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STABILITY OF TRAVELLING WAVE SOLUTIONS
OF DIFFUSIVE PREDATOR-PREY SYSTEMS

R. GARDNER AND C. K. R. T. JONES

Abstract. The stability of travelling wave solutions of singularly perturbed,
diffusive predator-prey systems is proved by showing that the linearized oper-
ator about such a solution has no unstable spectrum and that the translation
eigenvalue at k - 0 is simple. The proof illustrates the application of some
recently developed geometric and topological methods for counting eigenvalues.

1. Introduction

This paper is concerned with the stability of travelling wave solutions of sin-
gularly perturbed systems of reaction-diffusion equations which model predator-
prey interactions in mathematical ecology. The waves in question admit a single
transition layer outside of which they are slowly varying. In brief, we show that
such solutions are stable. This is accomplished by showing that the spectrum of
the linearized operator L about the wave intersects a half-plane Re A > ß, for
some ß < 0, only at A = 0 and, furthermore, that the translation eigenvalue
at X - 0 is simple. It is well known that linearized stability implies nonlinear
stability for this class of equations (see Henry [H]).

In a companion paper by Alexander, Gardner, and Jones (see [AGJ]) some
new tools for analyzing the spectrum of L were introduced in a general setting.
The theory in [AGJ] introduces a certain complex vector bundle W over a real
2-sphere which contains information about the number of eigenvalues of L in-
side a given simple, closed curve A c C not intersecting the spectrum itself. In
particular, the main theorem in [AGJ] equates the number of eigenvalues of L
inside K (counting multiplicity) with a certain topological invariant, cx(W) of
<? called the first Chern number of W . The construction of W and the charac-
terization of its first Chern number use only elementary aspects of the theory of
vector bundles and their characteristic classes and should be readily accessible
to analysts and applied mathematicians. The main point is that solutions of the
linearized equations which are candidates for eigenfunctions, namely those that
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466 R. GARDNER AND C. K. R. T. JONES

decay to zero at -oo , span vector spaces which are parametrized by the wave
itself and by the eigenvalue parameter A. Another way of saying this is that
they form a vector bundle over this parameter space. It turns out that the twist-
ing of these vector spaces when A is restricted to A determines the number of
eigenvalues of L inside A . The bundle ¿P is constructed in a natural way so
that its first Chern number measures the twisting of these vector spaces. The
full theory is developed in [AGJ]; however, in order to make this paper more
self-contained, a brief account of the relevant aspects of the theory in [AGJ]
has been provided in §§IIIE and IIIF, together with an outline of the manner in
which these tools are employed here.

The theory in [AGJ] is a natural generalization of earlier work of Jones [J]
on the stability of the pulse solution of the FitzHugh-Nagumo system. An
important observation in the latter part is that the linearized equations (say on
C2") induce a flow on the space of complex lines in C " . This flow is obtained
by forming the complex span of a given nontrivial solution of the linearized
equations. The space of complex lines in C " is called complex projective space
and is denoted by <CP ' . The linearized equations then induce a flow on this
compact manifold; in a given set of local coordinates on CP "~ , this gives rise
to an associated system of equations which are called the projectivized system.
A solution of these equations therefore determines a family of complex lines
parametrized by A and by the wave, that is, a complex line bundle over that
parameter space. This is the main tool used in obtaining information about
W, since certain distinguished solutions of the projectivized system give rise to
one-dimensional subbundles Wi of IP. In general, if the (complex) dimension
of IP is k , then there is frequently a way to decompose I? into a direct sum
IP = 0,=1 <3* of one-dimensional subbundles ^ of IP. Such a decomposition
is called a Whitney sum. The existence of such a decomposition contains global
information about the fibers of <§*. This information is obtained through a
characterization of the global behavior of the distinguished solutions of the
projectivized system. In particular, the solutions in question are connecting
orbits between certain pairs of critical points.

One aspect of this approach is that it reveals how the underlying wave, for
which good estimates are readily available, encodes information into the lin-
earized problem. In this setting, the production of eigenvalues can be under-
stood as an essentially nonlinear phenomenon. In the problem in [J], the eigen-
values are determined by the global behavior of one particular solution of the
projectivized equations. Its global behavior can be characterized by observing,
when a parameter e in the equations is small, that the solution remains near
an attractor for the reduced projectivized flow (i.e., when e = 0). There is an
analogous solution in the problem studied here and a similar treatment can be
provided (see the "elephant trunk lemma" in §IV); indeed, this seems to be a
general feature of fast-slow systems. The main difference between the equations
in [J] and those under discussion here is that in the present case, eigenvalues can
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STABILITY OF TRAVELLING WAVE SOLUTIONS 467

also be produced through the behavior of a second solution of the projectivized
linearized system. The global behavior of this second solution is fundamen-
tally different from that of the first solution mentioned above in that it forms
a saddle-saddle connection on the projective space. The elephant trunk lemma
is therefore not available and different methods for characterizing its behavior
need to be devised. The main feature of the equations which make this possible
is again the presence of the small parameter s . Hence both solutions are stud-
ied by referring to certain reduced systems when e = 0 ; for the first, or the fast
unstable bundle, these are the stretched equations in the transition layer, while
for the second, or slow unstable bundle, these are reduced equations in the slow
manifolds. The analysis of the global behavior of these two solutions is con-
tained in §§IV and V. These sections are technically involved and could easily
be skimmed by readers seeking to first obtain an impressionistic overview.

In the terminology of [AGJ], the unstable bundle <? formed from the lin-
earized equations is 2-dimensional and the fast-slow structure induces a natural
splitting of <§ into the Whitney sum %x © %2 of two complex line bundles,
wherein IP, is "governed" by the fast reduced system and %2 is "governed"
by the slow reduced system. The first Chern number, cx (W), which measures
the number of eigenvalues A in the region Re A > ß, can be expressed as
cx(%x) + cx(W2).   The proof is completed by showing that cff£x) — 1  while
c,(r2) = o.

One of our principal objectives here is to illustrate how the machinery in
[AGJ] has a direct bearing on singular perturbation problem. In particular, an-
alytical statements concerning the behavior of solutions of the linearized equa-
tions are reformulated as geometric statements concerning the behavior of cer-
tain associated vector bundles. This is more than a convenient formalism in that
the limiting behavior of the geometric entity, the vector bundle, has a clean and
natural characterization as the small parameter e tends to zero, whereas the
associated analytical entities, i.e., solutions of the linearized equations, become
singular as e —► 0 and it is awkward to characterize their limiting behavior.

Stability theorems for various types of layered solutions of a somewhat simi-
lar class of systems have recently been proved by Fujii and Nishiura (see [NF]),
which are obtained by a completely different, analytical technique (the SLEP
method). In contrasting the two approaches it is apparent that the SLEP method
yields finer information about the location of critical eigenvalues, i.e., those
tending to zero in the singular limit, than our geometric approach. On the
other hand, the SLEP method appears to depend in an essential manner on the
system being a two component reaction-diffusion system with small diffusion in
one component. The theory in [AGJ] applies to systems with an arbitrary num-
ber of components; it is also potentially applicable to systems which are not of
reaction-diffusion type. Although some type of fast-slow structure will probably
be an essential feature of tractable examples, it is anticipated that the theory in
[AGJ] will find applications in other classes of equations, such as conservation
laws.
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468 R. GARDNER AND C. K. R. T. JONES

Finally, we remark that the existence of travelling wave solutions of predator-
prey systems has been studied by Gardner (see [Gl, G2]).

We conclude this section with a description of the organization of the re-
mainder of the paper.

II. The reaction-diffusion equations and their associated travelling wave sys-
tems are formulated, and the main results of the paper are stated. The singular
limit at e = 0 is defined and is used to formulate an a priori estimate for the
wave when e < 1.

III. The slow and fast linearized equations and the spectra of their asymptotic
systems are characterized. The unstable bundle <p~ is defined and an outline
of the proof is given. The fast and slow reduced systems are defined.

IV. The elephant trunk lemma is proved and is used to describe the global
behavior of the fast unstable subbundle é, in cp~~.

V. The slow unstable subbundle ê2 in cp~ is defined. A theorem which
characterizes the global behavior of ê2 for small e is proved.

VI. The bundle W is characterized as the Whitney sum of two 1-plane bun-
dles %x and %2. The Chern number computation is continued to the reduced
bundles, f1Ä and W2R at e = 0, and cx of WXR and W2R is computed.

II. The model equations and existence of travelling waves

A. A reaction-diffusion system. The equations to be considered are

(2.1) ux=e2uXxx + uxfx(u),        u2=u2xx + u2f2(u),

where u - (ux, u2), x £ E1, and 0 < s « 1 is a small parameter. Here, u2
is the population density of a predator species and ux is that of its prey. The
nature of the interaction is characterized by the following hypothesis:

(HI) §£ < 0 and §£ > 0, and the null sets, /, = 0 and f2 = 0,
are qualitatively as depicted in Figure 2.1.

The equations admit four constant solutions, two of which are stable solutions
of (2.1). These are the rest point cf at the origin and the rest point C = (cx, cf)
interior to the positive quadrant. The travelling waves considered here connect
cf at -oo to C at +00.

Remark. The stability of cf and C relative to (2.1) for small e is an immediate
consequence of Lemma 3.1. This lemma implies that the spectra of the constant
coefficient operators obtained by linearizing about cf and C lie in the region
ReA < ß for some ß < 0.

B. Travelling waves and the statement of the main theorems. Due to the manner
in which the small parameter e enters into the equations, it is appropriate
to look for slow travelling waves. Hence we look for solutions to (2.1 ) which
depend on the single variable

C = x-edt,
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STABILITY OF TRAVELLING WAVE SOLUTIONS 469

u, = pCu2)

Figure 2.1

where 6 = 0(e) remains bounded as e -* 0 and eö is the wave velocity.
This ansatz leads to a system of four first order o.d.e.s, which we call the slow
travelling wave equations,

eÜx = Vx,

(2-2),
eVx =
u2 = v2,
V2= -edV2

6V.-U.fAU)

UJJU):
where U = (UX,U2) and "dot" is d/dt,. The rest points of (2.2) are the
rest points of (uxfx, u2f2) augmented with zeros for the F-components. With
a slight abuse of notation we denote by cf and C the rest points of (2.2)s
associated with the rest points cf and C of (2.1).

This paper is concerned with the heteroclinic solutions of (2.2,) which con-
nect cf at £ = -00 to C at £ = +oo. Such solutions are saddle-saddle con-
nections, and the wave will only exist at distinguished values of the parameter
8 ; 6 should therefore be regarded as part of the solution.

The following existence theorem was proved by Gardner in [G2].

Theorem E. Suppose that the vector field (uxfx, u2f2) satisfies hypothesis (HI).
Then for sufficiently small e > 0 there exists a travelling wave solution of (2.2)5
which connects cf at £ = -oo to C at Ç = +oo.

This result extends a previous existence theorem (see [Gl]) to the singular
perturbation regime e -C 1. The latter result did not require e to be small;
however, it imposed more stringent hypotheses on the vector field. Together,
the results in [Gl, G2] imply that the solutions considered here lie on a branch
which continues globally.
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470 R. GARDNER AND C. K. R. T. JONES

The following theorem is the main result of this paper.

Stability Theorem. Let Ai .(«) denote the entries of the Jacobian matrix of
(uxfx, u2f2) at u and let ZR denote the points in the right-hand branch of
fx = 0, ux = p(u2) (see Figure 2.1), for which u2>0. Suppose in addition to
the hypotheses of Theorem E, that

(H2) max '^(m)^1f}| < 1.
"ez*      Axx(u)2

Then for sufficiently small e > 0 the travelling waves of Theorem E are stable
solutions of (2.1). More precisely, every solution of (2.1) whose data are uni-
formly near the u-components of the wave tend to a translate of the wave at an
exponential rate as t —> +oo.

Remark. Hypothesis (H2) will be satisfied if the right branch of fx — 0 is not
too far from the vertical line through C. It is quite likely that the travelling
wave becomes unstable in the absence of such a condition. It should be noted
that (H2) is different from the condition used by Fujii and Nishiura to prove
stability for a related class of systems.

C. Fast and slow regimes: notation. Solutions of (2.2)^ exhibit two distinct
time scales. In the slow regime Vx remains cf(l) for small e. Geometrically,
this forces bounded solution of (2.2)5 to lie near the slow manifolds, which we
define as follows. We shall be interested in solutions which, when e = 0, jump
from the left stable branch, ux = 0, to the right stable branch ZR at fx - 0.
The latter can be parameterized by u2. Let

x = (Ux, VX,U2,V2)1

denote the vector of dependent variables in (2.2)s. The left and right slow
manifolds are defined respectively, as

SL = {X £ I4 : [/, = Vx = 0},

SR = {X £R4 :UX= p(U2),  U2<u2, and Vx = 0}.

We shall look for solutions which lie near SL  for Ç < 0 and near SR  for
C>o.

In order to describe the behavior in the transition layer near £ = 0 we change
time scales and introduce stretched variables as follows:

£ = C/e,     u^) = U,(ei),    u(.(i) = V^Ç),        i =1,2.

The vector of dependent variables in this scaling is denoted by

x = (ux,vx,u2, Vf) ,
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STABILITY OF TRAVELLING WAVE SOLUTIONS 471

and the travelling wave equations assume the form

ux=vx

(2.2),
v[ = -0vx -uxfx(u),
u2 = ev2,

v2 = e[-6sv2 - u2f2(u)],

where "prime" is d/dE,. We shall refer to (2.2), as the fast travelling wave
equations.

Throughout the remainder of the paper we shall adhere to the following con-
vention concerning notation: a lower case dependent variable will always repre-
sent the fast scaling and will be regarded as a function of £ while an upper case
variable will always represent the slow scaling and will be regarded as a function
of£.

Finally, it will be convenient to express (2.2)s and (2.2), in vector form.
To this end let A(A, 6, e) be the vector field on the right side of (2.2)5 after
the first two equations are multiplied by e~ , and let n(x, 6, e) denote the
vector field on the right side of (2.2),. These systems can then be expressed as

(2.2)5 X = N(X,d,e),

(2.2) f x' = n(x,6,e).

D. Singular limits. In estimating solutions of the linearized equations we shall
need precise estimates for the location of the travelling wave for small e . To this
end we set e = 0 in (2.2)5. The first two equations require Vx = Uxfx(U) = 0,
and for the solutions studied here, either Ux = 0 or Ux = p(U2). In the slow
manifolds SL and SR the nonlinear functions are therefore

gJU2) = C/2/2(0, U2),        g+(U2) = U2f2(p(U2), U2).
The slow reduced equations are therefore

(2.3)± U2 = V2,        V2 = -g±(U2);
it is easily verified that the phase planes for these systems are as depicted in
Figures 2.2a-, a+ . We focus on solutions which remain in the (-) plane
until U2 assumes some value U2 = a (to be determined), at which point the
reduced solution is required to jump to a solution curve in the (+) plane using
as data the limiting values of the solution curve in the (-) plane. The slow
singular limit is defined as a solution obtained in this manner which connects
the origin at £ = -oo to the rest point (c2, 0) at £ = +oo . Since the unstable
manifold M~ of the origin in the (-) plane and the stable manifold M+
of (c2, 0) in the (+) plane define V2 as monotone increasing and monotone
decreasing functions of U2, respectively, it follows that the value u2 = a where
the transition occurs is uniquely determined. Each of the systems (2.3)^ can
be embedded in R   by taking Ux = p(U2) and Vx =0. Let XR(Q denote the
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(a-) (a+) (b)

Figure 2.2

solution associated with the solution of (2.3)^ depicted in Figure 2.2(b); we
will refer to XR(Q as the slow singular limit. We set the parametrization so
that the discontinuity occurs at 5 = 0.

The limit 9* of 9 is e -> 0 and the behavior inside the transition layer are
determined by the fast reduced system,

(2.3)fR

= V1 '

= - 9vx - uxfx(ux, u2),    or   x' = n(x,6,0),
u2 = 0,

v'=0.

For constant u2 with 0 < u2 < c2, uxfx(ux,uf) is a qualitative cubic and
the 1-components of (2.3),Ä are therefore the travelling wave equations of
the bistable, scalar reaction-diffusion equation. It is well known that for each
u2 there exists a unique wave speed 9 = 6(w2) and a solution xR(¿;, u2) of
(2.3)j-R which satisfies

xRit. ui) = ÍurÜ) . VrÍZ) > U2 ' °)' '
(2.4) xR(-oo, u2) = (0, 0, u2, 0)',

xRi+oo, u2) = (p(u2), 0, u2, 0)'.

(See e.g. Fife [F].) From the preceding analysis of the slow system we must have
that the singular limit in the transition layer is xR(Ç) = xR(Ç, a) and the limit
of 9 as e -► 0 is 9* = 6(a).

E. A priori estimates. In this section we state an estimate for the travelling wave
which is valid for e < 1. The proof can be found in [G2]; see also [GS] for
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STABILITY OF TRAVELLING WAVE SOLUTIONS 473

related results on periodic waves.  This plays a crucial role in understanding
how the wave encodes information into the linearized equations.

Consider the curves in R ,

W_ = {XR(Ç):Ç<0},     WF = {xR(0:t£R1},    W+ = {XR(Q : £ > 0},

determined by the slow and fast singular limits at e = 0. Given ô > 0, set

n±(ô) = {x £ E4 : dist(jc, W±) < 0},

nF(ô) = {x £ E4 : dist(jc, WF) < ô},

I(Ô) = {9£RX :\9-9*\<S},
and define

n(ô) = [n_(ô) U «f (ô) U «+(«J)] x /(a).
Hence n(S) is a ¿-neighborhood of the singular limit.

Lemma 2.1. Given ô > 0 there exists e~ <eQ such that

(X(C,e),9(e))£n(S)

for all e <e~, where A(£, e), 0(e) is the travelling wave solution of (2.2)i of
Theorem E.

The following result is an immediate consequence of Lemma 2.1 and Gron-
wall's inequality.

Corollary 2.2. Let A(£, e) = x(t), e), 8(e) be the travelling wave solution of
(2.2)5. The following are true for each fixed a > 0 :

limx(cf, e) = xR(Ç)   uniformly for |£| < a,

limA(£, e) = XJQ   uniformly for |£| > a.
£->0

III. THE LINEARIZED EQUATIONS AND ASSOCIATED VECTOR BUNDLES

A. The equations. Let A(£, e), 0(e) denote a travelling wave solution of (2.2^.
Henceforth we shall write 9 in place of 0(e). If £/(£, e) are the «-components
of A, then U is a stationary solution of

ux=e2uxa + e9uxc + uxfx(u),
u2 = u2rrk + e9u2l- + u2f2(u).

The perturbation equations for solutions u of (3.1) of the form

u(Ç,t) = U(Ç,e) + ôeÀ,P(Ç)+cf(ô2)

yield an eigenvalue problem for P(Q and A :

(3 2) /-felp4ef/e2JP1+e0P1+^11(£,e)P1+^12(£,e)JP2\ =
{ ■ ' [ '     ' \ P2 + e8P2 + A2x(C,e)Px+A22(C,s)P2 J
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474 R. GARDNER AND C. K. R. T. JONES

here
Aij(C,e) = -^-(uifi(u))   atu=U(Ç,e).

1   1We regard L(e) as a densely defined operator on the space BC(E ) of pairs
of uniformly bounded continuous functions on E .

It is desirable to express (3.2) as the system of first order equations:

ePy = Ö,,
eß,= -8Qx-(Axx(¡:,e)-A)Px-Ax2(C,£)P2,

ß2= -e8Q2-A2x(Ç,e)Px-(A22(1:,s)-A)P2.

Let Y = (Px, Qx, P2, Q2)1 and let A((, A, e) denote the coefficient matrix
obtained by multiplying the first two equations by e~ . Then (3.3), can be
expressed as

(3.3), Y = A(C,A,e)Y.

Since (3.2) is a system we must allow A to be complex so that Y lies in C .
The associated fast linearized system is obtained by defining

pi(c:) = Pi(et),    qi(0 = Qi(eÇ),       i =1,2,
aiß,e) = Ajj(ecl,e).

The equations satisfied by the fast variables are easily seen to be

p[ = <7,,
,--, q\ = - 8qx - (axx(i, e) - A)px - ax2(c;, e)p2,

p2 = sq2,

q2 = E[-8eq2 - a2x(i, s)px - (a22(£,, e) - A)p2],
or

(3.3)7 y'= a(i,A,E)y,

where y = (px, qx,p2, q2)! and a(Ç, A, e) is the fast coefficient matrix in
(3%.
B. Asymptotic systems. For e > 0, x(Ç, e) tends to the origin and to the
rest point at C, as £ tends to -oo and to +oc, respectively. The matrices
a(c¡, A, e) and A(c¡, A, e) therefore tend to limits a±(A, e) and A±(A, e) as
£ —► ±oo , where

(3.4) a±(A,E) =

(       0            1             0 1    \
(-afx+A) -8        -af2 0

0           0            0 e
V    -Eafx        0 e(-a22 + A) -e29 J
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STABILITY OF TRAVELLING WAVE SOLUTIONS 475

(3.5) A±(A,e) = e la±(A,E);

here, af, = afAA, e) are the limits of <2,,(£, A, e) at £ = ±00. The structure
of a±(A, e) is crucial in the analysis of the linearized equations. For example,
these matrices determine the essential spectrum of L(e).

Note that the entries axx and a22 are both negative while a\2 < 0 and
a2x > 0 ; also ax2 = 0. This information is easily seen from Figure 2.1. Define
ß < 0 and a half-plane ficC by
(3.6) ß = max{a~ , a22, a+xx, a22},       Q = {A £ C : Re A > ß}.

Lemma 3.1. For A £ Q and e > 0 sufficiently small, a (A, e) and A±(A, e)
each have four distinct eigenvalues p¡ (A, e), 1 < i < 4, and A¿(A, e), 1 < i <
4, respectively, which satisfy

Rep. < Rep, <0<Reu, < Reu. ,
(3.7a) 4 _3 2 '

A.(A,e) = e   pt(A,s),        l</<4.
For small e, p2  and pf are 0(e) while pf, pf remain 0(1). Let ef(A, e)
be an eigenvector of a*(A, e) associated with pf(A,e). Then ef(A,e) tends
to limits as e -+ 0, denoted by efR(A), which are given by the expressions
(3.7b)

efR(A) = (1, Mf,0, 0)',    efR(A) = (1, M±,0, 0)',

4W = (j^F > 0, 1, <j  ,    efR(A) = (^^, 0, 1, mjj  ,

w/zere a., are //ze entries of the Jacobian of (uxf , u2f2) at U = 0, C and

(3.7c)
^„±'< = -öV2±i(0*2 + 4(A-af1))1/2,

The subscript n (resp. p) denotes the root with negative (resp. positive) real part.
Proof. Let e = (cx, c2, c3, cff be an eigenvector of a±(A, e) associated with
an eigenvalue p = Em, where m remains bounded as e —* 0. It follows
that c2 = Emcx and that c3 = mc4 . For convenience we shall drop the (A, e)
dependence. The equation a e = Erne leads to the equation

p(m,e) = (m + Edm + (a22- A))(e m + Emd + axx -A) - ax2a2x = 0.

Clearly, p(m, 0) has two distinct roots mn(A) and m*(A) with expressions as
in (3.7c). Since af¡ < 0 and af2a2x < 0 it follows from (3.6) that for A £ Q.
the quantities under the radicals in (3.7c) have positive real part, so that m*(A)
has negative real part and m^(A) has positive real part. Furthermore, for e > 0
these roots perturb smoothly to distinct roots of p(m, e), yielding an expansion
for the slow eigenvalues

p^(A, e) = em±p(A)+cf(e2),       p2(A, e) = em±p(A)+cf(e2)
which imply the middle inequalities in (3.7a).
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A similar argument provides an estimate for the fast eigenvalues. In partic-
ular, if p = p(A, e) is an eigenvalue which remains cf(l) as e —► 0 then the
equation for p is

(p +9e p + E (a22-A))(p +9p + axx-A)-e ax2a2X=0.

At e = 0 the roots are given explicitly by (3.7c), and for e > 0 we obtain the
expansion

pf (A, E) = Mp±(A) + cf(E),        pf(A, E) = M±(A)+cf(E).

The explicit formulae for the limits efR(A) of the eigenfunctions follow from
the above and some simple algebra, which we omit.

Remark 3.2. Suppose that x is any point in the slow manifolds SL or SR,
let u denote the w-components of x, and let a(u, A, e) be the matrix in
(3.4) with atj = a¡j(u) equal to the entries of the Jacobian of (uxfx, u2f2) at
u. It is easily checked that axx(u), ax2(u) < 0 and a2x(u) > 0, so that the
eigenvalues px(u, A, e) and pA(u, A, e) of a(u, A, e) are distinct and satisfy
inequalities (3.7a). If a22(u) < 0 then a similar remark applies to p2(u, A, e)
and p3(u, A, e). However, it can occur that a22(u) > 0 in SR near u2 = a,
so that p2 and /z3, together with their associated eigenvectors can coalesce.
Hence the fast-slow structure is maintained whenever x(£, e) lies near SL or
SR , but hyperbolicity within the slow subspace can break down. However there
will always exist a two-dimensional generalized slow subspace, which depends
smoothly on the various parameters.

C. The spectrum of L(e). The spectrum o(e) of L(e) consists of two sets:
the essential spectrum ae(E) and the point spectrum a „(e) . For differential
operators of this type it is well known that ag(E) is contained between curves
defined by the conditions that some eigenvalue pf(A, e) is pure imaginary (see
Henry [H]). By Lemma 3.1 these curves lie in the complement of Q, and, hence,
ag(E) lies in the stable half-plane Re A < ß < 0 for small e. The remainder of
the spectrum, oç(e) , consists of isolated eigenvalues of finite multiplicity.

Definition. A £ Q is an eigenvalue of L(e) if there exists a nontrivial, uniformly
bounded solution y(£) of (3.3),.

In view of the hyperbolicity of the asymptotic systems at £ = ±oo, it is
easily seen that A £ Q is an eigenvalue if and only if the bounded solution y(£)
decays to zero at £ = ±oo (see [AGJ]).

D. The stable and unstable bundles. Armed with Lemma 3.1 we apply a result of
[AGJ] asserting the existence of certain subspaces of solutions of (3.3), which
consist of solutions that decay as £ -> -oo or as £ -» +00. In particular,
Lemmas 3.3, 3.5 in [AGJ] together with Lemma 3.1 above provides two two-
dimensional subspaces of solutions of (3.3) f, which we denote by cp~(£,, A, e)
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(3.8)

Figure 3.1

and by ç>+(£, A, e), whose defining conditions are

cp~(£,,A,E) ^ svan{e~(A , e), e2(A, e)}   as £-> -co,

<p+(£, A, e) ->span{É?3+(A, E),e^(A, e)}   as£->+oo;

the convergence is in the topology on the Grassmannian G2 4. Thus <p~ is
asymptotic to the unstable subspace of o~(A,e) at £ = -co, while cp+ is
asymptotic to the stable subspace of a+(A, e) and consists of solutions which
decay as £ -»• +00 . These subspaces can each be viewed as (complex) 2-plane
bundles over the base space (£, A) £ E1 x Q. We see that A £ Q is an eigenvalue
if and only if <p~~ and cp+ intersect nontrivially at A.

Definition. cp~ (£, A, e) is the unstable bundle associated with (3.3)y and
9>+(£, A, e) is the stable bundle associated with (3.3),.

E. Outline of the proof of the Stability Theorem. Let A c C be a simple closed
curve containing the origin in its interior A0. The following lemma, whose
proof follows immediately from Proposition 2.2 in [AGJ], shows that an eigen-
value count of L(e) inside A is sufficient to determine the linearized stability
of the wave.

Lemma 3.3. (a) Suppose that K contains a region of the form

{A£<C:\A\<R and \ argA\ < n/2 + 3}
for all sufficiently small 6 > 0. There exists â, R > 0 which are independent of
s for 0 < e < I, such that L(e) has no eigenvalues A in the region exterior to
K in the sector \ ar%A\ < n/2 + ö.
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(b) If L(e) has exactly one simple eigenvalue at A = 0 inside K (due to
translation invariance), then the wave is (nonlinearly) stable, in the sense of the
Stability Theorem.

The remainder of the paper is devoted to obtaining an eigenvalue count of
L(e) inside the fixed curve A of the lemma. The principal construction which
will be employed in obtaining this information is that of a certain 2-plane bundle
i'(e), called the augmented unstable bundle, obtained from cp~ whose base
space is a real 2-sphere, which we describe briefly below. This construction is
done rigorously in [AGJ].

First, the infinite variable £ is compactified through a change of variables
£ -» t , where t(£) is the solution of

i' = eK(l-T2),        t(0) = 0,

where k > 0 and t(±oo) = ±1. The bundle cp~ can now be regarded as
a 2-plane over (-1, 1) x fi. We restrict A to lie along A and consider the
restriction tp~\(-l, 1) x A of q>~ .

The next step is to show that q>~\(-l, 1) x A can be continuously extended
to a bundle on [-1, 1] x A. Before describing this construction, we pause
to describe what is meant by a continuous extension. There is a very natural
association between certain complex /¿-plane bundles over a base space B and a
map from B into the Grassmannian Gk n , which is the space of A:-dimensional
subspaces of C" (see [MS]). This map works for subbundles of the trivial bundle
B x C". Given a complex k-plane bundle

&:EAL>b,

where E c B x C", we can associate with £? a map ê from B into the
Grassmannian Gk n of complex k-planes in C", which assigns to each b £ B
the A:-dimensional subspace of Cn which is the fiber above the point b . There
is a natural bundle T^C") over Gk n , called the universal bundle: given g £
Gk n the fiber in Fk(Cn) is just the k-plane associated with g. A standard
construction in differential geometry is the pullback of a bundle, we note then
that the bundle % can be realized as the pullback ê*rfc(C") (see [A]):

e-► rye")
n

We say that <p~\(-l, l)xA continuously extends to a bundle over [—1, l]xA
if the associated map from  (-1, 1) x A into G2 4 extends continuously to
[-1, l]xA.

Let
U (A, e) = span-fe^ (A, e), e2 (A, e)}
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denote the unstable subspaces at x — — 1 and at t = +1. The defining condition
for cp~ as T —> -1 ensures that <p~ continuously extends to U~(A, e) as
T -* -1 for all A £ Q ; in particular, this is true for all A £ K. However, at
t = +1 this is not necessarily true; we need to make the further assumption
that A is not an eigenvalue of (3.3), for all A £ K. Under this assumption it
is shown in [AGJ, Lemma 3.7] that U+(A, e) extends to cp~ continuously as

We now have a bundle tp~ over a finite cylinder [1, 1] x A. The last step is
to glue on "caps" over the ends t = ± 1. The fibers over points in the caps are
f/±(A, e) for (t, A) £ {±1} x A . f(e) is the resulting bundle; its base space

B = {-l}x A°U[-1, l]x AU{+l}xA°

is homeomorphic to S .
The principal result in [AGJ] equates the number of eigenvalues inside A

(counting algebraic multiplicity) with the first Chern number c, (ê'(e)), of W(e).
The relevant topology is developed in [AGJ]. However, for the purpose of this
paper, it will be sufficient to accept as given the existence of a homotopy invari-
ant c, associated with the bundle <§*(e) which counts the number of eigenvalues
inside A , together with two basic properties of c, described in (a) and (b) be-
low. More precisely, the principal goals of the remainder of the paper are the
following:

(a) The decomposition of ê'(e) into a Whitney sum

%(e) = %x(e)®%2(e)

of complex line bundles %x(e) and áP2(e). The fast-slow structure of the differ-
ential equations provides a natural means of obtaining such a Whitney sum de-
composition. The information needed to obtain the decomposition is described
in a little more detail in subsection F, below. Given such a decomposition,
cx(%(e)) is the sum of cf^s)), i =1,2.

(b) The computation of the classes c,(^(e)), i = 1,2. This step exploits
the homotopy invariance of cx by continuing the computation to certain re-
duced bundles %XR and W2R, which are defined directly from the equations
with e = 0. The equations associated with these bundles are two-dimensional
rather than four-dimensional and their eigenvalue problems can be studied by
standard techniques, such as Sturm-Liouville theory. Hence to compute cx of
the reduced bundles it suffices to obtain an eigenvalue count of the reduced
equations and to apply the Chern number theorem in [AGJ] in reverse.

F. Complex line bundles and CP . It will be convenient to describe the complex
line bundles ^(e), i = 1,2, mentioned in the previous subsection in terms
of maps êt of a base space B into C7, 4 , which is complex projective space,
CP . The space CP is C \{0} with the equivalence relation yx ~ y2 if
yx, y2 £ C4 \ {0} and yx = ay2 for some a € C ; i.e., CP3 is the space of
complex lines in C .  Let n: C  \ {0} -> CP   be the projection map; for a
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given set S cC \{0} we denote by S its image n(S) in CP .A complex line
bundle Wi over a space B is the pullback ê*r,(C ) of a map êi into CP :

g>-► r,(c4)

B —^—>    CP3
Given a linear system y' = b(è)y on C4, where b(c¡) is a 4x4 matrix,

there is an associated induced flow on CP3, which we denote by

y=b(y,ct).
The fast and slow unstable bundles f,(e) and %2(z) are subbundles of F(e)

which will be defined later via certain solutions êx and ê2 of the projectivized
system associated with (3.3),. With a slight abuse of terminology, we shall
refer to the maps êx and ê2 themselves as the fast unstable bundle and the slow
unstable bundle, respectively.

The fast and slow unstable bundles Wx(e) and <o2(e) are defined via êx and
ê2 on the sides, (-1, 1) x A. The defining conditions for êx and ê2 are
both at t = -1 and so they can automatically be capped off at {-1} x A0 by
extending these maps to equal êx~(A, e) and ê2(A, e) on this set. The difficulty
is in extending êx and ê2 to x = ± 1 ; this requires a description of the global
behavior of êx and ê2 as solutions of the projectivized equations associated
with (3.3),. In particular, the information required in obtaining the Whitney
sum decomposition of If (e) is

lim êi(T,A,E) = êUA,E)       (A £ K,  i =1,2).
T-»+l     ' '

This is proved in §§IV and V.
G. The reduced equations. The fast and slow reduced bundles will be defined
from the equations obtained by setting e = 0 in (3.3), and (3.3),. It is
important to first set the parametrizations for the underlying waves: x(Ç, e)
and xR(Ç) in the fast scaling, and A(£, e) and XR(Q in the slow scaling.
Recall that x and xR are both determined by setting ux(0, e) = uXR(0) = h
for some fixed h £ (0,p(a)). This also determines A(£,e) = x(£/e,e);
finally, set XR(Q so that the discontinuity occurs at £ = 0.

The fast reduced system is

p\r = Q\r >
n rn q[r = - d*QlR - (flfi(0 - k)PiR - aniZ)PiR.
[     )fR r!      nP2R = 0,

the coefficients a*(£) are the entries of the Jacobian matrix of (uxfx, u2f2)
evaluated at xR(cf). In view of the parametrization for x(£, e) and xR(Ç, e)
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it follows from Corollary 2.2 that the coefficients of (3.3), tend to those of
(3.9),R uniformly for compact £.

The slow reduced system is obtained by setting e = 0 in (3.3),, to obtain the
algebraic-differential system

0 = ß,,

0 = (A-ARxx(Q)Px-ARX2(QP2,
(3.9),Ä P2 = Q2,

^(0+4(CWA-ARX(Q 22^> ^

here, Ai (£) are the entries of the Jacobian matrix of (uxfx, u2f2) evaluated
at AÄ(£). Recall from §IIC that the Ux-component of AÄ(£) is discontinuous
across £ = 0. It follows that solutions (P2, Q2) of the differential equations
in (3.9)sR will be continuous across £ = 0, but that Px will in general be
discontinuous. We remark that by Corollary 2.2 and our parametrization of
A(£, e), AÄ(£), it follows that the coefficients of (3.3), tend uniformly to those
of (3.9)JÄ for £ bounded away from zero.

IV. THE ESTIMATION OF êx   AND THE ELEPHANT TRUNK LEMMA

A. Preliminaries. Consider the projectivized equations associated with (3.3),,
which we will denote by

(4.1) y=â(y,Ç,A,E).
The fast unstable bundle êx will be defined to be a certain solution of (4.1). In
order to define êx it will be useful to recall some facts concerning autonomous
linear systems on Cn and their projectivizations on CP"~ :

y' = by      (y£Cn),
y=b(y)       (y£CP"-x).

Clearly, e is an eigenvector of the n x n complex matrix b if and only if ê
is a critical point of the vector field b(y). It is easily checked that if pi are
the eigenvalues of b with associated eigenvectors ei, then db(êj) is a linear
operator on C"~ with eigenvalues pj-pi, j # i (see e.g. [J]). In particular, if
px is the eigenvalue of largest real part, then êx is an attracting critical point,
as can easily be seen in Figure 4.1 depicting a linear saddle point at the origin.

The asymptotic system for (4.1) at £ = -co has an attracting critical point
ê~(A, e) for all /lei), since px~(A, e) is the eigenvalue of a~(A, e) of largest
real part. It follows from general arguments presented in [AGJ, §3.B] that there
is a unique solution êx(Ç, A, e) of the nonautonomous equations (4.1) which
satisfies

lim ê,(£, A, e) = ê,~(A, e).
í-»-oo

This condition uniquely defines the unstable bundle ê, .
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Figure 4.1

The remainder of this section is devoted to characterizing the global behavior
of êj and, in particular, its behavior as £ —► +00. The idea is to construct a
positively invariant set Q" c CP x E for the equations (4.1), augmented with
£' = 1 which, by virtue of the defining condition for é, at £ = -00, contains
êx for all £ . This set is constructed as a union of tubes

Q" = nL u ñF u ñR

(see Figure 4.2); the slow tubes QL, QR enable us to track êx over the left-
and right-hand slow manifolds, while Q.F contains êx in the transition layer.
The slow tubes are neighborhoods in CP of the fast unstable eigenvector of
the coefficient matrix <z(£, A, e).

Near the slow manifolds we will show that ê.  remains in a region in CP3
where px ^ 0 in the fibers n
local coordinate system

(4.2) y = (Uß),

■lê, It is therefore convenient to introduce the

ß = :r. h'ßz'ßs)*

where y £ n xy

Ei Si\-
P\' Pi' P\j

The equations for ß assume the form

1 'ßx = - 9ßx - («„({, e) - A) - fl12(í, e)^2 - y?;

(4.3) ß'2 = eß3-ßxß2,

/?; = e[-e0^3 - a21 (£, e) - (a22(£, e) - A)ß2 - ßxß3].
These coordinates will frequently be used whenever the underlying wave is near
the slow manifolds. With a slight abuse of notation, given y £ CP   such that
px ^ 0 in the fiber over y £ CP   denote by y the element of n~xy whose
px -component equals one.
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(4.5),, -£=F(ß,y;e)       (y £ I).

B. Relatively invariant sets for nonautonomous systems. We shall prove a general
lemma that will be needed in the construction of ÛL and QR concerning
nonautonomous systems of the form

(4.4) ß' = F(ß,i,e)       (ß£C"),

where F depends weakly on £ if e is sufficiently small (see (4.7)). Suppose
that Q. c C" x E is a set of the form

Q=Ur2(£)x{£},

where / is an open interval in E and f2(£) is a family of neighborhoods in
C" , such that dQ, ilC'x/ is a smooth manifold (i.e., <9Q(£) varies smoothly
with £).

Definition. Q is positively invariant relative to I if for any solution /?(£) of
(4.4) with ß(Q £ O(£0) for some £0 € /, then /?(£) £ fi(£) for all £ > £0 for
which £ e /.

In order to construct relatively invariant sets for (4.4) we shall consider the
family of frozen systems,

dß_
di

Suppose that for each y £ I, (4.5)y admits a critical point ß0(y, e) such that
ßQ depends smoothly on y and that there exists a > 0 independent of e and
£ £ I such that

(4.6) Reo[dßF(ßQ(y,E),y,E)]<-a.

Here a denotes the spectrum of the Jacobian d*F . We shall also assume that
given any d > 0 there exists e0 = e0(d) and a nested family of subintervals
1(d) c / such that I(dx) c I(d2) for dx < d2 and

(4.7) sup    {1^1,11^ {||,|/?0{|}<rf,

where the set C is given by

C = {(/?,£,e):|/?-/?0(£,e)|<c0, £e/(¿), 0<e<e0}.

The constant cQ need only be chosen so that ß is in the domain of F ; in our
application we may take c0 = 1. We also assume that

(4.8) A = sup||úíV(/?,£,e)||<oo.
c

Next, let
A(y) = dßF(ß0(y,e), y, e)

(we shall suppress the e-dependence from now on). We shall assume that there
exists an invertible matrix Y(y) which depends smoothly on y such that the
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following is true. Let (•, ■) and | • | be the inner product and norm on C"
defined by

(ßx, ß2)y = Y(y)ßx >T$W2t        \ß\y = (ß, ß))12.
We shall assume that there exists a > 0 depending only on a in (4.6) such that

(49) (Re(A(y)ß,ß)7<-a\ß\2y,

[117(7)11^ = 1,        \\Yy(y)\\y<d.
In the event that A(y) has a basis of eigenvectors which depends smoothly on y
we may take Y(y) to be the inverse of this matrix. However, in our applications,
Remark 3.2 shows that the eigenvalues p2 - px and p3 - px of this matrix can
coalesce over certain portions of SR , and the (generalized) eigenvectors of A(y)
may depend discontinuously on y. We will verify that a suitable Y(y) can be
found in the next section. Finally, given n > 0 and d > 0, define ßcC'xl
by

(4.10) Cl = ci(d,r1) = {(ß,y):\ß-ß0(y,E)\y<n, y G 1(d)}.

It will be useful later on to keep in mind that d is associated with the slowly
varying character of (4.4) while n is associated with the width of the tube Q.

Lemma 4.1. With notation and hypotheses as above, and, in particular, (4.6),
(4.7), (4.8), and (4.9), there exists n0 depending only on K in (4.8), and there
exists B > 0 depending only on n0, K, and a in (4.6), such that if r\ <n0 and
if 0 < d < Bn then Q.(d, n) in (4.10) is positively invariant relative to 1(d)
for the equations (4.4).

Proof Let £(£) be a solution of (4.4) with /?(£J = ßt, where (#,,£„) £
Q(d, n). Suppose that d < Bn and that the lemma is false. Set g(£) =
|/?(£) - /?0(£, e)L; then g(£J < n and there exists a smallest t £ 1(d) with
t > £„, such that g(t) = n. We will show that g'(t) < 0, contradicting the
minimality of t. From the definition of | • L , it follows that
(4.11) _ _ _
g'(t) = r1-X[Y(ß-ß0).Yi(ß-ß0)-Y(ß-ß0).Yß0i + Y(ß-ß0).Yf(ß,i,E)](=t.

Since g'(t) is real valued, we may replace the right-hand side of (4.11) with its
real part. Now

F(ß,t,E) = A(t)(ß-ß0) + R(ß-ß0),

where \R(ß - ß0)\t < C\ß - ß0\2 and C depends on d2ßF and is therefore
dominated by A in (4.8). In the following we shall let C > 0 denote a generic
constant which depends on any of the various quantities in the statement of
the lemma. By (4.9) we have that 11^11^ < d, where || • \\^ is the matrix norm
induced by | • ̂  . It now follows from (4.11) and (4.9) that

g'(t)<Cnd + Cd + (Cn-a)ti
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for some constant C. Choose n0 = a/(2C) and B = a/2C(n0 + 1) ; it then
follows that g'(t) < 0 provided that n < n0 and d < Bn, yielding the desired
contradiction.

C. Relatively invariant sets for (4.3). If £ and e are such that x(£, e) lies
near either slow manifold SL or SR then by Remark 3.2 it follows that the
eigenvalues /¿;.(£, A, e) of a(£, A, e) satisfy the estimate (3.7a). Let /j(£, A, e)
be an eigenvector of <z(£, A, e) associated with the eigenvalue //,(£, A, e) of
largest real part, normalized so that \fx(Ç,A,e)\oo = l for each (£, A, e). We
pick the usual parametrization for .*(£, e), namely ux(0, e) = h. It follows
that there exists £ > 0 depending only on h such that fx (£, A, e) will be well
defined whenever |£| > £. From the estimate in (3.7b) it follows for |£| > £
and e sufficiently small, that the px -component of fx remains cf (1) as e -► 0.
Without loss of generality, it may be assumed that the px -component of fx
equals 1 so that /, = fx ■ We may therefore use the local coordinates ß in
(4.2) to describe the solution y(£) of (4.1) whenever y(£) is near fx(Ç, A, e)
for all small e > 0. The relevant equations are therefore (4.3), which we may
express more succinctly as

(4.12) ß' = F(ß,C,A,s).
For |y| > £ and all e > 0 sufficiently small there exists a curve ß0(y, A, e) of
critical points of the frozen systems associated with (4.12),

(4.13), ß' = F(ß,i,A,e),

consisting of the (qx, p2, q2) components of fx (£, A, e). By a previous remark,
if

A(1;,A,e) = dßF(ß0(c; ,A,e),Ç,A,e),

then for |£| > £ and small e > 0, A has eigenvalues pt- px, z = 1,2, 3,4,
at (£, A, e) and if £ is large enough, estimate (4.6) will hold uniformly for
all |£| > £ and for small e for some a > 0. Since the branch /?0(£, A, e)
is uniformly bounded for all |£| > £, A £ K, and all sufficiently small e, it
follows that (4.8) holds for some A, with c0 in the definition of C equal to
1. Also, we take the interval / to be either

IL = {£ : -oo < £ < -£}   or   IR = {£:£<£< oo}.

Next, we verify (4.7) for a suitable family of subintervals IL(d) c IL and
IR(d) c IR. Note the F(ß, £, A, e) depends on £ through the dependence of
the <3,,(£, e) on the «-components of x(c¡, e). Hence there exists a constant
L > 0 such that

(4.14) m¡a{\Ft\,\\F( ß\\, {ß^} < Lmax{\u\(i, e)\, u2(^, e)}

for all sufficiently small e > 0, say 0 < e < e0 . Now let

n(S) = n_(ô) U nF(ô) U n (S) x Ig
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be the tube constructed about the singular limit in §IIE. By resetting e0 if nec-
essary and choosing S > 0 small enough, there exist ÇL(ô) < -£ and ÇR(S) > £
such that for 0 < e < e0 ,

x(£, e) £ n_(S)   for £ < £L(<?) and x^L(3), e) e n_(ô) n nF(S),
*(£, e) e n+(S)   for £ > ÇR(Ô) and x(tR(S), e) e n+(ô) n nF(ô).

We claim that there exists a constant M > 0 such that for £ < £L(á) or
£ > ÇRiS) and e < e0,

(4.15) |W;(£,e)|,|M;(£,e)|<A/(5.

Since u2 = ev2 and v2 is uniformly bounded along the entire wave, (4.15)
will hold for u2 by setting M2 > (E0/ô)max\v2\. Similarly, since u\ = vx ,
it trivially follows for x £ n±(ô) that \vx\ < S, so that we may take M =
max{l, M2}.

Finally, given any small d > 0, set 0(d) = (ML)~xd and

hid) = {£:£< ZLiS(d))},       IR(d) = {£ : tR(S(d)) < £}.
The set C in (4.7) is defined with 1(d) equal to either IL(d) or IR(d). Com-
bining (4.1) and (4.15) yields (4.7), as required. In the following we shall write

ÇL(d) = ZL(ô(d)),        iR(d) = aR(ô(d));

these should be thought of as the times £ when x(£, e) is (approximately) a
distance d away from the left and right corners of the singular limit.

Next, set n0 and B as in Lemma 4.1. For 0 < n < n0 and 0 < d < Bn
define

CiL = ÇiL(d,n;A,£)   as in (4.10) with 1(d) =IL(d),
(' CiR = QR(d,n;A,£)   as in (4.10) with I'd) = IR(d).

To complete the construction we need to produce a family of matrices Y =
Y(y, A, e) so that the associated norms and inner products on C3 satisfy the
inequalities in (4.9). To this end we compute the linearization of F at /, . It
follows from (3.7b) that

/-A(£,A,e)      -a12(£,e) 0 \
A(c;,A,e)=\ 0 -Mp(Z,X,e) 0 +S(£,A,e),

V        0 0 -Mp(Ç,A,E)J
where 5(£, A, e) is a 3x3 matrix whose entries are uniformly of order ô ,

M/,(£,A,e) = -0/2 + iA(£,A,e),

A(i,A,E) = [92 + 4(A-axx(i,E))]X/2.

Since axx is strictly negative along the slow manifolds SL, SR, it follows that
Q can be modified if necessary so that Re(A - axx) is positive for A £ Q.
Similar considerations also imply that A ^ M   for A £ Q, and all (£, e) such
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that the underlying wave is near the slow manifolds. It follows that both A and
M have positive real part so that A is negative definite, and also that A is
diagonalizable for such (£, A, e). We can therefore take

(1 a12(£,e) 0
y(£,A,e)=    0   -A(Z,A,e) + Mp(cl,A,E)   0

Vo o i
it then follows that Y~ AY is a matrix with diagonal entries of uniformly
negative real part and with all remaining entries of order Ô . The inequalities
in (4.9) follow from this.

We summarize this result below.

Lemma 4.2. Let £L{d), iR(d), QL, and QR be defined as above with d < Bn.
Then there exists e0 > 0 such that Q.L and QR are positively invariant relative
to IL(d) and to IR(d), respectively.

With a slight abuse of notation, we shall write QL and ÙR for the images
of QL and QR in CP3 x E.

D. The elephant trunk lemma. We are now equipped to prove the main result
of this section. Our goal is to construct positively and negatively invariant
sets Q" and ¿V , respectively, in CP x E, for the projectivized system (4.1)
augmented with £' = 1. fi" will be used to locate the solution êx (£, A, e) and
to characterize its behavior as £ —► +oo ; Q.s will play a similar role for ê4
as £ -> -co. Recall that êx and ê4 are the fast unstable and the fast stable
bundles associated with (3.3),, respectively. We shall supply the description
of and the argument for £r ; the argument for the repelling set Qs is the same
as for Q" after a time reversal and will be omitted.

The principal construction that needs to be described is that of a set QF that
will describe ê, over the transition layer; in addition, QF will connect the two
sets ÙL and QR defined in the previous section. It is here that the choice of A
is crucial. We shall assume that A lies on a curve A c Q enclosing the origin
as in Figure 3.1. The criterion for choosing A is that it should not contain
eigenvalues of the fast reduced system (3.9),^ . Since this system is degenerate
we need to make this more precise.

Definition. A £ C is an eigenvalue of (3.9),Ä if p2R = q1R = 0 and if the
system

(4.17) p\r = Qxr,        v[R = -d*QiR-ianit)-VPlR

has a nontrivial uniformly bounded solution.

Note that (4.17) is equivalent to the second order equation

p"r + 6\r + Q^iu\RÍt)fM\RÍZ). <*)plR = ApXR.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



488 R. GARDNER AND C. K. R. T. JONES

These equations are the linearization about the travelling wave solution (w1Ä(£),
vXR(Z)) of a scalar, bistable reaction-diffusion equation consisting of the 1-
components of (2.3),Ä . It is well known that such waves are stable. In fact, if
b = maxaH(±co) < 0, then the spectrum of (4.17) in the half-plane ReA> b
consists of a simple eigenvalue at A = 0. These results are proved in the paper
[FM] by Fife and McLeod. Thus a suitable choice A c Q of a curve enclosing
A = 0 can be found on which there are no eigenvalues of (3.9),Ä .

The region £r can now be defined. Let £L(d) and c;R(d) be the functions
defined in §IVC, let nL, nR < n0 and dL< BnL, dR< BnR, where n0 and B
are as in Lemma 4.1 ; finally set

ÙL = QL(dL ,nL;A,E),        ÙR = QR(dR ;nR;A,E)

as in (4.16). Of particular importance is the "bottom" of QR , which we define
to be

(4.18) cbR = coR(dR, nR,A, e) = toR n CP3 x {ÇR(dR)}.

Let coF c coR be a neighborhood in coR; coF will be specified below (see (4.23)).
The set ÙF c CP3 x E is defined to be

(4.19) QF = {(>>(£), £) : j>(£) satisfies (4.1),,
(yitR), tR) £cbF, and £¿ < £ < c¡R},

where £L = ZL(dL) and £Ä = £RidR) ■ Thus ÙF consists of solution segments
of (4.1), which lie in coF at £ = ¿¡R . A dual construction can also be given
for the transition region for Qs. By construction the set Q,F is a positively
invariant relative to the interval / = [£L , £Ä]. The region Q" is defined to be

(4.20) Q" = QL u QR U QR .

The following theorem shows that Ùu (resp. í¿ ), and has the aspect depicted
in Figure 4.2. In particular, QLn{£L} is interior to ÙFn{ÇL} so that the union
Q" of the three relatively invariant sets in (4.20) yields a positively invariant set.
The aspect of the figure suggests a concatenation of elephants linked together
trunk-to-tail.

Theorem 4.3 (the elephant trunk lemma). Suppose that A £ A is not an eigen-
value of (3.9),Ä. There exist dL,dR, nL, and nR satisfying nL, nR < n0 and
dL < BnL, dR< Bt]R, and there exists ë > 0 such that Q" is positively invari-
ant and Qs is negatively invariant for (4.1), for 0 < e < ë and all A £ K.

Proof. We prove the theorem for QM. From the remark preceding the statement
of the theorem it suffices to show that the set coF in (4.18) can be chosen so
that

(4.21) nLncp3x{c¡L}cñF ncp3x{£j.
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(a) Q," (b) Q*

Figure 4.2

We will verify (4.21) for a suitable choice of the defining parameters r\L, r\R,
dL , and dR . At various steps e will have to be set sufficiently small. This will
be expressed by writing e < ë, where it is understood that ë is chosen smaller
than in the previous step if necessary.

The set QF is approximated by considering the projectivization of the re-
duced system (3.9),Ä, namely

(4.22) y' = â(y,c;,A,0):=âR(y,ï,A).

Recall that the condition uXR(0) = h sets the parametrization for (3.9),Ä
and hence, for (4.22). Let xR(Ç) be the underlying wave in (2.4), and let
xR = xÄ(±oo) be the left- and right-hand corners of the singular limit. Let
aR(Ç, A) = a(£, A, 0) be the coefficient matrix of (3.9),Ä and let efRC(A) be
the fast unstable eigenvectors of aR(±oo, A) in the left- and right-hand corners.
(Note that efRC(A) is not the same as efR(A) in (3.7b).) Since xR lie in the
slow manifolds, an analysis similar to the derivation of the characterization of
efR(A) in (3.7b) yields an analogous characterization of e*RC(A). By a general
construction in [AGJ] there exists a unique solution êXR(Ç, A) of (4.22) such
that êXR(Ç, A) tends to êXRC(A) as £ -> -oo . Since A £ K is not an eigenvalue
of (3.9),Ä it follows that the 1-components of eXR(c¡, A) become unbounded as
£ -> +00. This can occur if and only if êXR(Ç, A) tends to êXRC(A) as £ -► +oo .
Thus êXR(Ç, A) is an orbit of (4.22) which connects èXRC(A) to êx+RC(A).

First, set 0 < nL, nR < n0 so that for |£| > £, (4.6) will be satisfied for
0 < e < ë. Note that the size of each slice of Q¿ and ÙR at fixed £ is
uniform (either nL or nR) for all £ < -£ and £ > £ . The proof is based on
the following three assertions.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



490 R. GARDNER AND C. K. R. T. JONES

Claim 1. There exists e > 0, a neighborhood cb+ of êx+RC(A) in CP3, and
dR < BnR such that

(4.23) coF =f œ+ x {£R} c coR(dR,nR;A,s)

for 0 < e < ë.
Keeping dR, nR fixed, let T < £Ä ; define

(4.24) Ô+(£) = {y(e) : j>(£) solves (4.22) and y(tR) e ¿+} ■

Thus w+(£) is co+ at time £ under the reduced flow.

Claim 2. Let co~ be a small attracting neighborhood of êx~RC(A) for the asymp-
totic system associated with (4.22) at £ = -co . There exists T < -£ such that
co~ c cy+(£) for all £< P.

It follows from our parametrization of the underlying waves that ÇL(dL) —►
-oo as ú?L -» 0; we can therefore select dL so small that iL(dL) < T, where
P is as in Claim 2. Finally, set

coL = coL(dL ,nL;A,E) = ÛL(dL, nL ; A, e) n CP3 x {£L}.

Claim 3. There exists ë > 0, nL < n0 , and dL < Br\L such that coL c éT for
0<e <ë.

Assuming the validity of the claims we can easily establish (4.21). With all
defining parameters set as in the claims and 0 < e < ë it suffices to show that

(4.25) &T x {£J cÙF(dR,nR;A,E)n CP3 x {£ J .

Recall that QF was defined by following solution curves j/£(£) of (4.1),, with
e > 0 and ye(iR) £ &>+ , backward in time to ye(4L) ■ Let j>0(£) be a solution of
(4.22) with y0(tR) = ye(£R) ■ It follows from Corollary 2.2 that the vector field
âCP, £, A, e) tends to âR(y, £, A) as e —> 0 uniformly on the interval £L <
£ < £Ä , and from Gronwall's inequality that |i)e(£) -yQ(Ç)\ tends uniformly to
zero as e —> 0 on the interval £L < £ < £Ä . Hence the set on the right side of
(4.25) approaches the set w+(£L) in Claim 2 as e —> 0. Thus (4.25) follows
from the above and Claim 2 for 0 < e < ë for ë sufficiently small.

Proof of Claim 1. Let fXR(Ç, A) be the fast unstable eigenvector of a(£, A, 0) ;
fXR is well defined for |£| > £. By an estimate similar to (3.7b) we may scale
fXR so that fXR = fXR. Since xR(Ç) -> xR it follows that /1R(£, A) tends to
ex+RC(A) as £ —► +oo. Now let co+ be a fixed neighborhood of radius nR/3
about êXRC(A) in CP ; here and below distance on CP is measured in the
norm | • |{ defined earlier. From the above there exists £0 > £ such that

fXR(t,A)£cb+ forall£>£0.
Next consider coR ; this is a disk of radius nR about f(£,R(dR), A, e). Since

x(£Ä, e) £ n+(ô) n nF(S) and 3 = (ML)~xdR it follows that £Ä -» +co as
dR -> 0. Set dR> 0 so small that £,R(dR) > £0. By the parametrization set
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Figure 4.3

for the underlying waves x(£, e) it also follows that /, (£, A, e) -> /1Ä(£, A) as
e —> 0, uniformly on compact £-intervals. Since iR(dR) > £0 it follows from
the first paragraph that /1Ä(£Ä,^) £ &>+. Finally, since fXR(è,R,A,E) tends
to fiR(ÇR, A) as e -> 0 there exists ë such that for 0 < e < ë we have that
/,(£/}, A, e) lies within nR/3 of fXR(ÇR, A). Given any /> € cb+ it then follows
that

\p-fx(iR,A, e)\(g < \P - êXRC(A)\iR + \êXRC(A)-fXR(ZR,A)\tR

+ \fui(i*'Q-Mt*'l.*\
<nRß + nRß + nRß = nR-

Proof of Claim 2. Let ê1A(£, A) be the solution of (4.22) which connects eXRC(A)
to eXRC(A). It follows that

eXR(C, A) £ co+   foralU^i,

for some £¡ > £. Since íR(dR) —> +oo as dR —> 0 we can assume that ö?Ä is
reset if necessary so that ÇR(dR) > £j . This may now require resetting ë in
Claim 1; assume that this has been done.

We now compactify £ in (4.22) by introducing a change of variables r =
t(£) ; (4.22) is written as

y = â(y, t, A, 0),
(4.26) ,       Ky        2    '

X = ek(1 - t )        (-1 < T < 1).

Here, k > 0 is a small constant. From the second equation t increases mono-
tonically from t = -1 to t = +1 ; we set the reparametrization by requiring
that t(0) = 0. Then £ can be solved for in terms of t and the vector field
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Figure 4.4

â(y, x, A, 0) is obtained from (4.15) by substituting the relation £ = £(t) . The
asymptotic systems of (4.22) correspond to the invariant manifolds CP3 x {±1}
of (4.26). Note that the rest point (êXRC(A), -1) of (4.26) is an attractor in the
manifold CP3 x {-1} , while in the full space CP3 x E1 it is a saddle with a one-
(real) dimensional unstable manifold, which is tangent to the t-axis (see Figure
4.4). The solution (êXR(x, A), x) of (4.26) obtained from eXR(Ç,A) coincides
with this unstable manifold for -1 < x < 1.

Let co~ be a small attracting neighborhood of (êXRC(A), -I) in CP3x{-l}
(relative to the flow in this set). Let C be the cylinder

C = co~ x [-1, —1 + a].

If a > 0 is small enough, solutions of (4.26) enter C through the sides dco~ x
[-1, -1 + q] and leave C through the face to~ x {-1 + a} . Finally, the face
<y~{-l} is invariant and solutions in this face tend to the critical point in
forward time.

Let £a be the £ associated with x = — 1 + a. By the first paragraph of the
proof of this claim it follows that the set &+(£a) defined in (4.24) with £ = £Q
is a neighborhood of ê1R(£Q , A). Let cfa = ¿>+(£Q) x {-1 +a) be the associated
neighborhood in the right face of C. Since (êXR(x, A), x) is the only solution
of (4.26) which remains in C in backward time, and because at £ = £Q it
is interior to cfa it follows that every solution of (4.26) through dcfa leaves
C in finite time. Moreover, it follows from the compactness of C and dcfa
that there exists T £ (-oo, £Q) such that each such solution exits C at a time
£ > T. Finally, the time map co+ —» co+(T) is a homeomorphism. Since co+
is a ball it follows that co+(T) is also, and since dcb+(T) is exterior to the ball
cb~ , it follows that co~ c co+(T). Without loss of generality we may choose
P<-£.
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Proof of Claim 3. We use the notation introduced in the proof of Claim 1. Since
êXRC(A) £ co~ and /1Ä(£, A) tends to ê~RC(A) as £ —> -oo there exists £L < T
such that /1Ä(£, A) £ of for all £ < £L. Select nL < n0 such that the disk
about flR(£L,A) of radius nL (in the | • |{ metric) is contained in co~ . Since
ÇL(dL) tends to -oo as dL -» 0 we can find dL < BnL such that ¿¡L(dL) < £L .
Hence Claim 3 will be satisfied for such dL, nL and for 0 < e < ë sufficiently
small.

Remark 4.4. The proof of a similar result was first obtained by Jones [J] for
the FitzHugh-Nagumo equations. This is clearly a feature of fast-slow systems
that is true in a general setting and it will undoubtedly be required in future
applications of the theory in [AGJ]. It would be awkward to state a general
theorem due to the many different ways in which the small parameter e can
enter into the equations. Rather we shall try to identify the main features of
the equations which were needed in the proof.

(a) The system supports the existence of a family of waves x(Ç, e) = A(£, e)
for small e > 0 with two distinct time scales, each of which has clearly iden-
tifiable limits xR(cf) and XR(Q as e —► 0. The slow limit XR(Q is piecewise
continuous and lies in the slow manifolds SL and SR. The fast limit xR(c¡)
describes transition layers in solutions jumping between SL and SR .

(b) For some domain Q c C the coefficient matrix a(£, A, e) of the lin-
earized equations has a simple eigenvalue of largest real part for A £ Q, when-
ever the underlying wave lies near either SL or SR .

(c) The spectrum aR for the linearized equations about the connecting orbit
xR(Ç) of the reduced system is known, and A is chosen in £l\crR .

The elephant trunk lemma yields the following characterization of the be-
havior of êx for large £.

Corollary 4.5. Under the hypotheses of Theorem 4.3 it follows that

lim <?,(£, A, e) = êx(A, e)
£—>+oo

for all A £ K and 0 < e < ë. The limit is uniform in A for A £ K.

V. THE DEFINITION AND APPROXIMATION OF  é?2

A. Definition of ê2. Generically, a solution ê2(£, A, e) of (4.1) which tends to
êf(A, e) as £ —► -co will tend to êx(A, e) as £ —> +co . We will show, however,
that for a particular choice of the slow unstable bundle ê2 we can arrange that
ê2 tends to ê2(A, e) as £ —► +co. This will be crucial in obtaining the direct
sum decomposition of the 2-plane bundle If (e). The first step is to locate a
choice of ê2 whose asymptotic behavior at £ = +co is different from that of
êx, i.e., its co limit set lies in {e¡(A, e), i = 2, 3, 4}.
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Theorem 5.1. Suppose that A £ K is not an eigenvalue of (3.9),Ä and that
0 < e < ë. Then there exists a solution ê2(£, A, e) o/(4.1) such that

(a) limi^_ooê2(c;,A,£) = ê2(A,£),
(b) Hm^+00 é2(£, A, e) e {ê,+ (A, e), i = 2, 3, 4}.

P/ze^e conditions uniquely determine ê2.

Proof. We shall construct a 3-plane bundle of solutions y/+ of solutions of
(3.3), over the cylinder E x A such that every solution in y/+ satisfies con-
dition (b). This is done by compactifying the projectivized equations (4.1) by
replacing £ with x = t(£) , yielding the system

(5.1) y' = â(y,x,A,E),    x = ek(1 - r2)       (-1 <T< 1) ;

here k > 0 is chosen small enough that t(£) decays to ± 1 at £ = ±oc slower
than the rate at which the underlying wave x(£, e) converges to its limits at
±oo. Under this condition, with x = t(£) in ä, the vector field â is C1 in its
arguments (see [AGJ]). The critical points of (5.1) are (e¡ (A, e), ±1) with 1 <
/ < 4. The bundle y/+ is constructed by selecting certain solutions e*(£, A, e)
in the stable manifolds of the rest points (êf(A, e), +1) for / = 2, 3, 4.

First consider (ê4(A, e), +1). Since e4(A, e) is the fastest stable eigenvector
of a+(A, e) it follows that e4(A, e) is a repeller for the flow in the invariant
slice x = +1 of (5.1). It follows that (ê4(A, e), 1) is a saddle with a (real)
one-dimensional stable manifold. Let (ê4 (£, A, e), t(£)) be the solution in this
manifold with t(£) < 1 and let e4(£, A, e) = è4(£, A, e) ; by construction, ê*4
tends to ê4  at £ = +oo .

The critical points (e3(A, e), 1) and (e2(A, e), 1) have stable manifolds of
(real) dimensions 3 and 5, respectively, since the matrix uf.â at the first critical
point has one eigenvalue with negative real part and two with positive real part,
while this situation is reversed for the second critical point. Hence in the slice
t = 1 the stable subspaces are of (complex) dimension 1 and 2, respectively.
The x equation adds one (real) stable direction to each. Let (ê*(£, A, e), t(£))
be any solution of (5.1) in the stable manifold of (e*(A), 1) such that t(£) < 1,
i = 2 and 3, and define e* = ë*.  By construction, ê* tends to e~¡~(A, e) as
£^+00.

The 3-plane bundle y/+ over E x A is defined to be
y/+ = span{e2, e¡,e¡}.

Every solution in y/+ can be expressed as

y(£) = £>,.<(£, A, e)      (a,eC).
;=2

Each e* grows/decays as £ —> +oo at the rate exp(p'¡(A, e)£) ; since Rep4 <
Rep3 < 0 < Rep2 it follows that the behavior of y(£) at £ = +oo is deter-
mined by the smallest index in for which a, ^¿ 0 ; in particular, j>(£) tends to
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êf(A, e) as £ -> +00 . Thus every solution in ip+ satisfies (b) in the statement
of the theorem.

Next, consider the 2-plane bundle cp~ whose defining conditions are at £ =
-co. Since the (complex) dimensions of cp~ and y/+ add up to 5 and their
fibers are in C4 they must intersect nontrivially. Moreover, by Corollary 4.5
to the elephant trunk lemma, the solution êx(Ç,A,e) in <p~ tends to êx+(A, e)
as £ -> +00, whereas by condition (b) in the lemma, the 3-plane i//+ near
£ = +00 tends (in the topology of G3 4) to the plane spanned by e*(A, e),
¿ = 2,3,4. Since ex(A, e) is transverse to this 3-plane it follows that y/+ and
tp~ intersect transversely. We define ê2(£, A, e) to be the unique solution of
(4.1) such that n~xê2 £ tp~ n ip+ . By virtue of their behavior as £ -> +00,
êx and ê2 are distinct solutions of (4.1). Since the defining condition for êx,
namely êx -> êx(A, e) as £ -» -00, uniquely determines êx it follows that
ê2 must have an a limit set distinct from êx~(A,e). However n~xê2 lies in
cp~ so that the only other possible limit for ê2 at -co is êf(A, e). Hence ê2
satisfies (a) in the statement of the theorem.

We can sharpen (b) in Theorem 5.1 with a further application of the elephant
trunk lemma.

Corollary 5.2. With hypotheses as in Theorem 5.1,

lim ê2(Ç,A,s)£{ê2(A,£),ê3(A,£)};

i.e., e2 is asymptotic to the slow subspace of a+(A, e) as £ -» +00.

Proof. If the assertion were false it would follow that ê2(£, A, e) is asymptotic
to ê4(A, e) as £ -> +00 . Let Qs be the negatively invariant set obtained from
n" of the elephant trunk theorem after a time reversal. Near the slow manifolds
Cls is a uniform neighborhood of the fast stable eigenvector of a(£, A, e), which
we denote by f4(¿¡, A, e). Since f4(c¡, A, e) tends to e4(A, e) as £ —> +00 it
follows from the above that (ê2(£, A, e), £) lies in Qs near £ = +00. It would
then follow from the elephant trunk lemma that ê2 tends to ê4 as £ —> -co ,
a contradiction to (a) of Theorem 5.1.

B. Approximation of ê2—statement of the main result. In this section we for-
mulate a theorem which characterizes the behavior of <?2 as e -* 0. It will be
convenient to change to the slow scaling by considering the solution of (3.3)s,

E2(Ç,A,e) = e2(Ç/e,A,e).
As usual we normalize the underlying wave by requiring that Ux (0, e) = h for
all e > 0 ; the transition layer then occurs in an cf(E) neighborhood of £ = 0.

Roughly stated, the next theorem states that P2(£, A, e) is approximated
for small e > 0 by a solution E2R(C, A) of the projectivization of the slow
reduced system (3.9)iR.  This solution is obtained by gluing certain solution
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segments P2,(£, A) of (3.9),, together at £ = 0 so that their 2-components
are continuous across £ = 0. The 1-components of E2R are determined by
the algebraic relations in (3.9)sR ; it follows that the ^-component of E2R is
discontinuous at £ = 0. The approximation will therefore fail to be uniform
near £ = 0. However, the approximation is uniform for the two-components
when considered separately. This suggests introducing certain projection and
inclusion maps between C and C . Given solutions Y of (3.3), and YR
of (3.9),, define Il2: C4 -» C2 to be projection onto the 2-components and
introduce the variables Z, ZR e C2 :

(52a) z = n2(T) = (P2,e2)',
ZR = F12(YR) = (P2R,Q2R)!.

It will also be convenient to define a certain inclusion map /: C -> C4 . To this
end let

(5.2b) H{C'X'e)-A-Au(Ç,A)>    H^A)-A—^y
F = PX-H(C,A,£)P2;

note that HR is the coefficient of P2 in the algebraic equation in (3.9)s, ; for
small £ , F therefore measures how far Y is from solving this equation. Define
inclusion maps /(£,e) and /,(£) by

i(C, A, e)Z = (H(C,A, e)P2, 0, P2, Q2)',
/,(£, A)ZR = (HR(C,A)P2R,0, P2R, Q2R)'.

The equations for the 2-components Z = FlfY and ZR = Fl2 YR of solutions
of (3.3),, (3.9),Ä can then be expressed as

(5.3) Z = B(C,A,e)Z + GF,
(5.3)Ä ZR = BR(C,A)ZR,
where

(5.4) 5(C'A'£)=(c(£,A,e)   -ed) '        G = \-A2x(i;, e)
C(£, A, £) = -A2X(C, £)H(C,A, e)-A22 + A,

0 1
and

(5.4), B«{Ç>X)=\CR(Ç,A)   0
CR(C, A) = -ARX(QHR(C,A)-AR2(C) + A.

The equations (5.4), are equivalent to the equations for the 2-components in
(3.9),, and Z,(£) is a solution of (5.4), if and only if /,(£, A)Z,(£) is a
solution of (3.9),,.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



STABILITY OF TRAVELLING WAVE SOLUTIONS 497

Definition. £ € Q is an eigenvalue of the slow reduced system (3.9),, if there
exists a nontrivial, uniformly bounded solution Z,(£, A) of (5.3), which is
continuous across £ = 0.

We remark that for A £ Q, (5.4), has a saddle at £ = ±co, so that an eigen-
function must decay to zero at £ = ±oo. Note also that (5.4), is equivalent
to the following second order eigenvalue problem,

P2 + C,(£,A)P2 = 0

CR(^,A)=--^^-AR22(Q + A,

and that the eigenvalue parameter A enters into the equation in a nonlinear
manner. We assume for the moment that the spectrum of this problem is
known; it will be explicitly characterized later in the paper (see §VI).

It will be convenient to consider the projectivization of (5.4), on CP1,
which we express as

(5.5), Z'=BR(Z,C,A).
The following approximation theorem will be concerned with two particular
solutions Z2R(C, A) and Zt(Ç, A) of (5.5),. First, Z2,(£, A) is defined to
be the (unique) solution of (5.5), which, as £ —> -co, tends to the image in

1 1IICP of the unstable eigenvector (1, C,(-oo, A) ' ) of BR(-oo, A). The exis-
tence and uniqueness of Z2, follows from general results appearing in [AGJ].
The second solution Zt(Ç,A) is defined as follows. Let Z = F12E2, where
P2(£, A, b) is any nontrivial representative of P2(£, A, e). By passing to suit-
able subsequences £n —> 0 it can be assumed that the limits

Z(±l,A,en) = Z±

both exist as e —► 0. Let Z   (£, A) be the solution of (5.5), with data

Z±(±l,A) = Z±

finally, define Zt(£, A) by

Z(C  A)-iZ~(C'A)'       C<°'
Z-(C'A)-\Z+(£,A),        i>0.

If Z2, and Z, are any representatives in n~ Z2, and n~xZt, where n: C2
CP1 is the projection map, define solutions E2R and Et of (3.9) , by

P2,(£, A) = /,(£, A)Z2R(C, A),       P (£, A) = /,(£, A)Zt(Ç, A),

where /, is the map in (5.2c). We can now state the main result of this section.
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Theorem 5.3. With hypotheses as in Theorem 5.1 there exists ë > 0 such that
for 0 < e < ë the following are true:

(a) lim£_>0£2(£, A, e) = Pt(£, A) uniformly for a < |£| < A, for each a, A
with 0 < a < 1 < A.

(b) Z#(£, A) is continuous across £ = 0.
(c) Suppose that A £ Q, is not an eigenvalue of (3.9),,. Then Zt(£, A) =

Z2,(£, A), and for e < ë,

lim P2(£, A, e) = ê^fA, e).
f-*+oo

Moreover, the limit is uniform in A for A £ K.

The proof of Theorem 5.3 will require some preliminary estimates. The
principal estimate asserts that E2 remains uniformly near the "slow subbundle",
which is defined in subsection D below. It is this fact that also forces the
continuity of Z+ across £ = 0. The main aim of the theorem is to characterize
the behavior of E2 at £ = +00 . Since E2 remains near a hyperbolic set rather
than an attractor in CP , the elephant trunk lemma is not available. The idea
is to use an "elephant trunk" type estimate inside the slow subbundle.

C. Estimates. In this section we shall use the estimates of §IIE for the underlying
waves x(£, e) = A(£, e) to approximate the coefficient matrix a(£, A, e) of
the linearized equations. There are two cases to consider which are determined
by whether the wave is near the slow manifolds or in the transition layer.

Case 1. Suppose that x(£n, en) tends to x as En —> 0 for some uniformly
bounded sequence {£„} . By passing to a subsequence it can be assumed that
£n tends to a finite limit £. Let x,(£) be the solution of the fast reduced
system (2.3),,,

x'R = n(xR,0),        *,(£) = x.

Then x,(£) is the connecting orbit in (2.4) with u2 = a and 9 = 8(a), and

!*(£ ' en) - xrÍZ)\ — °   uniformly as e„ -> 0
(5.6) _on bounded £-intervals about £.

This is an immediate consequence of Corollary 2.2, which shows that x(£, e)
lies in n(ô) for all sufficiently small e . Since £ is finite and ô > 0 is arbitrary
it follows that x,(£) lies in nF(ô) for all S > 0 ; the result follows by applying
Corollary 2.2 and Gronwall's inequality to the equation satisfied by x(£, e) -
*,(£).

As a consequence of (5.6) we obtain under similar hypotheses as above that

\a(£,A,£n)-aR(Z,A)\^0   uniformly as e„ -► 0
on bounded £-intervals about £.

Case 2. Suppose that X(Çn , En) converges to x as ew —► 0 and that £n = e„£„
converges to a limit £ , where either £ is finite or £ = ±00 . If £ = 0, suppose
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in addition that {£n} is divergent, i.e., this sequence tends either to -co or to
+00. Let £n + <7 = e„(£„ + s) and define xn(s, e„) = x(£„ + s, e„), Xn(o,en) =
X(Çn + cT, en). Then x lies in the slow manifolds SL U A, and

\x„(s, e„) - x\ -* 0   uniformly for bounded s-intervals
(5.8) "       " about 5 = 0 as £n -> 0.
The proof of (5.8) is also in immediate consequence of Corollary 2.2 and Gron-
wall's inequality. This can again be used to approximate the coefficient matrix
a(£, A, e) along the slow manifolds. In particular, let aR(A) be the coefficient
matrix of the fast reduced equations (3.9),, wherein the coefficients a¡.(£)
are replaced by the (constant) Jacobian of (uxfx, u2f2) evaluated at the u-
components of x . It then follows from (5.8) that

\a(£,n + s, A, en) - aR(A)\ —> 0   as £n -> 0 uniformly on bounded
5-intervals about 5 = 0.

D. Hyperbolicity of the slow bundle. It will be convenient to introduce an ap-
proximate slow bundle for the linearized equations. To this end, fix a > 0 ;
for |£| > a/e the wave x(£, e) lies near SL U SR for small e so that by
Remark 3.2, the coefficient matrix a(£,A,e) of (3.3), will have eigenval-
ues p¡(i, A, e) which satisfy (3.7a) for i = 1,4. However, the eigenvalues
p¡(¿¡, A, e), / = 2, 3, can coalesce for certain £ although they will still be of or-
der e . By a general result (see Kato [K]) we may select smooth ^(£, A, e) £ C4
such that f2, f3 at (£, A, e) span the (generalized) eigenspace of a(£, A, e)
associated with p2(Ç,A,e) and p3(¿¡, A, e). Normalize f¡ so that 1^1^ = 1
for all (£, A, e).
Definition. The slow subbundle a2 of (3.3), is

(T,(£, A, e) = span{/2(£, A, e), /3(£, A, e)} ;
the base space of as is |£| > a/e, A £ Q, and 0 < e < ë, where ë is small
enough so that Remark 3.2 is valid.

We shall approximate solutions of (3.3), by considering the frozen system
and its projectivization

(5.10)y dl = a(y,A,E)y,

(5.11), ^ = â(y,y,A,E).

It will be convenient in the following to fix a metric p on CP so that for a
given set S c CP3 we may define a ¿-neighborhood by

NS(S) = {y£ CP3 : p(s, y) < Ô for some s£S}.
Lemma 5.4. Fix ô > 0 and a > 0 ; there exist ë > 0 and T > 0 depending
only on ô and a such that for 0 < e < ë and \y\ > a/s, every solution y(s) of
(5.1 l)y satisfies at least one of the following:

(i) y(0)£Ns(as(y,A,E)),
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(ii) y(T)£Ns(fx(y,A,E)),
(iii) y(-T)£Ns(f4(y,A,E)).

Proof. Let y(s) be a solution of (5.11) which does not satisfy (i). If y(s) is
an associated solution of (5.10)^, then y(s) can be expressed as

4

(5.12) y(s) = J2 gjt(y ,A,e) exp(spi(y ,A,e));

for simplicity we have assumed that a(y, A, e) has distinct eigenvalues. If this
is not the case, the proof is similar. We shall choose the particular element of
n~ly(s) such that |y(0)| = 1 in the sup norm; since \f\ = 1 it follows that
\gj\ < 1 for 1 < i'<4.

Since y(0) does not satisfy (i) it is clear that (ii) or (iii) hold for some P;
the point is to verify the choice of T is uniform for such y(0), 0 < e < ë, and
| y | > a/I. From the above, there exists a constant A > 0 depending only on
the metric p such that

(5.13) max{\gx\,\g4\}>KÔ.

We will show that if \gx\ > KS then (ii) holds. From (5.12) we have that

(5.14) y(T) = eßJ[gxfx+R(T)],
where

RW^iZgif/^-
1=1

For 0 < e < ë and \y\ > aß, it follows from (3.7a) that there exists a > 0
depending only on ë and a suchthat Re(p¡-px) < -a for ¿ = 2,3,4. Since
|#(.| < 1 and \f\ = 1 for all i it follows from the above that

\R(T)\ < 3e~aT.

From (5.14) we obtain P > 0 depending only on a, ô, a, and the metric p
such that

y(F)£Ns(fx(y,A,E))
for |y| > a/e, 0 < e <ë.

The proof that \g4\> Ko implies (iii) is similar.

It will be convenient to use the slow scaling at this point. For |£| > a and
0 < e < ë, let

P,(£, A, E) = /;•(£/£, A, e),        l<i<r,
ïs(t;,A,£) = CTs(Ç/E,A,£).

The slow projectivized equations associated with (3.3), will be denoted by

(5.15) Y' = A(Y,C,A,e).
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We next prove a lemma for solutions Y(Q of the nonautonomous equations
(5.15). First we need to set ô in the previous lemma. To this end let Qs and
Q" be the sets constructed in the elephant trunk lemma; let nJ(£) and Q"(£)
denote the projections of ÍV and Q." on the slice CP x {£}. Set ë > 0 so
small that aß > £,, |£J. It follows that there exists 5X > 0 such that for
0 < e <ë,

Ns (/,(£, A, e))cñM(£)   for|£|>a/e,
(5.16) '   .

Na¡(f4(C,A,e))cns(c:)   for|£|>a/e.

In particular, Sx depends only on a , the defining parameters dL,dR,nL, nR
for Qu and Ùs, and on the metric p on CP .

Lemma 5.5. Set 0 < S < ôx as in (5.16) and a > 0. Suppose that Y(Ç, A, e)
is a solution o/" (5.15) such that for each sufficiently small e > 0 there exists
A(e) > a with the property that

Y(Ç,A,e)eNs(Ls(C,A,e))  for |£| > A(e) .
Suppose also that the elephant trunk lemma is valid at (A, e). Then there exists
e > 0 such that for 0 < e < ë and |£| >a we have that

(5.17) Y(Ç,A,e)£Nâ(ïs(t;,A,e)).
Proof. Suppose that the lemma is false; there would then exist sequences |£„| >
a and En -► 0 such that (5.17) fails to hold for all n. By passing to subse-
quences it can be assumed that the following sequences are convergent;

£„-►£,    where a < |£| < oo,
A(£„,e„)-;t€ALuA,,

H„,A,e„) = Yn^Yt   inCP3.
Let j = (£ - £„)/e„ and yn = £„/e„ ; change variables from £ to 5 by defining

y(£, A, e) = Y(£, A, e),        z(s,A,en) = Y(s£n + Cn,A,En).

Then z satisfies the equation
dz
-^ = ä(z,yn+s,A,£n),        z(0) = Yn.

Next, let zt(s, A, n) be the solution of the frozen system

dz
-^ = ä(zt,yn,A,En),        zt(0,A,n) = Yn.

By hypothesis, Yn $ N6(ös(yn , A, En)) for all n ; it follows from Lemma 5.4
that at least one of

(a) Zt(T,A,n)£Nô(fx(yn,A,En)),
(b) Zt(-T,A,n)£Ns(f4(yn,A,En))
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hold, with P as in the statement of Lemma 5.4. Now set S2 such that
ô < ô2 < ôx ; it follows from equation (5.9) that the vector fields â(zt, yn , A, en)
and â(zt, yn+s, A, en) converge uniformly to âR(zt, A) for z £ CP3, where
aR(A)t is the matrix defined above (5.9). The convergence is uniform on the
interval \s\ < T. Furthermore, it also follows from (5.9) that the vectors
fi(y„ ,A,En) and fi(yn + s, A, en) converge uniformly as En -> 0 for \s\ < T,
I < i < 4. It then follows from the above and standard continuous depen-
dence theorems for flows that zt(s, A, n) and z(s, A, en) converge uniformly
on \s\ < T as £n -> 0. By (a) or (b) and the preceding remarks it follows that
at least one of the following hold:

z(T,A, En) = Y(Cn + eJ,A, En) £ NSi(fx(yn + T,A, ej),

z(-T, A,En) = ?(£„ -£j,A, £n) £ NS2(f4(yn -T,A, e„)).

Since â < ô2 < ôx, it then follows from (5.16) that Y enters at least one of Qu
or Qs in at least one time direction. The elephant trunk lemma contradicts the
postulated behavior of Y near £ = ±co .

Corollary 5.6. With a, ô, and ë as in Lemma 5.5, we have that

Ê2(C,A,e)£Nô(Îs(C,A,e))
for |£| > a and 0 < e < ë.

By (a) of Theorem 5.1 and Corollary 5.2,  E2 satisfies the hypothesis of
Lemma 5.5 for all sufficiently small e for some A(e) sufficiently large.

E. Bounds in the transition layer. In order to prove the continuity of ZJA\,A)
at £ = 0 we shall require uniform bounds for a solution E2 in n~ E2 near
£ = 0. To this end let T(£, A, e) be a solution of (5.15). Given an element
Y £ iCx Y we define two quantities

A/1(e,A) = max{|P1(£,A,e)|,|Q1(£,A,e)|},

A/2(e,A) = max{|P2(£,A,e)|,|<22(£,A,e)|}.

For the moment, we regard A £ Q. as fixed; replace Y with the section
Y/M2(e, A) £ n~xY . The 2-components of Y then satisfy

(5.18) |P2(£,A,e)|,|ß2(£,A,e)|<l    on |£| < 1

for all e e (0, ë].
Lemma 5.7. Suppose that (A, e) is such that the elephant trunk lemma is valid.
Let Y £ n~xY be selected so that (5.18) is valid for all e 6 (0, ë], where Y is
a solution of (5.15). Suppose also that Y satisfies the hypothesis of Lemma 5.5
at £ = ±co ;  then there exists M\ such that

sup Mx(s, A) < Mx < oo,
0<«<£
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where K is a curve as in Figure 3.1 which is disjoint from eigenvalues A of
(3.9),.
Proof. If the lemma were false there would exist sequences en, An with en -> 0
such that Mx(en , An) -» oo . By passing to a subsequence we may assume that
An —> A £ K. Replace the solution Y with Y/Mx for each n and relable this
solution 7(£, An , en). It follows from (5.18) that Y satisfies

(5.19a)       max{|P2(£,A„,e„)|,|ß2(£,An,eJ|}^0   asn^co,

(5.19b) max{|P1(£,A„,e„)|,|ö1(£,/„,e„)|} = l,    all«.

By passing to another subsequence we may assume that the maximum in (5.19b)
occurs at £n, where £n converges to a limit £ £ [-1, 1]. We may further
assume that

(5 20) Pi(C>An>0>oi(£«>¿«>en)^?i>oi   as «^co,
P2it,K,e„),Q2(t:,An,en)^0,0.

Let Cn - £„£„ ; we distinguish three different cases.

Case 1:|£„| > a for some a > 0, and all n. It follows from Lemma 5.5
that given ô > 0 chosen as in the lemma, Y satisfies (5.17) for all |£| > a.
However, from the limiting form (3.7b) for P2(£, A, e), P3(£, A, e), which
span Z,(£, A, s), it is evident from (5.20) that Y(Çn, An , en) lies at a uniform
distance d from the projectivized slow subspace £,(£„ , An , en) as £n -> 0. We
arrive at a contradiction by choosing ô of Lemma 5.5 suitably small relative to
d.
Case 2: Çn -» 0 but £n diverges to ±oo . This can be handled similarly to the
previous case because the limit

x = limA(£„,eJ
still lies in SL liSR ; if £n —► -co it is the left corner while if £w —» +co it is the
right corner. In particular, the splitting (3.7a) is valid and the slow subspace
X(£, An, En) will be well defined for all |£| > |£J and for all sufficiently large
n . Since the asymptotic form (3.7b) for P2(£, A, e) and P3(£, A, e) will be
valid as En —> 0, it again follows that 7(£n, An , En) will be uniformly bounded
away from £,(£„, An, ej as En -> 0, and by changing variables from £ to
5 = (£ - £„)/£„ , as in the proof of Lemma 5.5, we obtain a contradiction by
using the frozen system and Lemma 5.4 on the uniform interval |i| < P.

Case 3: Çn -> 0 a«ú? |£J w uniformly bounded. In this case we are genuinely
in the transition layer. By passing to a subsequence it can be assumed that £„
converges to a finite limit £ . Let

y= lim Y(Cn,An,En) = (Px,Qx,0,0);n—»oo "       "       " ' '
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by (5.19), max{|P,|, \QX\} = 1. Also, let y(£, An, £n) be the associated solu-
tions in the fast scaling and let yR(£, A) be the solution of (3.9), with

yR(£,t) = y.

We claim that there exists J > 0 which is independent of n such that at least
one of the following hold for all large n :

(i) j>(ï,An,e„)€Q"(s),
(ii) y(-s,An,En)£Ùs(-s);

in either case, we will have then obtained the desired contradiction.
Let aR(c¡,A) be the coefficient matrix of (3.9),,, let eXRC(A) be the fast

unstable eigenvector of aR(+oo, A) (in the right corner), and let e4RC(A) be
the fast stable eigenvector of a,(-oo, A) (in the left corner). Since A £ K is
not an eigenvalue of (3.9),, at least one of the following must be true:

(1) lim^+ooyR(c:,A) = êx+RC(A),
(2) lim(^_ooyR(i,A) = ê;RC(A).

We will show that (1) implies (i); the proof that (2) implies (ii) is similar and
will be omitted.

For £ > £,(#",), Ô"(£) is a disk in CP3 of uniform radius w, about
/,(£, A, e) (measured in the norm | • |. defined in §IV). Let /,,(£, A) be the
fast unstable eigenvector of the matrix £,(£, A). Since our parametrizations
for the underlying waves x(£, e) and x,(£) are such that x(£, e) -> x,(£)
uniformly on compact £-intervals, it follows for each fixed £ > £, that

(5.21) lim/1(£,A„,e„) = /1,(£,A).

We also have that

(5.22) lim flR(t,A)=êx+RC(A).í->+oo lnK~

The behavior of the four curves y,yR, fx, and /,, as functions of £ into
CP   are qualitatively depicted in Figure 5.1.

Let w,, dR be the defining parameters for the right-hand slow tube Í2, of
Q" and let £, = £,(#",) • For £ > £, the coordinate system y on CP3 is valid
and the family of norms | • |{ is well defined. It follows from (5.22) that there
exists £; > £, such that

(5.23) l/1Ä(£,A)-4cWl£< V4   forall£>£,.
Since we are assuming that alternative (1) is valid there exists £2 > £, such
that

(5.24) \yR(t,A)-ë;RC(A)\i<nR/4   forall£>£2.

Next, fix £3 > £, ; it follows from (5.21) for small en that

(5.25) |/,(£, An, En) -/;,(£, A)\i<nR/4   for £, < £ < £3.
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2,+RC (X)

Figure 5.1

Finally, let £4 > max{£, £,} be given. We claim that

(5.26) lim j>(£, An , Ef) = >>,(£, A)   uniformly on £ < £ < £4.

By definition of yR, (5.28) holds at £ = £. It then follows from estimate
(5.7) and standard continuous dependence theorems for flows that (5.26) is
valid on the compact interval £ < £ < £4. (More precisely, the interval can
be partitioned so that on each subinterval a local coordinate system on CP
can be employed; an inductive proof then follows from (5.7) and Gronwall's
inequality.)

Now fix £j and £2 in (5.23) and (5.24). Next, select £3 in (5.25) and e4 in
(5.26) so that

s = max{£¡, £2} < min{£3, £4}.
With £4 fixed as above, it follows from (5.26) that

Ins, ¿n, en) -yR(s, A)\¿ < nR/4.
Combining the above with (5.23), (5.24), and (5.25) yields

|J>(5,^,eJ-/,(J,A„,en)|?<w,

which implies that y £ Ù" at £ = s ; this contradicts the postulated behavior
of y at £ = +00.

Corollary 5.8. Let E2 £ n~xÊ2 be a solution chosen so that (5.18) holds for each
e > 0. Then |P2(£, A, e)| is uniformly bounded for |£| < 1 and for 0 < e < ë.
F. Proof of Theorem 5.3. We can now complete the proofs of (a), (b), and (c)
of the theorem.

Proof of (a). Fix a < A as in the statement of the theorem and suppose that
a < £ < A . Pick a representative P2 of 7r~'p2 so that \Z\ < 1 on a < £ < A
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for each e, 0 < e < e . It follows that

Z(l,A,£n)^Z+ £7t~XZ+

as «a -» 0, where |Z+| < 1. Let Zt(Ç,A) be the solution of (5.4), in
n~xZt(Ç, A) with data Z,(l, A) = Z+ . We will show that \Z - ZJ tends
uniformly to zero on the interval a < £ < A as e —» 0.

By Corollary 2.2 it follows that the coefficients C and H in (5.2b) and (5.4)
converge uniformly to C, and HR as e —► 0 for a < £ < A. It follows that
the coefficients in (5.3) converge uniformly to those in (5.3), on a < £ < A
and that the data of the former converge to those of the latter, as £n -* 0. The
convergence of Z to Zt will then follow from Gronwall's inequality if it can
be shown that the forcing term GF, tends to zero uniformly on a < £ < A.
This can be seen as follows. By Corollary 5.6,

Ê2(C,A,e)£N3(îs(C,A,e))
for a < £ and all small e, where ô > 0 is arbitrary. The slow subspace
£,(£, A, e) can be characterized for small e by computing the limits of its
basis, P¿(£, A, e), /' = 2, 3, as 6-»0. By an analysis similar to that used in
the derivation of (3.7b) it can be seen that these limits are

F2 - F2R(C,A) = (//,(£, A), 0, 1, mp(C, A))',

F3 - F3R(C,A) = (//,(£, A), 0, 1, mn(C,A))'
for suitable coefficients mp, mn as in (3.7c). From the above and our choice
of the representative P2 in n~ E2 it follows that

E2 -> q2P2, + a3F3R    at (£, A)

for some coefficients q((£ , A), i = 2, 3, which remain uniformly bounded on
a < £ < A. The above convergence is uniform on this interval. Also, we have
that T can be expressed as

(5.28) r = P, - //,(£, A)P2 + (H(C ,A,e)- //,(£, A))P2 ;

since H converges uniformly to HR and |P2| < 1 on a < £ < A we see
from (5.27) and (5.28) that |T| tends uniformly to zero on a < £ < A. This
establishes the uniform convergence of Z to Z, on a < £ < A .

It also follows immediately from (5.27), (5.28) and Corollary 5.6 that the
1-components of E2 converge uniformly to those of Et on this interval.

The convergence of E2 to Et on -A < £ < -a is proved in a similar
manner.

Proof of (b). Let Z±(£,A) be a representative of n~xZ±(Ç, A); recall that
Z (£, A) are the solutions of (5.5), comprising the portions of Z+(£, A) in
£ > 0 and £ < 0. We may assume that E2 £ n~ Ê2 is chosen so that (5.18)
holds; by (a) we may therefore select Z± so that \Z±\ < 1  on 0 < |£| <
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1.  Since Z  (Ç, A) satisfy the equations (5.3),, whose right-hand sides are
uniformly bounded, the one-sided limits

lim
C-o:

B±(A)= lim Z±(£,a)

both exist. We will show that B (A) = B+(A).
Let S > 0 be given; select ax > 0 so small that

\Z±(±ax, A)-B±(A)\<S/5.
Next, note that every term on the right-hand side of the equations (5.3) for
the 2-components of E2 is uniformly bounded on the interval |£| < 1 for
0 < £ < £. This follows from the choice of scaling (5.18) for E2 and from
Corollary 5.8. Thus Z(£, A, e) is uniformly bounded for such £ and e and
so there exists a e (0, ax) such that

\Z(a, A, e) - Z(-a, A, e)\ < ô 15
for 0 < e < ë. Finally, fix a as above; it follows from part (a) of this theorem
that

\Z(a,A,E)- Z+(a,A)\<S/5,        \Z(-a, A, e) - Z~(-a, A)\ < Ô/5,
for 0 < e < ë. Combining all of the above yields \B~(A) - B+(A)\ < ô, as
required.

Proof of (c). Let Et and E2R be the solutions defined above the statement of
Theorem 5.3. The defining condition for Ê2R at £ = -oo together with the
assumption that A is not an eigenvalue of (3.9),, imply that P2,(£, A) tends
to ê2R(A) at £ = ±oo . The difficulty is that the asymptotic behavior of Êt, a
solution of (3.9),, which is obtained as a limit of P2(£, A, e) for finite £ as
£ —> 0, is not known at this point. More precisely, although the limits

(5.29a) lim ÊAÇ, A, e) = ê2(A, e),        e>0,

(5.29b) limÊ2(C,A,E) = Ê^,A),        £^0,

are known, it has not yet been proved that the second limit is uniform in £
for |£| > a > 0, and so, the possibility arises that E2 and Pt could have sub-
stantially different asymptotic behavior as £ —► ±co . The key to characterizing
that of Ê2 is to first determine the behavior of A, for large |£|. In fact, we
will show that Pt coincides identically with E2R by showing that Et tends to
ê2R(A) at £ = -co. (Recall that this condition uniquely defines E2R.) Once
this has been established, a similar argument will imply that E^ and Ê2 have
nearly the same behavior near £ = oo, which will complete the proof.

It will be convenient at this point to introduce a new local coordinate system
on CP3. Let CP^   denote the copy of CP2 inside CP3 along which P2 = 0
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in the fibers and, given a > 0, let

CPQ3 = {FeCP3:/>(T,CP2)>a},

where p is the metric on CP introduced earlier. For Y in CPQ3 we may use
local coordinates

(5.30) BX=PX/P2,        B2 = QJP2,       S = Q2/P2;
the slow projectivized equations can then be expressed in (Bx, B2, S) as

EÈX =B2-eBxS,
(5.31) £B2 = -9B2 - [AXX(C, e)Bx - AX2(C, e)] - eB2S ,

S = C(£, A, £) - S2 - e9S - A2X(C, e)(Bx - //(£, A, e)),
where H and C are as in (5.2) and (5.4). In the following, (Bx, B2, S) will
denote the solution of (5.31) associated with P2 , which is obtained by forming
the quotients (5.30) from any representative E2£iCxE2.

Proposition 5.9. Suppose that P2(£, A, e) £ CP3 for a < |£| < A, where A <
oo, for 0 < £ < I and for some a > 0. Given ô > 0 there exists ë = ë(<5) such
that

\B2\<S,        \BX-H(C,A,£)\<0
on a < Id < A for e < ë(<?).
Proof. The proposition simply states that E2 remains near the slow subspace
%s in terms of the local coordinates (Bx, B2, S). This is a consequence of
Corollary 5.6. It can also be seen directly from the equations (5.31) by noting
that the hypothesis Ê2 e CPa is equivalent to a uniform bound

|5,|,|fi2|,|S|<L,    a<|£|<^,

where L depends only on a and the metric p on CP since without loss of
generality we can take P2 = 1 in (5.30). The proof then proceeds by assuming
that either

\B2\>S   or   \BX -//(£, A, e)\>S
for some sequence £n —> 0 ; it is then easily seen from the first two equations
in (5.31) that the postulated uniform bounds on |Pj| and |P2| would then be
violated in slow (£) time of order Le/<5.

We can now complete the proof of the theorem. The solution Et is deter-
mined by the equation (5.5), for Zt. This equation can be expressed in the
local coordinate St = Q2JP2it as

(5.32) St = CR(Ç,A)-S2.
Noting that

±[C,(-co, A)]x/2 = mZ(A),m-p(A),        ±[C,(+oo, A)]l/2 = m+n (A), m+p (A),
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where the latter quantities are as in (3.7c), it follows that (5.32) is hyperbolic
at £ = ±oo with saddle points at each end. It follows that the only possible
behavior for P„(£, A) as £ -* -co is one of the following

(a) £,(C,A)-*¿(A),
(b) f,(C,A)-í¿(A).

We contend that the convergence is as in case (a). Assume to the contrary that
case (b) occurs. This is equivalent to supposing that St(Ç, A) tends to m~(A)
as £ —► -co.

The asymptotic system associated with (5.32) at £ = -co is

(5.33) 5 = C,(-oo, A) - S2 = -(rnn(A) -S)(m~(A) -S).

Since Rem~(A) < 0 and Re m~(A) > 0, the former critical point is a repeller
and the latter critical point is an attractor. Let r\ > 0 be given, and let A c C
be a repelling neighborhood of m~(A) for (5.33) of radius n > 0. We will
show that there exists £t < 0 such that 5(£, A, e) £ N for all sufficiently small
£ > 0 and for all Ç < C. •

By hypothesis, there exists £, < 0 such that A„(£, A) £ N for all £ < £, ;
here £t depends only on n . By (5.29b) it follows for each fixed £ < £t that

(5.34) S(C,A,e)£N
for all sufficiently small e , where (Bx, B2, S) are the local coordinates (5.30)
for E2.

We claim that there exists a > 0 depending only on n such that E2 £ CP3
whenever £(£, A, e) £ N and £ < £j. To this end, note that by (3.7b, c) and
by Corollary 2.2 we can express the spanning vectors P2 and F3 for X5(£, A, e)
as

F2(C,A,e) = (C,(£, A) ,0,1, mp(C, A))' +tf(S),
P3(£, A, £) = (C,(£, A), 0, 1, mn(C, A))'+cf(S),

where ô > 0 is arbitrary and e is sufficiently small relative to ô ; from (3.7b)

Vwe have that mn(Ç, A) = -m (£, A). Assuming that P2 6 CP^ for some a > 0
it follows that E2£7C XE2 can be chosen so that

E2(C,A,£) = (Bx,B2,l,S)   at(C,A,£).
By Corollary 5.6, there exist a, b £ C such that P2 = aF2 + bF3 + cf(ô), so
that a + b = 1. From the above it then follows that at (£, A, e)

E2(CR(C,A),0,l,(a-b)mn(C,A))' + cf(o)
for sufficiently small e . It follows that \BX\, \B2\, and |5| will be uniformly
bounded while S remains in A, so that P2 will satisfy the estimates in Propo-
sition 5.9 for all sufficiently small e and for all £ < £, for which S1 remains
in A.
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The third equation in (5.31) for £ can be expressed as

S = CR(-oo,A)-S2 + d(i;,A,E),
(5.35) d(C, A, e) = C(£, A, e) - C,(-oo, A) - e9S

-A2X(C,e)(Bx-H(C,A,e)).

This is a perturbation of the asymptotic equation (5.33). There exists d > 0
depending on r\ such that if \d(Ç, A,e)\ < d, then A is a repelling neigh-
borhood of m~(A) for equations (5.35). By Corollary 2.2 and Proposition 5.9
there exists £„ < £¡ such that \d(Ç, A, e)| < d for £ < Çr and sufficiently
small e, provided that A(£, A, e) £ N. If we now choose e so small that
(5.34) holds at £ = £„ the above remarks show that the set A is negatively
invariant for (5.35) for all £ < £„. It then follows that P2(£, A, e) remains in
a small neighborhood of ê3R(A) as £ -> -oo , contradicting (a) of Theorem 5.1.

We have now proved that Et converges to ê2R(A) as £ —> -co. This con-
dition uniquely determines Et, and so Et and P2, coincide identically for
£ < 0. Furthermore, by part (b) of Theorem 5.3, Êt and P2, satisfy the
same matching condition across £ = 0 and so they coincide for all £ > 0. By
the hypothesis in (c) of Theorem 5.3, E2R and hence, Êt, tends to ê2R(A) as
£ —> +00 . The proof of the theorem is completed by constructing a positively
invariant set N for (5.35) about the attracting critical point mp (A) for the
associated asymptotic system at £ = +cc. This, together with Proposition 5.9,
forces E2 to remain in a neighborhood of ê2(A, e) near £ = +co . The details
of this part of the proof are the same as the argument given for £ near -oo
and they will therefore be omitted.

VI. Computation of the Chern number

A. The Whitney sum decomposition. We now turn to the bundle If = ê'(e) over
iS whose construction was sketched in §IIIE. The crucial point in forming this
bundle is that A £ K must not be an eigenvalue of (3.3),. Corollary 4.5 and
(c) of Theorem 5.3 together imply the following result.

Theorem 6.1. Suppose that A £ K is not an eigenvalue of either (3.9),, or of
(3.9),, . Then there exists ë > 0 such that A is not an eigenvalue of (3.3), for
0<£<£.

It has previously been described how A may be chosen so that the first
condition is satisfied (see §IVD). Later (see §VIE) we will show that a similar
choice of A will also suffice in satisyfing the second condition.

Corollary 4.5 and Theorem 5.3 yield further insight into the structure of
the 2-plane bundle f^e). In particular, these results allow us to continuously
extend êx and ê2 to [-1, 1] x A so that the bundles can be capped at x = -1
and t = +1 in a manner analogous to that of <§*(e) (see §IIIF). This procedure
yields a pair of line bundles «^(e) and ^(e) over S . It then follows from a
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general construction that
r(e) = ri(e)©g2(e)

and that

(6.1) Cx(ïï(£)) = Cx(gx(£))+Cx(g2(£))
for sufficiently small e > 0 (see remark following the main theorem in [AGJ]).
The computation of c, of lf¡(e) and f2(e) proceeds as follows. We will define
certain reduced line bundles lf¡, and <o2R directly from the reduced equations
(3.9),, and (3.9),, . The geometric information contained in the estimates of
§§IV and V will then enable us to construct equivalences between ^(e) and
WiR , i = 1, 2. Finally, the spectrum of each reduced eigenvalue problem is
characterized, and the Chern number theorem of [AGJ] is used "in reverse" to
compute the cx of the reduced bundles.

By Lemma 3.3, the proof of the Stability Theorem will be complete if it can
be shown that cx(^(£)) = 1. This is proved in Lemma 6.6 in subsection E.
B. The reduced bundles. The fast reduced bundle, If,, , and the slow reduced
bundle, %2R , are defined as follows.
Definition of If,, . Since A € A is not an eigenvalue of (3.9),, , for each such
A there exists a solution êXR(Ç,A) of the reduced projectivized equations (4.22)
which connects the fast unstable direction êx~RC(A) in the left-hand corner at
£ = -co to the fast unstable direction êXRC(A) in the right-hand corner at
£ = +00. The variable £ is compactified through a reparametrization £ —► x
where -1 < x < 1, with t(±oo) = ±1. In particular, (4.22) is augmented with

(6.2) t' = k(1-t2),        t(0) = 0,
where k > 0. We may therefore regard £„(£, A) as a function of (x, A).

The base space for §*,, is

(6.3) P = {-l}x A°U(-1, 1) x AU{1} x A°
(recall that A is the region interior to A). Our solution ê,,(£, A) is chosen
so that

¿i/?(T>¿) -^lrcW    as T-»±l,  A€ A,
where êXRC(A) is the image of the fast unstable direction in the left- and right-
hand corners, and since efRC(A) are both well defined for A £ K U A we can
continuously extend êXR to all of B by defining

êXR(±i,A) = êfRC(A)     (a e AuA°).
The bundle WXR is defined as the pullback of the universal bundle induced by
the map ë. R : B -» CP3 :

'\r r,(c4)

B   _Î!«-»    CP3
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(see §IIIF), i.e., the fiber over b £ B is the complex line in C4 associated with
êXR(b).

We remark that p2 = q2 = 0 in n êXR, hence the ambient space can be
regarded as B x C2 instead of B x C4 .

Definition of ê'2R. Let E2R(Ç,A) be the projectivization of the solution
P2,(£, A) defined above the statement of Theorem 5.3. We reparametrize E2R
by changing £ to P, where P = P(£) satisfies

(6.4) P = k(1-P2),        P(0) = 0
and -1 < T < 1. Express the reparametrized curve as Ê2R(T, A). The base
space B is the same as in (6.3) with x replaced by P

For £ £ K, E2R(T, A) tends to ê2R(A) as T tends to ±1 since A is not an
eigenvalue of (3.9)JÄ . The map E2R can therefore be continuously extended
to the caps by defining

Ê2R(±l, A) = ê2R(A),        (A GAU A0).

Our map is not well defined at T = 0 since the original solution E2R is
discontinuous at £ = 0. In order to obtain a continuous bundle, consider the
left and right halves

P_=Pn{P<0},       P+ = Pn{P>0}.

Bundles <£2R and %2R can be defined over each hemisphere B_ and B+ from
the pullback of E2R restricted to B_ and to B+ . A bundle %2R over the whole
sphere is constructed by gluing the fibers over P_nP+ = {0}xA together in
a suitable manner.

In order to specify the gluing map we first recall that Ê2R was constructed
from a solution Z2,(£, A) of the projectivized, reduced equations for the 2-
components. Z2, is continuous across £ = 0 and decays to the unstable eigen-
vectors of P,(±oo, A) as £—>±oo. For Z(£, A) £ 7t_1Z2,(£, A), P2,(£, A)
was defined by the map /,(£,/): C  —► C4 , namely

E2R(C,A) = iR(C,A)Z(C,A).
Let

iR(A)= lim /,(£,/).

The fibers of W2R over B+nB~ can then be expressed as %2R = span{/^(A)Z} ,
— 1 "*■ 2 1

where Z £ tí Z,(0, A) and n: C —> CP is the projection map. By fixing a
choice of Z we obtain an isomorphism

where &\A denotes the restriction of a bundle If to a subset A of its base
space. In particular, define

9RifyRWZ = iRWZ
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and extend cpR(A) linearly. The bundle F2, is defined by the "clutching" op-
eration,

%IR - %2R Uc>Ä %2R

(see Atiyah [A]). This is the bundle obtained by gluing W2R together at {0} x A
via the equivalence relation

y. ~ <pRWy-.

where y_ £ n~ lf2^|(0, A).

The following facts are proved in [A].

Lemma 6.2. ^2R is a bundle over B (i.e., it satisfies the local triviality condition
at {0} x A), and it is uniquely determined modulo bundle equivalences by the
homotopy type of the gluing map cpR .

We remark that W2R can be deformed to an equivalent bundle È2R obtained
from §2, by projecting the fibers onto their 2-components. In particular, for
Z £ iCxZR(t\, A), let <§2,(s) be the bundle formed analogously to %2R via the
maps defined by

¿,(£, A, s)Z = (sCR(C, A)P2, 0, P2, Q2)',
iR(A,s)= limi /,(£, A,s),

9rÍ*-> s)[i~(A, s)Z] = iR(A, s)Z

Clearly lf2,(0) = lf2, and IP2,(1) = IP2, ; it follows from Lemma 6.2 that If,,
and IP,, are equivalent bundles.

C. Continuation of l?¡(e) to lf„ . In this section we shall prove that lf,(e) and
lf„ are equivalent bundles. It will first be convenient to reparametrize ^,(e) so
that its T-scaling agrees with that of lf„ . To this end, we replace the t-equation
formic),

x = ek(1 - x ),

by equation (6.2). This reparametrization of x stretches the fibers over the
transition to a layer of cf (I), while it compresses the fibers over the slow man-
ifolds into intervals of cf(£) at x = -1 and x = +1. This clearly does not
change the topology of f, (e) ; more precisely, the rescaling induces a homeo-
morphism h of the base space B of If, (e) ; the new bundle obtained by the
pullback operation /¡*lf,(e) is equivalent to f, (e). In the following we shall
regard the T-scaling as given by (6.2) and continue to denote the associated
bundle by Wx(e).

The next lemma shows that #¡(e) and ^,, are close over the interior of
[-1, 1] x A ; however, they still differ significantly near the ends.
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Lemma 6.3. Let êx(x, A, e) and êXR(x, A) both have x parametrized by (6.2).
For each subinterval [t, , x2] c (-1, 1) we have that

limêx(x,A, e) = êXR(x, A)

uniformly for (x, A) £ [xx, x2] x A.

Proof. The condition requiring that x £ [t, , x2] is equivalent to supposing that
£ lies in a compact interval [£,, £2]. In the following, it will be convenient to
replace t with £.

If the lemma were false, there would exist A £ K, £t e [£,, £2], êt £ CP ,
and £n —> 0 such that

(6.5) limi ê,(£, ,A,en) = em¿ ê„(£,, A).
e„-0

Let A, be the copy of CP1 inside CP3 for which p2 = q2 = 0 in the fibers.
We claim that êt £ A,. Let et £ it~ êt and suppose to the contrary that at
least one of pr , q2. is nonzero. Let et(c¡) be the solution of (3.9),, satisfying
£»(£*) — e„ ; note that Pr and q2. are constant along ej£).

We claim that p,,(£) and ?,„(£) remain uniformly bounded for all £ < £».
If this were not the case it is easily seen by examining the equation for qu/pu
that £?„(£) would then tend to the fast stable direction in the left corner ê4RC(A).
Hence there would exist £ < ££ such that ét(£) £ Qs(£) ; recall that Qs is
a negatively invariant set containing ê4. However by (6.5) and Gronwall's
inequality it would then follow that êx e Âs(£) at £ = £, contradicting the
defining condition of ê, at -oo .

Thus /?,„(£) and #,„(£) remain uniformly bounded for all £ < £*. It follows
that ê„(£) remains uniformly bounded away from A, for £ < £,, say

(6.6) ^(£),A,)><5
for some â > 0 and £ < £». From the form (3.7b) of the fast reduced unstable
eigenvector it follows that there exist nL and dL depending on ô such that

/>(n"(£),A,)<á/4
for £ < ZL(dL) and for all sufficiently small e . However by (6.5) and Gronwall's
inequality it follows that

p(êx(iL,A,En),ê^L))<ô/4

for sufficiently small e. Since é, £ Í2"(£) the previous two inequalities contra-
dict (6.6).

We have now established that êt £ A,. Since there is a unique solution of
the projectivized reduced system (4.22) which tends to êXRC(A) as £ -* -co,
namely £,,(£, A), it suffices to show that eXt(¿¡) also satisfies this condition.
Since et(¿¡) £ A, for all £ the only alternative would be that ét(£) tends to
e4RC(A) as £ —» -co. This possibility has already been eliminated above.
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We have proved that Wx(e) and %XR are uniformly close in the interior of
[-1, 1] x A. We next introduce a family of intermediate bundles SF(o, e)
depending on a pair of parameters a = (oL, of), which will equal f,(e) on
[aL, er,] x A but which will excise the portions of %x (e) over the slow manifolds.
Let a be chosen so that

(6.7) -1 < oL <0<oR < 1.

The base space Ba of &~(o, e) is

where
Ba = bLUbù\JbR,

bL ={oL) x A (left cap),
b0 =[aL, oR] x A   (sides),

bR =iaR} x K°       (riß111 caP) ■

The bundle &(a, e) will be defined as the pullback /T, (C ) of the universal

.(bundle Fx (C4) over CP3 by a certain map

/    = f:B  ^CP3,
which is defined below.

First we need to specify the appropriate ranges for aL and aR . Select values
£L(e),£,(e) so that

\x(Çl(e) , e) - xL\ ^ 0   ase-+0,
|x(£,(e),e)-x,H0   ase^O,

where xL and xR are the left and right corners of the singular front. Let
ol(e) and a,(e) denote the values of x associated with £L(e) and £,(e). We
suppose in addition to (6.7) that aL and ct, are selected so that

(6.9) aL<aL(£),        or(e)<or.

We remark that it follows from (6.8) that

(6.10) aL(e)-*-1   and   aR(s) ^>+1    ase->0.

We can now define the map fa e. Let êx (x, A, e) denote the fast unstable
bundle in the present scaling for x ; define

fa,Áx'^) =êl(x,A, e)   for (t, A) e bLub0.

Since we cannot control êx as x —> +1 for A £ K we define fa on the
right cap bR differently. Note that for x > cr,(e) the underlying wave is near
the slow manifold SR and, so, the fast unstable eigenvector fx(x, A, e) of the
frozen matrix a(x, A, e) is well defined. Furthermore, given a choice ex(A, e)
of the fast unstable eigenvector at x = +1, fx may be selected so that

(6.11) lim f(x,A,E) = e,+ (A,E)   (AgAuA0).
T->+l
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Figure 6.1

By the elephant trunk lemma, êx(x,A,e) is uniformly approximated by
/x(x,A,e) for x > ctr(e) and for A e A. For aR > <7,(e) we can there-
fore select a representative ex (aR, A, e) in the fiber over êx (aR, A, e) such that
ex and fx are uniformly close for all A £ K. Select a thin annular region
A c bR as depicted in the figure, and let <p(A), \p(A) be a partition of unity in
bR such that tp = 1 near A and tp = 0 in A \A . By the previous remarks it
follows that for x > ctr(e) , the vector

fa,ÁaR^) = <PWex(oR,A, e) + ip(A)f2(crR,A, e)

is nonvanishing for all A £ A U A and matches up continuously with ex along
A. We can therefore define fg e(aR, e) to be the image of the above vector in
CP  , to complete the definition of fa    .

We can now show for sufficiently small but fixed e > 0 that each bundle
y(<j,e) associated with fa ( is equivalent to If,(e) for all o satisfying (6.7)
and (6.9). Let ha: B —> Ba be a homeomorphism mapping the sides, left cap,
and right cap of B onto the corresponding subsets of Ba . We can clearly
arrange that ha is the identity when a = (-1, 1). It suffices to show that the
maps fa e o ha : B —> CP are all homotopy equivalent to ê,. This follows
immediately from (6.11) and the manner in which f     was defined over the
right cap, bR . The family {fa £} is clearly the desired homotopy as a varies
from (aL, oR) to (-1, 1).

Now let cr(e) = (ol(e), or(e)) , f = /ff(e)e, and &(e) = ^(rj(e), e) ; we
have shown for all sufficiently small but fixed e > 0 that &(e) is equivalent
to fj(e). We finally claim that 9~(z) is equivalent to ^„ . If Be = B.. and
h? = h,c, is the homeomorphism of B onto 5 described above, it suffices to
show that

lim(fohR(b)) = êXR(b)

uniformly for b £ B. To this end, let p be a metric on CP   and let 6 > 0
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be given. By (6.8), (6.11), and the elephant trunk lemma it follows that there
exist dL, dR, nL, nR depending on 6 , and xL, t, associated with ¿¡L(dL) and
£,(i/,) such that

p(Ù"(x), ê~XRC(A)) < ô   for (x,A)£ [ol(e), xL] x A,

p(Ùu(x), êx+RC(A)) < ô   for (x,A)£ [xR, ctr(e)] x A ;

recall that efRC(A) are the limits of êXR(x, A) as x -* ±1. This sets the value
of xL and t, independently of e. Since /, and êx both lie in Q"(t) for
x < xL and x > xR it follows that there exist t, < xL and x2 > xR such that

p(feohe(x,A),êXR(x,A))<ô

for t < t, or t > t2 and all appropriate A. Here t, and x2 depend only on
xL and t, and the rate of convergence of êXR(x, A) to its limits at x = ±1.

With t, and x2 now fixed as above we can apply Lemma 6.3 to conclude
that

p(fE°hE(b),êXR(b))<S
for b £ B n {t, < x < x2} for all sufficiently small e .

We summarize the above result in the following proposition.

Proposition 6.4. The bundle f,(e) is equivalent to %?XR, and

c,(f,(e)) = c,(lf„)

for all sufficiently small e > 0.
D. Continuation of lf2(e) to %2R. By Theorem 5.3, ^(e) is closely approxi-
mated by W2R away from the transition layer which, in the P-scaling in (6.4),
coincides with the complement of an interval of cf (e) about T = 0 in [-1, 1].
However, the bundles will significantly differ in the transition. The homotopy
of ^2(e) to ¿2, proceeds in three steps. First we regard e > 0 as small but
fixed and introduce a family of bundles %?2(S, e) which depend continuously
on parameters A = (SL, a). Fix SL, SR satisfying

(6.12) -1 <SL<0<SR <+l;

the parameter o assumes values in [SL, SR]. %2(S, e) will consist of the
restriction of ^(e) to the complement of [SL, a] in [-1,1], with the two
faces T = SL, T = o glued together in a suitable manner.

More precisely, let the base space of %2(S, e) be a sphere Bs obtained by
gluing the hemispheres

b_(SL) = Bn{T<SL},        b+(o) = B n {P > a)

together along their boundaries. After the identification has been performed,
b_(SL) and b+(a) intersect along a curve K, which is a copy of A in Bs.
Let

%2-(SL, e) = £2(£)\b_(SL),        g2+(a, e) = Z2(E)\b+(o).
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To complete the construction we define a gluing map <ps e,

<pSe:g2-(SL,£)\K^g2+(a,£).

The flow associated with (3.3), provides a natural way to construct such an
isomorphism. Let £L and £ff be the values of £ respectively associated with
T = SL and a , in (6.4). Let P2(£, A, e) be the solution of (3.3), with data
EL at £ = £L, where EL lies in the fiber of ë?2~(SL, e) over (SL, A), and
define

<PS,eEL=E2ÍCa>*>e)-
The bundle %2(S, e) is then defined to be

r2(A,e) = g2-(Sx,e)Ui,s£g2+(a,e).

When a = SL, cpa £ is the identity so that

S2{SL,SL,t)*S2ie).

Now increase a from SL to SR . Since the flow map is continuous for e > 0
it follows that cps e form a homotopy of isomorphisms. Thus if S = (SL, SR)
it follows from Lemma 6.2 and the above that

W2(z) = W2(S,t).

The next step of the homotopy consists of fixing S = (SL, SR) as in (6.12)
and allowing e to tend to zero. By (a) and (c) of Theorem 5.3 it follows that

limP2(P, A, e) = E2R(T, A)

uniformly for (T, A) £ b_(SL) U b+(SR). It also follows that the gluing maps
cps tend to a limit cps 0 as e —► 0 which is explicitly determined as follows.
Let £L, £, be the values of £ associated with SL, SR and let Z,(£, A) be a
solution of (5.3), such that

P2,(£, A) = [/,(£, A)ZR(C,A)f.
By (a) of Theorem 5.3 it follows that

Vs,oVrÍsl > X)zrÍSl > *)] = ÍrÍCr » ̂ ZrÍ^r . X) ■
Define %2(S,0) by

^2(S,0) = ^2,|è_(AL)U    ô+(5,);
40

it follows from the above that f2(e) = ^(5, 0) for each S = {SL,SR) satisfy-
ing (6.12).

The final step is to allow SL to approach zero from below and SR to ap-
proach zero from above in ê?2(S, 0). By (b) of Theorem 5.3 it follows that
cps 0 approaches the glueing map cpR used in the definition of £2R .

We summarize the above results in the following proposition.
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Proposition 6.5. For all sufficiently small e>0, £?2(e) is equivalent to e?2R and

CX(W2(£)) = CX(%2R) = CX(%2R),

where %2R is the bundle obtained from W2R by projection onto the 2-components.

E. The Chern number computation. The proof of the Stability Theorem will be
completed by establishing the following lemma.

Lemma 6.6.  c, (If (e)) for all sufficiently small e > 0.
Proof. By (6.1) and Propositions 6.4 and 6.5 it suffices to show that the follow-
ing are true:

(1) cx(gXR) = l,
(2) cx(i2R) = 0.

Proof of (1). The bundle lf„ is constructed from (/>„(£), <71R(£) ,0,0)', the
solutions of (3.9),, whose 2-components vanish identically. The equations
(4.17) satisfied by the 1-components are the linearization about the monotone
travelling wave solution of the bistable equation

w1( = «i    +uxfx(ux, a)

which connects w, =0 to ux = p(a). It is known that such waves are linearly
and hence, nonlinearly stable. In particular, it follows from the theorem of Fife
and McLeod (see [FM]) that (4.17) admits precisely one eigenvalue in A which
occurs at A = 0 ; it is also proved in [FM] that A = 0 is simple. By theorem in
[AGJ] it follows that cfßXR) is the number of eigenvalues of (4.17) inside A
including algebraic multiplicity which, together with [FM], implies (1).

Proof of (2). Since È2R is the bundle obtained by projection onto the 2-compo-
nents of the fibers of lf2,, by the main theorem in [AGJ] it suffices to show
that A is not an eigenvalue of (3.9),, for all A £ Au A . This is equivalent to
showing that equations (5.3), for the 2-components do not admit a uniformly
bounded solution, Z,(£, A), for all such A. In components these equations are

(6.13) P2, = Q2R,        Q2R = C,(£, A)P2R,
where

CR(Ç,A) = A-AR2(0-A"{OAR*i{0.R 22 A-ARX(Q

Recall that (Atj(Q) is the Jacobian matrix of (uxfx, u2f2) evaluated at the
(discontinuous) slow singular limit A,(£). In particular, £/,,(£) = 0 for £ < 0
and £/,,(£) = p(U2R(Q) for £ > 0. From the hypotheses in §IIA and the
above, it follows that AR2(QA2X(Q is strictly negative for £ > 0 and vanishes
identically for £ < 0. It should also be noted that A22(Q is negative at £ =
±co ; however this term may change signs along the right branch of the slow
manifold ux = p(u2).
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It will be convenient to consider the projectivized variable Z,(£, A) associ-
ated with a solution Z,(£, A) of (6.13). The equations for Z, , (5.5), , can be
expressed in terms of the local coordinate A, = Ô2,/P2,, which satisfies

(6.14) SR = CR(Ç,A)-S2R.
The roots of the asymptotic systems for (6.14) are

rfW = sJCR(±oo,A),        rf(A) = -^CR(±cx>,A);
we take the standard branch of the square root so that Re \fz > 0 if Re z > 0.
It follows that rf(A) are attractors and r2(A) are repellers for the asymptotic
systems associated with (6.14).

In order to show that A £ AuA° is not an eigenvalue of (3.9)^, it suffices to
show that the (uniquely determined) solution SR(Ç,A) which tends to r~(A) as
£ —► oo does not tend to r2(A) as £ —► +co, since the latter condition implies
that every solution of (6.13), which decays to zero as £ —> -co becomes
unbounded as £ —► +oo.

Since SR is a complex variable it will be convenient to write (6.14) in real
and imaginary parts. To this end let

A = a + iß ,
C,(£, A) = g(C, A) + ih(C, A),
5,(£,A) = a(£,A) + /T(£,A),

so that (6.14) is equivalent to
2 2(6.15) à = g + x -a ,        x = h-2ax.

Here, g and h are given explicitly by the expressions

<* ,r,    <2JÇ)4m  ,„, _ A*
(a-Afx(Q)2 + ß2

g(Ç,A) = a-AK2(Ç)- x2;R'2xrJ   Aa -<(£)),

h(t,A) =
(a-ARxx(Q)2 + ß2

ß

We shall treat the case of real A and complex A separately.

Case 1 : ß ^ 0. Without loss of generality we can assume that ß > 0. By
hypothesis (H2) in the statement of the Stability Theorem it then follows that
h(C, A) > 0 for all £ . In particular, we have for such A that

Imrf(A)>0,        Imr2±(A)<0.
From the second equation in (6.15) and the positivity of h it is immediate that
the half-plane {(o, x) : x > 0} is positively invariant for continuous solutions
of (6.15). If the solution SR(Ç, A) remains uniformly bounded for all £ it
follows that it cannot tend to r2 (A) as £ -► +oo ; indeed it must then tend to
rx+(A).
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It may occur that SR(t,, A) blows up in finite or infinite time. In this case
we must return to the coordinate Z, on the Riemann sphere, CP . Viewing
CP as a sphere over the (a, x) plane with south pole at the origin, the point
at infinity corresponds to the north pole, and the closure H of the image of the
half-plane {t > 0} is a hemisphere with boundary passing through the north
pole. If A,(£, A) blows up in infinite time, then its co limit set lies in H and
it must therefore be different from r2 (A).

Suppose then that A,(£, A) becomes unbounded as £ -> £0 for some |£0| <
oo . Since A,(£, A) tends to rx(A) £ H as £ -> -oo we can assume that £0 is
the smallest value of £ below which 5, stays in H and remains finite.

Suppose that Z,(£, A) exits H for some £ > £0 . A contradiction is obtained
as follows. Let T = SR so that P(£, A) is well defined for all £ near £0. Let
T = s + it; the equations for s and / are

(6.16) s= I + g(t2 - s2) + 2hst,        i = h(t2-s2)-2gst;

we also have that
O "> ->   i í   —2   .     2 > „2.2a + x a + x

By hypothesis, at least one of a, x blow up as £ —> £0 ; it follows from the above
that both s and / tend to zero as £ -» £0 . Furthermore, since Z,(£, A) £ H
for £ < £0 it follows that t(Q < 0 for £ < £0.

A contradiction is obtained by expanding s(£) and t(Q in Taylor series
about £ = £0. From the first equation in (6.16) we have that

*(£) = (£-£0) + ^(£-£0)2.

From the second equation in (6.18) we have that i(0) = 0 and t(0) = 0, since
5(0) = t(0) = 0. It then follows from the expansion for s(Q that

t(0) = -2h(C0,A),

so that
/(£) = -§/*(£0,a)(£-£0)3+^(£-£0)4

for £ near £0. This contradicts i(£) < 0 for £ < £0 .
We remark that if £0 = 0 then h(Ç, A) is discontinuous at £0. However,

the above h and its derivatives are well behaved as £ —> 0~ ; we can therefore
apply the previous argument, which only depends on the values of 5 and t for
£ < £0 > by replacing h with a function H(C, A) extends h for £ < 0 smoothly
across £ = 0. A contradiction is still obtained from £ < 0 as before.

Case 2: ß = 0. In this case h = 0 and from the second equation in (6.15) it
follows that the solution which tends to rx~(A) as £ -> -oo must have x = 0.
The equation for a is therefore

(6.17) à = g(Ç, a) -o2,
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£'rw>o

where

rf{,.).„-4<o-Ä5ia.
a-^,,(£)

We begin by noting that if cr(£, A) is the solution of (6.17) which tends to
rx~(A) as £ —» -oo then

(6.18) a(£,Q)<<7(£,a,)       (£eE)

whenever a < a,. This follows from the observation that for a > 0,

öq5V (A-<(£))2 <(£)2

where the last inequality is hypothesis (H2).   It follows that this inequality
holds for a > -6 for sufficiently small <î > 0. We can always arrange for this
through a suitable choice of the curve A. This inequality, which is valid for
-oo < £ < +00 also implies

d_
da

for a > -Ô.  The latter condition implies (6.18) for £ sufficiently negative;
(6.18) then follows from (6.19) for all £ by a standard comparison theorem.

The proof will be complete if it can be shown that

(6.20) lim <r(£,0) = r+(0).

It will be convenient to return to the original equations (6.13). Let g±(U2) be
the nonlinear functions in the slow limit equations (2.3)^ . It follows that

c,<c,o, = («»     (C>0)-*       \g-{vmm   (c<o),
where U2R(Q is the w2-component of the slow singular limit. It follows that
(6.13) at a = 0 is the equation of variations about the slow singular limit.

If (P2,(£), Q2R(Q)' is a solution of (6.13) which decays at £ = -co it
follows that for £ < 0

iP2RÍO,Q2RÍO)t = ™iu2RÍO,v2RÍO),

for some w £ C, i.e., it is a scalar multiple of the derivative of the slow singular
limit. Without loss of generality we may take w = 1.

The graph of the slow limit (U2R(Q, v2RiQ) is depicted in Figure 6.2.
The solution (P2,, Q2Rf is the tangent vector to this curve for £ < 0. Since

the left and right limits of the tangent vector to (U2R(Q, V2R(Q) are transverse
to one another at £ = 0 (see Figure 6.2) it follows that (P2,(£), ô2,(£))'
is transverse to (Ü2R(Q, V2R(Q)' for all £ > 0, i.e., these are independent
solutions of (6.13) for £>0.

The stable subspace of (6.13) at £ = +oo corresponds to the critical point
r2(0) of the projectivized equation (6.17) at £ =+oo . Since ^(0) is a repeller
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Figure 6.2

for (6.17) at £ = co it follows that there is a unique solution of (6.17) which is
asymptotic to r2(0) as £ —> +co . One such solution is given by

°2RÍO=V2RÍO/Ü2R(0 (£>0).
It easily follows that every other solution of (6.17) tends to r^(0) as £ ->
+00. Since g2,(£)/P2,(£) is distinct from a2R(s) it follows that (P2,, Q2R)
is unbounded as £ —► +co . Hence A £ A u A   is not an eigenvalue of (3.9),, .
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