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Abstract: Zeolite imidazolate framework-8 (ZIF-8) is a promising platform for drug delivery, and
information regarding the stability of ZIF-8 nanoparticles in cell culture media is essential for proper
interpretation of in vitro experimental results. In this work, we report a quantitative investigation
of the ZIF-8 nanoparticle’s stability in most common cell culture media. To this purpose, ZIF-8
nanoparticles containing sterically shielded nitroxide probes with high resistance to reduction were
synthesized and studied using electron paramagnetic resonance (EPR). The degradation of ZIF-8 in
cell media was monitored by tracking the cargo leakage. It was shown that nanoparticles degrade at
least partially in all studied media, although the degree of cargo leakage varies widely. We found
a strong correlation between the amount of escaped cargo and total concentration of amino acids in
the environment. We also established the role of individual amino acids in ZIF-8 degradation. Finally,
2-methylimidazole preliminary dissolved in cell culture media partially inhibits the degradation of
ZIF-8 nanoparticles. The guidelines for choosing the proper cell culture medium for the in vitro study
of ZIF-8 nanoparticles have been formulated.

Keywords: metal–organic frameworks (MOFs); ZIF-8; electron paramagnetic resonance (EPR)

1. Introduction

Zeolite imidazolate framework-8 (ZIF-8) belongs to a family of metal–organic frameworks
(MOFs), formed by the coordination of Zn with 2-methylimidazole ligands (MIM) [1,2]. This
porous material features a high surface area and adjustable pore size [3]. ZIF-8 can easily
host a wide range of guests, including photosensitizers, nucleic acids, and proteins [4–8].
The unique properties of this MOF stimulated the development of flexible ZIF-8-based
platforms for the drug delivery of small-molecule and macromolecular therapeutics [9].
ZIF-8 exhibits pH-controllable drug release, high efficiency of endosomal escape, and good
biocompatibility [10–18]. The surface of ZIF-8 particles is modifiable by targeting agents,
providing a higher efficiency of nanoparticle-based therapy [19–21].

ZIF-8 nanoparticles found application in cancer cells treatment, photodynamic therapy,
and gene editing, as well as drug and protein delivery [10,22–34], for example, ZIF-8-based
nanoparticles with polyacrylic acid and doxorubicin infiltrated breast cancer cells [35].
ZIF-8 demonstrated potential as a theranostic agent for cancer imaging [36]. ZIF-8 com-
bined with cell-penetrating peptides enhanced the cellular uptake of oligonucleotides for
gene therapy purposes [4]. ZIF-8 was also used for immunotherapeutics to deliver CpG
oligodeoxynucleotides into immune cells [37]. Polyaniline-decorated ZIF-8 nanoparticles
showed promising results for chemo-photothermal therapy of breast cancer cells [38]. More-
over, Xu et al. [39] constructed ZIF-8 containing water-insoluble photosensitizer zinc(II)
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phthalocyanine, in order to solve the aggregation problem for photodynamic therapy. The
hydrophobic ZnPc molecules stored in the pores of ZIF-8 remained monomeric, avoiding
self-aggregation in aqueous media.

The development of drug delivery systems, including the ZIF-8-based platforms,
requires performing in vivo investigations, especially examining nanoparticle uptake by
cells, as well as their cytotoxicity. Cell incubation with nanoparticles is performed in a cell
culture media that contains a specially adapted set of nutrients and compounds. A medium
provides survival and proliferation of cells but can affect experimental results [40,41].
Media with known compositions were developed to increase the reproducibility of studies,
and many of them are commercially available.

It is known that ZIF-8 particles are rather unstable in serum and most common
buffers [42–44]. At the same time, culture media contain various components that may
also have significant effects on the stability of ZIF-8. For example, a greater degradation
of ZIF-8 nanopowders in bacterial culture media than in deionized water was recently
demonstrated [45]. The most popular cell medium used in experiments with ZIF-8 is
DMEM [35,37,46,47]. It was previously shown that DMEM leads to at least a partial
degradation of ZIF-8 microparticles [42] and nanoparticles [48]. Besides DMEM, other
media, such as RPMI-1640, L-15, and IMDM, have also been applied in cell experiments
with ZIF-8 [36,38,49]. Given the significant differences in the composition of these media,
the extent of the degradation of ZIF-8 nanoparticles may also vary.

To the best of our knowledge, the systematic investigation of ZIF-8 stability in various
cell culture media has not been performed, despite the fact that this information is essential
for in vitro studies. To obtain generalized and quantitatively useful insight into these issues,
in this work, we systematically investigate the stability of ZIF-8 nanoparticles in a set of
commonly used cell culture media.

Recently we proposed a new approach for quantitatively probing the extent and rate of
guest release from ZIF-8 particles directly under hands-on conditions by EPR [43]. Tracking
the cargo leakage from ZIF-8 upon dissolution of the framework was carried out using
a nitroxide spin probe. The key point of the method is that the EPR spectra of nitroxide
inside and outside ZIF-8 are noticeably different. The shape of the EPR spectrum of the
studied sample represents the distribution of the probe between ZIF-8 particles and the
solution. The simulation of the experimental data provides the quantification of the cargo
leakage. Generally, this approach is easily applicable to studying ZIF-8 in any solution,
including biological media. However, it should be taken into account that the tetramethyl-
substituted nitroxide used in our previous work is rather unstable in some biological
systems. For instance, the radical moiety of a nitroxide probe is subject to reduction by
some components of cell media (e.g., ascorbic acid and glutathione), yielding diamagnetic
hydroxylamines that are invisible by EPR. To overcome this problem, in this work, we used
an advanced, sterically shielded spin probe based on tetraethyl-substituted nitroxide R
(Figure 1a) with a high resistance to reduction [50].
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Figure 1. (a) Structure of stable nitroxide radical R used as a guest molecule; (b) ZIF-8 structure with
incorporated radical R.
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2. Results and Discussion
2.1. Synthesis and Characterization of ZIF-8 Nanoparticles

To study the ZIF-8 stability in cell media, we synthesized ZIF-8 nanoparticles with
an encapsulated spin probe R (3,4-Bis-(hydroxymethyl)-2,2,5,5-tetraethylpyrrolidin-1-oxyl),
according to the previously-described procedure [51]. Dynamic light scattering (DLS)
measurement showed that the mean size of R@ZIF-8 nanoparticles is 180 nm (Figure S1),
which is the typical size of nanoparticles in biomedical applications [52].

According to continuous wave (CW) EPR data, R@ZIF-8 nanoparticles contain 0.4 ni-
troxides radical per 1 ZIF-8 cavity, mimicking highly-loaded drug carriers. The initial
suspension of R@ZIF-8, with about 6.5 mg/mL concentration, demonstrates a significantly
broadened spectrum with three overlapping lines (Figure 2, top trace). We have previously
shown that the EPR line broadening for probes inside highly-loaded ZIF-8 is caused by the
exchange and dipolar interactions between the radicals located in the same or neighboring
cavities of ZIF-8 [43].
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narrow lines and coincides with the spectrum of a free R in water (Figure S2). In this case, 
the full release of cargo results from the complete decomposition of the ZIF-8 framework 
in acid environments. 

All experimental spectra presented further were simulated as a superposition of the 
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two contributions represent the amount of probes that escaped from dissolved ZIF-8, as 
well as those that remained located inside initial nanoparticles. 

The dilution of initial R@ZIF-8 suspension by pure water induced a minor (~1%) re-
lease of guest molecules, and the spectrum remained the same during further storage over 

Figure 2. EPR spectra of initial suspension of R@ZIF-8 (as synthesized), R@ZIF-8 5-fold diluted in
PBS (5 mM, pH = 7.4), HEPES (5 mM, pH = 7.4), and citrate buffer (0.1 M, pH = 4.0). Red dashed
lines show the broad component in the spectra that corresponds to the probes located inside ZIF-8.
The number on the right shows the amount of probe remaining inside ZIF-8 after dissolution.

Figure 2 compares the EPR spectra of the initial suspension of R@ZIF-8 nanopar-
ticles (top trace, 6.5 mg/mL) and its five-fold diluted solutions (all other traces), with
a final concentration 1.3 mg/mL. Besides pure water, we also examined R@ZIF-8 nanopar-
ticles in standard buffers, such as phosphate buffered saline (PBS, 5 mM, pH = 7.4), 4-(2-
hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES, 5 mM, pH = 7.4), and citrate buffer
(0.1 M pH = 4.0). All spectra of the diluted samples in Figure 2 have the same second
integral, confirming that the total concentration of spins is conserved; however, the shape
of the spectra are significantly diverse from each other. The EPR spectrum of the R@ZIF-8
mixed with acid buffer at pH = 4.0 completely differs from the initial one: it consists of
three narrow lines and coincides with the spectrum of a free R in water (Figure S2). In
this case, the full release of cargo results from the complete decomposition of the ZIF-8
framework in acid environments.

All experimental spectra presented further were simulated as a superposition of the
normalized spectra of R@ZIF-8 in initial suspension and acid pH. The weights of these
two contributions represent the amount of probes that escaped from dissolved ZIF-8, as
well as those that remained located inside initial nanoparticles.

The dilution of initial R@ZIF-8 suspension by pure water induced a minor (~1%)
release of guest molecules, and the spectrum remained the same during further storage
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over 1–2 days (Figures 2 and S3). The EPR spectra of R@ZIF-8 mixed with 5 mM of PBS or
HEPES have another shape and feature, i.e., three notable narrow lines superimposed on
the broad component. According to the simulation, about 10% and 25% of cargo escaped
from ZIF-8 in HEPES and PBS, respectively. These results confirm the previously-described
degradation of ZIF-8 particles in the presence of buffer components [42,44]. We have
previously shown that the release of cargo from ZIF-8 in buffer-containing solutions is
a concentration-dependent process [43]. Therefore, the concentrations of buffer components
should be carefully considered when studying the ZIF-8 stability in culture media.

2.2. Dissolution of ZIF-8 in Cell Culture Media

There are many different types of cell culture media, but we have chosen those most
commonly used in modern research for our study. One of the basic media is Eagle’s mini-
mum essential medium—MEM. Several other compositions, such as DMEM, α-MEM, and
IMDM, were developed based on MEM. Opti-MEM is another improved MEM formula
that is recommended for use with cationic lipid transfection reagents. Its complete com-
position is confidential. Besides the MEM media family, we also studied the following
media: RPMI-1640, which contains the reducing agent glutathione; L-15, which contains no
sodium bicarbonate and, therefore, does not require a CO2 environment to maintain physi-
ological pH; and 199, supplemented with nucleobases ATP and AMP. The full composition
of studied media is listed in Table S1.

The decomposition of R@ZIF-8 upon five-fold dilution by different media was mon-
itored by CW EPR. An immediate (<1 min) leakage of a portion of guest molecules was
observed after the media addition, which was not followed by further particle degradation.
All detected spectra had three noticeable narrow lines, indicating that all cell media caused
considerable decomposition of ZIF-8 nanoparticles (Figure S4). A quantitative analysis
of the contributions of the broad and narrow components showed that the degradation
effect depends on the type of medium (Table S2). The moderate destabilization effects
were observed in 199, MEM, and α-MEM, where the fraction of released probes was about
25–50% (green area in Figure 3). In contrast, we observed an almost complete dissolution of
R@ZIF-8 in RPMI-1640, IMDM, and L-15 (red area in Figure 3). The most frequently used
DMEM media and opti-MEM featured an intermediate result; in this case, about 70% of
probes leaked out of the ZIF-8 framework (yellow area in Figure 3).
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Figure 3. Dissolution of ZIF-8 in cell culture media. (a) First integrals of CW EPR spectra of R@ZIF-8
in culture media. Red dashed lines show the spectra obtained by simulation for a fraction of the
probe inside ZIF-8. The numbers on the right demonstrate the weight of this fraction; (b) the fraction
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of probes inside ZIF-8 versus total amino acids concentration in studied media. Stability is denoted
by color-coding: red—most nanoparticles dissolved, yellow—middle situation, and green—half or
more nanoparticles intact. The result for opti-MEM is demonstrated as a dotted line, because its
complete composition and concentration of amino acids are confidential.

The extent of the ZIF-8 degradation rose upon decreasing the mass ratio of nanoparti-
cles to cell media. We observed the full release of the probe already, with a mass ratio of
R@ZIF-8 equal to 0.65 mg/mL in MEM, exhibiting one of the best nanoparticle stability
results at higher concentrations (Figure S5).

All studied media, except RPMI-1640, contained a low concentration of phosphates
(1 mM or less) and similar amounts of sodium bicarbonate (2.6–4.4 mM, Table S1). This
means that the dissolution of ZIF-8 nanoparticles by buffer components cannot be the main
pathway for nanoparticles degradation in these media. Hence, the observed diversity of the
extent of released cargo upon dissolution of ZIF-8 in different media should be associated
with other factors.

In addition to the buffer components, cell media also contain high concentrations of
various amino acids (Table S1). Therefore, we analyzed how the total concentration of
amino acids in the media correlates to the extent of ZIF-8 degradation. Figure 3 illustrates
the general trend toward a decreasing R@ZIF-8 amount with increased amino acid concen-
trations. In particular, L-15 was the most amino acid-rich media in our set, and it exhibited
the most remarkable ability to dissolve R@ZIF-8. At the same time, the relatively high
stability is realized in the 199 and MEM, where the concentration of amino acids is about
four times less than in L-15. Thus, amino acids make a considerable contribution to the
decomposition of ZIF-8 nanoparticles.

RPMI-1640 relates to the special case, since its ability to induce cargo leakage from
ZIF-8 nanoparticles is significantly higher than for α-MEM, despite the similar amino acid
content in both media (Figure 3). This means that additional contributions may also affect
the stability of the nanoparticles. Unlike other cell media, RPMI-1640 contains a high
concentration of PBS components (5.6 mM) that, as shown above, induce the leakage of
probes from ZIF-8 nanoparticles. The dissolution by amino acids and buffer components,
both being effective degradation pathways of ZIF-8, leads to an almost complete release
of cargo in RPMI-1640. In addition, another media, IMDM, contains 25 mM of HEPES
buffer, which also affects the stability of ZIF-8 nanoparticles, although to a lesser extent
than PBS. Thus, there are at least two contributions to ZIF-8 destabilization in these media:
dissolution by amino acids and buffer components.

In addition, most culture media require supplementation with 10% fetal bovine serum
(FBS). Previously, it was shown that ZIF-8 undergoes decomposition in the FBS [43]. How-
ever, in this work, we observed only a minor release of cargo (~10%) in the presence of 10%
FBS. This indicates that the contribution of FBS to the dissolution of ZIF-8 nanoparticles is
negligible, compared to other pathways, at a given concentration.

2.3. Dissolution of ZIF-8 by Individual Amino Acids

The studied media differ not only in the total concentration of amino acids, but their
ratios also vary significantly in the final composition. To deeply understand the role
of different amino acids in ZIF-8 dissolution, we investigated EPR spectra of R@ZIF-8
five-fold diluted in HEPES (5 mM, pH = 7.4) containing 5 mM of individual amino acids
(Figure S6). Figure 4a shows the results of studying the nanoparticle degradation caused
by 20 compounds, covering all classes of amino acids.

The obtained quantitative data must be considered relative to the effect in pure
HEPES, where the fraction of probes leakage was ~10% upon dissolution of R@ZIF-8.
All amino acids affect R@ZIF-8 stability, but the fraction of released cargo differs signifi-
cantly (Table S2). The dissolution of R@ZIF-8 in the presence of 5 mM of proline, lysine,
arginine, and alanine induced only a slight cargo leakage (≤10%), relative to the value in
HEPES (blue area in Figure 4a). The opposite effect was observed for cysteine, where almost
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all probes escaped from ZIF-8 at the same concentrations (red area in Figure 4a). In addition,
we observed a significant degradation of nanoparticles in the presence of histidine and
phenylalanine, where only 40–50% of the cargo remained inside the ZIF-8 upon dissolution
(yellow area in Figure 4). Other amino acids exhibited intermediate results: they noticeably
dissolved nanoparticles, but most of the probes (>60%) did not leave the cavities (green
area in Figure 4a).
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Figure 4. (a) Fraction of the probe inside ZIF-8 in R@ZIF-8 sample 5-fold diluted in HEPES (5 mM,
pH = 7.4) containing 5 mM of individual amino acids. Hatching demonstrates samples with 10 mM
MIM preliminary added to media. * marks two amino acids with different concentrations—the highest
we achieved considering the solubility of these amino acids in water (Table S2); (b)—Dependence of
the probe inside ZIF-8 on amino acids concentration added.

We also measured the concentration dependence of the released probes for several
amino acids, namely two compounds with high (cysteine and histidine) and moderate
(lysine and serine) destabilization effects on ZIF-8 (Figure S7). Figure 4b shows the relation
between the amount of cargo held in ZIF-8 after dissolution and amino acid concentrations.
The number of released probes rises upon increasing amino acid concentrations in all cases
(Table S2). However, it occurs considerably faster for cysteine and histidine than for lysine
and serine.

It is known that Zn2+ and MIM ligands are released from ZIF-8 in water [53,54]. In
addition, our results showed that the dissolution of ZIF-8 by amino acids is a concentration-
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dependent process (Figure 4b). The maximum amount of zinc ions that could be released
upon complete dissolution of ZIF-8 was around 5 µmol/mL in our experiments, whereas
the total concentration of amino acids and phosphates in cell media was at least the same
(for MEM, 199, and alpha-MEM, Table S1) or even higher (for RPMI, DMEM, IMDM, and
L15, Table S1). Therefore, we assumed that the degradation of nanoparticles is caused by
the binding of zinc ions with the amino acids. To verify this, we analyzed the correlation
between the amount of released probes in different amino acid solutions and published
stability constants for the complexes of these amino acids with zinc ions [55]. The stability
constants (β) describe the following model reaction: Zn2+ + 2AA↔ Zn(AA)2, where AA
represents an amino acid in deprotonated form. We also considered that the amino acids
have different dissociation degrees at the used pH = 7.4, depending on the acidity constant
Ka. Hence, the zinc complexation in amino acid solutions depends on two constants: β and
Ka, listed in Table S3. Thus, we examined the relationship between ZIF-8 degradation and
log(βKa

2) in amino acid solutions. Figure 5 reveals strong positive correlations between
the amount of released probe and log(βKa

2). The high degree of ZIF-8 degradation in
histidine and cysteine correlates well with the higher stability constant for complexes of
these amino acids with zinc ions, rather than for the other studied amino acids (more than
100 times) [55].

 

2 

 
 
 
 

 

Figure 5. Correlation between a fraction of spin probes escaped from ZIF-8 and factor Log(β)-2pKa,
being a combination of stability constant with zinc and pKa for amino acids (Table S3).

High values of histidine and cysteine complexation with zinc ions can be explained
by the chemical nature of amino acids in the following way. In case of histidine, zinc ions
forms a six-membered chelate ring through coordination with two nitrogen atoms of the
histidine moiety that could be more stable than analogous one with other amino acids [56].
In contrast, other amino acids form a five-membered chelate ring, through coordination
with nitrogen and oxygen [56]; therefore, their complexes with zinc ions are less stable
compared to histidine. The sulphur atoms of cysteine have high affinity to zinc ions [57,58].
Thus, cysteine also exhibits the high stability of complexes with zinc ions, despite the
five-membered chelate ring.
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2.4. Stabilization of ZIF-8 Nanoparticles by 2-Methylimidazole

The aforementioned mechanism of particle degradation due to the binding of amino
acids with zinc is supposed to release Zn2+ and 2-methylimidazole ligands (MIM) from
ZIF-8 nanoparticles at the first stage. As a result, ZIF-8, Zn2+, and MIM reach an equilibrium
state in the solution. Therefore, we assume that the preliminary addition of MIM ligands
into cell media can suppress the dissolution of ZIF-8 nanoparticles, due to a shift in
equilibrium towards zinc-binding with MIM, rather than with amino acid.

To validate this hypothesis, we first investigated MIM’s effect on the stability of R@ZIF-
8 upon dilution, with the amino acids exhibiting a moderate or strong ZIF-8 degradation
effect. The stabilization effect was explored in the HEPES buffer (5 mM, pH 7.4) containing
5 mM of amino acid, 10 mM of MIM, and 1.3 mg/mL of R@ZIF-8.

We observed the considerable stabilization of ZIF-8 nanoparticles in the presence of
MIM for almost all examined amino acids (Figures 4a and S8, Table S2). For example, the
addition of ligand led to a decrease of released cargo, from 40% to 20% in the asparagine
solution. The inhibitive effect of MIM confirms the hypothesis that the decomposition of
ZIF-8 nanoparticles in cell media can be described as an equilibrium between the ZIF-8 and
Zn2+ complexes with other ligands. In contrast, MIM did not demonstrate any stabilization
effect in the histidine and cysteine solutions, probably because of the strong complexation
of zinc ions in their presence.

Next, we performed similar experiments in the cell media. A total of 10 mM of MIM
inhibited ZIF-8 degradation in DMEM, opti-MEM, and L-15, decreasing the released cargo by
10% or more (Figures 6a,b and S9, Table S2). A further increase of the concentration of MIM,
up to 30 mM, leads to an additional drop of the leaked probes by about an extra 10%. Unlike
other cell media, DMEM and L-15 contain a large concentration of amino acids and, at the
same time, moderate (0–0.9 mM) concentration of PBS. Hence, the added MIM effectively
competes with amino acids for binding with Zn2+, thus stabilizing the nanoparticles.
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Figure 6. (a) Changes in fraction of probe inside ZIF-8, upon addition of different cell media (Table S2).
Oblique hatching marks samples with addition of 10 mM MIM, vertical hatching—addition of 30 mM
MIM; (b) first integrals of CW EPR spectra for R@ZIF-8 with addition of L-15 and MEM. Red dashed
lines show the fraction of radicals remaining in ZIF-8; numbers on the right demonstrate the weight
of this fraction.

The effect of MIM on ZIF-8 stability is smaller for RPMI-1640 and IMDM (Figure 6a).
These media have high amounts of buffer components—5.6 mM of PBS in RPMI-1640
and 25 mM of HEPES in IMDM. Therefore, the contribution of buffer components to the
ZIF-8 dissolution is higher than in other media. Our results indicate that MIM can inhibit
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the dissolution of ZIF-8 by amino acids but, to a lesser extent, also affect the degradation
pathways related to the presence of a buffer. This is also supported by data for 199, MEM,
and α-MEM. As shown above, amino acid’s contribution to the degradation of nanoparticles
is the smallest in 199, MEM, and α-MEM (among the whole set of cell media). As a result,
the stabilization by MIM only slightly manifests itself in these cases.

Additionally, we have shown that 24 h incubation of cells with 10 mM MIM does
not decrease cell viability, and there is a moderate cytotoxic effect at 30 mM (60–70% cell
viability for 24 h cell incubation, Figure S10).

3. Conclusions

We have performed a quantitative investigation of the ZIF-8 nanoparticle’s stability
in the most common cell culture media. Our data indicate that the ZIF-8 nanoparticles
at least partially degrade in all of the studied culture media, although the degree of
cargo leakage varies widely, depending on composition of cell media. We found a strong
correlation between the amount of escaped cargo and total concentration of amino acids
in the environment. Thus, using cell media with the lowest amino acid content, such as
199, MEM, and α-MEM, is preferred in studies of ZIF-8 nanoparticles. In comparison,
the L-15 tends to dissolve ZIF-8 nanoparticles to the greatest extent, because of the high
concentration of amino acids. Media with a high PBS or HEPES concentration, namely
RPMI-1640 and IMDM, should also be avoided. The cumulative effect of dissolution by
amino acids and buffer components in these cell media causes severe destabilization of
ZIF-8 nanoparticles and considerable cargo release.

We also established the role of individual amino acids in ZIF-8 dissolution. We found
that the amount of cargo escaped from ZIF-8 depends on the stability constants for the
amino acids with zinc ions. The strongest dissolution effects were observed in the histidine
and cysteine solutions, which was determined by the high stability constants of their
complexes with zinc ions. Therefore, the concentrations of these two amino acids in cell
media should be carefully considered in the experiments with ZIF-8 nanoparticles in vitro.

We also found that MIM partially inhibits ZIF-8 dissolution in the DMEM, opti-MEM,
and L15 at 10 mM concentration, and it is nontoxic for cells at this amount. Moreover,
30 mM of MIM showed a moderate cytotoxicity for 24 h cell incubation. Thus, MIM can
be safely used for ZIF-8 stabilization at these concentrations in short-term cellular studies.
Finally, the preliminary addition of 30 mM of MIM to the most widely used DMEM medium
significantly reduces cargo release, to the same level as in MEM, exhibiting one of the best
levels of nanoparticle stability.

4. Experimental
4.1. Materials

All solvents used were of HPLC-grade quality. All reagents and solvents were pur-
chased from commercial sources and used as received, without further purification. Buffers
were purchased from Sigma-Aldrich (Burlington, MA, USA).

MEM alpha powder (with ribo- and deoxyribonucleosides, IMDM powder (with
L-glutamine); DMEM (with L-glutamine, glucose, pyridoxine, and pyruvate) by Gibco
(Burlington, MA, USA); MEM (with L-glutamine), RPMI-1640, and L-15 powder (with
L-glutamine) by Sigma-aldrich; opti-MEM (with L-glutaMAX) by Gibco (USA); medium
199 by Capricorn (Ebsdorfergrund, Germany). All powder media were diluted according
to protocol and filtered (0.22 µm).

All L-amino acids and MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl -2H-tetrazolium
bromide by Sigma (USA).

4.2. Synthesis of R

The sterically shielded nitroxide was prepared according to the literature procedure [50].
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4.3. Synthesis of R@ZIF-8

R@ZIF-8 nanoparticles were prepared according to the procedure described previ-
ously [20,51]. For the synthesis of ZIF-8, nanoparticle R was dissolved in 2.5 M MIM
solution to concentration around 0.0027 M, and the mixture was stirred for 30 min. Then,
0.5 M zinc nitrate solution was slowly added to the above mixture under mechanical
agitation for 30 min. ZIF-8 nanoparticles were collected by centrifugation and washed with
water 3 times. PXRD measurements were carried for the radical@ZIF-8 samples in previous
studies [20,51], and phase purity of radical@ZIF-8 samples was approved.

Freshly prepared ZIF-8 suspension has been stored at room temperature for one week;
during this time, EPR measurements were carried out. The quality of the ZIF-8 nanoparti-
cles in the initial suspension was monitored every day by EPR, and we did not observe
any degradation for one week. All presented results were reproduced several times using
different freshly prepared ZIF-8 suspensions.

4.4. Sample Preparation

The amino acids were dissolved in the HEPES buffer (5 mM, pH = 7.4) with 5 mM
concentration, except Asp (2.5 mM), Tyr (1 mM). In order to study the concentration
dependence of R@ZIF stability the Lys, Ser, His, and Cys were dissolved in the same buffer,
with concentrations 1, 2.5, 5, and 10 mM.

To study stabilization by MIM, we added a 5% (15%) of 0.2 M solution of MIM to the
several media. The final MIM concentration was 10 mM (30 mM). Then, 20% (by volume)
of the nanoparticle suspension was added to the final solutions.

The pH of all solutions was controlled and titrated to 7.4 with NaOH or HCl at every
sample preparation step. Measurement of pH was performed using a pH electrode, InLab
Micro (Mettler Toledo, Greifensee, Switzerland), calibrated with buffer standards (pH 4, 7,
and 10). We did not consider a possible impact of Zn2+ complexation by chloride in this
work, because the binding constant β of such a complex is small (Log(β3) < 2.5) [59].

4.5. Characterization of ZIF-8 Particles

The size distribution of ZIF-8 particles was analyzed using a Zetasizer Nano, series
Nano-ZS (Malvern Instruments, Malvern, UK).

4.6. EPR Measurements

Continuous wave (CW) EPR spectra were obtained at X-band and room temperature
via a commercial X-band Bruker (Billerica, MA, USA) EMX spectrometer. Samples were
placed in glass capillary tubes (OD 1.5 mm, ID 0.9 mm). Spin concentration was determined
by comparing the spectral double integrals of the sample and a nitroxide solution with
a known concentration. CW EPR spectra were recorded at conditions that avoided un-
wanted modulation broadening and microwave saturation. Experimental CW EPR settings
were as follows: sweep width, 20 mT; microwave power, 6.315 µW; modulation frequency,
100 kHz; modulation amplitude, 0.4 mT; time constant, 20.48 ms; conversion time, 81.92 ms;
the number of points, 1024; number of scans, 4. The baseline spectrum of HEPES buffer
was acquired with 80 scans. The baseline spectrum was subtracted from all of the spectra.

Spectra were simulated using a home-written MATLAB script with the EasySpin
toolbox [60], as a superposition of the normalized spectra of R@ZIF-8 in initial suspension
(spectrum component S1) and acid pH = 4.0 (spectrum component S2): S = αS1 + βS2. The
corresponding weights (α and β) were determined using the least squares regression of
experimental and simulated data. Linear function, as a baseline, was subtracted from the
first integral of spectra.

4.7. Cytotoxic Assay of MIM

A549 cells were seeded in 96-well plates at a density of 2 × 103 cells per well by
100 µL DMEM supplemented with 10% FBS, antibiotics (100 U/mL penicillin, 100 mg/mL
streptomycin, 0.25 µg/mL amphotericin B) and 2 mM l-glutamine. After 24 h, 100 µL of
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DMEM containing antibiotics, 2 mM l-glutamine, and MIM per well were added. After
24 h, the media were replaced with 200 mL of RPMI-1640 medium containing 0.25 mg/mL
MTT(3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2Htetrazolium bromide), and the cells were
incubated at 37 ◦C for 4 h. Cell viability was expressed as a mean percentage of control ± SD
for triplicate independent experiments.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27103240/s1. Table S1: cell culture media composition,
Table S2: fraction of the probe inside ZIF-8, Table S3: parameters β, Ka, and fraction of escaped
probes for amino acids, Figure S1: particle size distribution, Figure S2: CW EPR spectra of R@ZIF-8
at pH = 4 and in water, Figure S3: CW EPR spectra of initial R@ZIF-8 and five-fold diluted with
water, Figure S4: CW EPR spectra of R@ZIF-8 in cell culture media, with and without MIM addition,
Figure S5: CW EPR spectra of R@ZIF-8 in MEM at different concentrations, Figure S6: CW EPR
spectra of R@ZIF-8 with amino acids addition, Figure S7: CW EPR spectra of R@ZIF-8 at different
amino acids concentrations, Figure S8: CW EPR spectra of R@ZIF-8, with addition of amino acids and
MIM, Figure S9: first integrals of R@ZIF-8 CW EPR spectra in cell culture media with MIM addition,
Figure S10: cytotoxic activity of MIM in A549 cells.
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