theorem.

Theorem 5.1. Given 8 > 0 there exists e0 > 0 so that if e G (0, e0], D(X) * 0 for
XeG\Vs.

Corollary 5.1. 7/X g G \ V then X is not an eigenvalue of L.

The idea of the proof of Theorem 5.1 is to follow f(X, £) until £ is very large and
then evaluate £>(X). If £ is large enough at the evaluation point, i)(X, £) is essentially
determined there.

Figure 5
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Following f(X, £) as £ varies can be thought of as following it "around" the
travelling wave. f(X, £) satisfies (3.2), its dependence on £ is through u(£), the first
component of the travelling wave i/(£). If a copy of C3 is attached to each point of
the orbit (St), f(X, £) lies in that copy if t/(£) is the underlying point.

To make this more precise, couple the travelling wave system (2.1) with the
eigenvalue system (3.2),

(5.1)       u' = v,    v' = -cv - f(u) + w,    w' -(e/c)(u - yw),   p' = q,

q' =  -cq+(X-f'(u))p + r,    r' = -(e/c)p+[(X + ey)/c]r,

where U - (u, v, w) G R3 and z = (p,q. r) g C3. The natural setting for (5.1) is the
complexified tangent bundle to R\ denoted 7"CR3. This is isomorphic to R3 X C3.
(5.1) induces a flow on rcR3 that depends continuously on (X, c, e) e C x R X R.

The travelling wave for e ¥= 0 is denoted SE c R3, with c = c(e). If the flow above
is restricted to Se, we obtain a flow on 5E x C3, the component on C3 coming from
(3.2). This flow depends on X g C and is defined for e g [0, e0].

f(X,£) will be followed around Sf X C3 as a trajectory for this flow, i.e.
("(£X f(X, £)) will be followed as £/(£) goes around Se.

Not all of the information in f(X, £) will be necessary to deduce D(X) ¥= 0. In
fact, only its "direction" is important; the appropriate context is the projectivised
space.

Since (5.1) is linear in z g C3, the flow can be projectivised in the second
component. Using coordinates (U, z) g rcR3, P7CR3 = R3 X C3\ {0}/~ , where
(t/,, zx) — (U2, z2) if Ux = U2 and there exists an a G C so that z, = az2.

Clearly PTCR3 = R3 x CP2, where CP2 is two-dimensional complex projective
space. Let tr: C3 -» CP2 be the natural map; ir(z) is the equivalence class de-
termined by z, which is spanc{ z} \ {0}. I shall use the notation z « ir(z). Extend m
toPTcR3:

ir: 7CR3 -» PTCR\        (U, z) -* (U, z).

Since (5.1) is linear, it induces a flow on PrcR3. If F(£) is the time-£ map of (5.1),
then /X£)> the time-£ map of the projectivized flow is the unique map for which the
diagram

rcR3     -      rcR3

■n \, I rr

prcR3    ^    p7;r3

commutes. All continuous dependence on parameters is inherited by /"(£).
Se X CP2 is an invariant subspace of P7J.R3 for fixed e. There is therefore a

(global, since the space is compact) flow on Sf x CP2 depending on X g C. Using
Theorem 2.1 the flow on U S, x CP2, where the union is over £ g [0, e0], can be
considered to lie on S1 X [0, £0] X CP2.

Local coordinates can be put on CP2 in the following way. Let z = (p,q, r) G C3
and -tt(z) g CP2. If p * 0, then w(z) is given by the coordinates (q/p, r/p). This is
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obviously independent of which point in m~l(ir(z)) is used. Each of the other
components can be used to get other local coordinate systems, but I shall ai ways use
the above.

For each z g CP2, so that z - (q/p, r/p), there is a distinguished vector in C3,
call it z = (1, q/p, r/p), so that w(z) = tr(z). In other words z is a normalised
version of z.

The adjoint system (3.10) can be dealt with similarly. The natural phase space here
is the projectivised, complexified cotangent bundle PTf R3! I shall not use this at all,
however.

Now let f(X, £) and tj(X, £) have their usual meanings. Suppose at a certain value
of £, f(X, £) and tj(X, £) are well defined. It is clear that if l(X, £) • t}(X, £) # 0 then
f(X,£)-i)(X,£)#0. This proves the following lemma.

Lemma 5.1. IfX g G and there exists a £ g R, so that f(X, £) • îj(X, £) ¥= 0, then
D(X)* 0.

The asymptotic systems are constant coefficient linear systems on C3. By pro-
jectivising such an autonomous linear flow, one obtains a flow on CP2. The
following special considerations apply.

Let A: C3 -* C3 be linear. Then A induces a vector field on CP2 as follows:

(id. A)
c3      -      re3

(5.2) mi i Dm

CP2       i       TCP2

I shall call it g.
Let Ca be a one-dimensional eigenspace for A associated with an eigenvalue a.

■n(Ca) is then a critical point for the flow on CP2. If one linearises g at tr(Ca),
Dg(ir(Ca)) can be considered as a linear map on C2. I shall prove the following
lemma.

Lemma 5.2. If A has eigenvalues a, a,, a2, and a is simple, then Dg(-ïï(Ca))\
C2 —» C2 has eigenvalues ax — a and a2 — a.

Proof. Suppose a1 ¥= a2. Then choose a basis for C3 in which A becomes

la     0      0 \
0     ax      0
0     0     «2

Let (p, q, r) be the coordinates in this basis. Then, near ir(Ca), (q/p, r/p) are local
coordinates on CP2. Consider Dir: TC3 -» TCP2; let ((p, q, r), (zx, z2, z3)) be a
generic point in TC3. Then

M(,,,),(!„v,))-|^),(M^,f-(^))
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from the quotient rule. Chasing a point around (5.2):

(/>,?.'")     -* (iP,<i,r),(ap,axq,a2r))

ù - ((;■?)■(<«■ -■>*•<■>-«)?))

In these coordinates the second component is linear and is therefore Dg(tr(Ca)). As
a matrix it has the form

I ai-a 0      \

\        0 «2-«/

and the lemma holds for this case. If a, = a2 and the geometric multiplicity is only
one, Dg(ir(Ca)) would be

¡ax- a 0      \

\     ! «2-«/

and the result still holds.
As an application of this lemma, consider the linear equation with constant

coefficients z' = Az. If a is the eigenvalue of A of largest real part, then Ca g CP2 is
an attracting critical point. Similarly, if a were of smallest real part, Ca would be a
repelling critical point. Paraphrasing this, one can say that unstable subspaces
become stable critical points and stable subspaces become unstable critical points.

To prove Theorem 5.1,1 shall divide G\Vinto two sets:

(1) G, = {X: X g G \ F and |X| > k)    for some fixed Ä: > 0.

(2) G2={G\V)\GX.

Evans [9] proves an asymptotic estimate for |X| -» + oo that shows if X G G, for
some k > 0, then X is not an eigenvalue, i.e., D(X) # 0.

The main task then is to prove that for X g G2, D(X) ¥= 0. This will be proved for
any k. f(X, £) will be followed around Se, and then at large £, f(X, £) will be used to
determine f(X, £). f • r¡ will then be proved to be nonzero so, by Lemma 5.1, X could
not be an eigenvalue.

I shall actually restrict X to a larger set than G2. Let

fi = {X G cl(G): X<£ Kand |X| < k }.

Then G2 c ñ and fl is compact. It follows from Lemma 3.3 that f(X, £), tj(X, £) and
£>(X) are all defined in fi and analytic in int(S2).

There are various flows I shall want to consider, depending on how many
parameters are fixed. As stated earlier, the full equations (5.1) induce a flow on
U0<t<eoSt X CP2, where e0 satisfies all the requirements collected to date. Using h:
Sl X [0°, e0] -» U St, from Theorem 2.1, there is a flow on S1 X [0, e0] X CP2.

With the parameter X set by the flow, there is a flow on S1 X [0, e0] X CP2 X Q.
Call this flow H(t). If X is fixed, let H\t) be the flow on S1 X [0, e0] X CP2. Ht(t)
and H*(t) then have the obvious meaning.
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Control on f(X, £) will be afforded by proving certain properties for the flow
H0(t) on 51 x CP2 and then perturbing this information to Ht(t).

Recall the construction of a tubular neighborhood about the singular orbit S0
given in the proof of Theorem 2.1. The corner boxes are B0, Bx, B2, B3. Let the
following points b¡, i = 0,1,2,3, be the indicated crossing points of S0 with the
respective boxes:

¿>0GS0n350n{M = y1}, bx GS0n351n{« = w1 -y,},

b2 G S0 n dB2 n {u = u2 - yx},    b3 G S0 n oB3 n { u = m3 + yx}.

All notation is defined in §2; see the proof of Theorem 2.1. Recall that h0 = h\Sl X
{0}. Let 0, be given by the condition

/lo(0,) = fc„       / = 0,1,2,3.
Recall further from §3 that U0, Ux, U2 and i/3 denote the four corners of S0; see

Figure 2. Let 0, be determined by the conditions
h0($,)-U„       / = 0,1,2,3.

The first property of the H0 flow is that it possesses a certain attractor that sits
over the right-hand slow manifold in the construction of S0.

The attractor will be a set of points of the form (0, Â(0, X), X) g S1 X CP2 X ß,
where 0 g [01? 02]. It will then be

(5.3) K=      IJ       U  (8,X(8,X),X).

In order to describe Â(0, X), let ue = «-component of h0(8) G S0 c R3. {0} x
CP2 is an invariant subset of S1 X CP2 under H0(t) if 8X < 0 < 02. The flow on CP2
is the projectivised version of
(5.4) p'-q,       q'= -cq+(X - f'(ue))p,       r' = 0.

b can be chosen, to set G, so that (5.4) has a unique simple eigenvalue of largest
real part for each (0, X); call it a+(6, X). Call some associated eigenvector A+(0, X).
Â(0. X) is then set as X\8, X).

The set
Ki-     U       U  (0, A(0,X),X)

will form part of the attractor. It needs to be extended to 02, i.e., away from the
corner to the edge of B2.

Let 0 g [02, 02]. Then h0(6) G JB. JB is parametrised by £ g R and given by
(wB(£), mb(£), H'*). From §4 there exists a uniquely determined, up to normalisation,
solution for the linearised eigenvalue equations over the back; call this fB(X, £).
Now set A(0, X) = lB(X, £), where 0 and £ are related by the condition 0B(£) = 0.

Now A(0, X) is defined for all 0 g [8x, 02]. The attractor is then the set K given by
(5.3). I need to show that K is an attractor in some suitable sense.

Lemma 5.3. K is an attractor for the flow H0(t) relative to the set
(5.5) [O,02] XCP2X fi = F.
In other words, there is a neighborhood Q of K in F so that oi(Q) O F = K.
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Remark. 02 depends on the size of the tubular neighborhood, i.e. k. Lemma 5.3
holds for all sufficiently small k.

Proof. First consider the set Kx. Since A+(0, X) is an eigenvector for the
eigenvalue of largest real part, it follows from Lemma 5.2 that (0, X+(8, X)) is an
attractor in {0} X CP2 for each fixed X.

To show that Kx is an attractor it suffices to show that the rate of convergence to
(0, Â(0, X)) is bounded away from zero uniformly in 0 G [8X, 62] and X G fi.
a+(0, X) depends continuously on 0 and X; moreover, the rate of convergence to the
attracting point (0, Â+(0, X)) in ( 0} X CP2 is determined by the quantity
(5.6) Re(a + (0,X)-a°(0, X)),
where a°(0, X) is the eigenvalue of next largest real part. In the proof of Lemma 3.3,
it is shown that (5.6) is bounded away from zero and positive if X g G. (5.4) is the
same as (3.5) except that 0 is replaced by ue. But there is an a < 0 so that
f'(ug) < a < 0 for all 0 G [0,, 02], so it is clear that this also holds here. By
compactness of [8X, 02] X fi, (5.6) can be uniformly bounded away from zero.

It follows that Kx is an attractor relative to the set

(5.7) [0„02] xCP2xfi.

I claim that it is, in fact, an attractor in the set

(5.8) [O,02] XCP2 x fi.

Relative to [0, 8X] x CP2 x fi, the invariant set 0, X CP2 x fi is itself an attractor.
This is trivial because the underlying flow on (0, 8X) is just the front solution (see
Figure 6) and increases to 0,. It can then also be said that (5.7) is an attractor
relative to the set of (5.8). Kx is therefore an attractor within an attracting invariant
set and so is an attractor in (5.8).

The full attractor K is Kx with a piece put on the tail. It suffices to show that the
tail

*2=     U        U   (0, A(0,X),X)

is an attractor relative to the set

(5.9) [S2J2] xCP2 x fi.

To this end, consider the flow induced on R3 x CP2 from (5.1). Appending X,
there is a flow on R3 X CP2 X fi. The point Á:2(X) = (U2, X+(82, X), X) is a critical
point for each fixed X. The linearisation in R3 X CP2 X fi has one eigenvalue of
positive real part, three of zero real part and the rest of negative real part. X and w
determine the ones of zero real part.

The point k2, therefore, has a (real) four-dimensional center-unstable manifold
Wcu(k2), which is attracting relative to a compact neighborhood of k2(X), say K(X).
Set V = UXei2K(X)andH^ = UAei2(H'cu(Â:2(X))n F(X)).Then W c R3 X CP2 X fi
and is attracting relative to V. Let K3 = W n (JB X CP2 X fi). Fix X0 G fi and
define K3(X0) = K3 n {X = X0}. Notice that the critical point k2(X) G K3(X). It is
easy  to check that K3(X) contains none of the center directions in   Wcu(k-,).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



STABILITY OF THE TRAVELLING WAVE SOLUTION 453

62      -

critical  points

5~

£ = 0  flow on S"1-

Figure 6

Therefore K3(X) is one-dimensional and must lie in Wu(k2). It is therefore a curve
of the form (£/B(£), Â(X, £)), where t/B(£) is the solution corresponding to./B c R3,
the back. The above is a trajectory in the (X fixed) flow on 50 X CP2. Furthermore,
it must satisfy, as £ - - oo, (t/B(£), Â(X, £)) - (U2, X+(82, X)).

But there is a unique curve that does this, namely (i/B(£), fB(X, £)).
Now extend h0: S1 -» S0 to h0: S1 x CP2 x fi -> S0 x CP2 x fi by the identity.
Define K2 by the condition h0(K2) = K3. K2 is of the form

U      U(6,X(8,X),X)

for some tj > 02. Choose K and, therefore, set 02 so that 02 < ti. Finally, reset V and,
hence, K2 so that tj = 02.

Since K3 is an attractor in V n (JB X CP2 X fi), the same is true of K2 in
[02, 02] x CP2 X fi. Also, the only exit set in the boundary of the neighborhood lies
in {02} x CP2 x fi. It follows that, if this neighborhood is called Q2,

oi(Q2)n [82, 02] x CP2 x fi = K2.

Now choose a neighborhood Qx of Kx in [0, 02] X CP2 x fi. Since Kx n {02} X
CP2 x fi = K2 n {02} x CP2 x fi, one can choose a Qx so that Qx n (0 = 02} =
Q2 n {0 = 02}. Let Q = Qx U 02- ll is then not hard to see that Q is an attracting
neighborhood of K relative to [0, 02] X CP2 X fi.

The proof of Theorem 5.1 also needs an attractor that sits over the left-hand
manifold. This would be a set of the form

*l=      U       \J(0,X(O,\),\),

where Â(0, X) is again the projectivised unstable eigenvector of the appropriate
system.

The fact that this is an attractor is significantly easier to prove than for K because
it lacks the tail of K. I shall only give the proof for K.

The following lemma about the behavior of the reduced system on the projecti-
vised level will play a central role.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



454 C. K. R. T. JONES

Lemma 5.4. Leí C c Q be a compact set so that C c dom(£>R) = GRandDR(X) =* 0
for ail X G C. Then

lim  fR(X,£) = Â1+(X)
£-. +oo

uniformly for X G C. A^X) is the eigenvector whose eigenvalue has positive real part
for the system z' = Mxz (see §4).

Remark. The projectivising here is restricted to C2. So if A g C2, Â g CP1.
Proof. fR(X, £) satisfies (4.4), which, when coupled with the travelling wave

equations (4.2), gives a system on R2 X C3. When projectivised this leaves a system
on R2 x CP1. Let JR c R2 be the closure of the wave trajectory; then JR X CP1 is
invariant.

The asymptotic system lies at (1,0) x CP1 and is given by (4.5) with 0 replaced by
1. Mx has two eigenvalues ¡if and associated eigenvectors Aj1. The projectivised
flow on CP1, therefore, has two critical points Xf. fR(X, £) must tend to one of
these as £ -» +oo. The set to(«R(£), fR(X, £)), some £, is an invariant subset of
{(1,0)} X CP1 and is therefore one of the critical points.

If fR(X, £) -» XX(X), X would be an eigenvalue. By assumption it is not. There-
fore fR(X, £) - XX+(X).

That the convergence is uniform follows from the fact that the rate of convergence
to XX(X) in (1,0) X CP2 is determined by Re(fi"(X) - ju+(X)), which can be seen to
be bounded uniformly from zero, as it is continuous.

This is all the machinery I need to establish the central estimates in the proof of
Theorem 5.1.

Let 0£(£) be the parameterisation induced on Se by the travelling wave equations.
Define T, = 7;(e)by

8t(Ti) = 8„       i = 0,1,2,3.
I shall evaluate l(X,T¡) for i » 0,1,2,3 and f(X, T4) where T4 is very large.
Now letj: C2 -+ C3 be the inclusion mapj(;?, q) = (p, q,0). Let fR(X, £) be the

eigenvalue solution for (4.4), i.e., the reduced system. Set fF(X, £) =.y(fR(X, £)).
Notice that this coincides with f(X, £) provided in §3 for e = 0.

Formulate the reduced system appropriate for the back; see comment at end of
§4. Let fR(X, £) be the eigenvalue solution. Set fB(X, £) =y(?R(X, £)).

Let 0F(£) and 0B(£) be the parametrisations induced on S1 X {0}, from S0, which
correspond, respectively, to the front and the back. They should each be normalised
in some fashion.

Set T0f, T?, T2B and T* by

M7oF) = *o,    0F(Tf) = 8x,   0B(r2B) = 02,    0B(T3B) = 03.
In other words, these are the times at which the singular orbit S0 hits the box edges.

I shall prove the theorem by five estimates of the following form:
(l)|f(X,:r0WF(X,r0F)|<S0;
(2)|f(X,r,)-fF(X,riF)|<51;
(3) |f(X, T2) - fB(X, T2B)| < «2;
(4)|f(X,r3)-?B(X,r3B)|<63;
(5) |f(X, T4) - A+(X)| < 84.
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Part of the proofs of these estimates will be to show that f is well defined in each
case. To get each estimate will require setting £ small and the truth of the preceding
estimate. The way 5, depends on e is not the same in each case. Each estimate will
require a lemma; the proof will then be completed by checking that the estimates
can be followed iteratively to reach (5).

There are two different types of lemmas. In the following, k, 8x and 63 will be
fixed independently of e. The following two are the first type.

Lemma 5.5. Given 82 > 0, there exists e2 > 0 such that if e < e2 then (2) implies (3)
for all X G fi.

Lemma 5.6. Given 84 > 0, there exists e3 > 0 such that if e < e3 then (4) implies (5)
for all X G Q.

Estimates (2) and (4) are understood to hold for these fixed S, and 83. I shall only
prove Lemma 5.5, as 5.6 is similar and easier.

Proof of Lemma 5.5. I shall first set k and 8X. Fix k0 so that Lemma 5.3 holds
with k = k0. According to that lemma there is a neighborhood Q of K in [0, 02] X
CP2 X fi = F so that u(Q) n F = K.82 here depends on k = k0; rename it 02°.

I shall now reset k to be some number smaller than k0. Let w0:S1xCP2xfi-+S1
be the natural projection. Choose 0 so that w0~ l(8) n int(ß) ¥= 0. The first require-
ment of k is that JF n Bx c h0([8, 8X]) and JB n B2 c h0([82, 02]) both be true.

Recalhng that fF(X, £) =y(fR(X, £)) and noticing that j(Xx(X)) = A(0„ X), it
follows from Lemma 5.4 that there exists a £ so that

(5.10) (0F(£UF(X,£),X)Gß
for all X G fi and £ > £, where Q remains the attractor neighborhood for the setting
k0. The time Tx depends on k. Set k so that Tx > £. Then (5.10) holds if £ = Tx for
all X g fi. This completes the setting of k

To set 5, I shall need to describe open subsets of Q in local coordinates on CP2.
Recall that if p ¥= 0 in z = (p, q, r) G C3, (q/p, r/p) form local coordinates on
CP2. It is easy to check that if £ is sufficiently small Â(0, X) lies in such a coordinate
patch for all 0 g [01? 02] and X G fi. In these coordinates, estimates (l)-(5) could be
written with    instead of   . It is obvious that the two are equivalent.

Let Ns be a ball of radius 8 about fF(X, r,F) in CP2 with the above coordinates.
Since Q is open and (5.10) is satisfied, there exists 8 so that {8F(TXF)} x Ns X (X)
c Q if 8 = 8X for X g fi. Set this to be 8X for estimate (2).

The fact that K is an attractor, relative to F, permits various statements that are
true for e = 0 to be perturbed to e > 0. Recall that H0(t) is a flow on S1 x CP2 x fi,
as is Ht(t) and, further, the dependence on £ is continuous.

For £ = 0 it is true that, given a neighborhood R of K in F and Q0 c Q, with Q0
compact, there exists a T > 0 so that

(5.11) H0(7)ß0cint(Ä).

(5.11) will perturb to Ht(t), £ > 0 and sufficiently small. So, for the same Q0 and R,

(5.12) Ht(T)Q0cinl(R).
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Further, if R c Q is a neighborhood of K in F, there exists a T > 0 so that

(5.13) H0([T,2T])RnFc int(R).

This is equivalent to saying that R is an attractor neighborhood. But then this
perturbs to £ > 0 also and

(5.14) He([T,2T])R nfc int(R).

Now determine R by the given <52. From the proof of Lemma 5.3 the point
(0B(7/), fB(X, T2F), X) g A: for all X G fi. Let MS(X) be a ball of radius 8 about
fB(X, r/) in local coordinates on CP2. Given S2 choose R so that

*n{0 = 02}c IJ {0B(T2F)}xM6x{X}
Xefl

for all X g fi if 8 = 82. 82 can be assumed to be small enough so that the above
holds.

Estimate (3) will then clearly follow if it can be shown that (8e(T2), f(X, T2),
X) g R. This in turn follows if it can be shown that

(5.15) (0f(£),f(X,£),X)Gtf UFC

for all sufficiently large £, where Fc = complement of F.
Now set Q0 as UAeS2{0f(7,1F)} X c^A^) x {X}, where 5 = 8x/2. This is a com-

pact subset of Q. Since 0f(7\) = 0F(TXT), if (0t(T,), ¿(X, Tx), X) g Q0, then clearly
(2) is satisfied.

But then there is an ê so that if £ < e, (5.12) is true. Further, there is an ê so that
(5.14) holds if e < È. So if e2 = min{l, Ê}, then, when e < e2, (5.15) holds for
sufficiently large £ and the lemma is proved.

To prove Lemma 5.6 one uses the attractor over the left-hand slow manifold, as
remarked before Lemma 5.3. The proof is almost identical and would require setting
83 and resetting k. The following lemmas give the steps from (1) to (2) and (3) to (4).

Lemma 5.7. Given 8X > 0 there exist ex > 0 and 80 > 0 so that if e < e, and (1) is
satisfied for all X G fi, then (2) also holds for all X G fi.

Lemma 5.8. Given 83 > 0 there exist e3 > 0 and 82 > 0 so that if e < e3 and (3) is
satisfied for all X G fi, then (4) also holds for all X g fi.

Again I shall only prove Lemma 5.7. Lemma 5.8 is the same with the appropriate
modification to replace the front with the back.

Proof of Lemma 5.8. The flow H0(t) on S1 x CP2 X fi takes the curve
(M^r/XM^7^)' *)> where X G fi, in time T* - T* to the curve of points
(8F(TX¥),ÏF(X,TXF),X). ^

If k is small enough, fF(X, T,F), ; = 0,1, are both in the usual coordinate patch
(p # 0). If (1) is satisfied, {f(X, T0): X g fi} lies in a neighborhood of the curve
{¿F(X, r0F): X g fi} of radius 80.

T0 is set so that 8t(T0) = 8F(Tj), Tx gives 0C(TX) = 0F(7\F). Also, from the
construction of the pulse, it is not hard to see that Tx(e) - T0(e) -* Tx - T0F as
£ ^ 0.
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Therefore by continuity of the flow in e, if ex, 80 are small enough and e < ex,
f(X, r,) lies in a prescribed (8X) neighborhood of fF(X, TXF). Estimate (2) then easily
follows.

One more ingredient is needed for the proof of Theorem 5.1, that is, that (5)
suffices.

Lemma 5.9. There exists 84 > 0 so that if (5) is true for T4 sufficiently large,
uniformly in X G fi, then
(5.16) Re(?(X,r4)rj(X,r4))>0
for X G fi. In particular, such a X is not an eigenvalue.

Proof. First, compute

A+- y= 1 + a+/(c - ß~) - e[(c - ß~)(ß- + (X + ea)/c)]~l.

If e = 0 this simplifies to

A+- y= 1 +a+/(c-ß-).
One then checks that Re(a+/(i: - ß~)) > 0 and so Re( A+- Y~) > 1.

For the case e > 0 one checks again that (c - /?)(/}" +(X + e<*)/c) is bounded
away from zero, uniformly in X as e -* 0. It follows that if e0 is small enough, then b
can be chosen so that there exists a > 0 for which Re(A+- Y~) > a for all X g G
and e g [O, £0).

But îj(X, £) -» T~(X) as £ -» + oo, and by continuity in X and compactness of fi,
if T4 is large enough, |tj(X, 7^,) - y~| can be made as small as desired uniformly in
X g fi. The fact that Re(f(X, T4) - r¡(X, T4)) < 0 then follows for e g [0, £0] with e0
sufficiently small, from (5).

Proof of Theorem 5.1. First set 8X, 83 and k as required in Lemmas 5.5 and 5.6.
Set £0 < e,, i = 1,2,3,4. Fix <34 > 0 so that the conclusion of Lemma 5.9 holds.
Proceeding through the estimates, one sees that if 0 < e < e0, then (1) implies (5),
which implies the theorem. It remains to show that (1) holds.

Recall that 0 = 0 at the origin and A+(X, e) is the unstable eigenvector for the
system (3.5). The point
(5.17) (0,A+(X,e),X)
is then an equilibrium point for all X g fi. Arguing in the same fashion as in the
proof of Lemma 5.3, the curve (0E(£), f(X, £), X), £ G R, is the unstable manifold
Wa of (5.17). Since they depend continuously on parameters, as does (5.17), estimate
(1) is easily seen to hold, again resetting k if necessary.

6. Winding number computation. From the last section it is known that the only
eigenvalues that offer any threat to stability are those near either the front or the
back. Since, for both the front and the back, 0 is the eigenvalue of largest real part,
any such dangerous eigenvalue must lie close to 0. In this section I shall prove that
there are exactly two eigenvalues near 0.

Let B be a closed ball of radius 8 about 0. Set K — dB. Choose 8 small enough so
that

(1) B n {aF u oB} = {0}, and
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(2) fi c G.
From (2) D is well defined on Ä^, for all £ g [0, e0], even if D is not.

If C c C \ {0} is a curve, let W(C) be the usual winding number; i.e., C is given
by a function <f>: S1-»C\{0}. <p determines an element of ir,(C\{0}), the
fundamental group; call it trx(<j>). Then W(C) — irx(<b).

Let 8 be as above and choose e0 so that Theorem 5.1 holds with this 5 if e < e0. In
fact, the conclusion of Lemma 5.9, i.e., (5.16), holds for X g fi, not just X g G2. In
particular, 2>(X) # 0 for X g K so W(~D(K)) is well defined. The result of this
section is the following.

Theorem 6.1. With K given as above, ife0 is small enough,

(6.1) W(~D(K)) = 2.

Since D is an analytic function, the winding number counts the number of zeroes
of D (by multiplicity) inside B. It follows from Theorem 6.1 that there are exactly
two zeroes. These zeroes may not correspond to eigenvalues which are zeroes of D.
However, if there is an unstable eigenvalue, it must be a zero of D and hence a zero
of D. It would therefore be counted by (6.1).

It is known from the previous section that f(X, £) can be followed around 5t and
used to show, by its value at large £, that D(X) =£ 0 for all X g K. Information is,
however, lost in projectivising and this is insufficient to determine (6.1). The extra
information about complex amplitude must be recovered.

Set f(X, £) = ( p(X, £), q(X, £), r(X, £)). As mentioned in §5, if £ = T„ p(\, T¡) *
0, / = 0,... ,4, for all X g K (since K c fi). This means l(X, Tf) is defined for all
such i. Define y,(X) for X g K, i: = 0,... ,4,

(6.2) !(X,T,) = yl(X)S(X,T¡).
In fact, it is obvious that y,(X) = p(X, T¡).

Recall that £>(X) is independent of £ and so can be evaluated at £ = T4. Now,

D(X) = r(X, T4) ■ „(X, r4) = y4(X){f(X, T4) ■ „(X, T4)}.

Also, if T4 is large enough,

exp(ß-T4)v(X, T4) = r)(X, T4) + e(X, T4),

where

(6.3) |e(X,r4)|—0    as74^ + oo

uniformly for X e K. This follows from the defining condition for tj. Putting this
into the expression for ¿(X),

¿>(X) = y4(X) exp(ß-T4){t(X, T4) ■ t)(X, T4) + f(X, T4) ■ e(X, T4)}.

From Lemma 5.9 and (6.3), the term in parentheses has winding number zero. Also
if K is small enough, ß~(X) is approximated by ß(0) for all X e K, so
W(e.\p(ß~(K)T4)) = 0. It follows that

W(D(K))= W(y4(K)).
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The proof will follow the same style as that of §5. I shall iteratively establish the
following winding numbers:

(\)W(yo(K)) = 0;
(2)W(yx(K))=l;
Q)W(y2(K))-2;
(4) W(y3(K)) - 2;
(5) W(y4(K)) = 2.
The tube parameter k may be reset in the following lemmas, but it will again not

depend on e.

Lemma 6.1. There exists ex so that ife<ex then W(y0(K)) = 0.

Proof. From its definition,

f(X,£) = ^£A++g(£),
where |g(£)| -* 0 faster than e(Rea+)£. From the proof of Lemma 3.3, this can be
made uniform in X g K and e g [0, e0], i.e., there exists p > 0, k and £* so that

\g(Í)\<kel*"*+>*
for all £ < £* and X g K, e g [0, e0]. Then if £ = T0 is negative enough,

(6.4) Re/>(X,ro)>0
for all X G K and £ G [0, e0]. It is clear that k can be reset so that the T0 satisfying
8C(T0) = b0 is negative enough for all e g [0, e0].

From (6.4), since y0(X) = p(X, T0), (1) easily follows.

Lemma 6.2. There exists e2so that ife < e2 then W(yx(K)) = 1.

Proof. First consider the behavior of the reduced system, i.e., the front. Recall the
definitions of Tj and TXF and set

fF(A,rF) = y1F(X)fF(x,r1F);

as usual, this is well defined. Now

DF(X) = fF(X, 7\F) ■ T)F(X, TXF) = yf(X){fF(X, 7\F) • r,(X, Tlp)}.
From the same kind of argument as given earlier, and using Lemma 5.4,

W(SF(K,TxF)-r1(K,Tx*)) = 0
if K is small enough (/¿determines Tx). But then

»ti>F(Jir))-*'ÎTÏU)).
From Lemma 4.1, (d/dX)DF(X)\x_0 > 0. If 8 is small enough (resetting e0 if

necessary), K will be a small circle about 0. It follows that

W(DF(K)) = 1    and    W(yf(K)) - 1.
This is where the stability of the front is used.

I shall translate this information into a map. Let

C0F(X) = spanc{fF(X,70F)}
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and
£0f={(w,X):wgCf(X),Xg*}.

Put coordinates on £F by using the map

CXÍ-£„F,       (z,X)~*{z$F(X,T0F),X).

If (z, X) g £0F, take zfF(X, 70F) as an initial condition for the eigenvalue flow,
determined by (4.4), at time Tj. Following this, for each X up until time TXF, one
obtains a multiple of fF(X, TF); call this <bF(z, X)fF(X, Tx). So <j> is a map <i>F:
EF -» C. Since the flow is hnear, <f> is linear in z. Set <bF(z, X) = $F(X)z. $F is now a
map <t>F: K -» C \ {0}. It is easy to check that 0F is continuous.

Now evaluate <j>F on yF(X):

<í>F(yF(X),X) = <í>F(X)yF(X).

But from the definition of <i>F it is easy to see that

4>F(yF(X),X) = yF(X).

Consequently,
*f(a) = Y2f(X)/Yif(X).

Now approximate the e + 0 case by the reduced system. Consider the eigenvalue
system (3.3) again. Let y(X, £) be the solution of (3.3) satisfying the condition
y(X, Tq) = l(X, Tq), which obviously depends on £. Let yF(X, £) be the solution of
the reduced system (4.4) (with r' = 0 appended) satisfying

^F(\J0F) = iF(AJ0F).

Because 8C(T0) = b0 = 8F(T0F) and (5.1) is continuous, \y(X, T) - ^F(X, T)\ can
be made as small as desired for fixed T (if e is small enough). But also Tx — T0 -»
TF - T0F as e -» 0. It follows that if v is prescribed, there is an £, so that e < ex
implies

(6.5) \y(X,Tx)-yF(X,TF)\<p.
Let C0(X) = spanc{?(X, T0)} and £0 = {(u, X): w g C0(X), X g a:}. Just as

before let (z, X) be coordinates on E0 where w = zf(X, T0). By taking zf(X, T0) as
the initial condition again, define <b(z, X) by requiring that <J>(z, X)f(X, Tx) be the
solution at time Tx. Again <¡> is linear in z. Set <>(z, X) = $(X)z. Also as above,

*(A) = y2(X)/Yl(X).
4>(X)1 = <p(\, X) = the first component of v(X, Tx). Also Í>F(X) = the first compo-
nent of .vF(X, riF). But then, by (6.4), |y,(X)/y0(X) - y1F(X)/Y0F(X)| can be made as
small as desired uniformly in X g K. Therefore, yx(X) - {yF(X)/y0F(X)}y0(X) can
also be made small. But then

W(yx(K)) = W(yF(K)/yF(K)) + W(y0(K)).
From Lemma 6.1 and the above arguments it follows that W(yx(K)) = 1 -I- 0 = 1.

Lemma 6.3. If e < e0(as determined in §5) then W(y2(K)) = 1.
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Proof. If e < e0, from the proof of Theorem 5.1, if f = (p, q, r), then/>(X, £) ¥= 0
for all X G AT and 7", <£< T2. Since y,(X) = p(X, Tx) and y2(X) = p(X, T2),p(X, £)
defines a homotopy of yx: K -> C \ {0} to y2: A: -* C \ {0}. Therefore W(y2(K)) =
W^y^ AT)) and the lemma is proved.

Lemma 6.4. There exists e2 so that if e < e2 then W(y3(K)) = 2.

Proof. The analysis closely follows that of Lemma 6.2, but the back is used to
approximate instead of the front. The conclusion is that

W(y3(K))= W(y2(K)) + \=2.

Lemma 6.5. Ife < e0 then W(y4(K)) = 2.

Proof. p(X, £) gives a homotopy, just as in the case of Lemma 6.3. Therefore,
W(y4(K)) = W(y3(K))=2.

This completes the proof of Theorem 6.1.

7. Completion of proof. From Lemma 3.2, if £ is small, the essential spectrum
ae(L) lies entirely in a set {X: ReX < a}, where a < 0, albeit dependent on e.
Therefore it is only eigenvalues that can cause instability. From Theorem 5.1 these
eigenvalues must lie in a 8-neighborhood of 0, where 8 = 8(e) -» 0 as e -* 0.

Theorem 6.1 says that there are two zeroes of D in such a 6-neighborhood.
Therefore there are at most two zeroes of D, and so there are at most two
eigenvalues. Since 0 is definitely an eigenvalue (due to translation) the other zero of
D must be real.

If X > 0 and large it dominates the system (3.3)-(3.4). It is not hard to check that
D(X) > 0 in this situation; see Evans [9] for details. It would follow that the other
zero of D(X) near zero is negative if it could be established that

(7.1) (d/dX)D(X)\x^0>0.

The main theorem will follow by proving (7.1).
Evans devised a beautiful technique for computing the sign of (d/dX)D(X)\x_0:

¿Z)(X) = {^?(X,£)}-T?(X,£) + f(X,£).{^-r/(X,£)}.

Furthermore, the right-hand side can be evaluated at any £. As £ -» + oo, |tja(0, £)|
-* 0 and |f(0, £)| -* 0 since tj is determined at + oo and f(0, £) is the derivative of
the travelling wave. Therefore

d
dXD^ =   lim   fx(A,0-i?(A,Ê)|x-o-

X = 0       £->+oo

f(X, £) = (p(X, £), <7(X, £), r(X, £)) satisfies system (3.2). Differentiating with re-
spect to X and evaluating at X = 0, fx(0, £) satisfies

(7.2) x'=y,      /« -cy-f'(u)x + z+p(Q,t),
z'= -(E/c)x+(£yA)z+(l/c)r(0,£).
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Fix £ g(0, £0]. Let c(e) be the speed at which the pulse exists. For each c in a
neighborhood of c(e), there exists a solution (unique up to parametrisation) that
tends to 0 as £ -» - oo. Call this U(c, £) = (u(c, £), v(c, £), w(c, £)), with para-
metrisation set by u(c,0) = a with no £ < 0 satisfying u(c, £) = a (recall a is the
middle zero of /(«)). This condition uniquely determines U(c, £), if £0 is small
enough. Note that U(c, £) is the unstable manifold of the critical point (0,0,0).

Differentiating the travelling wave system (2.1) with respect to c and evaluating at
c = c(e), Uc satisfies

(7.3) x'=y,       y'= -cy-f'(u)x + z-Ui,

z' = -(e/c)x +(ey/c)z — (\/c)w(.

Now by definition, (p(0, £), q(0, £), r(0, £)) satisfies system (3.2) with X = 0,
which is

(7.4) p' = q,    q' = -cq- f'(u)p + r,    r'= -(e/c)p+(ey/c)r.

It is easily seen that if (m(£), u(£), *»(£)) is the travelling wave then (u(, vt, wt)
also satisfies (7.4) with c - c(e). The solution of (7.4) that decays to 0 as £ -* - oo is
unique up to a scalar multiple. So there is a scalar a for which ap(0, £) = «i(£) and
ar(0, £) = »vi(£). From (7.2) and (7.3), afx + Uc must then satisfy (7.4), but the only
solution of (7.4) which decays to 0 as £ -» - oo is f(0> £) itself. Since afx + Uc
clearly does, there is a b so that af x + Uc — b$.

Moreover, a must be greater than 0, since p(0, £) > 0 for large negative £; it is
asymptotic to A+, whose first component is 1; and «{ > 0 for large negative £.

Substituting into the above expression,

(7.5) -jU(A)dX

=    hm   (*i
£- + oo \ a

-f-i»--l/c-i?)» --     hm    Ut
£- + oo Va a / a  r-+00

The last equality holds because f • tj = 0, which is true at X = 0 since it is an
eigenvalue.

As noted in §3, tj(0, £) is normal to the stable subspace of (0,0,0). Therefore, the
limit on the right-hand side contains information about how the solution U crosses
this subspace with respect to c. In other words, its sign is determined by the direction
in which the unstable manifold crosses the stable manifold, with respect to c, at the
value of c for which the wave exists.

Unfortunately the quantity Uc ■ tj is not independent of £ and so the limit cannot
be dropped in (7.5). I shall determine quantities P(£) and 7V(£) for which

lim   P(£)A/(£)=    lim   Ucv,
£— +00 £— + oc

but P(£) • W(£) will be independent of £ and so can be evaluated anywhere along the
pulse solution.

Append c' = 0 to the travelling wave system to obtain the system in R4:

(7.6)     u' = v,    v' = -cv — f(u) + w,    w' = -(e/c)(u - yw),    c' = 0.
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The point (0,0,0, c(e)) is a critical point of (7.6). Let Wca(e) be the center-unsta-
ble manifold of this point for (7.6). This is obtained locally and then iterated in
forward time. Let Wcs(e) be the center-stable manifold obtained in a similar fashion.

If c is close to c(e), (U(c, £), c) lies in Wca(e). Set

/>(£) = ( W(-( \ c\^(c(s),£), )

This is tangent to the above curve at the point (U(c(e), £), c(e)). As such, it satisfies
the equation of variations for (7.6):

(7.7) P' = q,       q'= ~cq-f'(u)p + r-vs,
r' = — (e/c)(p — yw)s,       s' = 0,

where« = u(c(e), £).
To set iV(£), rewrite (7.7) as

(7.8) x' = Ax

and let

(7.9) y' = By
be the adjoint system (B = -A*). iV(£) will be a solution of (7.9).

A and B both depend on £. Let A0 = lim^ + 0CA and B0 = lim^ + xB. With
e # 0 there is only one eigenvalue of A0 with positive real part. Therefore B0 has
only one of negative real part. The usual argument shows that there is a unique
solution of (7.9), call it N(£), up to a scalar multiple, that decays at + oo. It is not
hard to convince oneself that this solution is normal to Wc*(e) at (U(c(e), £), c(e))
for each £. Writing out A and taking the adjoint,

(7.10) B =

0      /'(h)
1

0
0

c
-1

e/c
0

-ey/c
(e/c2)(u- yw)

From the form of B, the first three equations of (7.9) uncouple from the fourth.
Therefore these first three equations are the same as those satisfied by 7,(0, £). jV(£)
must be a scalar multiple of (r,(0, £), &(£)) for some function &(£) found by solving
the fourth equation of (7.10); this is because 7,(0, £) decays to 0 as to £ -» + oo. Set
7vX£) = (t,(0, £), k(t)).

P(£) • Af(£) can now be computed:

9Í/.

Since |#(£)| - 0 as £ - + oo, Ä:(£)

Um   />(£)■#(£)=    lim
£— +oo £— + oo

-(c(e),£). 7,(0, £) + *(£).

0 as £ -» +00. Therefore,

3c (c(e),£)-t,(0,£).

Since P(£) satisfies (7.8) and #(£) satisfies (7.9), P(£) • 7V(£) is actually indepen-
dent of £, using the same argument as the one which shows D( X ) is independent of
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£. Therefore,
(7.11) P(r)-N(r)=    lim   Ue • n

f— +00

for any t G R.
The theorem will then be proved by finding a T for which

(7.12) P(T)-N(T) <0.
From (7.11) and (7.5), it then follows that (d/dX)D(X)\x_0 > 0, as desired.

The proof of (7.12) will require the transversality in Langer's proof [20]. To
explain and summarize what is needed from Langer's work, I shall first give some
notation.

Consider again the travelling wave system (7.6) in R4. Now set £ = 0 and
c = c(0) = c* (in the notation of §2). Recall from §2 (see Figure 1) that ££ and ££
are the parts of the right and left slow manifolds that partake in the singular
solutions. Let £R and £L be extensions of these in the w directions with c = c*, i.e.,

£r = {("» v,w, c) : v = 0, Wj < w < w2, c = c* is the largest root of w =/(«)},

where wx < 0 and w2 > w* are suitably chosen; similarly for £L. Let R" be the
center-unstable manifold of this curve of critical points; see Fenichel [10]. This is a
three-dimensional object. Let Ls be the stable manifold of the left-hand slow
manifold £L, lying in the slice c = c*. As usual, each of these is obtained locally and
then iterated in the appropriate time direction.

Let w = w(0) be the point in R3 where/B (the back) intersects {u = a}; recall that
a is the middle zero of /. Set AT0 to be the unit normal to Ls at («(0), c(0)) with
positive v component. The following argument shows that this is well defined. As Ls
is carried in backward time along JB, the sign of the second component of the
normal cannot change. With e = 0, one can find two vectors, vx(t) and u2(£),
tangent to Ls at a given point. vx = (px, qx, Tj) and v2 = (p2, q2, r2). vx is tangent to
JB with px > 0 and rx = 0. v2 is not tangent to JB but has r2 > 0; this can be found
because w = constant are invariant planes. But then any normal to Ls at a point on
JB must be a multiple of vx X v2 and, from the above properties, could not have a
zero second component.

The set R" n (c - c(0)} n {« = a} is a curve near (w(0), c(0)). Set Q0 to be the
unit tangent vector to this curve at (w(0), c(0)) with negative w component. The
argument that this is well defined is very similar to that for K0; w replaces v because
this is a tangent not a normal vector.

To define Kt and Qt, e # 0, let w(c) be the point on the back of the pulse Se in
{u = a} for small e. Kt is then the unit normal to Wa(e) at (w(e), c(e)), again with
positive «-component. Let Qt be the unit tangent vector to the curve W°\t) n { u =
a} with negative w component. These are both well defined because they converge to
K0 and Q0, respectively; see below.

With these definitions it is not hard to see that Kt -*■ K0 as e -» 0. Append yet
another equation to (7.6), namely e' = 0. Embed £L into the e = 0 subspace of R5
and consider W*, the center-stable manifold of £L, now with e varying. Wa C\ [e =
0}n{c = c*}andIfcsn{£ = Ê}= Wa(l), the center-stable manifold of the curve
of critical points (0,0,0, c, i), c varying. These then vary smoothly in e since they are
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slices of a smooth manifold. It follows that appropriately oriented normals vary
continuously and so Kt -» K0 as £ -* 0.

It is considerably harder to see that Qe -» Q0 as e -» 0, since their definitions are
very different. Indeed, that this is true is the hardest part of Langer's proof. The fact
that Qe lies close to Q0 carries information to the back about how the front is
constructed.

From Langer's work I shall need, then, the following two facts, which 1 state as
lemmas.

Lemma 7.1. Q0 ■ K0 < 0.

Lemma 7.2. Qt -» Q0.

Lemma 7.1 is the heart of the matter. Everything else is just designed to see that
this is the correct quantity to compute. I shall leave the proof of Lemma 7.1 and its
geometric explanation to the end.

I shall proceed by showing how to deduce Lemma 7.2 from Langer's construction
and then prove (Lemma 7.3) that the above is what is needed.

Proof of Lemma 7.2. Langer constructs a box Be about the right-hand slow
manifold in R4 and then considers the intersection of various unstable manifolds
with the face F on the boundary of the box that is near the exit point on JB. These
are

a0= A"n(c = c(0)) n£,        ae= Wcu(e)nF.

He then proves that ae is close (0(e)) in the C1 topology to a0. Let ir0 be the point
in JB X {c(0)} n £. The travelling wave system (7.6) in R4 with e' = 0 appended
induces a smooth flow on R5, and, on some small neighborhood V of w0 x [o, e0), it
induces a C1 diffeomorphism into the set {u = a}. Call this map ^: V -» {u = a}.
It obviously takes at X {e} into (Wcu(e) n [u = a}) X {e} and a0 X {0} into
(Ru O {c = c(0)} O (u = a}) X {0}. These curves therefore remain Ciclóse. Since
Qc and Q0 are unit tangent vectors to these curves at (co(e), c(e)) and (u(0), c(0)),
respectively, Qc -» Q0 as £ -» 0. This proves the lemma.

Remark. Langer's proof that ae is close to a0 assumes that y = 0. However, I
claim that it is merely a technical modification to include the case y =£ 0.

Lemma 7.3. sgn(ö0 ■ K0) - sgn(P(T) • N(T))for small enough e, where T= T(e)
andU(c(e),T)= w(e).

Proof, ^"(e) n{t/ = a}isa curve and can be parametrised by c. Moreover,
there is a smooth function t(c) so that it is given by (U(c, t(c)), c) near (u(e), c(e)).
A tangent vector can be found by differentiating, with respect to c,

(7.13) (at//3c+(3t//8£)T',l),

evaluated at c(e). It follows that Qf is a scalar multiple of (7.13):

Qc = m(dU/dc +(3C//3£)t',1).
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To check the sign of m, we must check the sign of dw/öc = t'(3w/3£). Now t(c)
satisfies u(c, r(c)) = a, and so t' = —(uc/u¿). So we want the sign of

(7.14) »c - «c( V»«)-
Langer proves that if uc is evaluated at a point near the right-hand slow manifold

there is a k, a so that

(7.15) \uc(t)\>ke«.
I need to recover the sign of uc. This information lies in the behavior of the front

as c varies. Set w = 0, £ = 0; the phase portrait for c = c(0) is given in Figure 7. For
c > c(0) but close to it, the phase portrait is that in Figure 8. So when e = 0 and £ is
large, uc ■« 0. By continuity it therefore follows for c = c(e) and e # 0. As w(c(e), £)
remains near the right-hand slow manifold, this does not change. Therefore uf(£) <
-keai.

phase portrait in w = 0  plane, c = c(0)

Figure 7

phase portrait in  w = 0  plane, c slightly larger than c

Figure 8
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The above described feature is, in fact, one of the main ingredients in proving at is
close to a0.

The equation for vvc is

w'c = -(e/c)(uc- ywc) +(e/c2)(u - yw).

Near £L, \u — yw\ « 1, so one sees that w'c is essentially determined by uc.
Indeed, let TQ be the time at which U(c(e), £) enters B, and let Tx be the exit time:

(e^'i/<Kwc)' = -(e/c)e'(ey/c)(uc -(u - yw)/c),

e^/c)wc(Tx) = e~«^T<>wc(T0) -(e/c)fT> e^'Mu, - !L^\ ¿£.

Since ¡u - yw\ ■« 1, uc « 0 and Tx - T0 is 0(1/e) (the time spent on the slow
manifold), wc(Tx) -» - oo as e -> 0 (recall c < 0).

The time taken by U(c(e), £) between leaving B and crossing {u = a} is bounded
independently of £. Hence at T = T(e), if e is small enough, uc < 0 and wc < 0.

Also at u = a, u( < 0 and r>£ = -(e/c)(m - yw) with y «: 1, w( > 0. From this,
one sees that (7.14) is negative. This implies m > 0.

Let Kt = nN. I must check that n > 0. For this we need that the second
component of t, is positive. As £ -» + oo, 7,(0, £) is asymptotic to Y~, whose second
component is (c - ß~J~l. ß~ is close to (c - (c2 - 4/'(0))1/2)/2, since /'(0) < 0
and (c — ß~)~l is positive. This component must stay positive as the solution moves
up the left slow manifold. By continuity of Wcs(e) in e, some scalar multiple of
7,(0, £) will stay close to the normal of Ls. By the same argument that shows
Kc -» AT0, the second component of this vector can never be zero. Therefore the
second component of t, stays positive on (T, +00). It follows that n > 0.

I now have proved that

Qt = m I — + — t',11    and   Kt = nN

Transversal intersection of  L  and  R

Figure 9
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with both m, n > 0. Furthermore,

Q.-K. 3c | • N + mn\ -^t',0| -N

IW • t, + k

3£
„ 31/

+ mm | -rj t?

but 3<7/3£ • t, = 0, since 0 is an eigenvalue and 3t//3£ is an eigenfunction. There-
fore,

Since m, n > 0,

QeKe = mn(P(T)N(T)).

sgn(QcKt) = sgn(P(T)-N(T)).

Since Qf -» £)0 ana" A"r -» A"0, the lemma follows, as desired.
It now remains to prove Lemma 7.1. This will depend on an argument given by

Langer, which, in this case, applies exactly, since £ = 0, and the value of y is
therefore irrelevant.

Proof of Lemma 7.1. To compute Q0 ■ K0 we can project onto R3 as the fourth
component of Q0 is zero. QQ is tangent to R" n {c = c(0)} n {u = a} and has a
negative w component. R" can be expressed as the graph of a function v = h(u, w)
in R3 near to(0). Q0 is therefore tangent to the curve (a, h(a, w), w), and so a
multiple of (0, hw, 1). It is a positive multiple of (0, — hw, — 1).

Now K0, projected onto c = c(0), is normal to Ws(e); c = c(e) is given by
c = g(w, w). A normal with positive v component is therefore ( —g„, 1, — gw). It
follows that Q0 ■ K0 is a positive multiple of gM. — hw. Langer proves the inequalities

(7.16) A„.>0   and   g„. < 0,

from which the lemma follows.

phase portrait (e=0)  with w  slightly larger than w*

Figure 10
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Remark. Inequalities (7.16) have a very pretty and important geometrical inter-
pretation. They quantify how the unstable manifold from the right slow manifold
meets the stable manifold of the left one; see Figure 9. The direction is determined
by the way the connection breaks as w changes. The phase portrait for w slightly
larger than w* is given in Figure 10. This is then easily seen to be the content of
(7.16).
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