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STABILITY OF TRANSONIC SHOCK FRONTS
IN TWO-DIMENSIONAL EULER SYSTEMS

SHUXING CHEN

Abstract. We study the stability of stationary transonic shock fronts under
two-dimensional perturbation in gas dynamics. The motion of the gas is de-
scribed by the full Euler system. The system is hyperbolic ahead of the shock
front, and is a hyperbolic-elliptic composed system behind the shock front. The
stability of the shock front and the downstream flow under two-dimensional
perturbation of the upstream flow can be reduced to a free boundary value
problem of the hyperbolic-elliptic composed system. We develop a method to
deal with boundary value problems for such systems. The crucial point is to
decompose the system to a canonical form, in which the hyperbolic part and
the elliptic part are only weakly coupled in their coefficients. By several so-
phisticated iterative processes we establish the existence and uniqueness of the
solution to the described free boundary value problem. Our result indicates
the stability of the transonic shock front and the flow field behind the shock.

1. Introduction

In this paper we are concerned with the stability of stationary transonic shock
fronts under two-dimensional perturbation in gas dynamics. The problem arises
in many situation with physical importance. As it is well known, when a super-
sonic flow passes across a shock front, the normal component of its velocity will
be changed from supersonic to subsonic. Such a flow pattern frequently appears in
various physical problems of gas dynamics [10], [11], [21]. The stability of the shock
front is obviously an important problem that people are concerned with. Viewing
the shock front as an object in multidimensional space, many mathematicians stud-
ied the stability of shock fronts from various points of view; see [8], [9], [13], [14],
[17], [22], [24], etc. In this paper we study the stability of the shock front under
perturbation together with the existence of the solution to the nonlinear perturbed
problem. The relevant physical problem we will discuss is a compressible flow in
a tube. The flow is supersonic upstream and becomes subsonic by passing across
a shock front. Previously, with a similar viewpoint, G.Q. Chen and M. Feldman
studied the stability of transonic shock fronts by using the model of the potential
equation in [7]. The potential equation works in gas dynamics under the assumption
that the flow is isentropic and irrotational, so that it offers a good model to study
many problems in gas dynamics when only weak shock fronts appear [19]. However,
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when a plane shock is perturbed, the entropy in the flow is not constant and the
flow behind the shock is not irrotational. Therefore, it is natural to analyze such
problems by using the full Euler system, which offers a more precise description
of the inviscid steady flow. Besides, the discussion with the full Euler system will
allow us to study more complicated problems involving interaction of shock fronts
as we plan to do in the future.

It is inevitable that the study of the stability of transonic shock fronts in the
full Euler system will be more difficult, because the whole system exhibits both
hyperbolicity and ellipticity. As we will see, behind the shock the system is neither
purely hyperbolic nor purely elliptic. The system is a hyperbolic-elliptic composed
system indeed, and possesses both real and complex characteristics. To solve a
problem for such a system a new treatment is required, though many classical and
modern methods for both hyperbolic equations and elliptic equations are well de-
veloped. Furthermore, since the location of the perturbed shock front is also to
be determined, we will confront a free boundary value problem for a nonlinear
hyperbolic-elliptic system. It has been noted by many mathematicians that to de-
velop a theory for solving such free boundary value problems is extremely important
in studying multidimensional hyperbolic system of conservation laws (see [2], [3],
[23]). In this paper we will develop a method to deal with such problems.

To solve the free boundary problem mentioned above we have to determine the
free boundary as well as the solution defined in the regions with the free boundary
as a part of their boundaries. The basic strategy which we design is to construct
an iterative scheme including two main steps, one being to determine the location
of the shock front by solving an ordinary differential equation derived from the
Rankine-Hugoniot conditions. The other is to determine the solution in a given
region with temporarily fixed boundary, while the domain takes the shock front as
part of its temporarily fixed boundary, which may change in different stage of the
iteration. Such a procedure is also applied by [4], [5] in solving a shock reflection
problem for the UTSD equation. In order to solve the fixed boundary problem of
the nonlinear hyperbolic-elliptic system, we transform the system into a canonical
characteristic form, which decomposes the principle part of the system into the
elliptic part and the hyperbolic part, while these two parts are weakly coupled
in their coefficients. The nonlinear problem with such a canonical form can be
solved by a Newton iteration scheme (see [15], [16], [20]). At each step in the
iteration we have to solve a boundary value problem for a linear hyperbolic-elliptic
composed system. Since the linearized system also contains an elliptic part and a
hyperbolic part, we introduce an alternative iterative method, which offers a way to
deal with these two parts separately. Then the typical method for elliptic equations
or hyperbolic equations can be applied respectively, provided careful estimates are
established to ensure the convergence of the alternative iteration scheme.

When the solution of the nonlinear hyperbolic-elliptic composed system in fixed
domain is obtained, the modification of the approximate free boundary can be
easily carried out, because in this step only a scalar ordinary differential equation
is involved. Finally, combining the two main steps in our strategy we can obtain
the existence of a unique solution to the original free boundary value problem by
using Schauder’s fixed point theorem. The final conclusion is stated as Theorem
2.1 in Section 2.
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The result indicates the stability of the stationary shock front, provided the
supersonic flow becomes a subsonic flow behind the shock front and an additional
condition in some location downstream away from the shock front is added. In our
theorem the additional condition takes the form that the pressure is given. It is
more reasonable than the condition “velocity is given” from the physical viewpoint.

In this paper we only consider the stability of shock fronts in two-dimensional
space. Due to the more complicated characteristics geometry we leave the discussion
on the corresponding three-dimensional problem to the future. In our study (and
also in [7]) the flow changes from supersonic to subsonic across a shock front, where
a jump of corresponding physical parameters in the flow appears, which is why
we call the shock front a transonic shock. In other circumstances, transonic flow
was studied earlier when a flow field was changed continuously from supersonic to
subsonic. This is also a very difficult subject and results in many mathematically
challenging problems, because equations of mixed type are involved (see [1], [18]).

The paper is organized as follows. In Section 2 we give a mathematical formula-
tion of the problem, which is a free boundary value problem for a hyperbolic-elliptic
composed system. In this section we also describe the main results and the main
idea of the approach that we take. In Section 3 the free boundary value problem
is reduced to a fixed boundary value problem of this nonlinear hyperbolic-elliptic
composed system and a problem for an ordinary differential equation. The latter is
applied to update the free boundary. In Section 4 the nonlinear hyperbolic-elliptic
system is transformed to a canonical form, which decomposes the hyperbolic part
and the elliptic part in its principal part. Then both the nonlinear system and the
boundary conditions are linearized. In Section 5 we solve the linearized boundary
value problem of the hyperbolic-elliptic system and establish the required a priori
estimates. In Section 6 we give the iteration scheme to solve the nonlinear bound-
ary problem in a domain with fixed boundary. Then in the last section by using
the Schauder fixed point theorem we finally prove the existence and uniqueness of
the solution to the free boundary value problem, and complete our proof of the
stability of the shock front under two-dimensional perturbation.

2. Formulation and main results

Let us consider a compressible flow in a two-dimensional tube with a constant
section. The tube is placed parallel to the x-axis, and its section is 0 < y < b. The
velocity of the flow is assumed to be parallel to the wall of the tube. Meanwhile,
we also assume that the unperturbed shock is perpendicular to the wall of the tube
and located at x = 0. The unperturbed flow is separated by a plane shock front
located at x = 0. The flow field ahead and behind the shock front are denoted by
U0
− and U0

+ respectively, where U = (u, v, p) is the parameter of the flow. The state
U0
− and U0

+ satisfy v0
− = v0

+ = 0, Rankine-Hugoniot conditions as shown later, and
the entropy condition u0

− > u0
+ or p0

− < p0
+.

The stationary Euler system in two-dimensional space can be written as

(2.1)

 ∇m = 0,

∇ ·
(

m⊗m
ρ

)
+∇p = 0,
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with Bernoulli law

(2.2)
1
2
u2 + i = const.,

where ρ, p, i are the density, pressure, and enthalpy of the fluid, while u = (u, v)
and m = ρu are velocity and momentum vector. The system (2.1) can also be
written as

(2.3)



∂(ρu)
∂x

+
∂(ρv)
∂y

= 0,

u
∂u

∂x
+ v

∂u

∂y
+

1
ρ

∂p

∂x
= 0,

u
∂v

∂x
+ v

∂v

∂y
+

1
ρ

∂p

∂y
= 0.

In the case of polytropic gas p = Aργ , and (2.2) takes the form

(2.4)
1
2

(u2 + v2) +
a2

γ − 1
= const.,

where a is the sonic speed of the fluid.
In the case when a shock front x = ψ(y) appears in the flow field, the Rankine-

Hugoniot conditions for the parameters U of the flow field in both sides should be
satisfied. That is,

(2.5)


[ρu] = ψ′[ρv],
[p+ ρu2] = ψ′[ρuv],
[ρuv] = ψ′[p+ ρv2],

where the bracket means the jump of the corresponding quantities. In addition,
the entropy condition means that the density and the pressure will increase when
a particle of the flow moves across the shock.

Assume that the upstream flow (ahead of the shock) is somehow perturbed.
Then the location of the shock front and the downstream flow (behind the shock)
will also be perturbed. The purpose of this paper is to prove such a conclusion:
under some reasonable boundary conditions the disturbance of the shock front and
the downstream flow is stable with respect to the perturbation of the upstream
flow.

Consider (2.3) in the domain Ω = (−N1, N2)×(0, b). Let us denote the location of
the perturbed shock front by x = ψ(y), and denote the perturbed upstream flow and
the downstream flow by U−(x, y) = (u−(x, y), v−(x, y), p−(x, y)) and U+(x, y) =
(u+(x, y), v+(x, y), p+(x, y)), respectively. Assume that the flow ahead of the shock
is supersonic; then it has the property that the downstream part will never influence
the upstream part [10, 11]. Therefore, we may assume that the perturbed flow
field between x = −N1 and x = ψ(y) is given (the location of the shock front is
unknown). The intersection of the shock front and the wall of the tube is assumed
to be fixed, so that ψ(0) = 0. All boundary conditions on the boundaries of the
domain Ω+ = {ψ(y) < x < N2, 0 < y < b} are

v = 0 on y = 0 and y = b,(2.6)

p = p0
+ on x = N2,(2.7)

R−H conditions and entropy condition on x = ψ(y).(2.8)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



STABILITY OF TRANSONIC SHOCK FRONTS 291

Here condition (2.6) means that the wall y = 0 and y = b of the tube are imperme-
able, and the condition (2.7) means that the pressure somewhere at the downstream
flow keeps constant. This situation is mostly common in physics. Besides, since
the unperturbed flow (U0

−, U
0
+) satisfies the entropy condition on the shock front,

then as its perturbation, (U−(x, y), U+(x, y)) will also satisfy the entropy condition
on the shock front automatically.

To simplify our later discussions we will give an additional assumption on sym-
metry of the flow field. First let us introduce the following definition.

Definition 2.1. The flow field U(x, y) = (u(x, y), v(x, y), p(x, y)) is called properly
symmetrical with respect to y = b

2 if u(x, y) = u(x, b − y), v(x, y) = −v(x, b − y),
p(x, y) = p(x, b−y). Furthermore, if ψ(y) is also symmetrical with respect to y = b

2 ,
i.e. ψ(y) = ψ(b− y), then the couple (ψ(y), U(x, y)) is called properly symmetrical.

A similar definition of properly symmetrical for (ψ(y), U(x, y)) with respect to
y = 0 can also be given in this way.

Obviously, once we have proved the existence of the solution to the system
(2.3) with the boundary conditions (2.6), (2.7), (2.8), and the C2,α norm of the
perturbation of U+ is dominated by C2,α norm of the perturbation of U−, we are
led to the desired conclusion on stability.

Now let us give a precise description of the conclusion in this paper. Since the
shock front is unknown, for our convenience we assume that U−(x, y) is defined in
the whole region Ω and properly symmetrical with respect to y = b

2 and y = 0,
and assume that it satisfies the system (2.3), the boundary condition (2.6) and the
following estimate:

(2.9) ‖u−(x, y)− u0
−, v−(x, y), p−(x, y)− p0

−‖C2,α(Ω) < ε.

For our convenience we also use the notations

Oε = {U−(x, y) : U−(x, y) ∈ C2,α(Ω), ‖U−(x, y)− U0
−‖C2,α(Ω) < ε,

U−(x, y) is properly symmetrical with respect to y = b
2 and y = 0}.

Then the main conclusion of this paper can be stated as follows.

Theorem 2.1. For any perturbed upstream flow U−(x, y) ∈ Oε with sufficiently
small ε > 0, there exists a function ψ(y) defined in (0, b) and a triple of functions
U+(x, y) = (u+(x, y),v+(x, y),p+(x, y)) defined in Ω+, properly symmetrical with
respect to y = b

2 and y = 0, satisfying the system (2.3) and the boundary conditions
(2.6), (2.7), (2.8). Moreover,

‖ψ(y)‖C2,α(0,b) < Cε,

‖u+(x, y)− u0
+, v+(x, y), p+(x, y)− p0

+‖C2,α(Ω+) < Cε.(2.10)

for some constant C, independent of ε .

3. Reduction of the free boundary problem

The problem described in Theorem 2.1 is a free boundary value problem. To solve
it we will reduce the free boundary value problem to a fixed boundary value problem
determining the downstream flow field and a problem of an ordinary differential
equation modifying the location of the shock front. The latter is a part of the
boundary of the domain where the fixed boundary value problem of (2.3) is treated.
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Such an outline is similar to that applied in the papers [5], [6], where the authors
discussed the shock reflection problem for the UTSD equation.

Our conclusion in Theorem 2.1 will be finally established by means of Schauder
fixed point theorem. To this end we define

Kη = {φ(y) : φ(y) ∈ C2,α(0, b), φ(0) = φ′(0) = 0, φ(y) = φ(b − y), ‖φ‖C2,α ≤ η}.
For any η0, Kη0 is a convex closed set. Taking any ψ ∈ Kη0 , we can solve a boundary
value problem of (2.3) in the domain bounded by Γ1 : x = ψ(y), Γ2 : y = 0, Γ3 : y =
b, Γ4 : x = N2. Two boundary conditions on Γ1 will be assigned, which come from
the Rankine-Hugoniot conditions (2.5), while the boundary conditions on Γ2,Γ3,Γ4

are given as shown in (2.6), (2.7). The wellposedness of such a fixed boundary value
problem will be proved, and then the new value of the flow parameters U on the
boundary x = ψ(y) is obtained. By using the function U we update the location of
the approximate free boundary. Since the Rankine-Hugoniot conditions essentially
contains three relations as shown in (2.5), then besides two relations employed as the
boundary conditions of the above boundary value problem, the remaining condition
(or its equivalent form) will be used to update the location of the approximate free
boundary. The suitable form of the remaining relation in the R-H conditions is an
ordinary differential equation given on the interval (0, b). Integrating this equation
with a fixed initial value condition we obtain the location of the updated shock
front Ψ(y). Denoting the map from ψ ∈ Kη to Ψ by T , we can prove that T is an
inner map and is also a compact map. Therefore, the existence of a fixed point of
the map T can be obtained according to the Schauder fixed point theorem. The
fixed point gives the location of the shock front, which is the free boundary for
our free boundary value problem. Hence the solution to the free boundary value
problem is easily obtained.

The R-H conditions (2.5) are equivalent to the following three relations:

dψ

dy
=

[ρuv]
[p+ ρv2]

,

[ρuv]
[ρu]

=
[p+ ρv2]

[ρv]
,

[p+ ρu2]
[ρuv]

=
[ρuv]

[p+ ρv2]
.

The first equality will be applied to determine the location of the shock front to-
gether with the initial data ψ(0) = 0, which means that the intersection of the shock
front with the wall is fixed. Therefore, the solution of the initial value problem

(3.1) (I) :


dψ

dy
=

[ρuv]
[p+ ρv2]

,

ψ(0) = 0,

play the role to modify the location of the perturbed shock. The problem (3.1) is
called problem (I).

On the other hand, by introducing two nonlinear functions from the R-H condi-
tions

G1(U+, U−) := [ρuv][ρv]− [p+ ρv2][ρu],

G2(U+, U−) := [p+ ρu2][p+ ρv2]− [ρuv]2,
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the boundary conditions on x = ψ(y) can be written as

(3.2) G1(U,U−) = 0, G2(U,U−) = 0.

We notice that for the unperturbed flow (U0
+, U

0
−), Gi(U0

+, U
0
−) = 0 (i = 1, 2).

Lemma 3.1. For any ψ(y) ∈ Kη and U−(x, y) ∈ Oε with η ≤ η0, ε ≤ ε0,

(3.3) ‖Gi(U0
+, U−)‖C2,α(Γ1) ≤ Cε,

where C only depends on η0, ε0.

Proof. Since ψ(y) ∈ Kη0 , Gi(U0
+, U

0
−) = 0, we have Gi(U0

+, U−) = Gi(U0
+, U−) −

Gi(U0
+, U

0
−) = (

∂Gi
∂U−

)∗ · (U− − U0
−). Hence (3.3) holds due to U−(x, y) ∈ Oε.

For any given ψ(y) ∈ Kη0 , we can set up a boundary value problem (II) in Ω+.

(3.4) (II) :


System (2.3) in Ω+,

G1 = 0, G2 = 0 on Γ1,

v = 0 on Γ2,Γ3,

p = p0
+ on Γ4.

This is a fixed boundary value problem for a nonlinear hyperbolic-elliptic composed
system. In next sections we are going to prove

Theorem 3.1. Assume that ψ(y) ∈ Kη, U−(x, y) ∈ Oε with ε ≤ ε0, η ≤ η0. Then
there is a unique solution U+(x, y) in Ω+ of the problem (II), satisfying

(3.5) ‖U+(x, y)− U0
+‖C2,α(Ω+) < C1ε,

where C1 only depends on ε0, η0, provided η0 and ε0 is sufficiently small.

4. Decomposing and linearizing

To discuss problem (II), we first introduce the canonical form of (2.3) by distin-
guishing its real characteristics and complex characteristics. First we write (2.3) as
a symmetric system with the matrix form

(4.1)

ρu 1
ρu

1 a−2ρ−1u

 ∂

∂x

uv
p

 +

ρv ρv 1
1 a−2ρ−1v

 ∂

∂y

uv
p

 = 0,

or

(4.2) A
∂U

∂x
+B

∂U

∂y
= 0,

where the matrices A and B have their expressions as shown in (4.1).
From det(B − λA) = 0 we can determine the eigenvalues λ, which are the roots

of

(4.3) det(B − λA) ≡ ρ(v − λu)(a−2(v − λu)2 − 1− λ2) = 0.

The three eigenvalues are

λ± =
uv ± a

√
u2 + v2 − a2

u2 − a2
,

λ3 =
v

u
.
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In the subsonic region u2 + v2 < a2 the eigenvalues λ± are complex. Write λ± =
λR ± iλI . The real part and imaginary part of λ± are

(4.4) λR =
uv

u2 − a2
, λI =

a
√
a2 − u2 − v2

u2 − a2
,

respectively. The left eigenvectors corresponding to λ = λ± are

`± = (λ±,−1, ρ(v − λ±u)).

Multiplying the system (4.1) by ` = `± we obtain

(4.5) `A(
∂

∂x
+ λ

∂

∂y
)U = 0.

Let us denote DR = ∂
∂x + λR

∂
∂y , DI = λI

∂
∂y and decompose the real part and

imaginary part of (4.5). Noticing that

(λR + a−2(uv − λRu2)) = λR(1− u2

a2
) +

uv

a2
= 0,

(λI −
u2

a2
λI) = −1

a

√
a2 − u2 − v2,

we have

ρvDRu− ρuDRv + hDIp = 0,(4.6)

ρvDIu− ρuDIv − hDRp = 0,(4.7)

where h = 1
a

√
a2 − u2 − v2. On the other hand, the left eigenvector corresponding

to λ3 is
`3 = (u, v, 0).

Denoting D3 = u ∂
∂x + v ∂

∂y , and multiplying (4.1) by `3 we obtain

(4.8) ρuD3u+ ρvD3v +D3p = 0.

The equations (4.6), (4.7), (4.8) are the canonical form for the system (4.2). In
the new form of the system the hyperbolic part and the elliptic part have been
decomposed in the level of principal part, and these two parts are only weakly
coupled in their coefficients.

In order to solve problem (II) we have to make linearization of the nonlinear
system and the nonlinear boundary conditions at any point in a C2,α neighborhood
of U0

+, and then establish a convergent sequence of approximate solutions by solving
the corresponding linear problem. To this end we define the δ-neighborhood Σδ of
U0

+ = (u0
+, v

0
+, p

0
+) as

Σδ = {U+(x, y) : U+(x, y) ∈ C2,α(Ω+), ‖U+(x, y)− U0
+‖C2,α(Ω+) ≤ δ,

U+(x, y) is properly symmetrical with respect to y = b
2 and y = 0}.

Now let us linearize problem (II) at U+(x, y) ∈ Σδ with δ ≤ δ0 for small δ0. In the
sequel we will often simply use U to denote the function U+(x, y). The linearized
system for the perturbation δU is

DR(ρvδu− ρuδv) +DI(hδp) = f1,(4.9)

DI(ρvδu − ρuδv)−DR(hδp) = f2,(4.10)

ρuD3δu+ ρvD3δv +D3δp = f3,(4.11)
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where the terms f1, f2, f3 in the right side are independent of δU , and will be
given in the process of solving corresponding nonlinear problems. Meanwhile, the
linearization of the boundary conditions (3.2) on Γ1 are

α1δu+ β1δv + γ1δp = g̃1,(4.12)

α2δu+ β2δv + γ2δp = g̃2,(4.13)

where

α1 = ρv[ρv]− ρ[p+ ρv2],
β1 = ρ[ρuv] + ρu[ρv]− 2ρv[ρu],

γ1 =
uv

a2
[ρv] +

v

a2
[ρuv]− (1 +

v2

a2
)[ρu]− u

a2
[p+ ρv2],

α2 = 2ρu[p+ ρv2]− 2[ρuv]ρv,
β2 = 2ρv[p+ ρu2]− 2[ρuv]ρu,

γ2 = [p+ ρv2](1 +
u2

a2
) + [p+ ρu2](1 +

v2

a2
)− 2[ρuv]

uv

a2
.

Particularly, when U− = U0
−, U+ = U0

+, we have

α1 = −ρ[p], β1 = 0, γ1 = − u

a2
[p],

α2 = 2[p]ρu, β2 = 0, γ2 = [p](1 +
u2

a2
).

In the subsonic region

det

(
α1 γ1

α2 γ2

)
= −[p]2det

(
ρ u

a2

2ρu 1 + u2

a2

)
= −[p]2ρ(1− u2

a2
) < 0

at U− = U0
−, U+ = U0

+. Then for any U ∈ Σδ the boundary conditions (4.12),
(4.13) on Γ1 for the linearized problem can be written as

δu+ β̃1δv = g1,(4.14)

δp+ β̃2δv = g2,(4.15)

where β̃1 = β̃2 = 0 for U− = U0
−, U = U0

+, and ‖β̃1, β̃2‖C2,α(Γ1) < Cδ due to
U ∈ Σδ. Meanwhile, since the boundary conditions on other boundaries are linear,
we are led to the following linear problem:

(4.16) (L) :


System (4.9), (4.10), (4.11) in Ω+,

(4.14), (4.15) on Γ1,

δv = 0 on Γ2,Γ3,

δp = 0 on Γ4.

Remark 4.1. Let us describe the symmetry of coefficients and the terms in the
right side of the all equalities in (4.16). From their expressions we know that
h, α1, γ1, α2, γ2 are symmetrical with respect to y = b

2 , and y = 0, β1, β2 are
anti-symmetrical with respect to y = b

2 and y = 0. It implies that β̃1, β̃2 are
anti-symmetrical. For the terms on the right side of the equalities in (4.16), the
functions f2, f3, g1, g2 should be symmetrical, and the function f1 should be anti-
symmetrical. In the next sections, when we derive any linear problems with the
form (L), the terms on the right side must have such symmetry.
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Evidently, solving the boundary value problem (L) for the linear hyperbolic-
elliptic composed system is a necessary step to solve problem (II).

5. The existence for linearized problem and energy estimates

In order to solve (L) we will first derive a second order elliptic equation from the
first two equations of the linearized system. Since

[DR, DI ] = (
∂λI
∂x

+ λR
∂λI
∂y
− λI

∂λR
∂y

)
∂

∂y
,

we can write
[DR, DI ] = µDI ,

where µ = 1
λI

(∂λI∂x + λR
∂λI
∂y − λI

∂λR
∂y ). Since U ∈ Σδ and µ is a linear form of

derivatives of U , we have ‖µ‖C1,α < Cδ with C independent of δ.
Acting DI on (4.9) and acting DR on (4.10), then subtracting one from another,

we obtain

(5.1) (D2
I +D2

R)(hδp)− µDR(hδp) = f∗,

where
f∗ = µf2 +DIf1 −DRf2.

Obviously, f∗ is symmetrical with respect to y = b
2 and y = 0, and it contains

a linear expression of ∇(δU) with coefficients depending on the first derivatives of
U , so that

‖f∗‖Cα(Ω+) ≤ C(‖f1,2‖C1,α(Ω+)).

The principal symbol of the equation (5.1) is (ξ + λRη)2 + η2, which is positive
for (ξ, η) 6= (0, 0). Then the equation is a second order elliptic equation for δp. Its
boundary conditions on Γ1 and Γ4 are

δp = 0 on Γ4,(5.2)

δp = g2 − β̃2δv on Γ1.(5.3)

Furthermore, using (4.9) and the fact v = 0, δv = 0, f1 = 0 on Γ2,3, we know
DI(hδp) = 0 there. Hence the boundary value condition for δp on Γ2,3 can be
written as

(5.4)
∂

∂y
δp = 0 on Γ2,Γ3,

because of ∂h
∂y = 0.

Lemma 5.1. Assume that U− ∈ Oε, ψ ∈ Kη, U ∈ Σδ with ε ≤ ε0, η ≤ η0, δ ≤ δ0

sufficiently small, and f∗ ∈ Cα(Ω+), δv ∈ C2,α(Γ1) are anti-symmetrical with
respect to y = b

2 and y = 0. Then the problem (5.1)–(5.4) admits a unique solution
δp ∈ C2,α(Ω+). Moreover, the estimate

(5.5) ‖δp‖C2,α(Ω+) ≤ C(‖g2‖C2,α(Γ1) + δ‖δv‖C2,α(Γ1) + ‖f∗‖Cα(Ω+))

holds, where C depends only on η0, δ0, ε0.

Proof. The equation (5.1) is an elliptic equation defined on Ω+. Since ψ(y) is
symmetrical with respect to y = b

2 and y = 0, we can make an even extension for
the function ψ(y) with respect to y = 0 and y = b, i.e.

ψ(kb− y) = ψ(kb+ y), k = 0,±1,±2, · · · .
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Then ψ(y) becomes a periodic function ψe(y) defined on (−∞,∞), which is still
of C2,α. Correspondingly, the domain Ω+ is also extended to Ωe+. Moreover, since
U−(x, y), U(x, y) are properly symmetrical, we can also make an even extension
for the functions u−(x, y), u(x, y), p−(x, y), p(x, y) with respect to y = 0, b, and
make an odd extension for the functions v−(x, y), v(x, y). In such a way, we obtain
Ue−(x, y) defined on Ωe and Ue+(x, y) defined on Ωe+.

Let us also make an even extension for δp with respect to the boundary. Since
the coefficients of (5.1) are symmetrical with respect to the boundary and ∂

∂y δp = 0
on Γ2,3, then the extension of δp is still C2 smooth, and satisfies (5.1). Therefore,
the problem for determining δp with the form (5.1)–(5.4) in Ω+ is equivalent to a
problem (Le) in Ωe which has the form (5.1), (5.2), (5.3) (the condition (5.4) is the
consequence of the given symmetry). It turns out that in the process of solving
problem (5.1)–(5.4), the corners of Ω+ will not cause any trouble in our analysis.
Therefore, the standard theory of the elliptic boundary value problems is available.
The theory indicates that problem (5.1)–(5.4) admits a unique solution and the
Schauder estimates hold. Noticing β̃2 in (4.13) is a small quantity controlled by δ,
we are led to (5.5).

We emphasize here that in the above proof (and also below) the constant C is
uniform with respect to U±, it only depends on ε0, δ0, η0, and may change its value
in different inequalities. Besides, we always assume C > 1.

In the estimates (5.5) there appears ‖δv‖C2,α(Γ1) in its right-hand side. There-
fore, in order to apply this estimate to solve (5.1) we have to eliminate the term
‖δv‖C2,α(Γ1).

Lemma 5.2. Under the assumptions of Lemma 5.1, if δU = (δu, δv, δp) is a solu-
tion of (L), then

(5.6) ‖ρvδu− ρuδv‖C2,α(Ω+) ≤ C(‖f1,2‖C1,α(Ω+) + ‖δp‖C2,α(Ω+))

and

(5.7) ‖δu, δv‖C2,α(Γ1) ≤ C(‖f1,2‖C1,α(Ω+) + ‖g1,2‖C2,α(Γ1) + δ‖δv‖C2,α(Γ1)).

Proof. From (4.9), (4.10) we have

DR(ρvδu− ρuδv) = f1 −DI(hδp),(5.8)

DI(ρvδu − ρuδv) = f2 +DR(hδp).(5.9)

Then

‖ρvδu− ρuδv‖C2,α(Ω+) ≤ C(‖DR(ρvδu− ρuδv)‖C1,α(Ω+)

+ ‖DI(ρvδu− ρuδv)‖C1,α(Ω+))

≤ C(‖f1,2‖C1,α(Ω+) + ‖δp‖C2,α(Ω+)).

Since ρvδu − ρuδv and δu + β̃1δv are linearly independent, then δu, δv can be
expressed by a linear combination of ρvδu− ρuδv and δu+ β̃1δv. Hence

‖δu, δv‖C2,α(Γ1) ≤ C(‖g1‖C2,α(Γ1) + ‖ρvδu− ρuδv‖C2,α(Γ1))

due to (4.14). In view of (5.5), (5.6) and

‖f∗‖Cα(Ω+) ≤ C‖f1,2‖C1,α(Ω+),

we obtain (5.7).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



298 SHUXING CHEN

Lemma 5.3. Under the assumptions of Lemma 5.1, for any solution δU=(δu, δv, δp)
of (L),

‖ρuδu+ ρvδv + δp‖C2,α(Ω+)(5.10)

≤ C(‖g1,2‖C2,α(Γ1) + ‖f1,2‖C1,α(Ω+) + ‖f3‖C2,α(Ω+) + δ‖δU‖C2,α(Ω+))

holds.

Proof. From (4.11)

D3(ρuδu+ ρvδv + δp) = f3 −D3(ρu)δu−D3(ρv)δv.

Since ρuδu + ρvδv + δp, ρvδu − ρuδv, δp form a basis of (δu, δv, δp), the equation
(4.11) can be written as

D3(ρuδu+ ρvδv + δp)− d1(ρuδu+ ρvδv + δp) = d2(ρvδu − ρuδv) + d3δp+ f3,

where d1, d2, d3 are linear forms of DU . When U ∈ Σδ, ‖di‖C1,α(Ω+) ≤ C holds
uniformly for i = 1, 2, 3.

Therefore, by integrating along the characteristics of D3 we have

‖ρuδu+ ρvδv + δp‖C1,α(Ω+) ≤ ‖ρuδu+ ρvδv + δp‖C1,α(Γ1)(5.11)
+C(‖f3‖C1,α(Ω+) + ‖ρvδu− ρuδv‖C1,α(Ω+) + ‖δp‖C1,α(Ω+)),

where C depends on the C1,α norm of di, and then it only depends ε0, δ0, η0 under
the assumptions of Lemma 5.1.

Differentiating (4.11) with respect to x, we obtain

ρuD3(δu)x + ρvD3(δv)x +D3(δp)x = f3x + q,

where q = [ρuD3, Dx]δu + [ρvD3, Dx]δv + [D3, Dx]δp. Similar to (5.11) we can
derive
(5.12)
‖ρu(δu)x + ρv(δv)x + (δp)x‖C1,α(Ω+) ≤ ‖ρu(δu)x + ρv(δv)x + (δp)x‖C1,α(Γ1)

+ C(‖f3x‖C1,α(Ω+) + ‖ρv(δu)x − ρu(δv)x‖C1,α(Ω+)

+ ‖(δp)x‖C1,α(Ω+) + ‖q‖C1,α(Ω+))

≤ C(‖δU‖C2,α(Γ1) + ‖f1,2‖C1,α(Ω+) + ‖f3‖C2,α(Ω+)

+ ‖g1,2‖C2,α(Γ1) + δ0‖δU‖C2,α(Ω+)),

where C only depends on ε0, η0, δ0. In the same way we can establish the estimate
for ‖ρu(δu)y + ρv(δv)y + (δp)y‖C1,α(Ω+). Then by using the estimates (5.5), (5.7)
we obtain (5.10) immediately.

Lemma 5.4. Under the assumptions of Lemma 5.1, and assuming that f1, f2, f3,
g1, g2 have the symmetry indicated in Remark 4.1, f1, f2∈C1,α(Ω+), f3∈C2,α(Ω+),
g1, g2 ∈ C2,α(Γ1), then the problem (L) admits a unique solution δU ∈ C2,α(Ω+),
which satisfies the estimate

(5.13) ‖δU‖C2,α(Ω+) < C(‖g1,2‖C2,α(Γ1) + ‖f1,2‖C1,α(Ω+) + ‖f3‖C2,α(Ω+)).

Proof. In order to prove the existence of the solution to problem (L), we introduce

an alternative iteration scheme here. Let δ̃U
(0)

= 0; we construct a sequence of

approximate solutions {δ̃U
(k)
} inductively. Assuming that δ̃U

(k)
has been obtained,

we solve δ̃p
(k+1)

and ρvδ̃u
(k+1)

− ρuδ̃v
(k+1)

from the elliptic part of the linearized

system and solve ρuδ̃u
(k+1)

+ ρvδ̃v
(k+1)

+ δ̃p
(k+1)

from the hyperbolic part of the
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linearized system alternatively. The detailed procedure is shown as follows. First,

δ̃p
(k+1)

is defined by

(5.14)



(D2
R +D2

I)(hδ̃p
(k+1)

)− µDR(hδ̃p
(k+1)

) = f∗ in Ω+,

δ̃p
(k+1)

= g2 − β̃2δ̃v
(k)

on Γ1,
∂

∂y
δ̃p

(k+1)
= 0 on Γ2,Γ3,

δ̃p
(k+1)

= 0 on Γ4,

where f∗ = DIf1−DRf2 + µf2. Obviously, (5.14) admits a unique solution, which
is properly symmetrical with respect to y = b

2 and y = 0, and satisfies

‖δ̃p
(k+1)

‖C2,α(Ω+) ≤ C(‖g2‖C2,α(Γ1) + δ‖δ̃v
(k)
‖C2,α(Γ1) + ‖f∗‖Cα(Ω+))(5.15)

≤ C(‖g2‖C2,α(Γ1) + δ‖δ̃v
(k)
‖C2,α(Γ1) + ‖f1,2‖C1,α(Ω+)).

From (5.14), we have

DI(f1 −DI(hδ̃p
(k+1)

)) −DR(f2 +DR(hδ̃p
(k+1)

)) + µ(f2 +DR(hδ̃p
(k+1)

))
= DIf1 −DRf2 + µf2 − f∗ = 0.

These are exactly the integrability conditions of the system of first order equations DRW = f1 −DI(hδ̃p
(k+1)

),

DIW = f2 +DR(hδ̃p
(k+1)

).
(5.16)

Hence we can determine a solution W to (5.16), which is anti-symmetrical with

respect to y = b
2 and y = 0 and satisfies W = 0 at (x, y) = (0, 0). Let ρvδ̃u

(k+1)
−

ρuδ̃v
(k+1)

= W . Then we have

DR(ρvδ̃u
(k+1)

− ρuδ̃v
(k+1)

) +DI(hδ̃p
(k+1)

) = f1,(5.17)

DI(ρvδ̃u
(k+1)

− ρuδ̃v
(k+1)

)−DR(hδ̃p
(k+1)

) = f2.(5.18)

Meanwhile, Lemma 5.2 implies

(5.19) ‖ρvδ̃u
(k+1)

− ρuδ̃v
(k+1)

‖C2,α(Ω+) ≤ C(‖f1,2‖C1,α(Ω+) + ‖δ̃p
(k+1)

‖C2,α(Ω+)).

Combining (5.19), (5.15) with δ̃u
(k+1)

+ β̃1δ̃v
(k+1)

= g1 on Γ1, we have

(5.20) ‖δ̃U
(k+1)

‖C2,α(Γ1) ≤ C(‖g1,2‖C2,α(Γ1) + ‖f1,2‖C1,α(Ω+) + δ‖δ̃U
(k)
‖C2,α(Ω+)).

Then we solve ρuδ̃u
(k+1)

+ ρvδ̃v
(k+1)

+ δ̃p
(k+1)

from

ρuD3δ̃u
(k+1)

+ ρvD3δ̃v
(k+1)

+D3δ̃p
(k+1)

= f3.

Similar to Lemma 5.3 the above equation can be written as

(D3 − d1)(ρuδ̃u
(k+1)

+ ρvδ̃v
(k+1)

+ δ̃p
(k+1)

)

= d2(ρvδ̃u
(k+1)

− ρuρ̃v(k+1)) + d3δ̃p
(k+1)

+ f3,
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where d1, d2, d3 are linear forms of DU as introduced in Lemma 5.3. Integrating
along the characteristics of D3 and using the method in Lemma 5.3 we obtain

ρuδ̃u
(k+1)

+ ρvδ̃v
(k+1)

+ δ̃p
(k+1)

, which satisfies

‖ρuδ̃u
(k+1)

+ ρvδ̃v
(k+1)

+ δ̃p
(k+1)

‖C2,α(Ω+)(5.21)

≤ C(‖δ̃U
(k+1)

‖C2,α(Γ1) + ‖g1,2‖C2,α(Γ1) + ‖f1,2‖C1,α(Ω+) + ‖f3‖C2,α(Ω+)

+δ‖δ̃U
(k)
‖C2,α(Ω+) + δ‖δ̃U

(k+1)
‖C2,α(Ω+)),

where C only depends on ε0, η0, δ0. By taking δ sufficiently small we have

‖δ̃U
(k+1)

‖C2,α(Ω+) ≤C(‖g1,2‖C2,α(Γ1) + ‖f1,2‖C1,α(Ω+) + ‖f3‖C2,α(Ω+))(5.22)

+
1
2
‖δ̃U

(k)
‖C2,α(Ω+).

By changing the constant C we are led to the uniform boundedness of δ̃U
(k+1)

, i.e.

(5.23) ‖δ̃U
(k+1)

‖C2,α(Ω+) ≤ C(‖g1,2‖C2,α(Γ1) + ‖f1,2‖C1,α(Ω+) + ‖f3‖C2,α(Ω+)).

Due to the compactness of C2,α(Ω+) in C2(Ω+), we can select a subsequence

from the sequence {δ̃U
(k)
}, so that it is convergent in C2(Ω+). It is easy to see that

the limit δU of the subsequence satisfies all equations and the boundary conditions

in problem (L) and δU ∈ C2,α(Ω+). In view of the uniform boundedness of δ̃U
(k)

in C2,α(Ω+), we obtain the estimate (5.13).
In order to prove the uniqueness we only need to indicate that the solution to

(4.16) with homogeneous right side terms is zero. That is, assuming that δu, δv, δp
satisfies

(5.24)


DR(ρvδu − ρuδv) +DI(hδp) = 0,
DI(ρvδu− ρuδv)−DR(hδp) = 0,
ρuD3δu+ ρvD3δv + δp = 0,

δu+ β̃1δv = 0 on Γ1,

δp+ β̃2δv = 0 on Γ1,

δv = 0 on Γ2,Γ3,

δp = 0 on Γ4,

we have to prove δu = δv = δp = 0. Indeed, δp satisfies

(5.25)



(D2
R +D2

I )(hδp)− µDR(hδp) = 0 in Ω+,

δp = −β̃2δv on Γ1,
∂

∂y
δp = 0 on Γ2,Γ3,

δp = 0 on Γ4.

Then

(5.26) ‖hδp‖C2,α(Ω+) ≤ C‖β̃2δv‖C2,α(Γ1) ≤ Cδ‖δv‖C2,α(Γ1).
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Meanwhile, denote by Dt the differential operator along the tangential direction of
Γ1, we have

‖δv‖C2,α(Γ1) = ‖Dtδv‖C1,α(Γ1)(5.27)

= ‖ 1
ρu

[Dt(ρvδu− ρuδv) +Dt(ρu)δv −Dt(ρv)δu− ρvDt(δu)]‖C1,α(Γ1).

By using the system (5.24), Dt(ρvδu−ρuδv) can be written as a linear combination
of DRδp and DIδp. Then, in view of U ∈ Σδ and the boundary condition δu +
β̃1δv = 0 on Γ1, we have

‖δv‖C2,α(Γ1) ≤ C(‖D(hδp)‖C1,α(Γ1) + δ‖δv‖C2,α(Γ1)).

Applying (5.26) we have

‖δv‖C2,α(Γ1) ≤ Cδ‖δv‖C2,α(Γ1)

with another constant C. Since δ ≤ δ0 can be sufficiently small, we are led to
δv = 0 on Γ, and consequently, δu = δp = 0 on Γ1. Therefore, the solution δp of
(5.25) is zero in Ω+, and then δu = δv = 0 in Ω+ can also be obtained easily.

Remark 5.1. The a priori estimate (5.13) indicate that the linearized problems are
stable. Moreover, we emphasize once more that all constants in the above estimates
are uniform for U ∈ Σδ0 .

6. The existence for nonlinear problem (II)

Returning to nonlinear problem (II), we are going to prove Theorem 3.1. To this
end we use the Newton iteration scheme to establish a sequence of approximate
solutions. The approximate equations in the scheme are

D
(n)
R (ρ(n)v(n)δu(n+1) − ρ(n)u(n)δv(n+1)) +D

(n)
I (h(n)δp(n+1))

= D
(n)
R (ρ(n)v(n))δu(n) −D(n)

R (ρ(n)u(n))δv(n) +D
(n)
I (h(n))δp(n),

D
(n)
I (ρ(n)v(n)δu(n+1) − ρ(n)u(n)δv(n+1))−D(n)

R (h(n)δp(n+1))

= D
(n)
I (ρ(n)v(n))δu(n) −D(n)

I (ρ(n)u(n))δv(n) −D(n)
R (h(n))δp(n),

ρ(n)u(n)D
(n)
3 δu(n+1) + ρ(n)v(n)D

(n)
3 δv(n+1) +D

(n)
3 δp(n+1) = 0,

where D(n)
R , D

(n)
I , D

(n)
3 are the corresponding operators obtained from DR, DI , D3

by replacing U in their coefficients by U (n). The above system can be simply
denoted as

(6.1) F(n)δU (n+1) = f (n)

with f = (f1, f2, f3).
The approximate boundary conditions on Γ1 are

α
(n)
i δu(n+1) + β

(n)
i δv(n+1) + γ

(n)
i δp(n+1)

= −Gi(Un, U−) + α
(n)
i δu(n) + β

(n)
i δv(n) + γ

(n)
i δp(n),

where α(n)
i , β

(n)
i , γ

(n)
i are the corresponding functions obtained by replacing U in

αi, βi, γi by U (n). The linear operator with these coefficients is denoted by G(n)
i ;

then we have

(6.2) G(n)
i δU (n+1) = −G(n)

i + G(n)
i δU (n) (= g

(n)
i ).
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Therefore, the iteration scheme can be given as follows:

U (0) = U0
+, δU (0) = 0.

For any n, when U (n) has been given, δU (n+1) is the solution to the following
problem:

(6.3) (L(n)) :


F(n)δU (n+1) = f (n) in Ω+,

G(n)
i δU (n+1) = −G(n)

i + G(n)
i δU (n) on Γ1, i = 1, 2,

δv(n+1) = 0 on Γ2,Γ3,

δp(n+1) = 0 on Γ4,

which has the form of (L), and f (n)
i , g

(n)
i are symmetry as indicated in Remark 4.1.

Furthermore, we take

(6.4) U (n+1) = U (0) + δU (n+1).

Lemma 6.1. Under the assumptions of Theorem 3.1 one can construct a sequence
{U (n)} of approximate solutions to problem (II) by using the scheme (6.3), (6.4),
and the solution {U (n)} is properly symmetrical with respect to y = b

2 and y = 0,
uniformly bounded in C2,α(Ω+). Moreover, the sequence is convergent.

Proof. Let us start with the initial term U (0) = U0
+. For any n the problem (6.3)

admits a solution δU (n+1), if U (n) ∈ Σδ with δ ≤ δ0. Indeed, for the right side of
(6.1), (6.2), we have

‖f1
(n), f

(n)
2 ‖C1,α(Ω+) ≤ Cδ‖δU (n)‖C2,α(Ω+), f

(n)
3 = 0.

Moreover,
g

(n)
i = −G(0)

i + (G(0)
i −G

(n)
i + G(n)

i δU (n)).

Lemma 3.1 indicates ‖G(0)
i ‖C2,α(Γ1) ≤ Cε. Meanwhile

‖G(0)
i −G

(n)
i + G(n)

i δU (n)‖C2,α(Γ1) ≤ C‖δU (n)‖2C2,α(Γ1).

Then from Lemma 5.4 we know that problem (L(n)) has a unique solution δU (n+1),
which satisfies

‖δU (n+1)‖C2,α(Ω+) ≤ C(‖g(n)
1,2 ‖C2,α(Γ1) + ‖f (n)

1,2 ‖C1,α(Ω+))(6.5)

≤ C(ε + δ‖δU (n)‖+ ‖δU (n)‖2C2,α(Ω+)),

where the constant C only depends on δ0, ε0, η0. From (6.5) one can easily obtain

the estimate ‖δU (n)‖C2,α(Ω+) < δ inductively, provided δ <
1

4C
, ε <

δ

2C
, and

ε0, η0, δ0 are sufficiently small.
Consider the convergence of the sequence {Un}. (6.3) implies

F(n+1)(U (n+2) − U (n+1)) = (f (n+1) − f (n))− (F(n+1) − F(n))U (n+1) in Ω+,

(6.6)

G(n+1)
i (U (n+2) − U (n+1)) = −G(n+1)

i +G
(n)
i + G(n)

i (U (n+1) − U (n)) on Γi,

(6.7)

U (n+2) − U (n+1) = 0 on Γ2,Γ3,(6.8)

p(n+2) − p(n+1) = 0 on Γ4.(6.9)
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From Lemma 5.4 we have

‖U (n+2) − U (n+1)‖C2,α(Ω+)(6.10)

≤ C (
∑
i=1,2

(‖ −G(n+1)
i +G

(n)
i + G(n)

i (U (n+1) − U (n))‖C2,α(Γ1)

+ ‖(F(n+1) − F(n))U (n+1)‖C1,α(Ω+) + ‖f (n+1) − f (n)‖C1,α(Ω+)).

Notice that as both U (n+1) and U (n) are in Σδ, we have

‖f (n+1) − f (n)‖C1,α(Ω+) ≤ Cδ‖U (n+1) − U (n)‖C2,α(Ω+).

Since any term in the coefficients of the operator F(n+1) − F(n) contains the com-
ponents of (u(n+1) − u(n), v(n+1) − v(n), p(n+1) − p(n)), then

‖(F(n+1) − F(n))U (n+1)‖C1,α(Ω+) ≤ Cδ‖U (n+1) − U (n)‖C2,α(Ω+).

Furthermore,

‖ −G(n+1)
i +G

(n)
i + Gi

(n)(U (n+1) − U (n))‖C2,α(Γ1) ≤ C‖Un+1) − U (n)‖2C2,α(Γ1).

Therefore, when δ0 is sufficiently small, we can inductively establish the estimate

‖U (n+2) − U (n+1)‖C2,α(Ω+) ≤
1
2
‖U (n+1) − U (n)‖C2,α(Ω+),

which implies the convergence of {U (n)}.

Proof of Theorem 3.1. As shown in Lemma 6.1 we have established a convergent
sequence {U (n)} of approximate solutions. It is easy to see that the limit U of the
sequence {U (n)} satisfies (4.9)–(4.11), and the boundary condition

Gi(U,U−) = 0 on Γ1

as well as v = 0 on Γ2,3 and p = p+
0 on Γ4. This means that U is the solution to

problem (II).
Denote Ū = U − U0

+. Then Ū = (ū, v̄, p̄) satisfies

DR(ρvū− ρuv̄) +DI(hp̄) = f1,

DI(ρvū − ρuv̄)−DR(hp̄) = f2,

where

f1 = DR(ρv)ū −DR(ρu)v̄ + (DIu)p̄, f2 = DI(ρv)ū −DI(ρu)v̄ − (DIh)p̄,

satisfying
‖f1,2‖C1,α(Ω+) ≤ Cδ‖Ū‖C2,α(Ω+).

Furthermore, from Gi(U,U−) = 0, Gi(U0
+, U

0
−) = 0 we obtain

0 = Gi(U,U−)−Gi(U0
+, U

0
−)

= Gi(U,U−)−Gi(U0
+, U−) +Gi(U0

+, U−)−Gi(U0
+, U

0
−)

= α∗i ū+ β∗i v̄ + γ∗i p̄+ ( ∂Gi∂U−
)∗(U−U0

−),

where α∗i , β
∗
i , γ
∗
i have the expressions as shown in Section 4, and take value at some

point on the segment connecting U and U0
+ in the space (u, v, p). In addition,

‖( ∂Gi
∂U−

)∗(U− − U0
−)‖C2,α(Γ1) ≤ Cε.
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Hence we have
ū+ β̃∗1 v̄ = ḡ1, p̄+ β̃∗2 v̄ = ḡ2 on Γ1,

where
‖ḡ1, ḡ2‖C2,α(Γ1) ≤ Cε.

Notice that f̄1, f̄2, ḡ1, ḡ2 have the symmetry indicated in Remark 4.1. Then by using
Lemma 5.4 we obtain

‖Ū‖C2,α(Ω+) ≤ C(‖ḡ1,2‖C2,α(Γ1) + ‖f̄1,2‖C1,α(Ω+))

≤ C(ε+ δ‖Ū‖C2,α(Ω+)).(6.11)

When δ is small, we obtain (3.5).

7. The existence for the free boundary value problem

To solve the original free boundary problem, we turn to problem (I).

Lemma 7.1. For given ψ(y) ∈ Kη0 and U(x, y) ∈ C2,α(Ω+), there is a unique
solution Ψ(y), symmetrical with respect to y = b

2 and y = 0, satisfying

(7.1)


dΨ
dy

=
ρuv − ρ−u−v−

p+ ρv2 − p− − ρ−v2
−
,

Ψ(0) = 0.

Moreover, Ψ(y) satisfies

(7.2) ‖Ψ(y)‖C3,α(0,b) ≤ Cε.

Proof. First we extend U(x, y) from Ω+ to the whole Ω by a fixed manner, such
that the extension (still denoted by U(x, y)) is a C2,α(Ω) function satisfying

‖U(x, y)‖C2,α(Ω) ≤ 2‖U(x, y)‖C2,α(Ω+).

Then by solving problem (7.1) we obtain Ψ(y). Here what we have to check is the
symmetry of Ψ(y) with respect to y = b

2 and Ψ′(0) = 0. Since ψ(y) and U−(x, y)
are properly symmetrical with respect to y = b

2 , then the solution to problem (L) is
properly symmetrical, because f1 is anti-symmetrical and f2, f3, g1, g2 are symmet-
rical. The solution to problem (II) obtained by using the Newton iteration scheme is
also properly symmetrical with respect to y = b

2 . Therefore, the right-hand side of
(7.1) is anti-symmetrical. This implies that the solution Ψ(y) is symmetrical with
respect to y = b

2 . Correspondingly, Ψ′(0) = 0 holds due to v(x, 0) = v−(x, 0) = 0.
To prove (7.2) we write the right side of (7.1) as H(U,U−). In view of H(U0

+, U
0
−)

= 0, we have

H(U,U−) = H(U,U−)−H(U,U0
−) +H(U,U0

−)−H(U0
+, U

0
−).

Therefore,

‖Ψ(y)‖C3,α(0,b) ≤ C(‖U − U0
+‖C2,α(Ω) + ‖U − U0

−‖C2,α(Ω))

because of (7.1). Then Theorem 3.1 implies (7.2) with possibly different constant
C.

The proof of Theorem 2.1. Having established the existence of the solution to prob-
lems (I), (II) and the corresponding estimates, we can now prove the existence of the
solution to the original free boundary problem. For given U−(x, y) ∈ Oε with ε ≤ ε0,
by taking ψ(y) ∈ Kη0 , we solve problem (II) in Ω+ to obtain U(x, y) ∈ C2,α(Ω+).
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Then by solving (7.1) we obtain Ψ(y) ∈ C3,α(0, b) and ‖Ψ(y)‖C3,α(0,b) ≤ Cε. There-
fore, when ε is small enough, the map T from ψ ∈ Kη0 to Ψ is an inner and com-
pact map. Since Kη0 is a convex and closed set, then the map T has a fixed point
ψ∗(y) by Schauder’s fixed point theorem. Correspondingly, we obtain a domain
Ω∗ = {ψ∗(y) < x < N2, 0 < y < b} and a solution U∗(x, y) to (II) defined in Ω∗.
The couple (ψ∗(y), U∗(x, y)) is exactly the solution of our original free boundary
problem, satisfying

‖ψ∗(y)‖C3,α(0,b) ≤ Cε0, ‖U∗(x, y)− U0
+‖C2,α(Ω+) ≤ Cε0,

because of (7.2) and (3.5).
The remaining part is to prove uniqueness. Suppose that the free boundary

value problem (2.3), (2.6), (2.7), (2.8) has two solutions. The corresponding free
boundaries are Γ1A : x = ψA(y) and Γ1B : x = ψB(y), respectively, while the
solution UA(x, y) is defined in Ω+A = {ψA(y) < x < N2, 0 < y < b}, and the
solution UB(x, y) is defined in Ω+B = {ψB(y) < x < N2, 0 < y < b}. Since
UA(x, y) and UB(x, y) satisfy (2.3) and the requirement in Theorem 2.1, we have
to prove ψA(y) = ψB(y) and UA(x, y) = UB(x, y).

Introducing the coordinates transformation π:

ỹ = y, x̃ = ψA(y) +
N2 − ψA(y)
N2 − ψB(y)

(x− ψB(y)),

it maps the domain Ω+B into Ω+A, maps Γ1B into Γ1A, and maps Γ2,3,4 into
themselves, respectively. Under the transformation π the solution UB becomes
ŨB = UB ◦ π−1, which is also defined in Ω+A. Next we prove ŨB(x, y) = UA(x, y).

Viewing UA(x, y) and ŨB(x, y) as the solutions of a boundary value problem
with fixed boundaries we can write

FUA [UA] = 0,

Gi(UA, U−(ψA(y), y)) = 0, i = 1, 2,

FŨB [ŨB] = 0,

Gi(ŨB , U−(ψB(y), y)) = 0, i = 1, 2.

Hence

Gi(UA, U−(ψA(y), y))−Gi(ŨB, U−(ψB(y), y))

= Gi(UA, U−(ψA(y), y))−Gi(ŨB, U−(ψA(y), y)) +Gi(ŨB, U−(ψA(y), y))

−Gi(ŨB, U−(ψB(y), y))

=
∂Gi
∂U+

(U∗+, U−(ψA(y), y))(UA − ŨB) +Gi(ŨB, U−(ψA(y), y))

−Gi(ŨB, U−(ψB(y), y))

holds on ΓA.
Denoting ŨB−UA by UBA, i.e. uBA = ũB−uA, vBA = ṽB−vA, pBA = p̃B−pA,

and denoting UA by U , we have

FUA [UBA] = FUA [ŨB]− FŨB [ŨB], ( = fBA)(7.3)
∂G

∂U+
(U∗+, U−(ψA(y), y))UBA(7.4)

= Gi(UA, U−(ψA(y), y))−Gi(ŨB, U−(ψB(y), y)),
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where

(7.5) ‖fBA‖Cα(Ω+A) ≤ C‖UBA ·DŨB‖Cα(Ω+A) ≤ Cε‖UBA‖Cα(Ω+A).

(7.4) can be written as

uBA + β̃1vBA = gBA1,(7.6)

pBA + β̃2vBA = gBA2,(7.7)

where

(7.8) ‖gBAi‖C1,α(0,b) ≤ C‖U− ◦ π−1 − U−‖C1,α(0,b) ≤ Cε‖ψB(y)− ψA(y)‖C1,α(0,b)

for i = 1, 2. Moreover,

‖ψB(y)− ψA(y)‖C1,α(0,b) = ‖
∫ y

0

(
dψB
dy
− dψA

dy
)dy‖C1,α(0,b)

≤
∫ b

0

‖H(ŨB, U− ◦ π−1)−H(UA, U−)‖C1,α(0,b)dy.

This implies that

(7.9) ‖ψB(y)− ψA(y)‖C1,α(0,b) ≤ Cε‖UBA‖C1,α(Ω+A);

then we have

(7.10) ‖gBAi‖C1,α(0,b) ≤ Cε‖UBA‖C1,α(Ω+A).

By using the same technique as in Section 5, ρBA satisfies the following problem:

(D2
I +D2

R)(hpBA)− µDR(hpBA) = DI(fBA)1 −DR(fBA)2 + µ(fBA)2 in Ω+A,

pBA = gBA2 − β̃2vBA on Γ1A,

∂

∂y
(h pBA) = 0 on Γ2,Γ3,

pBA = 0 on Γ4.(7.11)

Therefore, by using the maximum principle and the estimates for the weak solutions
to second order elliptic equation (see [12]) we have

(7.12) ‖h pBA‖C1,α(Ω+A) ≤ C(‖gBA2 − β̃2vBA‖C1,α(Γ1A) + ‖fBA‖Cα(Ω+A)).

In view of

‖vBA‖C1,α(Γ1A) ≤ ‖
1
u

(uvBA − vuBA + vuBA)‖C1,α(Γ1A)(7.13)

≤ C(‖uvBA − vuBA‖C1,α(Γ1A) + ‖vβ̃1vBA‖C1,α(Γ1A) + ‖gBA1‖C1,α(Γ1A)

≤ C(‖hpBA‖C1,α(Γ1A) + ‖fBA‖Cα(Γ1A) + ‖gBA1‖C1,α(Γ1A) + ε‖vBA‖C1,α(Γ1A)).

Combining (7.12) with (7.13) we have
(7.14)
‖hpBA‖C1,α(Ω+A) ≤ C(ε‖UBA‖C1,α(Γ1A) + ‖fBA‖Cα(Ω+A) + ε‖gBA‖C1,α(Γ1A)).

Again use the first two equations in (7.3) we know ‖uvBA − vuBA‖C1,α(Ω+A),
‖UBA‖C1,α(Γ1A) are also controlled by the right side of (7.14).

Finally from the third equation of the system in (7.3) we have

(D3 − d1)(ρuuBA + ρvvBA + pBA) = d2(ρvuBA − ρuvBA) + d3pBA.
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Then

‖ρuuBA + ρvvBA + pBA‖C1,α(Ω+A) ≤ ‖ρuuBA + ρvvBA + pBA‖C1,α(Γ1A)(7.15)
+C(‖ρvuBA − ρuvBA‖C1,α(Ω1A) + ‖pBA‖C1,α(Ω1A)),

and it can also be controlled by the right side of (7.14). Noticing that pBA, ρuvBA−
ρvuBA, ρuuBA + ρvvBA + pBA form a basis of all linear combinations of µ1uBA +
µ2vBA + µ3pBA), then by combining the estimates (7.5), (7.8) we obtain

‖UBA‖C1,α(Ω+A) ≤ Cε‖UBA‖C1,α(Ω+A),

which implies UBA = 0, provided ε is taken small enough.
Obviously, we can then obtain ψA = ψB, and UA = ŨB = UB immediately. This

is the uniqueness. Then the proof of Theorem 2.1 is complete, and we are led to
the desired stability of the transonic shock fronts.
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