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STABILITY OF VISCOUS SCALAR SHOCK FRONTS
IN SEVERAL DIMENSIONS

JONATHAN GOODMAN

Abstract. We prove nonlinear stability of planar shock front solutions for

viscous scalar conservation laws in two or more space dimensions. The proof

uses the "integrated equation" and an effective equation for the motion of the

front itself. We derive energy estimates that balance terms from the integrated

equation with terms from the front motion equation.

In this paper we prove that viscous shock profiles for scalar conservation laws

are stable in two or more space dimensions. These multidimensional stability

questions are separate from their one dimensional analogues because of the

possibility of transverse instabilities such as those that occur in combustion

fronts [Lu] and in shock waves with phase changes. The proof here is a rigorous

version of arguments that are used to derive effective equations (such as the

Kuramoto-Sivashinsky equation) to describe the behavior of fronts.

The one dimensional stability for scalar conservation laws was proven by

II ' in and Oleinik [IO] using the "integrated equation" (see below) and a max-

imum principle. Another proof, based on weighted norms and spectral theory

for the linearized problem, was given by Sattinger [S]. The multidimensional

stability proof below has more in common with the stability proofs for systems

of conservation laws in one space dimension begun by Kawashima and Mat-

sumura [KM] and Goodman [Go] and completed by Liu [Li]. These proofs use

L2 energy estimates for the integrated equation.

We consider equations of the form

(!) ut + f(u)x + g(u)y=:uxx + uyy,

where f(u) is a strictly convex function of u :

(2) f"(u)>a>0.

A planar viscous shock wave is a solution of (1) of the form  u(x, y ,t) =

cp(x - st). This cp satisfies (see e.g. [Ge])

(3) -s4> + f(4>)'= 4>".

(4) (f>(x) —► ul   as x —► -co,       cp(x) ->«r   as x —► oo ,
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684 JONATHAN GOODMAN

where (u¡ - ur)s = f(u¡) - f(ur). It is clear that (3) and (4) are inconsistent

with (2) unless u¡ > ur and cp'(x) < 0 for all x.

Theorem. If u¡ - ur is small enough, for any p > 1 there is a c> 0 so that if

J2'Jj^+x2)P[da(u(x,y,0)-cp(x))]2dxdy<c,
l«l<2

then

II 2
(u(x , y , t) - 4>(x - st)) dxdy^O   ast^>oo.

We begin by outlining the main energy estimate. The remaining details of the

proof mostly could be supplied by a reader familiar with [KM, Go], or [Li]. The

strategy is suggested by Liu's proof [Li] for systems in one dimension. To exploit

the condition (d/dx)f'(cp(x)) < 0 we want to integrate in x (see §1 of [Go]).

It will be impossible to write the perturbation as u - <p = V' , with U E L2,

unless we can arrange for something like /^(«(x, y , t) - cfi(x)) dx — 0. For

this, we need a shift ô(y , t). Now,

/OO rOO(u(x , y , t) - cf>(x - S)) dx =        (u(x ,y,t)- tj>(x)) dx + ô ■ (u¡ - ur),
-oo J — OO

so it is possible to choose ö(y , t) so that

/oo (u(x ,y ,t)-cp(x- S(y , t))) dx = 0   for all y , /.
-oo

The program, then, is to decompose the solution as

(6) u(x ,y ,t) = <p(x -S(y ,t)) + Ux(x ,y ,t)

and to seek L2 estimates for S and U.

The estimate is simpler if we set g — 0 and 5 = 0. If we insert (6) into ( 1)

and use (3), we find

X(7) - 4>'(X - S(y , t))St(y , t) + Utx + (f'(<f>)Ux + q(4>, u)Ux)x

= -4>'(x - ô(y , t))ôyy(y , t) + cp"(x - S)S; + Uxxx + Uyyx.

Here we have used the Taylor expansion f(cf> + v) = j'(</>) + f'(<f>)v + q(cp ,v)v .

We will often leave out function arguments once they are clear from the context.

The reason for this will quickly become clear to the reader who tries to put all

the arguments in. Equation (7) will integrate in x if the terms proportional to

cf>  cancel. This leads to a system of equations that is equivalent to (1), namely

(8) U, + f'(cp)Ux + q(4>,u)U\ = Uxx + Uyy + cp'ô] ,

(9) S, = ôyy .

For now, let us assume that

sup\q(cf),u)Ux\ < 2 .     sup|ay|<|,     sup|<5v|< —— ,
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<

where a is from (2). Then multiplication and integration by parts leads to

(10) j ffu2dxdy< - fí(U2x + U2y)dxdy-a ii\4>'(x-ô)\U2dxdy

+ 2sup\ô y\- jj\U\\öy\\<p'\dxdy,

(11) d_js2dy<-2Jô2ydy.

Considering the last term in (10) as an inner product in the weighted L2 space

with weight \4>'(x - 5)\, the Cauchy-Schwarz inequality gives

H |U\ \Sy\ \cp'\ dxdy < II U2\cj>'\ dxdy + ||ô2y\<t>'\ dxdy.

If we integrate the a2 term in x using the bounds on \ô \, then (9) and (10)

combine to give

(12) ̂ Hu2dxdy + lô2dy^

H(U2x + U2y)dxdy -ill\4>'(x-S)\U2 dxdy - J'ö)dy.

From experience with the one dimensional case we recognize that (12) will lead

to a stability theorem, given enough patience.

The basic energy estimate

For the general case, g ^ 0, we need some preliminary normalizations.

Each one is done by choosing new primed independent variables. After each

normalization we will drop the primes and assume that the normalization holds.

Normalization 1. Set s = 0. Choose

t = t,    x = x — st,    y = y ■

In the primed variables,  f(u¡) = f(ur).   For weak shocks this implies that

f'(cp(x)) = 0(U[ - ur) for all x .

Normalization 2. Make g" small. This works for sufficiently weak shocks (see

the discussion at the end). The substitution

t' = t,    x = x ,    y = y + px ,

with p = -g"(cp(0))/f"($(0)), transforms (1) into (dropping the primes)

(13) ut + f(u)x + g(u)y = uxx + 2puxy + (l+p2)uyy,

where g"(4>(x)) = 0(u¡-rr) for all x. There is a positive constant b depending

on p so that

(14) ç2 + 2p^ + (l+ pV = (¿ + ptj)2 -rn2 >b(<l2 + n2).
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



686 JONATHAN GOODMAN

Normalization 3. Make g(<f>(x)) E L2(R). Use

t —t,    x = x,    y — y - at

where a, defined by a — g(u¡) - g(ur), is the mean transverse wave speed. We

also add a constant to g, which does not change (1), to get g(u¡) — g(ur) — 0.

From this we have g'((u¡ - ur)/2) = 0[(u¡ -u2) ], so, in view of Normalization

2, g'(cp(x)) = 0[(u, - ur)2] for all x and

i  (At  yy\*   t ^2   /("/-#*))    if*<0,
\g(<Kx))\ < c(u, -ur) -\     '

' I (tp(x) -ur)   if x > 0.

But (2) implies that

\Ui-4>(x)\<—^—\il/(x)\   ifx<0
u¡    ur

and therefore, for weak shocks, that

\g(4>(x))\<c(u,-ur)-\4>'(x)\   for all x.

Let us calculate the analogue of (12) when g ¿0:

(15) -tp'ô, + Ulx + {f\4>)Ux)x + (qU2x)x - g(<p)xSy

+ (g\<l>)U)yx-(g"(cp)<t>'U)y-r(rU2x)y

= U„ + 2pUxyx + (1 + p2)Uyyx - 2p<p"Sy

-(1 + />V^ + (1 + />V^
Here q - q(cj>, u) and r - r(cf>, u) are bounded if u is small enough. We

assume that

\q(tp,u)\<d,    \r((p,u)\<d   for all x,y ,i.

To integrate (15) in x we need the decompositions

(16) -g"(<l>(x-ô(y ,t)))-<p'(x-ô)U(x ,y ,t) = a(y ,t)cp'(x-ô) + Vx(x ,y ,t)

and

(17) rU2x = ß(y,t)<p'(x-o) + Wx

with V and W in L2. Then instead of (8) and (9) we have

(18) U, + f'(tp)Ux + qU2x - g(<p)ôy - a<t>'ôy + (g'(W)y + Vy + ßcp'ay + Wyy l-r       y

A'ô2Xy        \ r    )     yy r T      y        v r    j-r     y= Uxx + 2pUxv + (1 + p2)Uvv - 2pcp,ôv + (1 + p2)<p'ô2,

and

(19) S t~a-ßv = (l+pí)S yy
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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We must examine the decompositions (16) and (17) in more detail. We will

use the convention y/(x - S) = -<p'(x - Ô) so that y/ is a positive weight

function with f^ y/(x) dx — u¡ — ur. In (16) we have

a(y,t) = I™ y/(x-ô(y,t))V(x,y,t)dx/1 y/,

where U = g"(cp)U, so Cauchy-Schwarz gives the bound for a :

(20)

-{hvï/{hî<-l^-l^/{h)^l^/h-
Using this we have

í(Ü + a)2y/<2 ÍV2y/ + 2a2 í y/ <A ÍV2yv.

Temporarily forgetting the y dependence, the problem of bounding a and

V(x) can be restated as follows. We have l'(x) = m(x)y/(x) with

/
m(x)y/(x)dx = 0

and we want the bound f I < const • / m y/. But m y/ — l' / y/ so the desired

estimate follows from the following lemma. The lemma does not use the con-

dition J my/ — 0 and it applies only for x < 0. The same lemma holds for

x E [0, oo) if we integrate from co instead of -co. The two indefinite inte-

grals will agree and satisfy an estimate on (—00,00) if f my/ — 0. Applying

the lemma to each y separately we get

(21) livl<-^llu'"-
with

/oo
\x\\y/(x)\dx.

-00

Lemma 1. Assume that l(x) E //,(-oo , 0) (the Sobolev space). Then

r-0     „ r0

[    l2(x)<Ax- [    l'(x)2/y/(x)dx
J—00 J—00

where Ax = /°    \x\y/(x)dx.

Proof. Since l(x) = f*^ l'(Ç)dÇ, we have

The lemma follows on integrating in x .
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Our bound for W is similar but uses the Hilbert-Schmidt norm [DS]. An

integral kernel K(x, Ç) is in the Hilbert-Schmidt class if

I*Ihs= //K2(x,cl)dxdt;<oo.

In that case the corresponding operator K: I —► m , given by

m(x) = j K(x,Ç)l(Ç)<%.

is bounded on I2. This is because

.„.2 (m.Kl)2
|a:|   =suP ;        2

L2     ^\Ll

and, using Cauchy-Schwarz on the (x , £) integral,

(m , Kl)2 = (jl m(x)K(x , £)/(£) dx dA

< ff m2(x)l2(c;)dxdc:- ff K2(x .OdxdÇ < |m¿ • |/¿ • |^,

so the norm of /if as an operator on L2 has the bound |AT|L < \K\HS .

Now, just as for a we have

(23, <^ (/'07(A)2-
so f(rUx-fii/,)2<4¡rU2x.

The counterpart of Lemma 1 is

Lemma 2. Assume that I E L2(-oo , 0) and that Í - rm'2 with \r\ < d. Then

I (x) dx < A3        m'(x) dx,
-oo J —oo

where A^ = d f_oo \x\m!(x) dx.

Proof. We have

l(x)= I*  rm(tV)2dia=\    K(x,i)m'(ct)dc;,
J—oo J — oo

to       if¿;>
K(x,Ç) = \ \

\ rm (t\)   if ¿j <

where
if £ > x ,

Then

—     / / Vl(V     P\Jv J? S  eunlrl2    I rv,'lP\¿    I
IHS*\L = f     [    K2(x • Í)dx * S sup |r|2 /"    m'(¿)2 f dx dt\

J—oo J—oo J—oo J£

<d2 [    \Z\m\i)2dZ,
J — oo

which proves the lemma.
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STABILITY OF VISCOUS SCALAR SHOCK FRONTS 689

Several terms arise when we multiply (18) by U and integrate over x and

y . First we have

(24) llf'(tf>)UUx = -l-Hf"(<t>)J)'U2 >\ll U2y/-

Next, using (23),

(25) IIIqUU' ^Tö   ifsupI^ToV

Observe (using (2)) that there is a c > 0 so that if x < 0 then   y/(x) >

c\cp(x) - u¡\. Now using Cauchy-Schwarz as above,

(26) Jfvi'UMylï-iôJI^ + Tôf*
Here and often below we use the hypothesis that u¡ - ur is sufficiently small

without explicitly stating it. Similarly,

(27) \llu^\íTo¡¡u2v + roIó2>  ifsuPH<^-

From (21 ) and (22) we see that

<28>    \IM*àff*'+v>ffW iíA^sh
Continuing:

(29)

(30)

III
III

Ußy/S, < sup\U\ (J*-fJ''+M*')-
Ußy/S,

b_
5d'

and, from Lemma 2,

(3|)  l//H=l//H£A//^+íü//t'- íía^
Finally,

(32)

b_
10

\2pjluy,ôy\<l0pjy/-jju2y/ + ̂ lô

and

(33)       \lj U(l+p2)y/ô2y\<-^lj U2y/ + ̂ l ô]   ifsup|^|< 1

For the S equation (19) we have

<M> \hHI°A<-^-ll^<-Us>Toll^
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



690 JONATHAN GOODMAN

and

o«        |M|-|/v|srâ/i+^//«i
if

(36) sup || U2x(x ,y,t)dy\< A(M/ _ rf.

If we assemble (24)-(35) we get the basic energy estimate

The energy estimates above and below assume that ¿(y,0) E H2(R) and

that U(x ,y ,0) E L2(R ). These are consequences of the hypotheses of the

theorem. For ô , note that, from (5),

*(y >°) = ^4l7 H {u(x,y,0)-cp(x))dx,
ul      ur J-oo

so that, using the Schwarz inequality,

\ôyy\2 < ̂  • (/~ Pfote -y-°)- ¿(*))i dx)

/OO                                                                                                                         rOO             1(I + x2)\dy(u(x , y ,0) - cp(x))\ dx ■ /     -jrfx.
-oo                                                                                     J — oo I -\- X

The assertion about U is the only use of p > 1 in the statement of the theorem.

We use the formalism of Lemma 2. Suppose that

/•OO rOO

a(x)=        b(ü)di= I    K(x,i)c(i)di,
Jx Jo

where c(x) = ( 1 + x2)p/2b(x), and

r{..í)-í(l + *,,"P  if{>x'

\0 if^<x.

Then a e L2[0,co), since /0°°/0°°K (x,¿¡)dxdcl < co and /0°°c (x)dx =

¡0°°(l+x2)pb2(x)dx<oc.

Higher estimates

The purpose of this section is to finish the proof by showing that when the

basic estimate (37) holds, and if the initial perturbation is small enough, then

the assumptions made in deriving (37) are true. This will then imply that (37)

is true a little longer and hence forever. This is a form of continuous induction

which we treat sketchily here since it is given fully in [Go] and in many other

places. The various assumptions are consequences of energy estimates for higher

derivatives of U and ó and the Sobolev lemma [F]. We establish the higher
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estimates by the same kind of arguments that we used to establish (37) except

that (37) itself gives one the space time integrals

/   //(lVC/|2(*.^0 + t/V)¿*¿y¿? + |   I'ö](y,t)dydt,

so less care is needed.

We start with a bound involving ü = Ux = u - tp. To bound A} in Lemma

2 and (31), we estimate

u (x ,y ,t)w(x)dxdy

where w(x) = vl+x2. The precise form of w is not important. It only

matters that w(x) > \x\, that w(x) > 1, and that \w'(x)\ < 1 for all x. From

(15) and (19) we have

(38)   cp'ay + <f>'ß  +ü, + (f'(ct>)ü)x + {QU)X - g(cp)xôy + (g'(4>)û)y + (ru). 'y

= "xc + 2P"xy + ( 1 + P2)*yy ~ 2P<t>"ôy + t1 + /> V<*J ■

We multiply by wü, integrate by parts, and bound all the terms by // « , / S ,

¡f U2y/, and e // |Vïï|2w to get the estimate

// u(x ,y , T)w(x)dxdy <       H(x ,y ,0)w(x)dxdy

-U7/'-'2— (ÍJI^ÍJI^ÍJ^-
Some of the details are as follows:

/ / u>w^a I <\ 11 wüyy/a\ + \       wüy/'oya

<        wü  +        wy/ a  +sup|<5 | • Í / / wu  +        uiy/' a'

But

wy/ a   < sup /     w(x)y/ (x - ö)dx ■ I a (y ,t)dy.

If \S\ < 1 then

sup / w;(a:)^ (x - S)dx = 0(u/ - ur).

Also, fa  < c // U y/ . The // wuy/ß   term is treated in the same way. Now

II wü(f'(4>)ü)x = \ ff (w<ff "(<(>) - ™xf'(<l>))u ^cll»2-
Next

// wu(qu)x = - II wxuq - ¡I wquux
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We set Q(4>,u) = /0"q(cp,v)v2dv so that Q-(</>,u) = qu , \QA < c\u\3, and

¡I wquux = 11 wQ(cp, u)x - Il wQ^yi

= J I wxQ + wQ^y/ < c ■ sup |w| • / / w2.

Continuing:

ll^xK<\llu+\llw2y/2g'2ô2y<\llû2 + clô2y,
jl wû(g'((p)û)y = -2 // wû2g"((¡>)y/ < Il u2 + c I ôy,

and

Il wu(ru-)y = - Il wR^tj), u)y/ôy < Il ymiR2, + Il yrwô]

<c(sup|û4|.//l72 + /<),

where R(<f>,Û) = ¡Qur(cp,v)v dv.   Treating the viscous terms as above we

establish (39) for all T for which sup |ïï| < 1, sup \3\ < 1, and sup \ôy \ < 1.

The next step is to bound / Ô  . As above, we multiply the ô   equation

¿y,+«yy+ßyy=(]-+P2)Öyyy

by ô   and bound the resulting terms by quantities, including // |Vïï|  , that we

now know to have finite space time integrals. First

fty«yy = -l¿yy<*y<efs2.y + C(*)l«2y
But a-jg"y/U/fy/ so

ay = \-ày j g"{<P)V2U - ây I g"(<p)y/'U + j g"y/Uy } j j y/.

Now

jg'"y/2U <cJjVVt//"t/V ,        jg'y/'U <cM WvM U2\y'\,

and

al^c-suplô^dy/U' + lu2,).
so

Second,
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The first term is bounded by

c ■ sup |

and the second by

'l<5y|-sup|M|Wy u2

c-J    u2(x ,y,t)dx-J I u2y(x ,y,t)dx.

So, if A3, ïï, and ô   are bounded, we get

To control / Ô2 (needed for sup |<5 |) we use a bound for JfU2. This

comes from differentiating (18) with respect to y, multiplying by U , and

controlling the resulting terms as above. A few terms deserve special attention.

First,

// Uyyg(cp)ôy < e If U2yy + c(e) Il g(tp)2ô2y < e JJ U2yy + c | s\.
From (16) we have

-g'"v2SyU + g"v'ôyU - g"y/Uy + ayy/- ay/'ôy = Vxy.

From the discussion around Lemma 1 we conclude that

jv2y(x,y,t)dx<c- l(U2 + U2y)y/.

Similarly, differentiating (17) and using Lemma 2 and the identity  Ux = u

leads to

yv,2<c-yy+w2).

Now, repeating the arguments in the previous paragraph, we get the desired

bound for  f ¿,,„ .j      yy
It remains to obtain bounds for derivatives of u. If we differentiate (38) with

respect to y , multiply by wü , and integrate, most of the terms are handled

as above except

yy wuy(y/ay)y)\ = \JJ wüyyy/a\ <e jj wu2yy + c(e) jj wy/2c?y

-ellwKy+c I V
Now differentiating with respect to x we get bounds for

sup / / w(x)\V~ü(x ,y ,t)\ dxdy,

and

llllw(x)\D2u(x,y,t)\2dxdydt.
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Continuing in this way leads to a bound on sup/<7. ffw(x)\D w|   which bounds

A2 in Lemma 2 as well as sup(<r |ïï| and the other quantities used in deriving

(37).

Discussion

A low frequency linearized stability analysis suggests that the requirement of

weak shocks is not necessary. Linearizing (1) about u(x ,y,t) = cf>(x) gives the

linear equation

v, + (f'{4>)v)x + (g'(<f>)v)y = vxx + vyy.

We look for a separation of variables solution

/ -\ Tí   iriy « ,    ,
v(x ,y ,t) = e e    v(x),

where v satisfies

(40) tí) + (f'(cp)v)x + ir¡g'(<f>)v = vxx - t]2v .

For rj = 0 a solution with t — 0 isgiven by v = cj> . We therefore seek a small

r\ expansion

2 ,'        •    « 2 .
t ~ r\xx - r\ t2 H-,        v ~ cp + it]Vx +r¡ v2-\-.

Substituting into (40) and equating powers of t] we find, to leading order,

-irx<p' + (f'(ct>)'vx)x + g(cp)x = vXxx.

Using Normalization 3 gives a zero constant of intergration in

(41) v{x-f'(<p)v{=g(<p(x)).

if T, =0. We find t2 from the 0(r¡ ) equation:

(T2 +1)<P' = V2xx - (f'(<p)V2)x + g'(cf>)vx .

The integrability condition for this equation is

,        SToog\<t>{x))vx(x)dx

X2+       sr^'wdx   ■

Since 4>' < 0, we will have t2 > 1 when we show that

(42) Ig'(cp(x))vx(x)dx>0.

But

/*<M=/<w£=/<<=-/f
Now, 0" = /(*), = /(Mx, »o

i" -
g(4>) I,.   _ijh

I ¿m-J*P^-f «»,>-£*$£«>*■
as claimed.
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A formal calculation based on the ansats and scaling

2 2
u(x ,y,t)~ cf>(x - S(sy ,et)) + eux+eu2-\-

also leads to ôt = r2¿ , which we expect to describe the long time behavior of

Ô.
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