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Stability of viscous long liquid filaments
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We study the collapse of an axisymmetric liquid filament both analytically and by

means of a numerical model. The liquid filament, also known as ligament, may

either collapse stably into a single droplet or break up into multiple droplets. The

dynamics of the filament are governed by the viscosity and the aspect ratio, and

the initial perturbations of its surface. We find that the instability of long viscous

filaments can be completely explained by the Rayleigh-Plateau instability, whereas

a low viscous filament can also break up due to end pinching. We analytically

derive the transition between stable collapse and breakup in the Ohnesorge number

versus aspect ratio phase space. Our result is confirmed by numerical simulations

based on the slender jet approximation and explains recent experimental findings by

Castréjon-Pita et al. [Phys. Rev. Lett. 108, 074506 (2012)]. C© 2013 AIP Publishing

LLC. [http://dx.doi.org/10.1063/1.4811849]

INTRODUCTION

The formation of liquid filaments is ubiquitous. It happens whenever there is a droplet

fragmentation.1 Examples of fragmentation are the breakup of a liquid filament stretched from

a bath,2 or the collapse of a liquid film.3 The formation of these liquid filaments is very common in

the breakup of ocean spume, where they influence the properties of the marine aerosols.4 In industry,

the dynamics of filaments are a key issue for the print quality in inkjet printing,5 where elongated

liquid filaments are ejected from the nozzle. For optimal print quality, the filaments should contract

to a single droplet before they hit the paper. Therefore we study the details of the dynamics of these

filaments.

Depending on the viscosity, size and shape of the filament, it may collapse into a single droplet,

or it may break up into multiple smaller droplets.6 A filament collapse resulting in a single droplet is

called stable. A filament collapse into multiple droplets is called unstable. The stability of the filament

influences the number of droplets and their size distribution, after the collapse of the filament.

Since filaments are essentially finite liquid jets, the stability of liquid jets is relevant here.

The earliest reported observations of the stability of liquid jets were done by Savart in 1833,

who observed that a continuous liquid jet breaks up into distinct droplets.7 Plateau reported that a

varicose perturbation of the liquid jet is unstable, if the wavelength of the perturbation is larger then

the circumference of the jet.8 In 1878, Rayleigh derived the dispersion relation for an infinite jet

with a small periodical perturbation.9

The classical Rayleigh-Plateau instability assumes a sinusoidal perturbation with a time depen-

dent amplitude

R(x, t) = R0 + R̃(t) cos

(

κ
x

R0

)

, (1)
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where x is the axial position on the cylinder, and κ is the dimensionless wavenumber of the varicose

perturbation on the surface of the cylinder. The wavenumber is nondimensionalized by the relevant

length scale of the problem, namely, the unperturbed radius of the cylinder, R0: κ = 2πR0λ
−1. In

this linear approximation, the amplitude of the perturbation R̃(t) grows exponentially with time,

R̃(t) = δeω(t−t0), (2)

where ω is the growth rate of the perturbation amplitude, and δ is the amplitude of the perturbation

at t = t0. In the inviscid theory by Rayleigh, ω is inversely proportional to the capillary time

tcap =
√

ρR3
0

σ
, where ρ and σ are, respectively, the density and surface tension of the liquid.

Weber derived the dispersion relation for the Rayleigh-Plateau instability including the influence

of viscosity.10 The relevant dimensionless group for the dynamics of the viscous Rayleigh-Plateau

instability on an infinite cylinder is the Ohnesorge number,

OhR =
μ

√
ρσ R0

, (3)

where μ is the dynamic viscosity. The Ohnesorge number is the ratio of the viscous timescale over

the capillary time scale. The stability of the jet decreases with a decreasing Ohnesorge number.

Weber10 showed in the same paper that the linearized dispersion relation of the Rayleigh-Plateau

instability gives a very good approximation of the exact result. The linearized growth rate of the

viscous Rayleigh-Plateau instability ω is10

ωtcap =

√

1

2
(κ2 − κ4) +

9

4
Oh2

Rκ4 −
3

2
OhRκ2. (4)

For each value of Oh, one dimensionless wave number has the highest growth rate:

κmax = (2 + 3
√

2OhR)−1/2. In this study we assume that the surface of the filament has a random

varicose perturbation at t = t0. A Rayleigh-Plateau instability originating from noise is dominated

by κmax. Substituting κmax into the dispersion relation, Eq. (4), we find that the growth rate of the

fastest growing mode ωmax is a function of OhR only. When R̃ has grown to R̃ ≈ R0, the filament

breaks. Substituting R̃ = R0 and ω(κ , OhR) = ωmax(OhR) into Eq. (2) gives the breakup time tB,

tB = t0 +
1

ωmax (OhR)
log

(

R0

δ

)

. (5)

Experiments have shown that the linear approximation for the breakup time is a very good

approximation.11

In practice, liquid jets are never infinitely long. With the advance of computational power and

experimental techniques, investigating the stability of liquid filaments became possible. Using a

numerical model, Schulkes found that above a certain OhR, the filament collapse is always stable.12

Later Notz and Basaran refined this result by showing that the stability of the filament collapse

depends on both OhR and the aspect ratio Ŵ = 0.5L/R of the filament,13 where L is the length of

the filament. So-called end pinching, first observed by Stone,14 is the cause of the breakup in both

studies.

In a recent experimental study, Castréjon-Pita et al.15 validated the numerical results by Notz

and Basaran13 in the regime of OhR < 0.1, where end pinching is the dominant breakup mechanism.

The experiments however showed unstable filaments up to OhR ≈ 1. In the regime of long viscous

filaments, the breakup occurs simultaneously along the entire axis of the jet, which is characteristic

for the Rayleigh-Plateau instability on an infinite jet (Fig. 1). In the existing numerical studies on

the collapse of the finite liquid filament,12, 13 the initial amplitude of the Rayleigh-Plateau instability

has been set to zero. However, the breakup of the circular cylindrical part of the filament occurs

Downloaded 03 Jul 2013 to 131.155.151.137. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://pof.aip.org/about/rights_and_permissions
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FIG. 1. Sequences of the contraction of a liquid filaments, taken from Ref. 15 with permission. The upper sequence shows

from left to right the stable collapse of a low viscous ligament. We call the moment when the tail droplets are in contact, tM.

The lower sequence shows the unstable collapse of a longer, more viscous ligament. At t0 the filament breaks off from the

big tail droplets. We call the moment when the filament breaks up everywhere tB. The initial properties are Ŵ = 9 and OhR

= 0.04 for filament the upper filament, and Ŵ = 29.2 and OhR = 0.18 for the lower filament.

within finite time, hence δ must be nonzero at t0. Since the experiments show that the circular

cylindrical part of the filament breaks up, δ must be finite at t0. The dynamics of the liquid filament

are governed by three dimensionless groups, namely Ŵ, OhR, and the relative initial distortion

ǫ = δ/R0.

In this paper, the stability of long viscous filaments is predicted with the linear theory from

Refs. 9 and 10. The critical aspect ratio Ŵc, above which the filament breaks up due to the Rayleigh-

Plateau instability before it merges, depends on OhR and ǫ. The results of the linear theory are vali-

dated against the experimental data15 and a drop formation model in the slender jet approximation.16

For very high viscosity, an analogy is found with the viscosity dominated contraction of viscous

sheets.

CRITICAL ASPECT RATIO

The critical aspect ratio Ŵc is defined as the aspect ratio above which the filament collapses due

to the Rayleigh-Plateau instability. This aspect ratio is found by comparing the breakup time due

to the Rayleigh-Plateau instability with the time that the filament needs to merge into a spherical

droplet. The analysis of the collapse of the liquid filament starts at t0, when the filament pinches off

from another body of liquid at both sides. The filament contracts due to the surface tension. As the

filament contracts, bulges will form at the end of the filament. These bulges are called tail droplets.

The fluid that has not yet been entrained by the tail droplets remains stationary. For low to moderate

viscosities, the typical velocity of these tail droplets can be found from balancing the momentum

flux into the tail droplet with the capillary forces act on it. This typical velocity is called the capillary

velocity, ucap =
√

σ
ρR0

.17

When the collapse of the filament is stable, the tail droplets move towards the center of mass,

where they merge into one droplet. The distance that the tips of the jets have to travel is given by

half the length of the filament minus the diameter of the tail droplet 2Rd at the moment of merging.

Downloaded 03 Jul 2013 to 131.155.151.137. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://pof.aip.org/about/rights_and_permissions
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FIG. 2. Parameter study of the stability of the contraction of a filament. The result of the linear theory, Ŵc, is shown for

ǫ = 0.01 in the dashed dotted line. The linear theory is confirmed by the results of the numerical model,16 solid line. Stability

of low viscous filaments has been studied numerically by Notz and Basaran,13 dashed line. The experimental results by

Ref. 15 are shown (circles for unstable, disks for stable regime). Linear theory correctly predicts the critical aspect ratio for

filaments of Oh > 0.1.

The minimal time for the tail droplets to merge is called the merge time tM,

tM =
0.5L − 2Rd

ucap

, (6)

where Rd is the radius of the tail droplets at the merge time tM. At that time, each of the two tail

droplets has accumulated half of the initial volume of the liquid filament. This results in the tail

droplet radius

Rd =
(

3

4
Ŵ

)1/3

R0. (7)

In the calculation of Rd the filament is considered as a circular cylinder of length L. The merge time

tM is rewritten as a function of Ŵ and tcap, using Eqs. (6) and (7), and ucap =
R0

tcap

:

tM = tcap

[

Ŵ − (6Ŵ)1/3
]

, (8)

this shows that tM is nearly proportional to Ŵ, with a small correction since the tail droplets have a

finite radius.

The Rayleigh-Plateau instability causes a filament to break up when tB < tM. When tB = tM,

a slightly longer or less viscous filament would collapse into two or more droplets, rendering the

collapse unstable. From this balance, the critical aspect ratio Ŵc can be found. An expression for

the critical aspect ratio Ŵc as a function of ωmax(OhR) and ǫ is found by balancing Eqs. (5) and (8),

putting t0 = 0,

log (ǫ)

tcapωmax (OhR)
+ (6Ŵc)

1
3 − Ŵc = 0. (9)

In Fig. 2, this critical aspect ratio is shown in the phase diagram of Ŵ versus OhR, for ǫ = 0.01.

When the viscosity dominates, the filament contraction is stable. Eggers and Fontelos showed

that isolated inertialess droplets cannot break up.18 In the absence of inertia, the Rayleigh-Plateau

instability no longer causes the filament to break up. Since the presented theory uses the Rayleigh-

Plateau instability to find Ŵc, it is of interest to find the upper viscous limit where the filament can still

break up. An analogy with the capillary contraction of a liquid filament is the capillary contraction

of a liquid sheet.19, 20 During the contraction, a liquid rim forms at the edge of the sheet, analogue

to the tail droplet that forms in the contraction of a liquid jet. Brenner and Gueyffier showed that

Downloaded 03 Jul 2013 to 131.155.151.137. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://pof.aip.org/about/rights_and_permissions
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the spatial extend of this rim can be estimated with the Stokes length, Lμ = μ2/(ρσ ).21 When Lμ

is larger than the length of the sheet, the rim does not form and the sheet contracts homogeneously.

We expect that the axial extend of the tail droplets on the viscous filaments is also the Stokes length.

Viscosity dominates the contraction of a viscous filament when the Stokes length is larger than half

the filament length, since the filament has two ends. The ratio between the Stokes length and half

the length of the filament can be written as the length-based Ohnesorge number, OhL, with

Oh2
L =

μ2

ρσ

2

L
, (10)

where the first factor on the right-hand side is the Stokes length. When OhL ≪ 1, the Stokes length

is much smaller than the length of the filament; this means that the influence of the axial extend of

the tail droplet on the stability of the filament is negligible. The highest value of OhL in the unstable

region in the phase diagram of Fig. 2 is 0.03, which shows that the stabilizing effect found by

Ref. 18 is not significant in this part of the phase space.

NUMERICAL RESULTS

We use a numerical model to validate the presented linear theory. Equation (8) shows that for

large Ŵ, the merging occurs after many tcap, which is the timescale of the growth of perturbations.

Even very small perturbations may cause a breakup before t = tM in the case of long filaments.

The visualization of the small initial perturbation demands a very high optical resolution. Dedicated

experimental setups have been built to measure the initial perturbation amplitude of a stimulated

Rayleigh-Plateau instability, such as Refs. 11 and 22. Since the Rayleigh-Plateau instability on the

long viscous filaments grows from noise, the breakup events are different for all filaments. As a

result, this phenomenon cannot be observed stroboscopically. In a numerical model on the other

hand, the initial perturbation can be chosen with great precision. Therefore we use a numerical

model to validate the linear theory.

The stability of an axisymmetric viscous liquid filament is modeled using the slender jet

approximation.13, 16, 23–26 For this study we use the previously developed numerical model by Driessen

and Jeurissen.16 In this model, the singularities that occur at pinchoff and coalescence, are regularized

below a radius that scales with the grid resolution; the influence of the regularization vanishes in the

limit of vanishing spatial step size. For this research, this cut-off radius is set at R0/30. The initial

condition of the calculation is shown schematically in Fig. 3. The grid is moving along with the

center of mass of the filament. The filament is considered to be axisymmetric and initially at rest.

The perturbation is applied both on the radius and the axial velocity of the jet, using the linearized

solution of the Rayleigh-Plateau instability,10

R(0, x) = R0 − δ cos

(

κmax

x

R0

)

, (11)

u(0, x) =
2ωmax

κmax

δ sin

(

κmax

x

R0

)

. (12)

FIG. 3. Shape of the filament at t0, just after the filament has pinched off from, e.g., a film or a large filament. The surface is

perturbed, with an assumed sinusoidal perturbation superposed on R0. The wavelength of the perturbation is λ. The amplitude

of the perturbation at t0 is δ. The filament considered is symmetric in the x = 0 plane.
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FIG. 4. Demonstration of the three different regimes, from top to bottom: Stable contraction, breakup due to the Rayleigh-

Plateau instability, and breakup due to end pinching. For these numerical simulations, the Ohnesorge numbers are, respectively,

1, 0.1, and 0.01. The aspect ratio and the perturbation amplitude are kept constant at resp. Ŵ = 35 and ǫ = 0.01. The time

between the consecutive contours is tcap.

The radial perturbation is symmetric in the origin, whereas the velocity fluctuation is anti-symmetric.

The parameter scan is performed on the regime where the Rayleigh-Plateau instability is expected

to dominate the breakup, 15 < Ŵ < 70 and 0.05 < OhR < 2. The value for ǫ is 0.01. This value has

been chosen such that the result of the linear stability analysis matches with the stability results of

the experimental data. Due to the experimental restrictions it is not possible to retrieve the values

for ǫ for every separate experiment.

Each filament is simulated from t0 to t = tM. At the latter time, the tail droplets have merged in

case of stable contraction. When the filament has broken up at any point in time before the end of

the simulation, it is called unstable. The transition between the stable and unstable regime is shown

in Fig. 2. With the results of the numerical model, it is shown that the stability of a viscous filament

can indeed be predicted with linear theory, for a given ǫ.

There are slight differences between the numerical results and the linear theory. Here we explain

these deviations qualitatively. At high viscosity, the numerical results are more stable than the linear

theory. We hypothesize that this is due to the influence of the tail droplets on the liquid thread through

viscosity. The linear theory assumes that the tail droplets are spherical when they merge. As can be

seen in Fig. 4, this assumption is inaccurate for high viscous threads. The viscous dissipation that

occurs in the tail droplet at low viscosity is smeared out over a larger region of the filament at high

viscosity.21 When these regions overlap, they stabilize the merging. For low viscosity, the numerical

model gives a less stable filament, since the capillary waves emitted by the tail droplets destabilize

the merging.14 These capillary waves are not included in the linear theory.

According to Refs. 12, 13, and 15, one expects that the filament remains stable when OhR ≥ 1,

since end pinching does not occur in that region. This, however, does not mean that a filament with

OhR ≥ 1 is intrinsically stable. A high viscous filament might break up due to the Rayleigh-Plateau

instability, as we show here by the linear theory and the numerical model.

DISCUSSION

As the initial noise amplitude has not been measured directly, δ can only be found indirectly

from tB. It is assumed to be the same for all experiments. To remove this limitation of the analysis,

the noise amplitude must be studied with a dedicated setup.

At low viscosities, OhR ≪ 0.1, the pinchoff resembles the shape of a double cone, in which one

side bends back over the other with an internal angle larger than 90◦.27, 28 This geometry cannot be

described in the slender jet approximation, which requires the radius to be a single valued function

of the axial position. However, resolving this complicated geometry is not necessary to show that

the stability of long viscous filaments is determined by Ŵ, OhR, and ǫ, which is the objective of this

paper.

CONCLUSION

A liquid filament either merges into a single droplet, or breaks up into multiple droplets. Breakup

occurs if the aspect ratio Ŵ is larger than a critical value, which depends on the Ohnesorge number

Downloaded 03 Jul 2013 to 131.155.151.137. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://pof.aip.org/about/rights_and_permissions
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OhR and the relative perturbation amplitude ǫ. We provide a theoretical explanation of the filament

stability in the regime of long viscous filaments, based on the Rayleigh-Plateau instability. At low

viscosity, OhR < 0.1, the critical aspect ratio is small due to end pinching. At higher viscosity, OhR

> 0.1, end pinching will not occur, but the filament may still break up due to the Rayleigh-Plateau

instability. At very high viscosity, OhL ≫ 1, the filament collapse is stable. The transition to this

regime is given by ŴL = Oh2
R .

ACKNOWLEDGMENTS

We thank Jacco Snoeijer and Kundan Kumar for useful discussions. We are grateful for the

valuable comments of I. M. Hutchings and his group, and the anonymous reviewers for their valuable

comments on the manuscript. This work has been co-financed by the Dutch Ministry of Economical

Affairs, Limburg Province, Overijssel Province, Noord-Brabant Province, the partnership region

Eindhoven and by Océ Technologies NV.
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