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Abstract

We develop a comprehensive theory of the stable representation categories of several sequences of

groups, including the classical and symmetric groups, and their relation to the unstable categories.

An important component of this theory is an array of equivalences between the stable representation

category and various other categories, each of which has its own flavor (representation theoretic,

combinatorial, commutative algebraic, or categorical) and offers a distinct perspective on the stable

category. We use this theory to produce a host of specific results: for example, the construction of

injective resolutions of simple objects, duality between the orthogonal and symplectic theories, and

a canonical derived auto-equivalence of the general linear theory.

2010 Mathematics Subject Classification: 05E05, 20G05 (primary); 13A50, 18D10 (secondary)

1. Introduction

1.1. Overview

1.1.1. Stable representation theory. Let (Gd)d>1 be a sequence of groups.

Suppose that we have some notion of compatibility for representations of different

G. For instance, it could be that the irreducibles of each Gd are parameterized

in some common manner, and representations of different G are considered

compatible if they have matching irreducible constituents. (This definition is too

weak in practice, but a good first approximation.) The stable representation theory
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of G is the theory of compatible sequences (Vd)d>1 of representations where we

care only about what happens for d large. There are two natural questions to

consider.

(A) What is the structure of the stable representation theory of G? To be

more precise, we introduce the stable representation category Repst(G∗):

informally, its objects are compatible sequences of representations, with

two such sequences considered equivalent if they are the same for d large;

formally, it can be described as a Serre quotient. The present question can

then be rephrased as follows. What is the structure of Repst(G∗)? This

abstract question naturally suggests many concrete ones: What are the simple

(or projective or injective) objects? What are the projective (or injective)

resolutions of simple objects? How does the tensor product of two simple

objects decompose? And so on.

(B) How does the stable representation theory relate to the representation theory

of each Gd? In cases of interest, we construct a specialization functor

Γd : Repst(G∗) → Rep(Gd), and the question can be rephrased as follows.

What is the structure of Γd? Again, this leads to concrete questions: What

are the exactness (or tensorial) properties of Γd? What does Γd (or its derived

functors) do to simple (or projective or injective) objects? And so on.

1.1.2. Example: the polynomial theory of the general linear group. A complex

representation ρ of GL(d) is polynomial if the entries of ρ(g) are polynomial

functions of the matrix entries of g ∈ GL(d). The irreducible polynomial

representations of GL(d) are parameterized by partitions of length at most d .

A partition of length at most d is also a partition of length at most d + 1, and this

gives rise (roughly) to the notion of compatibility.

The stable theory of these representations is well understood (see Section 2.2

for a review). An object of the stable category can be thought of in several

different ways: as a polynomial representation of GL(∞), as a formal sum of

representations of symmetric groups, or as a Schur functor. Furthermore, the

stable category is distinguished as the universal tensor category. Each of these

descriptions is valuable, and offers its own perspective on the stable theory. Using

them, one can easily give a complete answer to Question A: the stable category is

semisimple, and the simple objects are naturally in bijection with partitions.

The specialization functor Γd from the stable category to Rep(GL(d)) is most

easily seen from the perspective of Schur functors: it is then simply evaluation

on Cd . As is well known, Sλ(C
d) is the irreducible of GL(d) associated to λ if λ

has at most d parts, and 0 otherwise. Since the stable category is semisimple, this

completely describes Γd , and answers Question B.
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1.1.3. Purpose of this paper. In this paper, we study the stable representation

theory of five families of groups: the three families of classical groups GL(d)

(here we are interested in all rational representations, not just the polynomial

ones), O(d) and Sp(d), the symmetric groups S(d), and the (nonreductive)

general affine groups GA(d). We work exclusively with complex representations.

The representation theory of these groups is so ubiquitous that our objective

hardly requires motivation; nonetheless, let us provide some.

• One might hope to obtain a better understanding of problems at finite level

from the stable theory. In fact, this strategy has already been carried out, for at

least one problem, by Koike and Terada [Koi, KT]. They gave good answers

to both questions for classical groups at the level of characters. Furthermore,

they were able to understand the stable decomposition of tensor products of

simple modules. Thus they were able to understand the decomposition of tensor

products at finite level (by combining the stable result with their answer to

Question B), solving a basic problem in representation theory.

• One can reasonably expect the stable categories to relate to other parts of

representation theory. Indeed, this turns out to be the case: we will see that

these categories satisfy elegant universal properties and are closely related to

Deligne’s interpolation categories [De2].

• Many examples of compatible sequences of representations of S(d) occur in

nature: for example, in the study of configuration spaces. More examples are

listed by Church et al. in [CEF] (see also [CF]), where they are called FI-

modules. Due to such examples, it is fair to say that compatible sequences are

interesting in their own right.

1.1.4. Results of this paper. Our main results give a thorough answer to

Question A, for each of the five families of groups under consideration. Our

‘answer’ consists of a collection of equivalences between Repst(G∗) and

several other categories, analogous to the picture sketched in 1.1.2. Each of

these categories has its own flavor – representation theoretic, combinatorial,

commutative algebraic, or categorical – and thus offers a distinct lens through

which any given question about Repst(G∗) can be viewed. From our perspective,

homological questions are typically best attacked in the commutative algebra

category, where tools like the Koszul complex and classical invariant theory

are available. (The commutative algebra description of stable categories is, in

our opinion, the most novel aspect of this paper, and it makes essential use of

objects called twisted commutative algebras. It has no interesting analog in the

polynomial theory of GL.) We answer all of the concrete questions mentioned in

the general discussion of Question A, as well as many more.
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We also give a thorough answer to Question B. However, most of the real work

on this – computing the derived functors of the specialization functor on simple

objects – was done elsewhere ([SSW] for the classical groups and [SS1] for the

symmetric group). In this paper, we develop the basic theory of the specialization

functor, and explain how the cited results (which use a different language) can be

rephrased using it.

We emphasize that there is no single result that can be pointed to as the

main result: the final product of this paper is a theory which describes stable

representation theory and its relation to representation theory at finite level.

1.1.5. Unfortunately, and despite the uniformity of our results, each of the five

families is treated separately. This accounts for the bulk of the paper. It also

accounts for its title: each case fits nearly the same pattern, but we have no

unifying theory. In fact, there are additional families which fit these patterns

as well – such as wreath products of symmetric groups with finite groups and

generalizations of the general affine group – and probably more still to be

discovered. It would therefore be of great interest to find a general theory, if for no

other reason than to know exactly how far the phenomena observed here extend.

1.2. Descriptions of stable representation theory

As mentioned, the main results of this paper establish equivalences between

stable representation categories and various other categories. We now describe

these categories and some of the constructions which yield the equivalences.

1.2.1. Infinite rank groups. In the families of groups under consideration, Gd

is naturally a subgroup of Gd+1. We can therefore form the limit group G =⋃
d>1 Gd . For example, when Gd = GL(d), the group G = GL(∞) consists of

invertible infinite matrices which differ from the identity matrix at only finitely

many entries. In any compatible sequence (Vd) of representations, we have a

natural inclusion Vd ⊂ Vd+1. The limit V =
⋃

d>1 Vd is therefore a representation

of G. It is clear that V is a stable invariant of (Vd); that is, it only depends on Vd

for d large. In fact, no information is lost by passing from (Vd) to V . It therefore

suffices to study the representations of G which arise from compatible sequences.

Fortunately, this class of representations is easily distinguished. Let V = C∞ =⋃
d>1 Cd be the standard representation of GL(∞), and let V∗ =

⋃
d>1 Cd∗

be its restricted dual. In each of the five cases under consideration, G is

naturally a subgroup of GL(∞), and so V and V∗ are representations of G.

We say that a representation of G is algebraic (respectively, polynomial) if it

appears as a constituent of a finite direct sum of tensor powers of V and V∗
(respectively, tensor powers of V). We write Rep(G) (respectively, Reppol(G))

for the category of algebraic (respectively, polynomial) representations of G. The
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algebraic representations are those which come from compatible sequences, but

in certain cases we will want to restrict attention to polynomial representations.

We therefore have an equivalence Repst(G∗) = Rep(G). In fact, we never

precisely define Repst(G∗), and so this equivalence is by fiat. Although Repst(G∗)

is never formally employed, it is the motivation behind everything that we do, and

a constant source of intuition.

Remark. When V and V∗ are isomorphic as representations of G, as is the case

for the orthogonal, symplectic, and symmetric groups, there is no distinction

between algebraic and polynomial representations. Furthermore, algebraic

representations of the general affine group are of a somewhat different nature

from the other representations studied in this paper, and are therefore not

considered. Hence, there are six classes of representations under consideration:

polynomial representations of GL and GA and algebraic representations of GL,

O, Sp, and S. The polynomial representations of GL have been well understood

for some time, and were briefly discussed in 1.1.2.

1.2.2. (Lack of) semisimplicity. Before continuing, we highlight an important

feature of the categories Rep(G): they are not semisimple. (See below for an

example.) This is in stark contrast to the case of Reppol(GL), and is why these

categories are more complicated than it. In particular, it implies that character

theory does not capture the whole picture.

Example. Consider the pairing V ⊗ V∗ → C, which defines a surjection in

Rep(GL). We claim that it is not split. To see this, it is enough to show that V⊗V∗
has no invariants. Think of V ⊗ V∗ as endomorphisms of V which kill all but

finitely many basis vectors; the group GL(∞) acts on this space by conjugation.

Any endomorphism commuting with GL(∞) is a scalar matrix. Since scalar

matrices do not belong to V⊗ V∗, there are no invariants.

In fact, one can see this lack of semisimplicity in Repst(GL(∗)), without

passing to the infinite group. The point is that the decomposition of Cd ⊗ Cd∗

as a representation of GL(d) is not stable: the diagram

C // Cd ⊗ Cd∗

��
C // Cd+1 ⊗ (Cd+1)∗

does not commute, where the horizontal maps are the inclusions of the trivial

isotypic pieces and the right vertical map comes from standard inclusions. (Note,

however, that the obvious diagram with the horizontal arrows reversed does
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commute. This is why C is a quotient of V ⊗ V∗ in Rep(GL), but not a

subobject.)

1.2.3. Diagram algebras. There is an obvious action of the symmetric group

Sn on (Cd)⊗n which commutes with the action of GL(d). Schur–Weyl duality

states that the image of C[Sn] in End((Cd)⊗n) is the full centralizer of GL(d).

Furthermore, it provides a decomposition

(Cd)⊗n =
⊕

|λ|=n, ℓ(λ)6d

Vλ ⊗Mλ,

as a representation of GL(d)× Sn . Here the sum is over partitions λ of n with at

most d rows, Vλ is the irreducible of GL(d) with highest weight λ, and Mλ is the

irreducible of Sn corresponding to λ. This decomposition stabilizes for d > n, and

provides a natural bijection between the irreducible representations of Sn and the

irreducible polynomial representations of GL(d) in which the center acts through

the nth power character. Letting d =∞, we obtain a bijection between irreducible

representations of symmetric groups and irreducible polynomial representations

of GL(∞). In fact, we obtain an equivalence between the category Rep(S∗)

of sequences (Mn)n>0, where Mn is a representation of Sn , and the category

Reppol(GL). This provides a combinatorial description of the stable polynomial

representation theory of GL.

Our first piece of real progress is to generalize the above picture to the other

theories under consideration. For expository purposes, we restrict ourselves to

the orthogonal group here. The first step in carrying out this generalization is to

understand the centralizer of the O(d) action on (Cd)⊗n . Fortunately, this is well

known: it is the Brauer algebra Bn(d). This algebra is generated by three obvious

operations:

• the transposition σi, j of the i th and j th tensor factors;

• the contraction ci, j : (C
d)⊗n → (Cd)⊗(n−2), which applies the pairing to the i th

and j th tensor factors;

• the cocontraction c∗i, j : (C
d)⊗(n−2) → (Cd)⊗n , which inserts a copy of the

invariant in (C2)⊗2 in the i th and j th tensor factors.

Of course, contraction and cocontraction are not endomorphisms of (Cd)⊗n .

However, one can build nontrivial endomorphisms of (Cd)⊗n using them: for

example, c∗1,3c∗2,4c1,2c3,4. These are the endomorphisms which generate the Brauer

algebra.

We would now like to take d = ∞. However, there is a problem: V⊗2 has no

invariant (this is similar to the example in 1.2.2), and so there is no cocontraction.
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Our solution to this problem is to simply discard cocontraction. We thus consider

the algebra B generated by transpositions and contractions, which acts on the

space K =
⊕

n>0 V⊗n and commutes with the action of O(∞). Given a B-module

M , the space HomB(M, K ) is naturally a representation of O(∞). We show that

this construction defines a contravariant equivalence between a certain category

of B-modules and Rep(O).

Actually, we find it more convenient to state the above result in a different

language. Define the downwards Brauer category, denoted (db), as follows:

a. the objects are finite sets;

b. a morphism L → L ′ consists of a matching Γ on L and a bijection

L \ V (Γ )→ L ′, where V (Γ ) denotes the set of vertices of Γ .

The terminology ‘downwards’ refers to the fact that morphisms cannot go from

smaller sets to larger ones: if L → L ′ is a morphism then #L ′ 6 #L . A

representation of (db) is a functor (db) → Vec. Representations of (db) are

closely related to B-modules. For instance, the B-module K corresponds to the

functor K which attaches to a finite set L the space KL = V⊗L ; a morphism L →

L ′ in (db) induces a morphism KL → KL ′ via contractions and permutations. The

equivalence mentioned above can be rephrased in this new language as follows:

the category of finite length representations of (db) is contravariantly equivalent to

Rep(O). We obtain a covariant equivalence by using the upwards Brauer category

instead. This is our combinatorial description of the stable representation theory

of the orthogonal group.

Remark. With the exception of the symmetric group, the combinatorial

description of the other categories is very similar to the above. For the

symmetric group, the category that replaces the downwards Brauer category

is the downwards partition category (which relates to partition algebras). It

is exceptional in that it is not weakly directed: the maps do not all go in one

direction. This greatly complicates the analysis of its representation category.

1.2.4. Twisted commutative algebras. Suppose that M is a representation of the

downwards Brauer category (db). Evaluating M on the finite set n = {1, . . . , n},

we obtain a representation Mn of Aut(db)(n) = Sn . We can apply Schur–Weyl

duality to this representation to obtain a polynomial representation Vn of GL(∞).

There is a map αn : n → n + 2 in (db), given by a graph with a single edge (in

fact, there are several such maps). A careful examination of how αn interacts with

Schur–Weyl duality shows that it corresponds to a map βn : Sym2(V) ⊗ Vn →

Vn+2 of representations of GL(∞). Furthermore, the relations between the αn for
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various n translate exactly to the βn defining the structure of a Sym(Sym2(V))-

module on
⊕

n>0 Vn .

A twisted commutative algebra (tca) is a commutative associative unital algebra

endowed with an action of GL(∞) by algebra homomorphisms, under which it

constitutes a polynomial representation. A module over a tca A is an A-module M ,

in the usual sense, endowed with a compatible action of GL(∞), under which it

too forms a polynomial representation. The previous paragraph can be rephrased

in this language as follows: the category Rep(O) is equivalent to the category

of finite length modules over the tca Sym(Sym2(V)). This is our commutative

algebraic description of the stable representation theory of the orthogonal

group.

Remark. The module category over a nontrivial tca is necessarily not semisimple.

Therefore the above description of representations of O(∞) is truly specific to

the infinite case: there is no similar description of the representation category of

O(d). The module category over the trivial tca C is, by definition, the semisimple

category Reppol(GL).

1.2.5. Generalizations of Schur functors. The category of all functors Vec →

Vec is an abelian category. An object of this category is called polynomial if it

appears as a subquotient of a direct sum of objects of the form V 7→ V⊗n . Let

S be the full subcategory of polynomial functors; this is the Schur algebra. The

theory of Schur functors provides an equivalence between S and Reppol(GL).

We present an analogous theory for the other cases under consideration. For

now, we consider only the orthogonal case. Let T0 be the category of pairs (V,

ω), where V is a finite-dimensional vector space and ω is a symmetric bilinear

form on V . (We have not placed any nondegeneracy conditions on ω, but one can

do this without changing what follows.) We associate to every object of Rep(O)

a natural functor T0 → Vec, which we call an orthogonal Schur functor. We

show that the resulting functor Rep(O)→ Fun(T0,Vec) is fully faithful. Thus the

stable representation theory of the orthogonal group can be interpreted in terms

of orthogonal Schur functors.

1.2.6. Universal descriptions. The category Reppol(GL) is distinguished by an

elegant universal property: it is the universal abelian tensor category. Precisely, to

give a tensor functor from Reppol(GL) to some abelian tensor category A is the

same as to give an object of A (see 2.2.11 for details). We show that the other

categories under consideration satisfy similar universal properties. For instance,

giving a left-exact tensor functor from Rep(O) to some tensor category A is the

same as giving a pair (A, ω), where A is an object of A and ω is a symmetric

bilinear form on A.
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1.3. Additional results, applications, and remarks

We apply the descriptions of the stable representation categories discussed in

the previous section to prove an array of other results. We now describe some of

them, and make some additional comments.

1.3.1. Structural results. We obtain many structural results in each of the five

cases: classification of simple, injective, and projective objects, blocks of the

category, minimal resolutions of simple objects, and computation of the Ext

groups between simple objects. Some of these results are contained in [DPS].

In many cases, however, our proofs are more natural, due to the additional tools at

our disposal. For instance, [DPS] calculates the Ext groups between simples for

GL, but not in other cases. We give an easy calculation in all cases using the tca

viewpoint.

1.3.2. The specialization functor. As stated, one of the main aims of our theory

is to relate stable representation theory to representation theory at finite level. The

link between the two is provided by the specialization functor. We discuss the

orthogonal case here, the others being similar. The standard representation Cd of

O(d) admits, by definition, an invariant symmetric form. Thus, by the universal

property of Rep(O), there is a corresponding left-exact tensor functor

Γd : Rep(O)→ Rep(O(d)).

This is the specialization functor. We give a much more concrete description of

this functor in terms of the representation theory: Γd(V ) is the space of invariants

of V under a certain subgroup Hd of O(∞). However, by far the most interesting

result on Γd comes from [SSW]: if V is a simple object of Rep(O) then RiΓd(V )

either vanishes for all i or is nonzero for at most one i , and is then an irreducible

representation of O(d). Furthermore, there is a combinatorial rule, reminiscent of

the Borel–Weil–Bott theorem, which gives the index of nonvanishing (if it exists)

and the resulting irreducible of O(d). This had previously been proved at the

level of Euler characteristic by Koike and Terada [KT, Section 2.4]. See 7.11 for

a specific example of how this theory can be applied to problems at finite level.

1.3.3. Orthogonal–symplectic duality. We show that the stable representation

theory of the orthogonal group is dual to that of the symplectic group; that is,

there is a natural equivalence of categories Rep(O) ∼= Rep(Sp). This equivalence

is an asymmetric tensor functor: it commutes with tensor products but does not

respect the commutativity isomorphism of the tensor product. The proof is short

enough to recapitulate here: transposition of partitions defines an asymmetric

auto-equivalence of Reppol(GL) which interchanges the tcas Sym(Sym2(V)) and
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Sym(
∧2
(V)); it therefore induces an equivalence between the module categories,

the first of which is Rep(O), the second Rep(Sp).

This result was first proved (to the best of our knowledge) at the level of

representation rings by Koike and Terada [KT, Theorem 2.3.2]. Later, in [DPS,

Corollary 6.11], the equivalence was established at the level of abelian categories

(ignoring the tensor structure). Our result is the common generalization of the

two. Serganova has also obtained this result by making use of the infinite

orthosymplectic Lie superalgebra [Se2, Section 4.3].

1.3.4. The groups GA and S. It follows from our descriptions of the categories

Reppol(GA) and Rep(S) that they are equivalent as abelian categories. In fact, we

realize this equivalence as an ‘infinite Schur–Weyl duality’; see 6.2.6. However,

the two categories are not equivalent as tensor categories: the structure constants

for tensor products of simple objects are given by the Littlewood–Richardson

coefficients in the former and the stable Kronecker coefficients in the latter. Thus

Reppol(GA), as a tensor category, can be regarded as a degeneration of Rep(S)

(see 8.7 for details). The category Rep(S) seems to be the most natural categorical

home of the stable Kronecker coefficients.

1.3.5. The Fourier transform and Koszul duality. It follows from our results that

each of the categories under consideration is Koszul. The category Reppol(GA) ∼=

Rep(S), is Koszul self-dual: this was established in [SS1], where we constructed a

canonical auto-equivalence of the derived category, called the Fourier transform,

realizing the auto-duality. Here, we extend this construction to Rep(GL), showing

that it is its own dual. The Fourier transform now involves a small choice: it is

only canonical up to a Z/2 ambiguity. We also show that Rep(O) and Rep(Sp)

are neither self-dual nor dual to each other; the dual categories are just different

things.

The Koszul properties of Rep(GL), Rep(O), and Rep(Sp) were investigated in

[DPS]. It was shown that these categories are Koszul, and that the first is self-dual.

However, [DPS] does not construct the nearly canonical auto-duality of Rep(GL)

that we do: the proof of self-duality in [DPS] is through an explicit computation

with quadratic rings.

1.3.6. Tensor product and branching rules. We determine the multiplicity of a

simple object in the tensor product of two other simple objects in the categories

Rep(GL) and Rep(O) ∼= Rep(Sp). These results had previously been obtained by

Koike [Koi]. However, the proof in [Koi] was by character calculations. Our proof

is more conceptual, using a general principle to reduce the problem to a simple

exercise on the symmetric group. Combined with results on the specialization
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functor, this recovers tensor product formulas at finite level, also obtained by

Koike.

One might hope to apply the same method to the symmetric groups and obtain

formulas for the stable Kronecker coefficients. Unfortunately, we have not been

able to do this.

A branching rule describes how an irreducible representation of a group

decomposes under a subgroup. There are several interesting embeddings of

classical groups, each giving rise to a branching rule. For example, tensor product

decompositions are branching rules for diagonal embeddings. We discuss these

rules in Section 7, and show how our viewpoint can be used to rederive some of

them.

1.3.7. Odd symplectic groups. As discussed in 1.2.4, the stable representation

categories that we consider are equivalent to categories of finite length modules

over certain tcas. Precisely, the categories Reppol(GL), Reppol(GA), Rep(O),

Rep(Sp), and Rep(GL) correspond to the tcas C, Sym(V), Sym(Sym2(V)),

Sym(
∧2
(V)), and Sym(V⊗V′) (here V′ denotes a separate copy of V, and the last

is a two-variable tca). These tcas share an important property: they are multiplicity

free. There is another symmetric algebra tca with this property: Sym(V⊕
∧2

V).

This tca corresponds to the so-called odd symplectic groups [Pro]. We do not

discuss these groups in this paper, but the general pattern we establish applies to

them as well.

1.3.8. Opposites of stable categories. We describe the opposite of each of

the categories listed in Section 1.2: the opposite of the category of algebraic

representations of G is the category of pro-algebraic representations of G; the

opposite of the category of representations of the downwards Brauer algebra is

the category of representations of the upwards Brauer algebra; and so on. These

identifications are natural, and come from various dualities. Having these opposite

points of view can be convenient: for example, a certain construction we use

requires coalgebras in the usual categories; in the opposite categories it uses

algebras, which are easier to contemplate.

1.3.9. Quantum variants. We expect that the content of this paper will work in

the setting of ‘quantum multilinear algebra’ in the sense of [HH]. In this setting,

we replace the symmetric monoidal category of C-vector spaces with a braided

monoidal category of C(q)-vector spaces associated to an R-matrix. The groups

GL(∞), etc., get replaced with their quantum analogs, and the symmetric groups

are replaced by certain Hecke algebras. There are likely many other changes to be

made, but we have not thought through the details.
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1.4. Relation to other work

1.4.1. Polynomial theory of GL. The primary antecedent of our work is the

polynomial theory of the general linear group. This theory was developed by

Schur and Weyl in the 1920s. They completely understood the connection

to symmetric groups, the theory of Schur functors, and the behavior of the

specialization functor. They also understood the stability properties of the theory,

in the language of symmetric functions.

1.4.2. Stability of character theory. It is natural to wonder if the description of

the stable polynomial character theory of GL in terms of symmetric functions

can be extended to other settings, such as the other classical groups. It was

known to Littlewood [Lit1] that the character theory of these groups is eventually

stable: calculations in an idealized infinite setting remain valid if we specialize

to a sufficiently large finite setting. The question of what happens if we remove

‘sufficiently large’ was studied by Koike and Terada [KT, Koi] (see also [Kin]).

They constructed analogs of the ring of symmetric functions, and specialization

homomorphisms down to the character rings at finite level. For symmetric groups,

the existence of such a ring follows from Murnaghan’s theorem (which was

first completely proved in [Lit2]). As far as we are aware, the specialization

map in this context was not studied until [SS1], and even there it is phrased

in a different language. These stable character rings can be viewed as the

Grothendieck groups of the categories we study. Furthermore, the complicated

behavior of the specialization maps can be seen as a reflection of the lack of

semisimplicity of these categories.

1.4.3. Centralizer algebras. An important point in the Schur–Weyl theory is the

determination of the centralizer of GL(d) acting on tensor powers of its standard

representation Cd . It is also natural to ask how this result extends to other contexts

(see [Wyl] for this perspective). The situation for the orthogonal and symplectic

groups was considered by Brauer [Bra]. The diagram algebras are named Brauer

algebras in his honor, and many of their fundamental properties were worked out

by Wenzl [Wen]. The centralizer algebras for mixed tensor representations of the

general linear group have been considered by many authors, but, to the best of our

knowledge, the first systematic study was given in [Koi] and [BC+]. This algebra

was later named the walled Brauer algebra due to the description of its diagrams.

Finally, for the symmetric group, the centralizer algebra seems to have been first

studied in [Mar] and [Jon], and is now called the partition algebra. The ideas

and results of these works are important for us, as they furnish the combinatorial

descriptions of our categories.
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1.4.4. Representations of infinite rank groups. To the best of our knowledge, the

categories Rep(GL), Rep(O), and Rep(Sp) first appeared in the works of Penkov

and his collaborators [PSt, PSe, DPS] (where they are denoted Tg) and in the

work of Ol’shanskiı̆ [Ols]. In the first group of references, these categories are

studied in the context of locally finite Lie algebras. They were defined by certain

Lie-theoretic conditions and then later shown to coincide with the representations

which appear as subquotients of (mixed) tensor representations. (Our point of

view in this paper is to ignore these characterizations and just define the categories

in terms of mixed tensor representations.) Some of the results we establish in this

paper occurred earlier in these works, though often with different proofs; we have

tried to be careful to point out the overlaps. We have not found Rep(S) in the

literature, but we would not be surprised if it is there.

1.4.5. Twisted commutative algebras. The commutative algebraic description

of our categories is in terms of twisted commutative algebras. Tcas seem to have

been around since the 1970s, and are closely related to Joyal’s theory of species.

However, to the best of our knowledge, they were first treated from the perspective

of commutative algebra in [Sno]. We have since developed the theory further

in [SS1, SS2]. One of our motivations for studying the representation theory of

O(∞) was to understand O(∞)-analogs of tcas. It came as a surprise to us that

this representation theory could be described using tcas, the very objects we set

out to generalize!

1.4.6. Deligne’s categories. Deligne has introduced the idea of representation

theory in ‘complex rank’ [De2]: he defined family of categories Rep(S(δ))

depending on a complex parameter δ which, in a sense, interpolates the categories

Rep(S(n)) for n a positive integer. Similar definitions exist for the classical

groups. One can interpret the categories we consider in this paper as a limit of

Deligne’s categories as the parameter δ goes to infinity. Furthermore, objects of,

for example, Rep(O(δ)) can be defined as representations of a certain Brauer

category, which is closely related to the downwards Brauer categories that we

explore in this paper.

1.4.7. Spinors and oscillators. The spinor representations of the orthogonal

groups (and many related representations) are not algebraic in the sense of this

paper, and so do not fit into the theory we develop here. In fact, a stable theory

of spinor representations can be developed along the lines of the formalism in

this paper, which we do in [SS4]. This issue does not arise for the symplectic Lie

algebra, but a systematic consideration of going to the infinite rank limit suggests

that the role of spinors are played by oscillators, which are infinite dimensional

even for finite rank symplectic Lie algebras. This is also discussed in [SS4].
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1.5. Future directions

1.5.1. Classical superalgebras. Let V be a super (that is, Z/2-graded) vector

space. Its symmetries are encoded by the general linear Lie superalgebra gl(V ).

The polynomial representations (those constructed from tensor operations on V )

of gl(V ) are well understood [BR, Sv], and a next natural step is to investigate

the category of mixed tensor representations (those constructed from tensor

operations that involve both V and V ∗). The decomposition of mixed tensor

powers into indecomposable summands has been investigated in [BS2] and [CW].

We believe that the category of rational Schur functors, whose study is initiated

in Section 3.4, is crucial to a further understanding of these representations. For

the orthosymplectic algebra (automorphisms of V preserving a nondegenerate

supersymmetric form), similar remarks apply for the category of orthogonal

(respectively, symplectic) Schur functors studied in Section 4.4.

While the character problem for these algebras is in principle solved (by

reducing to the combinatorics of Kazhdan–Lusztig polynomials), see for example

[Se1, Bru, CLW], we do not know of a general tensor construction of the

irreducible representations: they do not all occur in mixed tensor spaces. However,

the notion of super duality, see for example [CL, CLW], suggests that this

problem is closely related to the categories Rep(GL), Rep(O), and Rep(Sp). In

a special case relevant here this was established first in [BS2] based on [BS1].

The involved categories for the Lie superalgebra, gln , and the walled Brauer

algebra then all occur as some idempotent truncation of a generalized Khovanov

algebra. We point out the conjecture in the end of the introduction of [BS3] on

the connection between Deligne’s category and the diagrammatic aspects of the

walled Brauer algebra.

1.5.2. Quiver descriptions of categories of homogeneous bundles. The general

affine group GA is a stabilizer subgroup of a torus bundle over a projective

space (specifically, the total space of the line bundle O(1) minus its zero

section). From the equivalence between homogeneous bundles on a homogeneous

space and representations of the corresponding stabilizer subgroup, our model

of Reppol(GA) gives a quiver description of the category of ‘polynomial’

homogeneous bundles on a torus bundle over infinite-dimensional projective

space.

A related setup was considered in [OR], where quiver descriptions are given for

homogeneous bundles on G/P , with G simply laced and P a parabolic subgroup

of Hermitian symmetric type (in particular, G/P is compact in these cases). On a

finite-dimensional projective space, each homogeneous bundle can be written as a

polynomial homogeneous bundle twisted by a line bundle O(d) for some d ∈ Z.

Pulling back this homogeneous bundle to the total space of O(1) has the effect of
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forgetting the twist, so one can interpret a suitable truncation of our quiver model

of Reppol(GA) as a quotient of the quiver considered in [OR] for projective space.

The method of [OR] was through direct calculations. By working in our general

framework of diagram categories, we hope to give conceptual descriptions of

categories of homogeneous bundles on homogeneous spaces in future work.

1.5.3. Structure of tcas. As mentioned, twisted commutative algebras play an

important role in this work. The most basic example of a tca is Sym(V), which

can be thought of as the polynomial ring C[x1, x2, . . .] equipped with its natural

GL(∞) action. We gave a detailed analysis of the category of modules over this

tca in [SS1]. This category was also studied in [CEF], where such modules are

called FI-modules.

Having understood the simplest tca, it is natural to try to understand more

complicated ones. The next most simple ones to understand are polynomial rings

of the form Sym(V⊕n) = C[xi, j ], where 1 6 i 6 n and j > 1. We expect that

the perspective of this paper will be useful in the study of such modules. In

particular, modules over the ‘generic fiber’ of these tcas should be closely related

to representations of certain generalizations of the general affine group.

The examples beyond Sym(V⊕n) are much more complicated, as they enter the

realm of unbounded tcas. We expect that Sym(Sym2(V)) and Sym(
∧2
(V))might

be tractable to analyze, however, and, in recent joint work with Nagpal [NSS], the

categories Rep(O) and Rep(Sp) served an essential role in establishing that these

algebras are noetherian.

1.5.4. Pure free resolutions over quadric hypersurfaces. One of our original

motivations for trying to understand the algebraic framework behind the work of

Koike and Terada, and to better understand the structure of tcas, was to construct

‘pure free resolutions’ over the homogeneous coordinate ring of a smooth quadric

hypersurface. This construction is known for polynomial rings [EFW, ES] and is

the first step in the proof [ES] of the Boij–Söderberg conjectures [BS], which

describe the linear inequalities that define the cone of graded Betti numbers of

finitely generated modules.

The construction in [EFW] naturally lives in the world of Schur functors,

and it was observed by the first author and Jerzy Weyman that certain formal

manipulations (that is, on the level of the character ring) of these resolutions

would produce the desired resolutions over a quadric. These manipulations

made use of two constructions of [KT]: a certain transpose operation, and

the specialization homomorphism mentioned earlier. The natural setting for the

specialization homomorphism is the specialization functor studied in Section 4.4.

Unfortunately we have not yet understood the meaning of the Koike–Terada

transpose operation.
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1.6. Organization

In Section 2, we develop technical results used in the rest of the paper.

The material in Sections 2.2 and 2.3 is used implicitly throughout. The other

subsections in Section 2 are technical, and, on a first reading, we suggest that the

reader skip them and refer back for the referenced statements as necessary.

The next four sections are devoted to the analysis of the stable representation

theory of the five families of groups previously mentioned. The general linear

group is treated in Section 3. Due to their similarity, the orthogonal and symplectic

groups are treated simultaneously in Section 4. In Section 5, we handle the general

affine group. Many results on this group were developed in [SS1], so this section

is brief. We tackle the symmetric group in Section 6. This case is more involved

than the others, since the relevant diagram category is not weakly directed. There

is little interdependence between these sections, so the reader is encouraged to

skip ahead to whichever groups are of the most interest. However, the general

linear group is treated in the most detail, with similar arguments omitted in later

sections.

In Section 7, we examine the relationships between different categories

(branching rules, including tensor products). We close with Section 8, which lists

some open problems.

1.7. Notation and conventions

We work over the field of complex numbers C. Everything in this paper can be

done over the rational numbers Q if one works with split forms of the groups. We

list here some particularly important notation and conventions used throughout

the paper.

• Vec = category of complex vector spaces.

• V ∗ = dual of a vector space V .

• Abelian category = C-linear abelian category.

• Af = category of finite length objects in A (A is an abelian category).

• Tensor category = abelian category with biadditive symmetric monoidal

functor.

• Tensor functor = additive strict symmetric monoidal functor.

• Asymmetric tensor functor: same as above but not symmetric.

• LEx(A,B) = left-exact functors A→ B;

• Fun⊗(A,B) = tensor functors A→ B;
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• V = C∞ =
⋃

d>1 Cd . We let e1, e2, . . . be a basis of V compatible with this

union.

• V∗ =
⋃

d>1 Cd∗ is the restricted dual of V. The e∗i form a basis of V∗.

• Sn , and (in Section 6) S(n), is the symmetric group on n letters.

• n is the set {1, . . . , n}.

Other notation defined in the body of the paper includes the following.

ModΛ, Modf
Λ, Mod

gf

Λ (Λ a category), 2.1.2

f∗, f# ( f a functor), 2.1.4

Sx(V ), Px(V ), Ix(V ), 2.1.5

HomΛ, 2.1.8

⊗Λ, 2.1.9

K, Φ, Ψ , 2.1.10

∐, ⊗∗, ⊗#, 2.1.14

Reppol(GL), Tn , 2.2.1

Mλ, T d
n , 2.2.3

cνλ,µ, 2.2.7

Rep(S∗), (fs), 2.2.8

Sλ, 2.2.10
∨, 2.2.13
†, 2.2.14

V , 2.3.1

C〈1〉, 2.3.2

∗A, 2.3.3

V̂ec, 2.5.2

Rep(GL), 3.1.1

Vλ,λ′ , 3.1.3

R̂ep(GL), 3.1.12

Bn,m , 3.2.3

(dwb), 3.2.8

(uwb), 3.2.9

Sym(C〈1, 1〉), 3.3.1

Γd , 3.4.3, 4.4.4, 5.4.3, 6.4.4

T0, T1, 3.4.6, 4.4.7, 5.4.5, 6.4.7

Rep(O), R̂ep(O), 4.1.1

Vλ, 4.1.3, 5.1.2, 6.1.4

Rep(Sp), R̂ep(Sp), 4.1.11

Bn , 4.2.2

(db), (ub) 4.2.5

(dsb), (usb), 4.2.11

GA(n), GA(∞), 5.1.1

(ds), (us), 5.2.1

S, Rep(S), R̂ep(S), 6.1.1

An , 6.3.2

(dp), (up), 6.3.8

2. Preliminaries

2.1. Representations of categories

2.1.1. Categorical conditions. We consider the following conditions on a

category Λ.

https://doi.org/10.1017/fms.2015.10 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2015.10


S. V Sam and A. Snowden 18

• Hom-finite: for all objects x and y, the set HomΛ(x, y) is finite.

• Weakly directed: any self-map is an isomorphism. When this condition holds,

there is a natural partial order on the isomorphism classes: x 6 y if there exists

a morphism x → y.

• Inwards finite: for any x there exist only finitely many y, up to isomorphism,

for which there exists a map y→ x . (There is an obvious dual condition, called

outwards finite.)

We assume in this section that Λ is Hom-finite, weakly directed, and either

inwards or outwards finite. (We assume the same for similarly named categories,

for example, Λ′.) Some of the results in this section do not require these

conditions, but most categories we are interested in do satisfy these conditions,

and assuming them allows for some simplifications in the discussion.

2.1.2. Representations of categories. Let A be an abelian category. A

representation of Λ valued in A is a functor Λ → A. A morphism of

representations is a natural transformation of functors. We let AΛ denote the

category of representations; it is an abelian category. We typically denote the

value of an object M of AΛ on an object x of Λ by Mx . We often write HomΛ

in place of HomAΛ . In the special case where A = Vec, we write ModΛ in place

of AΛ. As usual, we write Modf
Λ for the objects of ModΛ of finite length. We

write Mod
gf

Λ = (Vecf)Λ for the graded-finite objects of ModΛ, that is, those whose

values at each object of Λ are finite-dimensional vector spaces.

2.1.3. Duality. We have a natural equivalence AΛop

= ((Aop)Λ)op. If we have

an equivalence A = Aop, then this yields an equivalence AΛop

= (AΛ)op. In

particular, we have an equivalence Mod
gf

Λop = (Mod
gf

Λ)
op defined by taking an

object M of Mod
gf

Λop to the object M∗ of Mod
gf

Λ given by (M∗)x = M∗x .

2.1.4. Pushforwards and pullbacks. Let f : Λ → Λ′ be a functor. We then

get a pullback functor f ∗ : AΛ′ → AΛ. For an object y of Λ′, let Λ/y denote

the category of pairs (x, α), where x is an object of Λ and α : f (x) → y is a

morphism in Λ′. Define y\Λ similarly, but with α : y → f (x). For M ∈ AΛ and

y ∈ Λ′, define

f∗(M)y = lim(M | y\Λ), f#(M)y = colim(M | Λ/y).

We assume in this section that these limits and colimits always exist, as they will

in all cases of interest. It is clear then that f∗(M) and f#(M) define objects of AΛ′ .

In fact, f∗ and f# define functors AΛ → AΛ′ , and are the right and left adjoints
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of f ∗, respectively. Note that f∗ and f# are interchanged under duality; that is, the

diagram

AΛop ( f op)∗ // A(Λ′)op

((Aop)Λ)op
( f#)

op

// ((Aop)Λ
′

)op

commutes (up to natural isomorphism).

2.1.5. Simples, projectives, and injectives. Let x be an object ofΛ, and let G =

Aut(x), a finite group. Let V be an irreducible representation of G. There is a

unique (up to isomorphism) object Sx(V ) of ModΛ such that Sx(V )x = V and

Sx(V )y = 0 if y is not isomorphic to x . The objects Sx(V ) are simple, and one

easily sees that they exhaust the simple objects of ModΛ. From this description of

simple objects, one finds that an object M of ModΛ is of finite length if and only

if Mx is finite dimensional for all x and nonzero for only finitely many x , up to

isomorphism. These statements depend crucially on Λ being weakly directed.

Let BG be the category with one object with automorphism group G, and let

i : BG → Λ be the natural fully faithful functor. We regard V as an object of

ModBG , and we can thus form Px(V ) = i#(V ). The object Px(V ) is projective,

since ModBG is semisimple and i# takes projectives to projectives. It follows

immediately from the definition of i# and the weakly directed hypothesis that

Px(V )x = V . In fact, there is a natural surjection Px(V )→ Sx(V ), which realizes

Px(V ) as the projective cover of the simple object Sx(V ). The kernel of this

surjection is supported on objects larger than x (in the partial order). If Λ is

outwards finite, then Px(V ) has finite length, and every object of Modf
Λ has finite

projective dimension.

Similarly, we can form Ix(V ) = i∗(V ). The same discussion applies: this is the

injective envelope of Sx(V ), and ifΛ is inwards finite then Ix(V ) has finite length,

and every object of Modf
Λ has finite injective dimension.

PROPOSITION 2.1.6. Let f : Λ → Λ′ be a functor, and suppose that Λ′ is

outwards finite. Then f# takes finite length objects of ModΛ to finite length objects

of ModΛ′ .

Proof. Since f# is right-exact, it suffices to show that it takes simple objects

to finite length objects. It follows from the definition of f# that f#(Sx(V ))y

is a quotient of V ⊗ C[Hom( f (x), y)]. Since Λ′ is Hom-finite, the space

V ⊗ C[Hom( f (x), y)] is finite dimensional for all y, and, since Λ′ is outwards
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finite, it is nonzero for only finitely many isomorphism classes y. It follows that

f#(Sx(V )) is finite length, which completes the proof.

2.1.7. The Vec-module structure on A. Let A be an object of A, and let V be a

vector space of finite dimension d . We define objects V ⊗ A and Hom(V, A) of

A by the functors they represent:

HomA(−, V ⊗ A) = V ⊗ HomA(−, A),

HomA(−,Hom(V, A)) = Hom(V,HomA(−, A)).

After picking a basis for V , both V ⊗ A and Hom(V, A) are canonically

isomorphic to A⊕d , which shows that the above functors are representable. Note

that Hom(V, A) is canonically isomorphic to V ∗ ⊗ A. This construction appears

in [De1, Section 2.9].

2.1.8. Structured Hom spaces. Suppose that M is an object of Modf
Λ and that

N is an object of AΛ. We define an object HomΛ(M, N ) of A as follows:

HomΛ(M, N ) = lim
(x,y)∈Λop×Λ

Hom(Mx , Ny).

One can show that this limit is equivalent to a finite limit, and therefore exists. As

this definition is a bit abstract, we now give a more straightforward, though less

intrinsic, definition. Suppose that A is a subcategory of ModR for some C-algebra

R; this can essentially always be arranged by the Freyd–Mitchell embedding

theorem. We can then think of N as an object of ModΛ such that each Nx

has the structure of an R-module, in a compatible manner. We can thus form

HomModΛ(M, N ), and the result will have the structure of an R-module. This is

HomΛ(M, N ).

2.1.9. Structured tensor products. There is a covariant version of the previous

construction. Suppose that M is an object of Modf
Λop and that N is an object of

AΛ. We then put

M ⊗Λ N = lim
(x,y)∈Λop×Λ

Mx ⊗ Ny,

which is an object of A. The identifications HomΛ(M, N ) = M∗⊗Λ N and M⊗Λ

N = HomΛ(M
∗, N ) hold.

2.1.10. Transforms defined by kernels. Let K be an object of AΛ. We have

contravariant functors

Φ : Modf
Λ→ A, Φ(M) = HomΛ(M,K)
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and

Ψ : A→ ModΛ, Ψ (N ) = HomA(N ,K).

We call K the kernel of these functors.

PROPOSITION. The contravariant functors Φ and Ψ are adjoint on the right;

that is, for M ∈ Modf
Λ and N ∈ A there is a natural isomorphism

HomΛ(M, Ψ (N )) = HomA(N , Φ(M)).

Furthermore, the adjunctions M → Ψ (Φ(M)) and N → Φ(Ψ (N )) are injective.

Proof. This is completely formal, and is left to the reader.

2.1.11. A criterion for equivalence. Suppose that Λ is outwards finite, and let

K ∈ AΛ. For an object x of Λ, we put

K[x] =
⋂

f : x→y

ker(Kx → Ky),

where the intersection is taken over all nonisomorphisms f . We then have the

following general criterion for Φ and Ψ to be equivalences.

THEOREM. Suppose that the following conditions hold.

(a) For any object x ∈ Λ and any irreducible representation V of Aut(x), the

space HomAut(x)(V,K[x]) is a simple object of A.

(b) For each simple object A of A there is a unique object x of Λ (up

to isomorphism) such that HomA(A,Kx) is nonzero, and it is then an

irreducible representation of Aut(x).

Then Φ : Modf
Λ → Af and Ψ : Af → Modf

Λ are mutually quasiinverse

equivalences.

Proof. Let x be an object of Λ, and let V be an irreducible representation of

Aut(x). Then HomΛ(Sx(V ),K) = HomAut(x)(V,K[x]), and so (a) shows that Φ

takes simple objects of ModΛ to simple objects of A. Condition (b) exactly

shows that Ψ takes simple objects of A to simple objects of ModΛ. Since Φ

is left-exact and takes simples to simples, an easy inductive argument shows that

len(Φ(M)) 6 len(M); in particular, Φ takes finite length objects to finite length

objects. The same holds for Ψ .

Now, we have natural injective maps η : id → ΦΨ and η′ : id → ΨΦ. For

any finite length object A of A, we thus have an injection A→ Φ(Ψ (A)). Since
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len(Φ(Ψ (A))) 6 len(A), this map is necessarily an isomorphism. Thus η is an

isomorphism of functors. A similar argument shows that η′ is an isomorphism of

functors, which completes the proof.

COROLLARY 2.1.12. In the setting of Theorem 2.1.11, we have a covariant

equivalence of categories Modf
Λop → Af given by M 7→ M ⊗Λ K.

2.1.13. The pointwise tensor product. Suppose now that A has a tensor product

⊗. Given two objects M and N of AΛ, we let M ⊠ N be the object of AΛ defined

by x 7→ Mx ⊗ Nx . We call this the pointwise tensor product of M and N . This

tensor product preserves finite length objects of ModΛ, by the characterization of

such objects given in 2.1.5.

2.1.14. Convolution tensor products. Suppose now that Λ is equipped with a

symmetric monoidal functor ∐. Let p1, p2 : Λ×Λ→ Λ be the projection maps.

We then have two convolution tensor products on AΛ, denoted ⊗# and ⊗∗, and

defined as follows:

M ⊗# N = ∐#(p
∗
1 M ⊠ p∗2 N ), M ⊗∗ N = ∐∗(p

∗
1 M ⊠ p∗2 N ).

When Λ is outwards (respectively, inwards) finite we put ⊗ = ⊗# (respectively,

⊗ = ⊗∗). This tensor product preserves finite length objects of ModΛ by

Proposition 2.1.6.

LEMMA 2.1.15. Assume that Λ is outwards finite, let M and N be objects of

Modf
Λ, and let M ′ and N ′ be objects of AΛ. Then the natural map

HomΛ(M,M ′)⊗ HomΛ(N , N ′)→ HomΛ×Λ(p
∗
1 M ⊠ p∗2 N , p∗1 M ′ ⊠ p∗2 N ′)

is an isomorphism.

Proof. Fix M ′ and N ′, and define functors F,G : Modf
Λ×Modf

Λ→ A by

F(M, N ) = HomΛ(M,M ′)⊗ HomΛ(N , N ′)

G(M, N ) = HomΛ×Λ(p
∗
1 M ⊠ p∗2 N , p∗1 M ′ ⊠ p∗2 N ′).

There is a natural map F(M, N ) → G(M, N ), which we must show is an

isomorphism.

We first treat the case where M and N are projective. It suffices to treat the

indecomposable case, so say M = Px(U ) and N = Py(V ). We then have

HomΛ(M,M ′) = HomAut(x)(U,M ′x), HomΛ(N , N ′) = HomAut(y)(V,M ′y).
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Then p∗1 M ⊠ p∗2 N = P(x,y)(U ⊠ V ), and so

HomΛ×Λ(p
∗
1 M ⊠ p∗2 N , p∗1 M ′ ⊠ p∗2 N ′) = HomAut(x)×Aut(y)(U ⊠ V,M ′x ⊠ N ′y).

The natural map F(M, N ) → G(M, N ) is the obvious one, and it is an

isomorphism by standard finite group representation theory.

Now we treat the case where N is a projective and M is arbitrary. Pick a

presentation

P ′→ P → M → 0

with P and P ′ finite length projectives. We then have a commutative square

0 // F(M, N ) //

��

F(P, N ) //

��

F(P ′, N )

��
0 // G(M, N ) // G(P, N ) // G(P ′, N )

The two right vertical arrows are isomorphisms, and so the left arrow is an

isomorphism as well.

Finally, we treat the case where both M and N are arbitrary. Use the same

reasoning as in the above paragraph: pick a presentation for N , and use the

fact that we know F(M, P) → G(M, P) is an isomorphism when P is a finite

projective object.

2.1.16. Tensor kernels. Suppose thatΛ is outwards finite. We say that an object

K ∈ AΛ is a tensor kernel if the functor K : Λ→ A is a monoidal functor; that

is, we require a functorial isomorphism K(L ∐ L ′) → K(L) ⊗ K(L ′) which is

compatible with the commutativity and associativity structures. Equivalently, K

is a tensor kernel if there is an isomorphism ∐∗(K) → p∗1K ⊠ p∗2K which is

compatible with the associativity and commutativity structures.

PROPOSITION. Let K be a tensor kernel. Then Φ defines a tensor functor

Modf
Λ → A; that is, for any objects M and N of Modf

Λ there is a natural

isomorphism Φ(M ⊗ N ) = Φ(M)⊗Φ(N ).

Proof. We have the following identifications:

Φ(M)⊗Φ(N ) = HomΛ(M,K)⊗ HomΛ(N ,K)

= HomΛ×Λ(p
∗
1 M ⊠ p∗2 N , p∗1K ⊠ p∗2K)

= HomΛ×Λ(p
∗
1 M ⊠ p∗2 N ,∐∗(K))

= HomΛ(M ⊗ N ,K) = Φ(M ⊗ N ).
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In the second equality we used Lemma 2.1.15, in the third we used the fact that

K is a tensor kernel, and in the fourth we used the adjunction between ∐∗ and

∐#.

COROLLARY 2.1.17. In the setting of Proposition 2.1.16, the functor Modf
Λop →

Af defined by M 7→ M ⊗Λ K is a tensor functor.

2.2. Polynomial representations of GL(∞) and category V

In this section, we review the category V and some of its models. We refer to

[SS2, Part 2] for a more thorough discussion. There are many similarities between

this theory and the more difficult ones developed later, so this material serves as

a good warm-up for the rest of the paper.

2.2.1. Polynomial representations. Let V = C∞ =
⋃

n>1 Cn , and let Tn = V⊗n

be its nth tensor power. The group GL(∞) =
⋃

n>1 GL(n) acts on V and on Tn .

We say that a representation of GL(∞) is polynomial if it is a subquotient of a

finite direct sum of the Tn . We denote by Reppol(GL) the category of polynomial

representations. It is abelian and stable under tensor products.

2.2.2. The action of the center. The group GL(∞) does not contain the scalar

matrices and thus has trivial center. However, large diagonal matrices can be

used to approximate scalar matrices, and this allows us to define an action of

the ‘central Gm’ on polynomial representations. Precisely, let V be a polynomial

representation of GL(∞), and let z be an element of Gm . Let gn,z ∈ GL(∞)

be the diagonal matrix whose first n entries are z and whose remaining entries

are 1. Given v ∈ V , we define zv to be gn,zv for n ≫ 0. Since v only involves

a finite number of the basis vectors of V, this formula is well defined, and one

easily verifies that it defines an action of Gm on V which commutes with that of

GL(∞).

An action of Gm is equivalent to a Z-grading, so the above paragraph can

be rephrased as follows: every polynomial representation V of GL(∞) admits

a canonical grading V =
⊕

n∈Z Vn . The space Vn is the subspace where Gm acts

through its nth power. The representation Tn is concentrated in degree n. It follows

that every polynomial representation is graded by Z>0.

2.2.3. Weyl’s construction (finite case). To determine the structure of

Reppol(GL) we use Schur–Weyl duality, which we now recall. Let T d
n = (C

d)⊗n .

The group Sn acts on T d
n by permuting coordinates, and this action commutes

with that of GL(d). For a partition λ of n, let Mλ be the irreducible representation

of Sn associated to λ; our conventions are such that λ = (n) gives the trivial
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representation and λ = (1n) the sign representation. Put

V d
λ = HomSn

(Mλ, T d
n ).

We then have the following result.

PROPOSITION. Let r = ℓ(λ). If r 6 d then V d
λ is the irreducible representation

of GL(d) with highest weight (λ1, . . . , λr , 0, . . . , 0). If r > d then V d
λ = 0.

2.2.4. Weyl’s construction (infinite case). For a partition λ of n we again put

Vλ = HomSn
(Mλ, Tn).

Note that we have a decomposition of Sn ×GL(∞) representations:

Tn =
⊕

|λ|=n

Mλ ⊠ Vλ. (2.2.4.1)

The following result classifies the simple objects of Reppol(GL).

PROPOSITION 2.2.5. The Vλ constitute a complete irredundant set of simple

objects of Reppol(GL).

Proof. Since Vλ =
⋃

d>0 V d
λ and V d

λ is nonzero and irreducible for d ≫ 0, it

follows that the Vλ are simple. Every simple object of Reppol(GL) is a constituent

of some Tn , and (2.2.4.1) shows that every simple constituent of Tn is isomorphic

to some Vλ. Thus the Vλ are a complete set of simples. Finally, to prove that they

are irredundant, we note that the character of Vλ is the Schur function sλ, and

sλ 6= sµ for λ 6= µ.

PROPOSITION 2.2.6. The category Reppol(GL) is semisimple; that is, every

polynomial representation is a finite direct sum of the Vλ.

Proof. By (2.2.4.1) and 2.2.5, Tn is semisimple. Since any finite direct sum or

quotient of semisimple objects is again semisimple, the result follows.

2.2.7. Tensor product decompositions. By Proposition 2.2.6, a tensor product

Vλ ⊗ Vµ of simples decomposes into a direct sum of the Vν with certain

multiplicities. The multiplicity of Vν in this decomposition is called the

Littlewood–Richardson coefficient, and is denoted by cνλ,µ. See [SS2, (2.14)]

for some basic discussion of, and references for, these coefficients.
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2.2.8. The categories Mod(fs) and Rep(S∗). Let (fs) denote the category whose

objects are finite sets and whose morphisms are bijections. This category satisfies

all the conditions of 2.1.1. Let Mod(fs) denote the representation category; see

2.1.2. This category is equivalent to the category Rep(S∗) consisting of sequences

(Mn)n>0, where Mn is a representation of the symmetric group Sn . Disjoint union

of finite sets gives (fs) a monoidal structure and endows Mod(fs) with convolution

tensor products, as discussed in 2.1.14. Since (fs) is a groupoid, we have⊗∗ =⊗#.

In terms of the category Rep(S∗), this tensor product is given by

(M ⊗ N )n =
⊕

i+ j=n

Ind
Sn

Si×S j
(Mi ⊗ N j),

where Ind denotes induction.

2.2.9. The equivalence between Modf
(fs) and Reppol(GL). For a finite set L , let

KL = (C
∞)⊗L . Then K is naturally an object of Reppol(GL)(fs), and is obviously

a tensor kernel in the sense of 2.1.16. It follows easily from the results of this

section that the functors Φ and Ψ of 2.1.10 induce equivalences between Modf
(fs)

and Reppol(GL).

2.2.10. Polynomial functors. A functor F : Vecf → Vecf is polynomial if, for

every pair of finite-dimensional vector spaces V and W , the induced map

F : Hom(V,W )→ Hom(F(V ), F(W ))

is a polynomial map of vector spaces, the degree of which is bounded

independently of V or W . Let S denote the category of polynomial functors.

Given a finite-dimensional representation M of Sn and a vector space V , put

SM(V ) = HomSn
(M, V⊗n).

Then V 7→ SM(V ) is a polynomial functor. The functor SMλ
is denoted Sλ, and

is called the Schur functor associated to λ. The rule M 7→ SM defines a functor

Repf(Sn)→ S which extends additively to a functor Repf(S∗)→ S . We have the

following result [SS2, (5.4.4)].

PROPOSITION. The functor Repf(S∗)→ S is an equivalence of categories.

Remark. The definition of SM(V ) clearly makes sense when V is infinite

dimensional. Thus, by the above proposition, every polynomial functor extends

canonically to a functor Vec→ Vec.
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2.2.11. Universal description. The category Reppol(GL) has the following

universal description.

PROPOSITION. Let A be a tensor category. To give a tensor functor

Reppol(GL) → A is the same as to give an object of A. The equivalence

takes a functor F to the object F(V).

The proposition can be phrased equivalently as saying that the functor

Φ : Fun⊗(Repf(S∗),A)→ A, Φ(F) = F(M(1))

is an equivalence of categories. Let us now explain why this is. Let V be an object

of A. Given a finite-dimensional representation M of Sn , put

SM(V ) = HomSn
(M, V⊗n).

(See 2.1.7 for how to make sense of this.) The definition of SM(V ) extends

additively to all M ∈ Rep(S∗), and M 7→ SM(V ) is a tensor functor. We have

thus defined a functor

Ψ : A→ Fun⊗(Repf(S∗),A).

We leave it to the reader to show that Φ and Ψ are mutually quasiinverse.

Remark. Let Cat be the 2-category whose objects are categories, whose

1-morphisms are functors and whose 2-morphisms are natural transformations

of functors. Let TenCat be the 2-category whose objects are tensor categories,

whose 1-morphisms are left-exact tensor functors and whose 2-morphisms

are natural transformations of tensor functors. Let T : TenCat → Cat be the

forgetful functor. The above proposition can be rephrased more abstractly as

follows: the functor T is corepresented by Reppol(GL), with the universal object

being V ∈ T (Reppol(GL)). (For this statement, there is no need to restrict to

left-exact tensor functors, but the restriction is necessary for similar statements

occurring below.)

2.2.12. The category V . We showed that the categories Reppol(GL), Modf
(fs),

Repf(S∗) and S are all equivalent. We write V f for any of these categories. We

think of V f abstractly, and regard the four specific categories just mentioned as

concrete models for it: we call them the GL, fs, sequence, and Schur models.

It will be convenient to introduce a category V whose objects need not be

finite length. The fs model of V is Mod(fs). The GL model of V consists of

representations of GL(∞) which occur as a subquotient of a (possibly infinite)

direct sum of the Tn . We let Vgf be the full subcategory of V on objects in which

each simple has finite multiplicity; it is equivalent to Mod
gf

(fs).
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2.2.13. Duality. Let M = (Mn) be an object of Repgf(S∗). We define an object

M∨, called the dual of M , by (M∨)n = M∗n . Duality gives an equivalence

(Vgf)op → Vgf of tensor categories. There is a canonical isomorphism M →

(M∨)∨. There is also a noncanonical isomorphism M ∼= M∨ for each object M ,

since irreducible representations of symmetric groups are self-dual. Note that, in

the GL model, duality is not the usual linear dual; see [SS2, Section 6.1.6].

2.2.14. Transpose. Let M = (Mn) be an object of Rep(S∗). We define an object

M†, called the transpose of M , by (M†)n = Mn ⊗ sgn, where sgn is the sign

character of Sn . The transpose gives an asymmetric equivalence V → V of tensor

categories: it behaves in the expected way with respect to tensor products, but

does not respect the symmetric structure on tensor products. For example, it

interchanges certain symmetric and exterior powers. See [SS2, Section 7.4] for

more details.

2.2.15. The category V⊗2 . We will occasionally need to use the category V⊗2.

Objects in this category can be thought of in three equivalent ways:

• functors (fs)× (fs)→ Vec; or

• representations of GL(∞)×GL(∞) which are polynomial in each group; or

• polynomial functors Vec× Vec→ Vec.

See [SS2, Section 6.2] for further discussion. The transpose duality in 2.2.14

extends in an obvious way to V⊗2 by twisting a representation of Sn × Sm by the

product of its sign characters. This gives an asymmetric equivalence V⊗2 → V⊗2

of tensor categories. Similarly, it is sometimes useful to apply partial transpose

duality just to one of the factors. To distinguish, the first one will be called the full

transpose.

2.3. Twisted commutative algebras

2.3.1. Twisted commutative algebras. The category V is an abelian tensor

category, and so there is a notion of commutative algebra in it. A twisted

commutative algebra (tca) is an associative commutative unital algebra in V . Each

model of V provides a different way to think about tcas.

• In Reppol(GL), a tca is a commutative associative unital C-algebra equipped

with an action of GL(∞) by algebra homomorphisms, under which it

decomposes as an infinite direct sum of polynomial representations.

• In Mod(fs), a tca is a functor A : (fs)→ Vec equipped with a multiplication map

AL ⊗ AL ′ → AL∐L ′ that satisfies the relevant conditions.
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• In S , a tca is a functor from Vecf to the category of commutative associative

unital C-algebras. A finitely generated tca will take values in finitely generated

C-algebras.

A 2-variable tca is an algebra in V⊗2. For a more detailed discussion of this

section, see [SS2, Section 8].

2.3.2. An example. We write C〈1〉 for the object of V given as follows:

• the standard representation V in Reppol(GL); or

• the identity functor Vec→ Vec in S; or

• the trivial representation of S1 in Rep(S∗).

The symmetric algebra Sym(C〈1〉) is the simplest nontrivial example of a tca.

In Reppol(GL), it corresponds to the algebra C[x1, x2, . . .] equipped with the

usual action of GL(∞) by linear substitutions. We refer to [SS1] for an in-depth

treatment of the structure of this tca.

2.3.3. Tensor products of modules. Let A be a tca. Then ModA naturally has

a tensor product ⊗A induced from the one on V . This is usually the correct

tensor product to use, but is not for the purposes of this paper. We now define

an alternative tensor product. Let E and E′ be two copies of C∞. Suppose that

M is an A-module. Then M(E ⊕ E′) is naturally an A(E ⊕ E′)-module. There

is a natural ring homomorphism A(E) ⊗ A(E′) → A(E ⊕ E′), and so we can

regard M(E ⊕ E′) as a module over this ring. We have thus defined a functor

a∗ : ModA → ModA⊠A, where here ⊠ denotes the external tensor product, given

by M ⊠ N for M(E) ⊗ N (E′). The functor a∗ has a right adjoint a∗. For two

A-modules M and N , we define M ∗A N to be a∗(M ⊠ N ). Then ∗A gives the

category ModA a second tensor structure. (We do not prove the existence of a∗,

but it can be deduced from Proposition 2.4.2.)

Remark. There is an opposite version of this: if A is a twisted cocommutative

coalgebra (see 2.3.5 below), then CoModA has a natural tensor product ⊗A, and

an analog of the above procedure yields an alternative tensor product ∗A.

2.3.4. Computation of certain Ext groups. Let U be an object of V with U0 = 0,

and let A be the tca Sym(U ). The simple A-modules are the objects Sλ of V

endowed with the trivial A-module structure (that is, the action comes via the

homomorphism A→ C). We now compute the Ext of these modules.
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PROPOSITION. We have a natural identification

Exti
A(Sλ,Sµ) = HomV(Sλ ⊗

∧i
U,Sµ).

In particular, if U is concentrated in degree d then this Ext group vanishes unless

|µ| − |λ| = di .

Proof. The Koszul complex gives a projective resolution A⊗
∧•

U of the residue

field C. Tensoring with Sλ gives a projective resolution of the simple module Sλ.

Applying HomA(−,Sµ) gives a complex whose terms are HomV(Sλ ⊗
∧•

U,Sµ)

and whose differentials vanish.

2.3.5. Coalgebras and duality. A twisted cocommutative coalgebra is a

coassociative cocommutative counital coalgebra in V . Recall that the duality ∨

2.2.13 is a contravariant equivalence of tensor categories from Vgf to itself.

It follows that, if A is a graded-finite tca, then A∨ is naturally a twisted

cocommutative coalgebra, and, if M is an A-module, then M∨ becomes an

A∨-comodule. We thus find that duality yields an equivalence

∨ : (Mod
gf

A )
op → CoMod

gf

A∨

of abelian categories. We note in particular that this equivalence preserves

finite length objects, takes finitely generated modules to finitely cogenerated

comodules, and interchanges projective and injective objects.

2.3.6. Weyl algebras and projective modules. Let U be an object of V , thought

of as a representation of GL(∞), and let U ∗ be the full linear dual of U , which

is a nonpolynomial representation of GL(∞). Let A = Sym(U ), a tca. Let A′ be

the quotient of the tensor algebra on U ⊕U ∗ by the two-sided ideal generated by

the following relations: (a) xy = yx for x, y ∈ U ; (b) λµ = µλ for λ,µ ∈ U ∗;

(c) λx − xλ = λ(x) for x ∈ U and λ ∈ U ∗. One can think of A′ as a Weyl algebra

(algebra of differential operators). The group GL(∞) acts on A′, and by an A′-

module we mean one with a compatible GL(∞) action. It is clear that A, as well

as any projective module over A, has the structure of an A′-module. Conversely,

we have the following.

PROPOSITION. A finitely generated A-module M that has a compatible A′-

module structure is projective as an A-module.

Proof. Let V be an irreducible GL(∞)-submodule of M which is annihilated by

all of the partial derivatives in A′. The A′-submodule of M generated by V is a
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quotient of A ⊗ V . Since V is irreducible, it follows that A ⊗ V is simple as an

A′-module, and hence the map A ⊗ V → M is injective. It is clear that V is part

of a minimal generating set of M , so M/(A⊗ V ) has fewer generators. It follows

by induction that M has a filtration whose associated graded is projective, which

implies that M is projective.

2.4. Semigroup tcas and diagram categories

2.4.1. Let G be a twisted commutative monoid; that is, G is a functor (fs)→ (fs)

equipped with a multiplication map

GL ∐ GL ′ → GL∐L ′

which is associative, commutative, and has an identity, in the same sense as tcas.

We assume that GL is finite for all L . Put AL = C[GL]. Then A is a tca.

Let Λ be the following category. Objects are finite sets. A morphism L → L ′

consists of a triple (U, Γ, f ), where U is a subset of L ′, Γ is an element of GU ,

and f is a bijection L → L ′ \ U . Given a morphism L → L ′ corresponding to

(U, Γ, f ) and a morphism L ′→ L ′′ corresponding to (V,∆, g), the composition

corresponds to the data (g(U )∐ V, g(Γ )∐∆, g f ). This category is Hom-finite,

weakly directed, and inwards finite. Disjoint union of sets endows Λ with a

monoidal operation ∐. We let ⊗ = ⊗∗ be the convolution tensor product on

ModΛ; see 2.1.14. There is a natural equivalence ModA = ModΛ; in fact, a

representation of Λ is simply an A-module from the point of view of the (fs)

model.

We note that everything said above works in the multivariate case; that is, if

G : (fs)n → (fs) is an n-variable tc monoid then A = C[G] is an n-variable tca,

the definition of Λ still makes sense (objects are now n-tuples of finite sets), and

we have an equivalence ModA = ModΛ.

PROPOSITION 2.4.2. Under the equivalence ModA =ModΛ, the tensor products

∗A and ⊗ coincide.

Proof. Let G ′ be the 2-variable tc monoid given by G ′L ,L ′ = GL∐L ′ , and let G ′′ be

the one given by G ′′L ,L ′ = GL × GL ′ . Let Λ′ and Λ′′ be the categories associated to

G ′ and G ′′. Also, let A′ be the 2-variable tca A(E ⊕ E′), and let A ⊠ A be as in

2.3.3. We have the following commutative diagram:

ModΛ // ModΛ′ // ModΛ′′

ModA
// ModA′

// ModA⊠A
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We now elaborate on the diagram. The functors in the bottom row are as in 2.3.3.

The first functor on the top row takes M ∈ModΛ to the functor (L , L ′) 7→ ML∐L ′

in ModΛ′ . The second functor in the top row is pullback along the functor Λ′′ →

Λ′ corresponding to the homomorphism G ′′→ G given by the monoidal operation

on G. The vertical equivalences all come from viewing the bottom categories in

the fs model. Commutativity of the diagram is an exercise left to the reader.

Now, the composition of the bottom two horizontal functors is the functor

a∗ : ModA → ModA⊠A discussed in 2.3.3. After identifying Λ′′ with Λ × Λ,

the composition of the top horizontal functors is identified with ∐∗, where ∐ is

the monoidal functor onΛ. It follows that a∗ coincides with∐∗, which proves the

proposition.

Remark. The proposition also holds in the multivariate case.

2.4.3. Everything we just did has an opposite version, as follows. The tca A is

naturally a twisted commutative coalgebra. Let Λ′ be defined like Λ but with U

a subset of L instead of L ′. Clearly, Λ′ is just the opposite category of Λ. We let

⊗ = ⊗# on ModΛ′ . Then CoModA is equivalent to ModΛ′ , with ∗A corresponding

to ⊗.

2.5. Pro-finite vector spaces

Throughout this section, we treat C as a topological field endowed with the

discrete topology. All finite-dimensional vector spaces are endowed with the

discrete topology as well.

2.5.1. Inverse limits. Suppose that we have an inverse system (Vi)i∈I of discrete

vector spaces, indexed by some directed category I . Let V be the inverse limit in

the category of topological vector spaces. The topology on V can be described as

follows. Let πi : V → Vi be the natural map, and let Ui be its kernel. Then the Ui

form a neighborhood basis of 0 ∈ V , and so a subset of V is open if and only if it

is a union of translates of the Ui .

2.5.2. Pro-finite vector spaces. Let V be a topological vector space. We say that

V is pro-finite if the natural map

V → lim
←−

V→V ′

V ′

is an isomorphism of topological vector spaces, where the limit is taken over the

continuous surjections from V to finite-dimensional vector spaces V ′. Then V is

pro-finite if and only if it has a neighborhood basis of the identity consisting of

open subspaces of finite codimension. We denote by V̂ec the category of pro-finite

vector spaces, with morphisms being continuous linear maps.
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2.5.3. Continuous dual. Let V be a pro-finite vector space. We define the

continuous dual of V , denoted V ∨, to be the space of continuous linear functionals

V → C. If V is the inverse limit of the system (Vi), with Vi finite dimensional,

then V ∨ is the direct limit of the system (V ∗i ). Similarly, if V is a discrete vector

space we define its continuous dual, denoted V ∨, to be the usual dual V ∗ but

regarded as a pro-finite vector space; that is, write V = lim
−→

Vi with Vi finite

dimensional, and then V ∨ = lim
←−

V ∗i . If V is either pro-finite or discrete then

the natural map V → (V ∨)∨ is an isomorphism. We thus see that ‘continuous

dual’ provides a contravariant equivalence of categories between Vec and V̂ec. In

particular, V̂ec is abelian.

2.5.4. Completed tensor product. Let V and W be pro-finite vector spaces. The

tensor product V ⊗W is not a pro-finite vector space in a natural way. We define

the completed tensor product, denoted V ⊗̂W , as lim
←−
(Vi⊗W j), where Vi = lim

←−
Vi

and W = lim
←−

W j with Vi and W j discrete. The functor ⊗̂ endows V̂ec with the

structure of a tensor category. Furthermore, it is compatible with duality: if V and

W are pro-finite then (V ⊗̂ W )∨ = V ∨⊗W∨, while if V and W are both discrete

then (V ⊗W )∨ = V ∨ ⊗̂ W∨.

3. The general linear group

3.1. Representations of GL(∞)

In this section, we develop what we require of the algebraic representation

theory of GL(∞). The most important results of the section are Proposition 3.1.8

and its consequences. These results can be deduced from those in [PSt, Section 2];

however, our proofs are different and shorter (though we prove less than [PSt,

Section 2]).

3.1.1. Algebraic representations. Let V∗ =
⋃

d>1 Cd∗ be the restricted dual of

V, where Cd∗ is the subspace of (Cd+1)∗ which kills the final basis vector. Let

Tn,m = V⊗n ⊗ V⊗m
∗ . We say that a representation of GL(∞) is algebraic if it

appears as a subquotient of a finite direct sum of the Tn,m . This definition is

somewhat ad hoc; see [DPS, Sections 3, 4] for a more natural characterization

of these representations. We denote by Rep(GL) the category of algebraic

representations of GL(∞). It is an abelian category and stable under tensor

products. Two remarks follow.

(a) As discussed in 1.2.2, the category Rep(GL) is not semisimple: the pairing

V⊗ V∗→ C is a nonsplit surjection.
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(b) As in 2.2.2, there is a ‘central Gm’ that acts on every algebraic representation;

in other words, every algebraic representation admits a canonical Z-grading.

The representation Tn,m is concentrated in degree n − m.

3.1.2. Weyl’s construction (finite case). Before we begin our study of Rep(GL),

we recall the traceless tensor construction of the irreducible representations of

GL(d). Let T d
n,m = (C

d)⊗n ⊗ (Cd∗)⊗m . We note that Sn × Sm × GL(d) acts on

T d
n,m . For integers 1 6 i 6 n and 1 6 j 6 m, we obtain a map

ti, j : T d
n,m → T d

n−1,m−1

by applying the pairing Cd⊗Cd∗→ C to the i th Cd factor and j th Cd∗ factor. We

let T d
[n,m] denote the intersection of the kernels of the maps ti, j . If n = 0 or m = 0

then T d
[n,m] = T d

n,m . This is clearly stable under the action of Sn× Sm×GL(d). For

a partition λ of n and λ′ of m, we put

V d
λ,λ′ = HomSn×Sm

(
Mλ ⊠ Mλ′, T d

[n,m]

)
.

This space carries an action of GL(d). We have the following fundamental result,

which is an analog of Weyl’s construction for the irreducible representations of

the classical groups (see [Koi, Theorem 1.1]).

PROPOSITION. Let r = ℓ(λ) and s = ℓ(λ′). If r + s 6 d then Vλ,λ′ is the

irreducible representation of GL(d) with highest weight (λ1, . . . , λr , 0, . . . , 0,

−λ′s, . . . ,−λ
′
1). If r + s > d then Vλ,λ′ = 0.

3.1.3. Weyl’s construction (infinite case). Much of the discussion of the

previous paragraph carries over to the d = ∞ case. Let ti, j : Tn,m → Tn−1,m−1

and T[n,m] be defined as before. Then T[n,m] is stable under the natural action of

Sn × Sm ×GL(∞) on Tn,m . For partitions λ of n and λ′ of m, put

Vλ,λ′ = HomSn×Sm

(
Mλ ⊠ Mλ′, T[n,m]

)
.

We have the decomposition

T[n,m] =
⊕

|λ|=n, |λ′|=m

Mλ ⊠ Mλ′ ⊠ Vλ,λ′ . (3.1.3.1)

Note that we also have an exact sequence

0→ T[n,m]→ Tn,m → (Tn−1,m−1)
⊕

nm, (3.1.3.2)

where the right map is made of the nm trace maps.
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PROPOSITION 3.1.4. The Vλ,λ′ constitute a complete irredundant set of simple

objects of Rep(GL).

Proof. Since

Vλ,λ′ =
⋃

d>ℓ(λ)+ℓ(λ′)

V d
λ,λ′

and each V d
λ,λ′ is an irreducible representation of GL(d), it follows that Vλ,λ′ is an

irreducible representation of GL(∞).

From (3.1.3.2), we see that every simple constituent of Tn,m occurs as

a constituent of T[n,m] or Tn−1,m−1. From (3.1.3.1), we see that the simple

constituents of T[n,m] are all of the form Vλ,λ′ . It thus follows from induction that

the same is true for Tn,m . Since every simple object of Rep(GL) is a constituent

of some Tn,m , we see that every simple object is isomorphic to some Vλ,λ′ .

Finally, Vλ,λ′ is not isomorphic to Vµ,µ′ if (λ, λ′) 6= (µ,µ′), since their

characters are distinct. This is a modification of the theory of symmetric functions;

see [Koi, Section 2] for details.

PROPOSITION 3.1.5. Every object of Rep(GL) has finite length.

Proof. If suffices to show that Tn,m has finite length. The decomposition (3.1.3.1)

together with Proposition 3.1.4 shows that T[n,m] has finite length. The sequence

(3.1.3.2) thus shows, inductively, that Tn,m has finite length.

PROPOSITION 3.1.6. The simple constituents of Tn,m are those Vλ,λ′ with |λ| 6 n,

|λ′| 6 m and |λ| − |λ′| = n − m.

Proof. Let C (M) denote the simple constituents of an object M of Rep(GL). The

sequence (3.1.3.2) shows that

C (Tn,m) ⊂ C (Tn−1,m−1) ∪ C (T[n,m]).

Since any individual trace map ti, j : Tn,m → Tn−1,m−1 is surjective, the above

inclusion is an equality. The result now follows from (3.1.3.1) and an easy

inductive argument.

3.1.7. Let T ⊂ GL(∞) be the diagonal torus. A weight is a homomorphism

T →Gm which only depends on finitely many coordinates; that is, it is of the form

[a1, a2, . . .] 7→ a
n1

1 · · · a
nr
r for some integers n1, . . . , nr . The group of weights is

isomorphic to the group of integer sequences (a1, a2, . . .) which are eventually

zero. An algebraic representation of GL(∞) decomposes into weight spaces, as
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usual. The magnitude of a weight λ is the sum of the absolute values of the ai . It

is clear that the magnitude of any weight of Tn,m is at most n + m. The following

result shows that this maximum is achieved for every nonzero submodule.

PROPOSITION 3.1.8. Every nonzero submodule of Tn,m has a weight of magnitude

n + m.

Proof. For α ∈ Zn
>0 and β ∈ Zm

>0, put

eα|β = eα1
⊗ · · · ⊗ eαn

⊗ e∗β1
⊗ · · · ⊗ e∗βm

.

Then the eα|β form a basis of Tn,m . We say that a basis vector ‘occurs’ in a nonzero

element x of Tn,m if its coefficient is nonzero in the expression of x in this basis.

For an integer k, we let N (k;α) denote the number of coordinates of α which are

equal to k. We say that an integer k ‘occurs’ in x if there is some basis vector eα|β
which occurs in x with N (k;α) or N (k;β) nonzero.

Let M be a nonzero submodule of Tn,m , and let x be a nonzero vector in M . Let

I be the set of indices occurring in x . We show that M contains an element in the

span of the eα|β where no entry of α belongs to I and every entry of β belongs to

I . As such basis elements have weight of magnitude n+m, this will establish the

result.

For a subset J ⊆ I , let MJ denote the set of elements of M which belong to the

span of the eα|β , where the entries of α belong to J ∪ (Z>0 \ I ) and the entries of β

belong to I . We must show that M∅ is nonzero. We show by descending induction

on |J | that MJ is nonzero for each J ⊆ I . We are given that MI is nonzero, as it

contains x .

Let y be a nonzero element of MJ , for some nonempty J ⊆ I , and let j be an

element of J . We will show that MJ\{ j} is nonzero. Let N be the maximum value

of N ( j;α) over those (α, β) for which eα|β occurs in y. If N = 0 then y already

belongs to MJ\{ j} and we are done; thus assume that N > 0. Let k ∈ Z>0 \ I be

an index not occurring in y. Let g ∈ GL(∞) be defined by ger = er for r 6= j

and ge j = e j + ek . Then ge∗r = e∗r for r 6= k and ge∗k = e∗k − e∗j . In particular, if

eα|β occurs in y then geα|β is computed by changing each e j in eα|β to e j + ek and

then expanding the tensor product; the ‘β part’ remains unchanged.

Let λ be the weight of y, and let λ′ be the weight obtained by subtracting N from

the j th spot and adding N to the kth spot of λ. We claim that the λ′-component

of gy is nonzero and belongs to MJ\{ j}. Let us now prove this. For α ∈ Zn
>0, let α′

be obtained by changing each j in α to k. If eα|β has weight λ and N ( j;α) = N

(respectively, N ( j;α) < N ) then the λ′-component of geα|β is eα′|β (respectively,

0). Thus if we write

y =
∑

cα,βeα|β

https://doi.org/10.1017/fms.2015.10 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2015.10


Stability patterns in representation theory 37

then the λ′ component of gy is

∑

N ( j;α)=N

cα,βeα′|β .

This is nonzero by the definition of N , and belongs to MJ\{ j}. This completes the

proof.

PROPOSITION 3.1.9. Let M be a submodule of Tn,m . Then HomGL(M,

Tn+r,m+r ) = 0 for r > 0.

Proof. The image of a nonzero map M → Tn+r,m+r would contain a weight of

magnitude n+m+ 2r ; as M has no weight of this magnitude, such a map cannot

exist.

PROPOSITION 3.1.10. We have

HomGL(Vλ,λ′, Tn,m) =

{
Mλ ⊠ Mλ′ if n = |λ| and m = |λ′|

0 otherwise.

Proof. Propositions 3.1.6 and 3.1.9 show that the Hom vanishes unless n = |λ|

and m = |λ′|. From this observation and the exact sequence (3.1.3.2), we see that

the map

HomGL(Vλ,λ′, T[n,m])→ HomGL(Vλ,λ′, Tn,m)

is an isomorphism. As the left group is Mλ ⊠ Mλ′ by (3.1.3.1), the result follows.

3.1.11. Representations of SL(∞). Define a representation of SL(∞) to be

algebraic if it is a subquotient of a finite direct sum of the Tn,m . We claim that

any such representation naturally extends to a representation of GL(∞). To see

this, let V be an algebraic representation of SL(∞). For z ∈ C×, let gn,z be the

diagonal matrix with z in the (n, n) entry and 1 in all other diagonal entries. Given

an element v of V , we define gn,zv to be gn,zg−1
m,zv for m≫ 0. Since v only involves

a finite number of the basis vectors of C∞, this is well defined. One easily verifies

that it defines an algebraic action of GL(∞) on V . Thus, letting Rep(SL) be the

category of algebraic representations of SL(∞), we see that the restriction map

Rep(GL)→ Rep(SL) is an equivalence of categories.

3.1.12. Pro-algebraic representations. Let V̂ = lim
←−

Cd and V̂∗ = lim
←−

Cd∗, and

put T̂n,m = V̂⊗n ⊗̂ V̂⊗m
∗ . These are pro-finite vector spaces, and they carry
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actions of GL(∞). We say that a representation of GL(∞) is pro-algebraic if

it occurs as a subquotient of a finite direct sum of the T̂n,m . We let R̂ep(GL)

denote the category of pro-algebraic representations. ‘Continuous dual’ provides

an equivalence of tensor categories Rep(GL)op = R̂ep(GL). Thus all our results

on Rep(GL) apply to R̂ep(GL), but with arrows turned around. As we will see, it

is sometimes more convenient to work in the pro-category.

Remark. We can think of V̂ ⊗̂ V̂∗ as the space of all endomorphisms of C∞. In

particular, the scalar matrices provide a GL-equivariant inclusion C→ V̂ ⊗̂ V̂∗.

As we saw, there is no copy of C inside of V ⊗ V∗. On the other hand, while

V⊗ V∗ admits a trace map to C, the space V̂ ⊗̂ V̂∗ does not, as one cannot form

the trace of an infinite matrix in general.

3.2. The walled Brauer algebra and category

3.2.1. The monoid Gn,m . Let Vn,m be the set of vertices {xi , y j , x ′i , y′j } with 1 6

i 6 n and 1 6 j 6 m. We imagine the xi and y j in one row and the x ′i and y′j
in a parallel row below the previous row. We also imagine a wall dividing the x

from the y. We call an edge between two vertices ‘horizontal’ if it stays within

the same row and ‘vertical’ if it goes between the two rows.

Let Gn,m be the set of graphs Γ on the vertex set Vn,m with the following

properties: (a) Γ is a complete matching; that is, every vertex has valence 1; (b)

no vertical edge crosses the wall; (c) every horizontal edge crosses the wall. We

give Gn,m the structure of a monoid, as follows. Let Γ and Γ ′ be two elements of

Gn,m . Put Γ above Γ ′; that is, identify the bottom row of vertices of Γ with the

top row of vertices of Γ ′. In doing so, there might be some components of the

resulting graph which only touch vertices in the middle row. We write n(Γ, Γ ′)

for the number of such components; this number will be important in a moment,

but for now we simply discard these components and ignore the middle vertices.

The resulting graph is the composition Γ Γ ′.

The identity element of Gn,m is the graph with all edges perfectly vertical; that

is, xi connected to x ′i and y j to y′j . The group Sn × Sm is embedded in Gn,m as the

set of graphs with only vertical edges. Explicitly, the pair of permutations (σ, τ )

corresponds to the graph which has edges from xi to x ′σ(i) and y j to y′τ( j).

3.2.2. We now give an example of composition in Gn,m . Suppose that n = m = 3.

Let Γ be the graph

• • • • • •

• • • • • •

(3.2.2.1)
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and let Γ ′ be the graph

• • • • • •

• • • • • •

The dotted line denotes the wall. After putting Γ above Γ ′, we obtain the graph

• • • • • •

• • • • • •

• • • • • •

There is one component that only touches middle vertices, and so n(Γ, Γ ′) = 1.

Discarding it and ignoring the middle vertices, we are left with

• • • • • •

• • • • • •

and this is Γ Γ ′.

3.2.3. The algebra Bn,m . Let Bn,m be the free C[t]-module spanned by Gn,m .

We write XΓ for the element of Bn,m corresponding to Γ ∈ Gn,m . We give Bn,m

the structure of an algebra by defining XΓ XΓ ′ to be tn(Γ,Γ ′)XΓ Γ ′ . For a number

α ∈ C, we let Bn,m(α) be defined similarly to Bn,m , but with α in place of t ; of

course, Bn,m(α) is just the quotient of Bn,m by the two-sided ideal generated by

t − α. These algebras are the walled Brauer algebras, and they were introduced

in [BC+] (see also [Koi, Lemma 1.2]).

3.2.4. The Bn,m(d)-module T d
n,m . We now give T d

n,m = (Cd)⊗n ⊗ (Cd∗)⊗m the

structure of a Bn,m(d)-module. We first introduce some notation. For a vector u in

Cd , we write fi(u) for the same vector regarded in the i th tensor slot of (Cd)⊗n;

similarly, for u in Cd∗, we write f ′j(u) for the same vector regarded in the j th

tensor slot of (Cd∗)⊗m . This notation does not really make sense on its own, but

only when in an expression involving a product over all i or j . For example, if

n = 3 then f2(u) f3(v) f1(w) means w ⊗ u ⊗ v.
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We now define the module structure. Thus let Γ be an element of Gn,m , and

let v be an element of T d
n,m . We assume that v is a pure tensor, and write v =

v1 ⊗ · · · ⊗ vn ⊗ v
′
1 ⊗ · · · v

′
m . The element w = XΓ v is defined as a product over

the edges of Γ , so we just have to describe the contribution of each edge.

• The vertical edge (xi , x ′j) contributes f j(vi).

• The vertical edge (yi , y′j) contributes f ′j(v
′
i).

• The horizontal edge (xi , y j) contributes the scalar factor 〈vi , v
′
j 〉.

• The horizontal edge (x ′i , y′j) contributes ( fi ⊗ f ′j)(id), where id ∈ Cd ⊗ Cd∗ is

the identity element.

We leave it to the reader to verify that this defines an action; we remark that the

reason it is important to use the parameter t = d is that the trace of the identity

endomorphism on Cd is d.

3.2.5. We now give an example of the procedure described in the previous

paragraph. Suppose that Γ is the graph in (3.2.2.1). Then

XΓ (v1 ⊗ v2 ⊗ v3 ⊗ v
′
1 ⊗ v

′
2 ⊗ v

′
3)

= 〈v2, v
′
3〉〈v3, v

′
1〉( f1 ⊗ f ′2)(id)( f2 ⊗ f ′1)(id) f3(v1) f ′3(v

′
2).

3.2.6. The action of Bn,m(d) on T d
n,m obviously commutes with that of GL(d).

The following is the main result on how these actions relate. See [BC+, Theorem

5.8] and the discussion following it for details.

THEOREM (Benkart et al.). The natural map Bn,m(d) → EndGL(d)(T
d

n,m) is

surjective, and it is an isomorphism when d > n + m.

3.2.7. We now wish to apply the theory of the walled Brauer algebra to the

infinite case, and obtain an equivalence of categories analogous to that given in

2.2.9. However, there is a problem: the walled Brauer algebra does not naturally

act on Tn,m . The reason for this is that a horizontal edge in the bottom row is

supposed to act by inserting the invariant of V ⊗ V∗ into the appropriate pair of

tensor factors, but this space does not have any invariant (see 1.2.2). Our solution

to this problem is simple: we disallow graphs that have horizontal edges in the

bottom row. We do allow horizontal edges in the top row, and therefore allow the

two rows to have different cardinalities. Rather than try to form this structure into

a single algebra, we find it more natural to represent it as a category, with the

graphs playing the role of morphisms. The spaces Tn,m , for all n and m at once,

will form a representation of this category.
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3.2.8. The downwards walled Brauer category, denoted (dwb), is the following

category.

• The objects are bisets, that is, pairs L = (L+, L−) where L+ and L− are finite

sets.

• A morphism L → L ′ is a pair (Γ, f ), where Γ is a bipartite matching on L

and f is an isomorphism of bisets L \ V (Γ )→ L ′. Thus Γ is a graph whose

vertices V (Γ ) are elements of L and all edges go between L+ and L−.

• Suppose that (Γ, f ) defines a morphism L → L ′ and (∆, g) defines a

morphism L ′→ L ′′. The composition is the pair (Φ, h) defined as follows. The

matching Φ is the union of Γ and f −1(∆). The bijection h is the composition

of the bijection L \ V (Φ)→ L ′ \ V (∆) induced by f with g.

If L → L ′ is a morphism in (dwb) then #L ′ 6 #L (hence ‘downwards’), with

equality if and only if the morphism is an isomorphism. The automorphism group

of L in (dwb) is the product of symmetric groups Aut(L+) × Aut(L−). Disjoint

union defines a symmetric monoidal functor ∐ on (dwb). We let ⊗ = ⊗# be the

resulting convolution tensor product on Mod(dwb) (see 2.1.14).

3.2.9. There is also an upwards walled Brauer category, denoted (uwb). Its

definition is the same, except that a morphism L→ L ′ is defined by a pair (Γ, f ),

where Γ is a bipartite matching on L ′ and f is a bijection L → L ′ \ V (Γ ). As

with (dwb), we have a monoidal functor ∐ on (uwb). We let ⊗ = ⊗∗; note that

this is reversed from (dwb). There is an obvious equivalence (uwb) = (dwb)op.

The resulting equivalence Modf
(uwb) = (Modf

(dwb))
op is one of tensor categories.

3.2.10. Given an object L of (dwb), put

KL = V⊗L+ ⊗ V⊗L−
∗ .

Given a morphism L→ L ′ in (dwb) represented by (Γ, f ), we obtain a morphism

KL =


 ⊗

(x,y)∈E(Γ )

V⊗{x} ⊗ V⊗{y}∗


⊗KL\V (Γ )→ KL ′,

where we apply the pairing V⊗V∗→ C to the factors in the parentheses and use

f to identify KL\V (Γ ) with KL ′ . As KL belongs to Rep(GL) and the morphisms

KL → KL ′ are GL-linear, we have thus defined an object K of Rep(GL)(dwb).
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THEOREM 3.2.11. The functors of 2.1.10 associated to the kernel K provide

contravariant mutually quasiinverse equivalences of tensor categories between

Rep(GL) and Modf
(dwb).

Proof. To show that Φ and Ψ are mutually quasiinverse, we apply 2.1.11. The

first hypothesis follows from the fact that Vλ,λ′ is simple; note that K[L ,L ′] is

isomorphic to T[n,m] if n = #L and m = #L ′. The second hypothesis follows

from Proposition 3.1.10. It is clear that ∐∗K is naturally identified with K ⊠ K,

that is, K is a tensor kernel, and so 2.1.16 implies that Φ is a tensor functor.

Remark. This result is closely related to [DPS, Corollary 5.2]. Specifically, we

can think of (dwb) as a locally finite quiver with relations, and the path algebra of

this quiver is isomorphic to the algebra Asl∞ in [DPS, Section 5]. Note, however,

that [DPS, Corollary 5.2] does not describe the tensor product from this point of

view.

COROLLARY 3.2.12. The tensor categories Rep(GL) and Modf
(uwb) are

equivalent.

This comes from the identification (Modf
(dwb))

op = Modf
(uwb). A direct

equivalence Modf
(uwb) → Rep(GL) is given by M 7→ M ⊗(dwb) K (see 2.1.9

for notation).

COROLLARY 3.2.13. The tensor categories R̂ep(GL) and Modf
(dwb) are

equivalent.

This comes from the identification R̂ep(GL) = Rep(GL)op provided by the

continuous dual.

3.2.14. Classification of injectives. As an application of Theorem 3.2.11, we

use 2.1.5 to obtain a description of the injective objects of Rep(GL), which

recovers [DPS, Corollary 4.6].

PROPOSITION. The Schur functor Sλ(V) ⊗ Sλ′(V∗) is the injective envelope of

the simple module Vλ,λ′ . The representations Sλ(V) ⊗ Sλ′(V∗) form a complete

irredundant set of indecomposable injectives.

Proof. Let n = |λ|, let m = |λ′|, let G = Sn × Sm , let i : BG → (dwb) be the

inclusion at the object x = (n,m), and let V = Mλ ⊠ Mλ′ be the irreducible

representation of G indexed by (λ, λ′). We then have the simple object Sx(V ) of
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Mod(dwb) and its projective cover Px(V ) = i#(V ); see 2.1.5. We haveΦ(Sx(V )) =

Vλ,λ′ by 3.2.11, where Φ is as in Theorem 3.2.11. It follows that Φ(Px(V )) is the

injective envelope of Vλ,λ′ (note that Φ is contravariant). We have

Φ(i#(V )) = Hom(dwb)(i#(V ),K) = HomG(V, i∗K) = HomG(V,V⊗n ⊗ V⊗m
∗ )

= Sλ(V)⊗ Sλ′(V∗).

In the second equality we used the adjunction between i# and i∗, and in the fourth

equality we used the construction of Schur functors from 2.2.4.

3.3. Modules over Sym(C〈1, 1〉)

3.3.1. For a biset L , let GL be the set of bipartite perfect matchings on L . Then

G is a (2-variable) tc monoid. The category Λ associated to G in 2.4.1 is exactly

(uwb). The (2-variable) tca A associated to G is Sym(C〈1, 1〉). For clarity, let E

and E′ be two copies of C∞, so that we can identify A with Sym(E⊗ E′).

THEOREM. We have an equivalence of tensor categories between Rep(GL) and

Modf
A, where the latter is endowed with the tensor product ∗A.

Proof. From Proposition 2.4.2, we have an equivalence of categories

Mod(uwb) = ModA, under which ⊗ corresponds to ∗A. The result follows

from Corollary 3.2.12.

Remark. The category R̂ep(GL) is equivalent to CoModf
A.

3.3.2. We now explain how to construct the equivalence between Modf
A and

Rep(GL) directly. Let U = E⊗E′, so that A = Sym(U ), and put B = Sym((E⊗

V)⊕ (E′ ⊗V∗)). We regard A and B as both algebras and coalgebras. We have a

natural linear map B → U given by

B = Sym2((E⊗ V)⊕ (E′ ⊗ V∗))→ (E⊗ V)⊗ (E′ ⊗ V∗)→ E⊗ E′ = U,

where the final map makes use of the map V⊗V∗→ C. This induces a coalgebra

homomorphism B → A which is GL(E)× GL(E′) equivariant, and gives B the

structure of an A-comodule. Note that if M is an A-module then M∨ is an A-

comodule. We thus obtain functors

Φ: Modf
A → Rep(GL), M 7→ HomA(M

∨, B)

and

Ψ : Rep(GL)→ Modf
A, V 7→ HomGL(V, B)∨.
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(It is not immediately clear that Ψ takes values in finite length modules, but

this is indeed the case.) These functors are the equivalences between Modf
A and

Rep(GL) that we have already constructed. To see this, one must simply show

that the object B of CoModA corresponds to the kernel K in Rep(GL)(dwb) of

3.2.10. We omit the details.

3.3.3. Computation of Ext groups. We now give an application of

Theorem 3.3.1: the computation of the Ext groups between simple objects

of Rep(GL). This recovers [DPS, Corollary 6.5].

PROPOSITION. We have

dim Exti
GL(Vµ,µ′, Vλ,λ′) =

∑

|ν|=i

cλµ,νc
λ′

µ′,ν† .

In particular, this Ext group vanishes unless i = |λ| − |µ| = |λ′| − |µ′|.

Proof. Under the equivalence of Theorem 3.3.1, the Ext group in the statement of

the proposition corresponds to

Exti
A(Sµ(E)⊗ Sµ′(E

′),Sλ(E)⊗ Sλ′(E
′)),

where this Ext is taken in the category ModA. According to Proposition 2.3.4 (or,

rather, its generalization to the 2-variable setting), this coincides with

HomGL(E)×GL(E′)

(
Sµ(E)⊗ Sµ′(E

′)⊗
∧i
(U ),Sλ(E)⊗ Sλ′(E

′)
)
.

Now, we have the Cauchy formula (see [SS2, (6.2.8)])

∧i
(U ) =

∧i
(E⊗ E′) =

⊕

ν

Sν(E)⊗ Sν†(E′).

Combining this with the previous identity completes the proof.

Remark. An interesting point in this proof is that it uses projective A-modules,

which have infinite length and thus do not appear in the category Rep(GL).

3.3.4. Classification of blocks. As a corollary, we get an easy description of the

block structure of Rep(GL), which recovers [DPS, Corollary 6.6].

COROLLARY. Two simples Vλ,λ′ and Vµ,µ′ belong to the same block of the

category Rep(GL) if and only if |λ| − |λ| = |µ| − |µ′|.

Remark. The blocks are naturally indexed by Z: given an integer d , the

corresponding block Rep(GL)d is the one containing simples Vλ,λ′ for which
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|λ|−|λ′| = d . It is easy to see that there are equivalences Rep(GL)d ≃ Rep(GL)−d

and that no other nontrivial equivalences exist amongst the blocks (this is a

statement about the combinatorics of the underlying quivers).

3.3.5. Littlewood varieties. We now give a second application of

Theorem 3.3.1: the construction of injective resolutions of simple objects of

Rep(GL). For this it will actually be more natural to use the pro version

R̂ep(GL) of the category (see 3.1.12). We write V̂λ,λ′ for the simple object of

this category corresponding to (λ, λ′). Let E and E ′ be finite-dimensional vector

spaces, let U = E⊗E ′, let A = Sym(U ), and let B = Sym((E⊗V̂)⊕(E ′⊗V̂∗)),

where each symmetric power is taken in V̂ec. The space U is a subspace of B,

and so we have an algebra homomorphism A → B. We let C be the quotient of

B by the ideal generated by U . We have maps

Spec(C)→ Spec(B)→ Spec(A).

To give a geometric interpretation of these maps, we ignore subtleties caused by

spaces being infinite dimensional. The space Spec(A) is identified with the space

of forms E ⊗ E ′→ C, while Spec(B) is identified with the space Hom(E,V)×

Hom(E ′,V∗) of pairs of maps (ϕ : E → V, ψ : E ′→ V∗). The map Spec(B)→

Spec(A) takes a pair of linear maps (ϕ, ψ) to the form (ϕ ⊗ ψ)∗ω, where ω is

the natural pairing on V⊗ V∗. The space Spec(C), which we call the Littlewood

variety, is the scheme-theoretic fiber of this map above 0; that is, it consists of

those pairs (ϕ, ψ) for which (ϕ ⊗ ψ)∗ω = 0. Alternatively, we can think of this

as the variety defined by the condition ψ∗ϕ = 0. Let K• = B ⊗
∧•
(U ) be the

Koszul complex of the Littlewood variety.

Remark. We would like to take E and E ′ to be C∞, but this presents the technical

annoyance of mixing ind-finite and pro-finite vector spaces, which we prefer to

avoid.

PROPOSITION 3.3.6. The augmented complex K• → C is exact. We have a

decomposition

C =
⊕

λ,λ′

Sλ(E)⊗ Sλ′(E
′)⊗ V̂λ,λ′ .

Proof. See [SSW, Section 5.3].

3.3.7. Littlewood complexes. We now give the projective resolutions of simple

objects. For a pair of partitions (λ, λ′), define the Littlewood complex Lλ,λ
′

• by

Lλ,λ
′

• = HomGL(E)×GL(E ′)(Sλ(E)⊗ Sλ′(E
′), K•),
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where the dimensions of E and E ′ are sufficiently large (the definition is then

independent of E and E ′). Proposition 3.3.6 shows that

Hi(L
λ,λ′

• ) =

{
V̂λ,λ′ if i = 0

0 otherwise,

and so Lλ,λ
′

• is a resolution of the simple object V̂λ,λ′ . Furthermore, it is clear that

K• is built from polynomial Schur functors applied to V̂ and V̂∗, and so each Ki

is projective in R̂ep(GL). In fact, we have

L
λ,λ′

i =
⊕

|µ|=i

Sλ/µ
(
V̂
)
⊗ Sλ′/µ†

(
V̂∗
)
.

Thus the Littlewood complex Lλ,λ
′

• is a projective resolution of V̂λ,λ′ ; in fact, it is

a minimal resolution.

3.3.8. Transpose duality. As an application of Theorem 3.3.1, we can find a

symmetry of Rep(GL):

THEOREM. There is a natural asymmetric auto-equivalence of tensor categories

Rep(GL)→ Rep(GL). This equivalence takes the simple object Vλ,µ to Vλ†,µ† .

Proof. As discussed in 2.2.15, full transpose is an asymmetric auto-equivalence

on the tensor category V⊗2. Since it takes E and E′ to themselves, it takes A to

itself and induces an equivalence of categories ModA
∼= ModA. Since the tensor

products ∗A are defined using only the tensor structure on V⊗2, it maps to itself

under this equivalence.

3.3.9. The Fourier transform. We give another application of Theorem 3.3.1:

the construction of a (nearly canonical) derived auto-equivalence of Rep(GL),

which we call the Fourier transform. By the theorem, it is enough to construct

such an auto-equivalence on the derived category of Modf
A. To do this, we use a

variant of the construction of the Fourier transform on Sym(C〈1〉) given in [SS1,

Section 6]. We give only the main ideas here; details will appear in [SS3]. Given

an A-module M , the module

Tn(M) =
⊕

p>0

TorA
p (M,C)p+n

is naturally a comodule over B =
∧
(E ⊗ E′), and so Tn(M)

∨ is a module over

B. We can apply the partial transpose functor 2.2.15 with respect to E′. By the
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Cauchy identity [SS2, (6.2.8)], this turns B into A, and the B-module Tn(M)

into an A-module Fn(M). In fact, Fn is the nth homology of an equivalence of

triangulated categories

F : D(ModA)
op → D(ModA).

This equivalence takes Db(Modf
A) to the category of perfect complexes in

D(ModA). Finally, the category of finitely generated projective objects of ModA

is equivalent to the category of finite length injective objects of ModA; this is a

variant of [SS1, Section 2.5]. We can therefore move from perfect complexes back

to Db(Modf
A).

Remark. (a) Obviously, one could have applied transpose with respect to E

instead of E′. Thus there are naturally two Fourier transforms, and they differ

by the full transpose.

(b) The Fourier transform realizes Rep(GL) as its own Koszul dual. The fact that

Rep(GL) is Koszul self-dual was also proved in [DPS, Corollary 6.4], though

in a different way: the proof of [DPS] identifies Rep(GL) with modules

over a quadratic ring, and then shows that this ring is Koszul self-dual by

computation.

3.4. Rational Schur functors, universal property, and specialization

3.4.1. Rational Schur functors. Let A be a tensor category. Let T (A) be the

category whose objects are triples (A, A′, ω), where A and A′ are objects of A

and ω is a pairing A ⊗ A′ → C, and whose morphisms are the obvious things.

We typically suppress ω from the notation. Given (A, A′) ∈ T (A), define K(A,

A′) to be the object of A(dwb) given by L 7→ A⊗L+ ⊗ (A′)⊗L− . Functoriality with

respect to morphisms in (dwb)makes use of the pairing ω, and is defined just like

in 3.2.10. For an object M of Modf
(uwb), define

SM(A, A′) = M ⊗(dwb) K(A, A′)

(see 2.1.9 for notation). Then M 7→ SM(A, A′) defines a covariant functor

Mod(uwb)→A which is left-exact (see 2.1.9) and a tensor functor (since K(A, A′)

is obviously a tensor kernel; see 2.1.16). We call SM the rational Schur functor

associated to M .

THEOREM 3.4.2. To give a left-exact tensor functor from Rep(GL) to an

arbitrary tensor category A is the same as to give an object of T (A). More
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precisely, letting M and M∗ be the objects of Mod(uwb) corresponding to V and

V∗, the functors

ΦA : LEx⊗(Modf
(uwb),A)→ T (A), F 7→ (F(M), F(M∗))

and

ΨA : T (A)→ LEx⊗(Modf
(uwb),A), (A, A′) 7→ (M 7→ SM(A, A′))

are mutually quasiinverse equivalences.

Proof. Let (A, A′) be an object of T (A). Applying ΨA, we obtain a functor

F : Modf
(uwb) → A. It is obvious from the construction of this functor that

F(M) = A and F(M∗) = A′. Thus ΦA(F) ∼= (A, A′). This reasoning shows

that the natural morphism id→ ΦAΨA is an isomorphism.

Now suppose that F : Modf
(uwb) → A is a left-exact tensor functor. Applying

ΦA and then ΨA, we obtain the functor Modf
(uwb)→ A given by

M 7→ M ⊗(dwb) K(F(M), F(M∗)).

Since F is a tensor functor, we have K(F(M), F(M∗)) = F(K(M,M∗)), and

since F is left-exact it pulls out of ⊗(dwb). We thus see that

M ⊗(dwb) K(F(M), F(M∗)) = F(M ⊗(dwb) K(M,M∗)) = F(M).

Here we have used that M ⊗(dwb) K(M,M∗) is naturally identified with M ,

which follows from the proof of Theorem 3.2.11. This shows that ΨA(ΦA(F)) =

F , from which one deduces that the natural morphism id → ΨAΦA is an

isomorphism.

Remark. This theorem can be rephrased as follows: the functor T : TenCat →

Cat is corepresented by Rep(GL), with the universal object in T (Rep(GL)) being

(V,V∗). See 2.2.11 for notation.

3.4.3. The specialization functor. The pair (Cd,Cd∗) defines an object of

T (Rep(GL(d))), and so by Theorem 3.4.2 we obtain a left-exact tensor functor

Γd : Rep(GL)→ Rep(GL(d)),

which we call the specialization functor. This functor is given by Γd(V ) =

SV (C
d), where SV is the rational Schur functor associated to V . The results of

3.1.2 describe this functor on simple objects: Γd(Vλ,λ′) is the irreducible V d
λ,λ′ if

d > ℓ(λ)+ ℓ(λ′) and 0 otherwise.

https://doi.org/10.1017/fms.2015.10 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2015.10


Stability patterns in representation theory 49

3.4.4. Specialization via invariants. We now give a more direct description

of specialization. Let Gd be the subgroup of GL(∞) which coincides with the

identity matrix away from the top left d × d block, and let Hd be the subgroup

which coincides with the identity matrix away from the complementary diagonal

block. Of course, Gd = GL(d) and Hd is isomorphic to GL(∞). The subgroups

Gd and Hd commute, and so Gd × Hd is a subgroup of GL(∞); in particular, the

Hd-invariants of any representation of GL(∞) form a representation of Gd .

PROPOSITION. We have a natural identification Γd(V ) = V Hd .

Proof. Let M be the object of Modf
(uwb) corresponding to V ∈ Rep(GL). We have

identifications

Γd(V ) = M ⊗(dwb) K(Cd,Cd∗), V = M ⊗(dwb) K(V,V∗).

As ⊗(dwb) is a limit, it commutes with the formation of invariants, and so

V Hd = M ⊗(dwb) K(V,V∗)
Hd ,

and so it suffices to show that K(V,V∗)
Hd = K(Cd,Cd∗). For this, it is enough to

show that T Hd
n,m = T d

n,m . Let V′ be the span of the ei with i > d, define V′∗ similarly,

and let T ′n,m be defined using V′ and V′∗. We have V = Cd ⊕ V′, and similarly for

V∗. Then

Tn,m =
⊕

06i6n
06 j6m

Wi, j ⊗ (C
d)⊗n−i ⊗ (Cd∗)⊗m− j ⊗ T ′i, j ,

where Wi, j is a multiplicity space of dimension
(

n

i

)(
m

j

)
. Now, Hd is isomorphic

to GL(∞), and under this isomorphism T ′n,m corresponds to Tn,m . It follows from

Proposition 3.1.10 that (T ′n,m)
Hd = 0 unless n = m = 0. Applying this to the above

decomposition, we see that T Hd
n,m = T d

n,m , which completes the proof.

Remark. Since Γd is a tensor functor, the above proposition shows that if V and

W are algebraic representations of GL(∞) then (V ⊗W )Hd = V Hd ⊗W Hd .

3.4.5. Derived specialization. As the category Rep(GL) has enough injectives,

the derived functor RΓd of Γd exists. The injective resolution of the simple object

Vλ,λ′ is given by the Littlewood complex Lλ,λ
′

• (see 3.3.7 for the dual picture).

Since specialization behaves in the obvious manner on polynomial Schur functors

(see 3.4.3), RΓd(Vλ,λ′) = Γd(L
λ,λ′

• ) is just Lλ,λ
′

• (Cd), which is by definition the

result of evaluating the Schur functors in Lλ,λ
′

• on Cd . The cohomology of this

complex is computed in [SSW, Section 5.5], the result being the following.
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THEOREM. Let (λ, λ′) be a pair of partitions, and let d > 1 be an integer. Then

RiΓd(Vλ,λ′) either vanishes for all i or else there exists a unique i for which it is

nonzero, and it is then an irreducible representation of GL(d).

Furthermore, there is a rule, the modification rule, which calculates where the

cohomology is nonzero, and what the resulting irreducible of GL(d) is. See

[SSW, Section 5.4] for details. The Euler characteristic of this complex was

previously computed by [Koi, Proposition 2.2], which suggested the result of

[SSW].

3.4.6. Let T0 = T (Vecf) be the category of triples (V, V ′, ω), where V and V ′

are finite-dimensional vector spaces and ω : V ⊗ V ′ → C is a bilinear form.

There are no conditions placed on ω; it could even be zero. Let T1 be the category

whose objects are vector spaces and whose morphisms are split injections; that is,

a morphism V → V ′ consists of a pair (i, p), where i : V → V ′ and p : V ′→ V

are linear maps with pi = idV . There is a natural functor T1 → T0 taking V to

(V, V ∗, ω), where ω is the canonical pairing between V and V ∗. In this way, T1

is identified with the full subcategory of T0 where the form ω is perfect.

3.4.7. Let A be the category of representations of GL(∞) such that every

element is stabilized by Hd for some d . Define a functor

F : A→ Fun(T1,Vec)

as follows. For U ∈ A and V ∈ T1, pick an isomorphism V ∼= Cd , and put

F (U )(V ) = U Hd . This can be said more canonically as follows. Let S(V ) be

the groupoid of split injections V → C∞. Given such an injection, let V ′ ⊂ C∞

be the complement of V . We obtain a functor S(V ) → Vec by sending a split

injection to U GL(V ′). The space F (U ) is then canonically the limit of this functor.

It is clear that F is left-exact. We also define a functor

G : Fun(T1,Vec)→ A

by G (F) = lim
−→

F(Cd), where the transition map Cd → Cd+1 is the standard

inclusion using the first d elements of a basis (with its standard splitting). Basic

properties of direct limits show that G is exact and respects tensor products. There

are natural maps G F → id and id→FG , the first of which is an isomorphism,

essentially by the definition of A. We thus see that F and G are naturally adjoint

to each other (with F being the right adjoint).

LEMMA 3.4.8. The functor F is fully faithful.
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Proof. The isomorphism G F = id shows that F is faithful. We claim that G is

faithful on the image of F . To see this, suppose that V and W belong to A, and

let f : F (V )→F (W ) be a map in Fun(T1,Vec). Let f ′ = G ( f ) : V → W . We

obtain a commutative square:

F (V )(Cd) //

f (Cd )

��

V

f ′

��
G (W )(Cd) // W

The horizontal maps are injective, since F (V )(Cd) is just V Hd . Thus if f ′ = 0

then f (Cd) = 0 for all d, and so f = 0. This shows that G is faithful on the image

of F .

We now show that F is full. Suppose that f : F (V ) → F (W ) is a map in

Fun(T1,Vec). Let g = G ( f ). Then G ( f ) = G (F (g)), since G F = id, and so

G ( f −F (g)) = 0. Since G is faithful on the image of F , this gives f =F (g),

and shows that F is full.

THEOREM 3.4.9. The functor F induces a left-exact fully faithful tensor functor

Rep(GL)→ Fun(T1,Vecf).

Proof. All that remains to be shown is that the restriction of F to Rep(GL)

is a tensor functor and takes values in Fun(T1,Vecf). This follows from

Proposition 3.4.4 and basic properties of the specialization functor.

3.4.10. The above theorem shows that we can regard Rep(GL) as a category of

functors T1 → Vecf. However, it is not an abelian subcategory of the functor

category, since there are surjections in Rep(GL) which are not surjections of

functors (as specialization is not exact). The abelian closure C of the image should

be an interesting category. We now explain what we expect to be true of it. We

intend to prove these statements, and more, in a subsequent work.

Call a functor F : T1→ Vecf algebraic if the maps it induces on Hom spaces are

maps of varieties (the Hom sets in T1 and Vecf are naturally quasiaffine varieties).

The following conditions on a functor F are equivalent: (1) F belongs to C; (2) F

is algebraic and finitely generated; (3) F is a subquotient of a finite direct sum of

mixed tensor powers (functors of the form V 7→ V⊗n ⊗ (V ∗)⊗m). The functor G

is an exact tensor functor mapping C to Rep(GL); in fact, it realizes Rep(GL) as

the Serre quotient of C by its subcategory of finite length objects. The functor F

maps Rep(GL) fully faithfully into C; the essential image consists of ‘saturated’

objects.
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Thus the pair (C,Rep(GL)) is analogous to the pair (ModA,ModK ), where

A = Sym(C〈1〉). We expect that more of the picture developed in [SS1] will hold

for the former pair. Furthermore, one should be able to replace T1 with T0 and

maintain some of this picture.

4. The orthogonal and symplectic groups

4.1. Representations of O(∞) and Sp(∞)

4.1.1. Let ω be a nondegenerate symmetric bilinear on V such that each ei is

orthogonal to all but finitely many e j . Let O(∞) be the subgroup of GL(∞)

stabilizing ω. For concreteness, we define ω by

ω


∑

i>1

ai ei ,
∑

j>1

b j e j


 =

∑

k>1

(a2k−1b2k + a2kb2k−1).

We say that a representation of O(∞) is algebraic if it appears as a subquotient

of a finite direct sum of the spaces Tn = V⊗n . Again, a more intrinsic definition

is given in [PSt, Section 4]. We denote by Rep(O) the category of algebraic

representations. It is an abelian category and stable under tensor product. Some

remarks follow.

(a) The form ω provides an isomorphism V→ V∗, which is why we do not need

to consider subquotients of tensor powers involving V∗.

(b) Just like Rep(GL), the category Rep(O) is not semisimple: the surjection

ω : Sym2(V)→ C is not split.

(c) There is a ‘central µ2’ that acts on every algebraic representation of O(∞).

This is just the restriction to µ2 of the ‘central Gm’ of GL(∞), as defined

in 2.2.2. This action endows every algebraic representation with a canonical

Z/2 grading. The representation Tn is concentrated in degree n (mod 2).

(d) Define a representation of SO(∞) to be algebraic if it appears as a

subquotient of a finite direct sum of the Tn . Just as in 3.1.11, every such

representation canonically extends to an algebraic representation of O(∞),

and so the restriction functor Rep(O)→ Rep(SO) is an equivalence.

(e) One can also consider pro-algebraic representations of O(∞), and this leads

to a category R̂ep(O) (see 3.1.12 for details). In this category, there is a

nonsplit injection C→ Sym2(V). ‘Continuous dual’ provides an equivalence

of R̂ep(O) with Rep(O)op.
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4.1.2. Weyl’s construction (finite case). Before studying Rep(O), we recall

Weyl’s construction of the irreducible representations of O(d). Let T d
n = (C

d)⊗n .

The group Sn ×O(d) acts on T d
n . For integers 1 6 i, j 6 n we obtain a map

ti, j : T d
n → T d

n−2

by applying the pairing ω to the i th and j th tensor factors. We let T d
[n] denote the

intersection of the kernels of the maps ti, j . If n = 0 or m = 0 then T d
[n] = T d

n . The

space T d
[n] is clearly stable under the action of Sn × O(d). For a partition λ of n,

we put

V d
λ = HomSn

(
Mλ, T d

[n]

)
.

This space carries an action of O(d), and we have the following fundamental

result of Weyl (see [FH, Section 19.5]).

PROPOSITION. If the first two columns of λ have at most d boxes in total then V d
λ

is an irreducible representation of O(d). Otherwise, V d
λ = 0.

4.1.3. Weyl’s construction (infinite case). Much of the preceding discussion

carries over to the infinite case. We let ti, j : Tn → Tn−2 and T[n] be defined as

before. Then T[n] is stable under Sn ×O(∞). For a partition λ of n, put

Vλ = HomSn
(Mλ, T[n]).

We have the decomposition

T[n] =
⊕

|λ|=n

Mλ ⊠ Vλ. (4.1.3.1)

Note that we also have an exact sequence

0→ T[n]→ Tn → T
⊕n(n+1)/2

n−2 .

PROPOSITION 4.1.4. The Vλ constitute a complete irredundant set of simple

objects of Rep(O).

Proof. This is just like the proof of Proposition 3.1.4. For the relevant character

theory, see [KT, Section 2.1].

PROPOSITION 4.1.5. Every object of Rep(O) has finite length.

Proof. This is just like the proof of Proposition 3.1.5.
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PROPOSITION 4.1.6. The simple constituents of Tn are those Vλ with |λ| 6 n and

|λ| = n (mod 2).

Proof. This is just like the proof of Proposition 3.1.6.

4.1.7. Let T ⊂ O(∞) be the diagonal torus. Given our choice of ω in 4.1.1,

T is the subgroup of diagonal matrices of the form diag(a1, a−1
1 , a2, a−1

2 , . . . ),

which we abbreviate by [a1, a2, . . . ]. A weight is a homomorphism T → Gm

which only depends on finitely many coordinates; that is, it is of the form

[a1, a2, . . .] 7→ a
n1

1 · · · a
nr
r for some integers n1, . . . , nr . The group of weights

is isomorphic to the group of integer sequences (a1, a2, . . .) which are eventually

zero. An algebraic representation of O(∞) decomposes into weight spaces, as

usual. The magnitude of a weight λ is the sum of the absolute values of the ai . It

is clear that the magnitude of any weight of Tn is at most n. The following result

shows that this maximum is achieved for every nonzero submodule.

PROPOSITION 4.1.8. Every nonzero submodule of Tn has a weight of magnitude

n.

Proof. Let V′ be the isotropic subspace of V spanned by e1, e3, e5, . . . . Using

the orthogonal form ω, the span of e2, e4, e6, . . . is identified with V′∗. The

representation of GL(V′) on V = V′ ⊕ V′∗ realizes GL(V′) as a subgroup of

O(∞). Furthermore, the diagonal torus of GL(V′) coincides with the maximal

torus T of O(∞), and the notion of magnitude defined in 3.1.7 agrees with the

one defined above. We have a decomposition of GL(V′) representations

V⊗n =
⊕

a+b=n

Wa,b ⊗ V′
⊗a
⊗ V′∗

⊗b
,

where Wa,b is a multiplicity space of dimension
(

n

a

)
. If M is a nonzero O(∞)-

submodule of V⊗n then it has a nonzero projection M ′ to some V′
⊗a
⊗ V′∗

⊗b
.

Since M ′ is a GL(V′)-submodule of V′
⊗a
⊗ V′∗

⊗b
, it has a weight of magnitude

n = a + b by Proposition 3.1.8.

PROPOSITION 4.1.9. Let M be a submodule of Tn . Then HomO(M, Tn+r ) = 0 for

r > 0.

Proof. This is just like the proof of Proposition 3.1.9.

https://doi.org/10.1017/fms.2015.10 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2015.10


Stability patterns in representation theory 55

PROPOSITION 4.1.10. We have

HomO(Vλ, Tn) =

{
Mλ if n = |λ|

0 otherwise.

Proof. This follows immediately from Propositions 4.1.6 and 4.1.9.

4.1.11. Representations of Sp(∞). The situation for the symplectic group

Sp(∞) is very similar to the situation of the orthogonal group O(∞), and

essentially everything goes through without change. For concreteness, we choose

our symplectic form ω to be

ω

(∑

i

ai ei ,
∑

j

b j e j

)
=
∑

k

(a2k−1b2k − a2kb2k−1).

We define Tn and T[n] and their finite even-dimensional versions as in the

orthogonal case. We denote the category of algebraic representations of Sp(∞)

by Rep(Sp).

The result of Weyl’s construction in the finite case is slightly different: the

representation V 2d
λ of Sp(2d) is irreducible if ℓ(λ) 6 d and 0 otherwise; see

[FH, Section 17.3]. The result in the infinite case is the same: the Vλ are

a complete irredundant set of irreducibles. The remaining propositions carry

through unchanged.

4.2. The Brauer algebra and category

4.2.1. The monoid Gn . This discussion is similar to that of 3.2.1, and thus

abbreviated somewhat. Let Vn be the set of vertices {xi , yi} with 1 6 i 6 n.

We imagine the xi in the top row and the yi in the bottom row. We thus have a

notion of horizontal and vertical edges, as before, but there is no longer any wall.

Let Gn be the set of complete matchings on the vertex set Vn . We give Gn the

structure of a monoid. The definition is similar to before: to multiply Γ and Γ ′,

put Γ on top of Γ ′ and ignore the middle vertices, discarding any components

that use only the middle vertices. Again, we write n(Γ, Γ ′) for the number of

discarded components. As before, the symmetric group Sn is identified with the

submonoid of Gn consisting of graphs with only vertical edges.

4.2.2. The algebra Bn and the module T d
n . We define algebras Bn and Bn(α)

exactly as in 3.2.3. These algebras are the Brauer algebras, introduced in [Bra]

(see also [Wen] for some of its fundamental properties). We give T d
n the structure

of a Bn(d)-module. The definition is similar to that given in 3.2.4, but we provide
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details (using the same notation). Recall that, for u ∈ Cd , we defined fi(u) to be

the vector u regarded in the i th tensor slot of (Cd)⊗n . Let Γ be an element of Gn ,

and let v = v1 ⊗ · · · ⊗ vn be an element of T d
n . The element w = XΓ v is defined

as a product over the edges of Γ . The contribution of edges is as follows.

• The vertical edges (xi , x ′j) contributes f j(vi).

• The horizontal edge (xi , x j) contributes 〈vi , v j 〉.

• The horizontal edge (x ′i , x ′j) contributes ( fi ⊗ f j)(ω), where ω ∈ Cd ⊗ Cd is

the form on Cd . (We have used the form to identify Cd with its dual.) Here ω

can be either symmetric or skew-symmetric, so that we can treat the orthogonal

and symplectic cases uniformly.

As before, it is critical in this definition that we have specialized the parameter t

of Bn to d , the reason being that, when we evaluate the pairing on Cd on ‘itself’

(regarding it as an element of Cd ⊗ Cd), we get d.

4.2.3. The action of Bn(d) on T d
n obviously commutes with that of O(d).

The following is the main result on how these actions relate. See [GW,

Proposition 10.1.3, Corollary 10.1.4] for a proof.

THEOREM (Brauer). The map Bn(d) → EndO(d)(T
d

n ) is surjective, and is

bijective when d > n.

4.2.4. We now wish to apply the theory of the Brauer algebra in the infinite

case, to obtain a diagrammatic description of Rep(O). As with the walled Brauer

algebra, there is no natural way to give Tn the structure of a module over a Brauer

algebra since Sym2(V) does not contain an invariant. Our solution, again, is to

simply disallow horizontal edges in the top row. As before, we find it more

convenient to work with a diagram category than to attempt to form a single

algebra.

4.2.5. The downwards Brauer category, denoted (db), is the following category.

• The objects are finite sets.

• A morphism L → L ′ is a pair (Γ, f ), where Γ is a matching on L and f is a

bijection L \ V (Γ )→ L ′. Here V (Γ ) is the set of vertices adjacent to edges of

Γ .

• Composition is defined exactly as in (dwb); see 3.2.8.

https://doi.org/10.1017/fms.2015.10 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2015.10


Stability patterns in representation theory 57

If L → L ′ is a morphism in (db) then #L ′ 6 #L (hence ‘downwards’), with

equality if and only if the morphism is an isomorphism. The automorphism group

of L in (db) is the full symmetric group on L . Disjoint union endows (db) with

a symmetric monoidal functor ∐. We let ⊗ = ⊗# be the resulting convolution

tensor product on Mod(db), as defined in 2.1.14. We also have the upwards Brauer

category, denoted (ub), and defined analogously to (uwb) (see 3.2.9). There is a

natural equivalence of tensor categories Modf
(ub) = (Modf

(db))
op.

4.2.6. Given an object L of (db), put KL = V⊗L . Given a morphism L → L ′ in

(db) we obtain a morphism KL → KL ′ using the pairing ω (similar to 3.2.10). We

have thus defined an object K of Rep(O)(db).

THEOREM. The functors of 2.1.10 associated to the kernel K provide

contravariant mutually quasiinverse equivalences of tensor categories between

Rep(O) and Modf
(db).

Proof. The proof is essentially the same as that of Theorem 3.2.11, but we

provide details. To show that Φ and Ψ are mutually quasiinverse, we apply

Theorem 2.1.11. The first hypothesis follows from the fact that Vλ is simple;

note that K[L] is isomorphic to T[n] if n = #L . The second hypothesis follows

from Proposition 4.1.10. Finally, it is clear that ∐∗K = K ⊠ K, and so

Proposition 2.1.16 implies that Φ is a tensor functor.

Remark. This result is closely related to [DPS, Corollary 5.2]. Specifically, we

can think of (db) as a locally finite quiver with relations, and the path algebra of

this quiver is isomorphic to the algebra Aso∞ in [DPS, Section 5]. Note, however,

that [DPS, Corollary 5.2] does not describe the tensor product from this point of

view.

COROLLARY 4.2.7. The tensor categories Rep(O) and Modf
(ub) are equivalent.

Proof. This follows from the identification (Modf
(db))

op = Modf
(ub). A direct

equivalence Modf
(ub) → Rep(O) is given by M 7→ M ⊗(db) K (see 2.1.9 for

notation).

COROLLARY 4.2.8. The tensor categories R̂ep(O) and Modf
(db) are equivalent.

Proof. This follows from the equivalence R̂ep(O) = Rep(O)op provided by

continuous dual.
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4.2.9. Classification of injectives. As an application of Theorem 4.2.6, we use

2.1.5 to describe the injective objects of Rep(O), recovering [DPS, Corollary 4.6].

PROPOSITION. The Schur functor Sλ(V) is the injective envelope of the simple

module Vλ. The representations Sλ(V) constitute a complete irredundant set of

indecomposable injectives.

Proof. The proof is analogous to the proof of Proposition 3.2.14, so we omit

it.

4.2.10. We now explain how the results of this section can be extended to the

symplectic group. We introduce a modification B′n of the Brauer algebra. The

algebra is spanned by elements XΓ , where Γ is a graph as before, but now the

horizontal edges are directed (the vertical edges are undirected). The orientation

of a horizontal edge can be reversed at the cost of a sign; that is, the relation

XΓ ′ = −XΓ holds if Γ ′ is obtained from Γ by flipping the orientation of a

single horizontal edge. To multiply XΓ and XΓ ′ in B′n , first flip horizontal edges

so that the orientations in Γ and Γ ′ are compatible, and then proceed as usual.

The B′n(−d)-module structure on T d
n is as before, but with one modification:

the orientation of a horizontal edge indicates the order of the tensor factors for

contractions or cocontractions (so we have to specialize our parameter to−d since

a coherently oriented cycle in the middle of a composition represents evaluating

the symplectic form on its negative). The obvious analog of Theorem 4.2.3 holds.

4.2.11. We must accordingly modify the downwards Brauer category. The

downwards signed Brauer category, denoted (dsb), is the following category.

• Objects are finite sets.

• A morphism L → L ′ is (Γ, f ) as in (db) (see 4.2.5), but now Γ is a directed

matching.

• Composition is defined exactly as in (dwb); see 3.2.8.

We let Mod−(dsb) be the full subcategory of Mod(dsb) on those functors M : (dsb)→

Vec which satisfy the following hypothesis: if Γ ′ is gotten from Γ by flipping the

orientation of n edges, then M(Γ ′, f ) = (−1)n M(Γ, f ). This category is stable

under the convolution tensor product ⊗ = ⊗#. One similarly has an upwards

signed Brauer category (usb) and the category Mod−(usb).

4.2.12. Given an object L of (dsb), put KL = V⊗L . Given a morphism L → L ′

in (dsb), we obtain a morphism KL → KL ′ using the pairing ω. This is similar
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to 3.2.10, but now the directions of the edges of Γ indicate the orders in which

to pair vectors. We have thus defined an object K of Rep(Sp)(dsb). The following

theorem is proved just like Theorem 4.2.6.

THEOREM. The functors of 2.1.10 associated to the kernel K provide

contravariant mutually quasiinverse equivalences of tensor categories between

Rep(Sp) and Mod
−,f
(dsb).

4.3. Modules over Sym(Sym2) and Sym(
∧2
)

4.3.1. For a finite set L , let GL denote the set of perfect matchings on L . Then G

is a tc monoid. The category Λ associated to G in 2.4.1 is exactly (ub). The tca A

associated to G in 2.4.1 is Sym(Sym2(E)), where, for clarity, E is a copy of C∞.

THEOREM. We have an equivalence of tensor categories between Rep(O) and

Modf
A, where the latter is endowed with the tensor product ∗A.

Proof. From Proposition 2.4.2, we have an equivalence of categories

Mod(ub) = ModA, under which ∗ corresponds to ∗A. The result follows from

Corollary 4.2.7.

4.3.2. There is also a signed version of the above result. Let GL be the set of

directed perfect matchings on L , so that G is a tc monoid. The category associated

to G is exactly (usb). Let A′ be the tca associated to G, but where one imposes

the relations that flipping the orientation of an edge changes a sign. Then A′ =

Sym(
∧2
(E)). Combining Theorem 4.2.12 and an appropriate signed version of

Proposition 2.4.2, we obtain the following theorem.

THEOREM. We have an equivalence of tensor categories between Rep(Sp) and

Modf
A′ , where the latter is endowed with the tensor product ∗A′ .

4.3.3. We now explain how to construct the equivalence between Modf
A and

Rep(O) directly. Let U = Sym2(E), so that A = Sym(U ), and put B = Sym(E⊗

V). We regard A and B as both algebras and coalgebras. We have a natural linear

map B → U given by

B → Sym2(E⊗ V)→ Sym2(E)⊗ Sym2(V)→ Sym2(E) = U,

where the final map makes use of the form ω. This induces a coalgebra

homomorphism B→ A which is GL(E) equivariant, and gives B the structure of
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an A-comodule. We thus obtain functors

Φ: Modf
A → Rep(O), M 7→ HomA(M

∨, B)

and

Ψ : Rep(O)→ Modf
A, V 7→ HomO(V, B)∨.

(It is not immediately clear that Ψ takes values in finite length modules, but this

is indeed the case.) A similar discussion holds in the symplectic case.

4.3.4. Orthogonal–symplectic duality. Perhaps the most important application

of 4.3.1 and 4.3.2 is orthogonal–symplectic duality.

THEOREM. There is a natural asymmetric equivalence of tensor categories

Rep(O) ∼= Rep(Sp). This equivalence takes the simple object Vλ to the simple

object Vλ† .

Proof. As discussed in 2.2.14, transpose is an asymmetric auto-equivalence of the

tensor category V . Since it takes Sym2(V) to
∧2
(V), it takes A to A′, and thus

induces an equivalence of categories ModA
∼= ModA′ . As the tensor products ∗A

and ∗A′ are defined using only the tensor structure of V , they correspond under

this equivalence.

4.3.5. Computation of Ext groups. We now give a second application of

Theorem 4.3.1: the computation of the Ext groups between simple objects of

Rep(O) = Rep(Sp). Define Q1 to be the set of partitions λ such that, for each

box b along the main diagonal, the number of boxes to the right of b in the same

row is one more than the number of boxes below b in the same column. We define

Q−1 in the same way, except that the roles of rows and columns are swapped.

The relevance of these definitions comes from the following two decompositions

[Mac, Example I.8.6]:

∧i
(Sym2(E)) =

⊕

ν∈Q1, |ν|=2i

Sν(E),

∧i
(∧2

(E)
)
=

⊕

ν∈Q−1, |ν|=2i

Sν(E).
(4.3.5.1)

We have the following result.

PROPOSITION. In Rep(O) we have

dim Exti
Rep(O)(Vµ, Vλ) =

∑

ν∈Q1, |ν|=2i

cλµ,ν .
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Equivalently, in Rep(Sp) we have

dim Exti
Rep(Sp)(Vµ, Vλ) =

∑

ν∈Q−1, |ν|=2i

cλµ,ν .

In particular, these Ext groups vanish unless i = (|λ| − |µ|)/2.

Proof. We work in the orthogonal case. Under the equivalence of 4.3.1, the Ext

group in the statement of the proposition corresponds to

Exti
A(Sµ(E),Sλ(E)),

where this Ext is taken in ModA. According to 2.3.4, this coincides with

HomGL(E)(Sµ(E)⊗
∧i
(U ),Sλ(E)),

where U = Sym2(E). Now use (4.3.5.1).

4.3.6. Classification of blocks. We get an easy description of the block structure

of Rep(O) = Rep(Sp), which recovers [DPS, Proposition 6.12].

COROLLARY. Two simples Vλ and Vµ belong to the same block of the category

Rep(O) = Rep(Sp) if and only if |λ| = |µ| (mod 2).

Remark. The blocks are naturally indexed by Z/2, and one can show that the two

blocks are not equivalent to one another.

4.3.7. Littlewood varieties. We give a third application of Theorem 4.3.1: the

construction of injective resolutions of simple objects of Rep(O) = Rep(Sp). To

avoid certain technicalities arising from the difference between O(d) and SO(d),

we will stick with Rep(Sp). As in 3.3.5, it will be more natural to use R̂ep(Sp).

Let E be a finite-dimensional vector space, let U =
∧2
(E), let A = Sym(U ), and

let B = Sym(E ⊗ V̂), where each symmetric power is taken in V̂ec. The space U

is a subspace of B, and so we have an algebra homomorphism A→ B. We let C

be the quotient of B by the ideal generated by U . We have maps

Spec(C)→ Spec(B)→ Spec(A).

To give a geometric interpretation of these maps, we ignore subtleties caused by

spaces being infinite dimensional. The space Spec(A) is identified with the space

of forms
∧2
(E)→ C, while Spec(B) is identified with the space Hom(E,V) of

maps ϕ : E → V. The map Spec(B) → Spec(A) takes a linear maps ϕ to the
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form ϕ∗ω, where ω is the symplectic form on V⊗V∗. The space Spec(C), which

we call the Littlewood variety, is the scheme-theoretic fiber of this map above 0;

that is, it consists of maps ϕ for which ϕ∗ω = 0. Alternatively, it consists of those

maps ϕ whose image is totally isotropic with respect to ω. Let K• = B ⊗
∧•
(U )

be the Koszul complex of the Littlewood variety.

PROPOSITION 4.3.8. The augmented complex K• → C is exact. We have a

decomposition

C =
⊕

λ

Sλ(E)⊗ V̂λ.

Proof. See [SSW, Section 3.3].

4.3.9. Littlewood complexes. We now give the projective resolutions of simple

objects. For a partition λ, define the Littlewood complex Lλ• by

Lλ• = HomGL(E)(Sλ(E), K•),

where E is of sufficient dimension (the definition is then independent of E).

Proposition 4.3.8 shows that

Hi(L
λ
•) =

{
V̂λ if i = 0

0 otherwise,

and so Lλ• is a resolution of the simple object V̂λ. Furthermore, it is clear that K•
is built from polynomial Schur functors applied to V̂, and so each Ki is projective

in R̂ep(Sp). In fact, by (4.3.5.1), we have

Lλi =
⊕

µ∈Q−1, |µ|=i

Sλ/µ
(
V̂
)
.

Thus the Littlewood complex Lλ• is a projective resolution of V̂λ; in fact, it is a

minimal resolution.

4.3.10. (Lack of) Fourier transform. Consider the following four algebras:

A = Sym(Sym2(E)), B = Sym
(∧2

(E)
)
,

C =
∧
(Sym2(E)), D =

∧(∧2
(E)

)
.

As we have discussed, transpose interchanges A and B, and also C and D. Thus

we have equivalences Modf
A
∼= Modf

B and Modf
C
∼= Modf

D, as abelian categories.
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A modification of Koszul duality, similar to that occurring in 3.3.9, shows that

Modf
A is Koszul dual to Modf

C . As the next lemma shows, Modf
A and Modf

C are

not equivalent. It follows from this that Rep(O) and Rep(Sp) are not Koszul dual

to each other or themselves. Note that C and D are transpose dual to one another,

so one can setup a Fourier transform from A to D (and from B to C) in a way

similar to 3.3.9.

LEMMA. The categories Modf
A and Modf

C are not equivalent.

Proof. Both of these categories are module categories for certain quivers with

relations. In both cases, the quivers (ignoring the relations) are described as

follows: the vertices are partitions, and there is an arrow λ → µ if and only

if λ ⊂ µ and µ/λ consists of two boxes in different columns. The reason

is that the vertices index simple objects and the arrows index Ext1-groups.

So any hypothetical equivalence between the two categories must induce an

automorphism of the underlying quiver. It is easy to see that the only possible

automorphism is the identity, so any equivalence needs to preserve the indexing

(by partitions) on the simple objects. But the higher extension groups do not

match (for example, Ext2
ModA

(L0, L3,1) = C but Ext2
ModC

(L0, L3,1) = 0), so no

such equivalence exists.

4.4. Orthogonal and symplectic Schur functors, universal property, and

specialization

4.4.1. Orthogonal Schur functors. Let A be a tensor category. Define T (A) to

be the category whose objects are pairs (A, ω), where A is an object of A and ω

is a symmetric pairing A⊗ A→ C, and whose morphisms are the obvious things.

We typically suppress ω from the notation. Given A ∈ T (A), define K(A) to be

the object of A(db) given by L 7→ A⊗L . Functoriality with respect to morphisms

in (db) makes use of the pairing ω, and is defined as in 4.2.6. For an object M of

Modf
(ub), define

SM(A) = M ⊗(db) K(A).

Then M 7→ SM(A) defines a covariant functor Modf
(ub) → A which is left-exact

(see 2.1.9) and a tensor functor (since K(A) is obviously a tensor kernel; see

2.1.16). We call SM the orthogonal Schur functor associated to M .

THEOREM 4.4.2. To give a left-exact tensor functor from Rep(O) to an arbitrary

tensor category A is the same as to give an object of T (A). More precisely, letting

M be the object of Mod(ub) corresponding to V, the functors

Φ: LEx⊗
(

Modf
(ub),A

)
→ T (A), F 7→ F(M)
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and

Ψ : T (A)→ LEx⊗
(

Modf
(ub),A

)
, A 7→ (M 7→ SM(A))

are mutually quasiinverse equivalences.

Proof. The proof is the same as that of Theorem 3.4.2.

Remark. This theorem can be rephrased as follows: the functor T : TenCat →

Cat is corepresented by Rep(O), with the universal object in T (Rep(O)) being

V. See 2.2.11 for notation.

4.4.3. Symplectic Schur functors. The above results carry over in an evident

way to the symplectic case. Precisely, given a tensor category A, let T ′(A) be

the category of pairs (A, ω), where A is an object of A and ω is an alternating

pairing on A. Given A ∈ T ′(A), one can build a kernel K(A) ∈ A(dsb),−. Given

M ∈ Mod
−,f
(dsb), we define S′M(A) = M ⊗(dsb) K(A). We call S′M the symplectic

Schur functor associated to M . The functor

T ′(A)→ LEx⊗
(

Mod
−,f
(dsb),A

)

is an equivalence of categories.

4.4.4. The specialization functors. The standard representations of O(d) and

(for d even) Sp(d) define objects of T (Rep(O(d))) and T ′(Rep(Sp(d))), and so

by Theorem 4.4.2 and its symplectic variant we obtain left-exact tensor functors

Γd : Rep(O)→ Rep(O(d)),

Γd : Rep(Sp)→ Rep(Sp(d)),

which we call the specialization functors. In the orthogonal case, the results of

4.1.2 show that Γd(Vλ) is the irreducible V d
λ if the first two columns of λ have at

most d boxes, and 0 otherwise. In the symplectic case, the corresponding result is

that Γd(Vλ) is the irreducible V d
λ if ℓ(λ) 6 d and 0 otherwise.

4.4.5. Specialization via invariants. We now give a more direct description of

specialization. We will treat both O(∞) and Sp(∞) at the same time. Choose a

decomposition C∞ = V ⊕ V ′, where dim(V ) = d and ω(V, V ′) = 0, and the

restriction of ω to both V and V ′ is nondegenerate. If d is even, one can take V

to be the span of the ei with i 6 d , and V ′ to be the span of the ei with i > d.

If d is odd, one can take V to be the span of e1, . . . , ed−1, ed + ed+1, and V ′ to

be the span of ed − ed+1, ed+2, . . . . Let Gd (respectively, Hd) be the subgroup

of O(∞) or Sp(∞) which preserves V (respectively V ′) and acts as the identity
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on V ′ (respectively, V ). Then Gd is isomorphic to O(d) or Sp(d), while Hd is

isomorphic to O(∞) or Sp(∞). The subgroups Gd and Hd commute, and so the

Hd-invariants of any representation of O(∞) or Sp(∞) form a representation of

Gd .

PROPOSITION. We have a natural identification Γd(V ) = V Hd .

Proof. The proof is similar to the proof of Proposition 3.4.4.

Remark. Since Γd is a tensor functor, the above proposition shows that, if V and

W are algebraic representations of O(∞) (or Sp(∞)), then (V ⊗W )Hd = V Hd ⊗

W Hd .

4.4.6. Derived specialization. As the categories Rep(O) and Rep(Sp) have

enough injectives, the derived functor RΓd of Γd exists. The injective resolution of

the simple object Vλ is given by the Littlewood complex Lλ• (see 4.3.9 for the dual

picture). Since specialization behaves in the obvious manner on polynomial Schur

functors (see 4.4.4), RΓd(Vλ) = Γd(L
λ
•) is just Lλ•(C

d), which is by definition

the result of evaluating the Schur functors in Lλ• on Cd . The cohomology of this

complex is computed in [SSW, Sections 3.5, 4.5], the result being as follows.

THEOREM. Let λ be a partition, and let d > 1 be an integer. Then RiΓd(Vλ)

either vanishes for all i or else there exists a unique i for which it is nonzero, and

it is then an irreducible representation of O(d) or Sp(d).

Furthermore, there is a rule, the modification rule, which calculates where the

cohomology is nonzero, and what the resulting irreducible of O(d) or Sp(d) is.

See [SSW, Sections 3.4, 4.4] for details. The Euler characteristic of this complex

was previously computed by [KT, Section 2.4], which suggested the results of

[SSW].

4.4.7. Let T0 = T (Vecf) be the category of pairs (V, ω), where V is a finite-

dimensional vector space and ω is a symmetric bilinear form on V , and let T1 be

the full subcategory where ω is perfect. Let A be the category of representations

of O(∞) such that every element is stabilized by Hd for some d. Define a functor

F : A→ Fun(T1,Vec)

as follows. For U ∈ A and V ∈ T1, pick an isomorphism V ∼= Cd respecting the

form, and put F (U )(V ) = U Hd ; see 3.4.7 for how to make this canonical. Define

a functor

G : Fun(T1,Vec)→ A
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by the formula G (F) = lim
−→

F(Cd), where the transition map Cd → Cd+1 is the

inclusion given by our choice of bases in 4.4.5, and the form on Cd is the one

restricted from C∞. Basic properties of the direct limit show that G is exact and

respects tensor products. There are natural maps G F → id and id→ G F , the

first of which is an isomorphism.

THEOREM 4.4.8. The functor F induces a left-exact fully faithful tensor functor

Rep(O)→ Fun(T1,Vecf).

Proof. The proof is the same as that of Theorem 3.4.9.

4.4.9. By Theorem 4.4.8, we can think of Rep(O) as a category of functors

T1→ Vec. As in the GL case, Rep(O) is not an abelian subcategory of the functor

category. We expect the abelian closure to have similar properties as in the GL

case; see 3.4.10. Similar comments apply in the symplectic case, using T ′1 in place

of T1.

5. The general affine group

5.1. Representations of GA(∞)

5.1.1. Let t : V→ C be a nonzero linear map which annihilates all but finitely

many basis vectors. For concreteness, we take t = e∗1 . The general affine group,

denoted GA(∞), is the subgroup of GL(∞) stabilizing t. We let V0 be the

kernel of t; this is the subspace spanned by e2, e3, . . . . There is a natural

surjection GA(∞)→ GL(V0), and we let T = T(∞) be the kernel (the group of

translations). We let GA(d) and T(d) be the intersections of GA(∞) and T(∞)

with GL(d) ⊂ GL(∞).

We say that a representation of GA(∞) is polynomial if it appears as a

subquotient of a finite direct sum of the spaces Tn = V⊗n . We let Reppol(GA)

denote the category of polynomial representations. It is an abelian category and

stable under tensor products. Some remarks follow.

(a) We regard V0 as a representation of GA(∞) with T acting trivially. It is a

sub of T1 and thus is polynomial.

(b) The center of GA(∞) is trivial, even in the approximate sense discussed in

2.2.2. We will see that the category Reppol(GA) has only one block.

(c) The group GA(∞) also admits a faithful linear representation on V∗. This

leads to a category of anti-polynomial representations which is in fact

equivalent to Reppol(GA)op.
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(d) One can consider pro-polynomial representations of GA(∞), and this

leads to a category R̂eppol(GA). ‘Continuous dual’ provides a contravariant

equivalence of the category of pro-polynomial representations with the

category of anti-polynomial representations. Thus the categories R̂eppol(GA)

and Reppol(GA) are equivalent.

(e) Define a representation of GA(∞) to be algebraic if it appears as a

subquotient of a direct sum of representations of the form V⊗n ⊗ V⊗m
∗ . The

category of algebraic representations of GA(∞) appears to be somewhat

different from the other categories we have studied: for instance, the trivial

representation is neither injective nor projective. It would be interesting to

determine the structure of this category.

5.1.2. An analog of Weyl’s construction. Let ti : Tn → Tn−1 be the map which

applies t to the i th tensor factor. Let T[n] be the intersection of the kernels of the

ti . This is a representation of Sn ×GA(∞). We define

Vλ = HomSn
(Mλ, T[n]).

We have a decomposition

T[n] =
⊕

|λ|=n

Mλ ⊠ Vλ. (5.1.2.1)

Note that we also have an exact sequence

0→ T[n]→ Tn → T⊕n
n−1, (5.1.2.2)

where the right map is made up of the n trace maps.

PROPOSITION 5.1.3. The Vλ constitute a complete irredundant set of simple

objects of Reppol(GA).

Proof. We have T[n] = V⊗n
0 , and so Vλ is just the representation Sλ(V0) of

GL(V0), with T acting trivially. This shows that the Vλ are simple and distinct.

The sequence (5.1.2.2) shows that every simple of Reppol(GA) is a constituent of

some T[n], while the decomposition (5.1.2.1) shows that every simple constituent

of T[n] is some Vλ.

PROPOSITION 5.1.4. Every object of Reppol(GA) has finite length.

Proof. This is just like the proof of Proposition 3.1.5.
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PROPOSITION 5.1.5. The simple constituents of T n are those Vλ with |λ| 6 n.

Proof. This is just like the proof of Proposition 3.1.6.

5.1.6. By a weight of GA(∞) we mean a weight of the diagonal torus in

GL(V0). We identify weights with sequences of integers (a2, a3, . . .) which are

eventually zero. (We start from 2 since V0 has for a basis the ei with i > 2.) The

weights appearing in polynomial representations of GA(∞) satisfy ai > 0. The

magnitude of a weight is the sum of the (absolute values of) the ai . Every weight

in Tn clearly has magnitude at most n.

PROPOSITION 5.1.7. Every nonzero submodule of Tn has a weight of

magnitude n.

Proof. The space Tn has for a basis pure tensors of the ei , with i > 1. The

magnitude of the weight of a basis vector is simply the number of ei with i > 1 it

has. Let M be a nonzero submodule of Tn , and let x be a nonzero element of M .

Choose an index i > 1 such that ei does not occur in the expansion of x in this

basis. Regard ei as an element of T. Then ei x is computed by changing each e1 in

the occurrence of x to e1+ei . Let x ′ be the element x but with all the e1 changed to

ei . Then x ′ is nonzero, since we have simply changed the basis vectors occurring

in x and not their coefficients. Furthermore, it is clear that all weights appearing

in x ′ have magnitude n, since x ′ has no e1 in it. Finally, it is clear that x ′ is exactly

the magnitude n piece of ei x : the only terms of ei x with magnitude n are those

in which only the ei are chosen in the expansion of the tensor product. Thus x ′

belongs to M since M is a weight module, which completes the proof.

PROPOSITION 5.1.8. Let M be a submodule of Tn . Then HomGA(M, Tn+r ) = 0

for r > 0.

Proof. This is just like the proof of Proposition 3.1.9.

PROPOSITION 5.1.9. We have

HomGA(Vλ, Tn) =

{
Mλ if n = |λ|

0 otherwise.

Proof. This follows immediately from Propositions 5.1.8 and 5.1.5.
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5.2. A diagram category

5.2.1. We now give an analog of the Brauer category for the general affine

group. The downwards subset category, denoted (ds), is the category whose

objects are finite sets and where a morphism L→ L ′ is a pair (U, f ), where U is a

subset of L and f : L\U → L ′ is a bijection. Composition is defined as usual. The

automorphism group of an object L of (ds) is the symmetric group on L . Disjoint

union endows (ds) with a symmetric monoidal structure. We let ⊗ = ⊗# be the

resulting convolution tensor products, as in 2.1.14. We also have the upwards

subset category, denoted (us), with everything reversed. Note that (us) can be

described as the category of finite sets with morphisms being injections.

5.2.2. Given an object L of (ds), put KL = V⊗L . Given a morphism L → L ′ in

(ds) represented by (U, f ), we obtain a morphism

KL = V⊗U ⊗KL\U → KL ′

by applying the maps t : V → C on the first factor and using f on the second

factor. Thus K defines an object of Reppol(GA)(ds).

THEOREM 5.2.3. The functors of 2.1.10 associated to the kernel K provide

contravariant mutually quasiinverse equivalences of tensor categories between

Reppol(GA) and Modf
(ds).

Proof. The proof of the theorem is just like that of Theorem 3.2.11.

COROLLARY 5.2.4. The tensor categories Reppol(GA) and Modf
(us) are

equivalent.

This comes from the identification (Modf
(ds))

op = Modf
(us). A direct equivalence

Modf
(us)→ Reppol(GA) is given by M 7→ M ⊗(ds) K (see 2.1.9 for notation).

5.2.5. Classification of injectives. As before, the above descriptions of

Reppol(GA) allow for an easy description of its injective objects.

PROPOSITION. The Schur functor Sλ(V) is the injective envelope of the simple

module Vλ. The representations Sλ(V) constitute a complete irredundant set of

indecomposable injectives.
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5.3. Modules over Sym(C〈1〉)

5.3.1. For a set L , let GL be the one-point set. Then GL is a tc monoid. The

category Λ associated to G in 2.4.1 is exactly (us). The tca A associated to G is

Sym(C〈1〉). As usual, E denotes a copy of C∞ and we identify A with Sym(E).

THEOREM. The tensor categories Reppol(GA) and Modf
A are equivalent, where

the latter is given the tensor product ∗A.

Proof. The proof is the same as the proof of Theorem 3.3.1.

5.3.2. As in previous settings, we can realize the equivalence between

Reppol(GA) and Modf
A directly. Put B = Sym(V ⊗ E). We regard A and

B as both algebras and coalgebras. We have a natural map B → E by first

projecting onto V ⊗ E and then using the linear map t : V→ C. This induces a

coalgebra homomorphism B → A. We thus obtain functors

Φ : Modf
A → Reppol(GA), M 7→ HomA(M

∨, B)

and

Ψ : Reppol(GA)→ Modf
A, V 7→ HomGA(V, B)∨.

These functors are mutually quasiinverse equivalences.

Remark. In fact, the equivalence can be seen even more directly. The group

GA(∞) is isomorphic to the semidirect product V ⋊ GL(∞), so giving a

representation of it is the same as giving a representation of V, which is the same

as giving a Sym(V) module that is equipped with a GL(∞) equivariance. One

can easily verify directly that the equivariant modules one obtains are exactly the

finite length polynomial ones.

5.3.3. The category ModA is thoroughly studied in [SS1]. There, the

category Modf
A is denoted Modtors

A , and the Serre quotient is denoted

ModK = ModA/Modtors
A . Among other things, it is shown that these categories

are equivalent:

Modtors
A ≃ ModK ,

and many basic invariants were computed, such as minimal injective resolutions

of the simple objects, and extension groups between simple objects [SS1,

Section 2.3]. Furthermore, both of these categories were shown to be equivalent

to the module category of the Pieri quiver PartHS: this is the quiver whose vertices

are all partitions, and there is exactly one arrow λ → µ if λ ⊆ µ and the skew
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Young diagram µ/λ is a horizontal strip, that is, no two boxes lie in the same

column, and there are no arrows otherwise. The relations are governed by the rule

that the composition λ→ µ→ ν is 0 if ν/λ is not a horizontal strip, and the rule

that all such compositions are equal otherwise.

5.3.4. Littlewood varieties. Following 3.3.5 and 4.3.5, we can define the

Littlewood variety in the present context. Let E be a finite-dimensional vector

space, let A = Sym(E), and let B = Sym(E ⊗ V̂∗). Since V̂∗ has an invariant,

we have an inclusion E ⊂ B, and we thus obtain an algebra homomorphism

A → B. We let C be the quotient of B by the ideal generated by U . We call

Y = Spec(C) the Littlewood variety. Since Y is defined by linear equations, the

minimal free resolution of C is given by the acyclic Koszul complex K•, where

Ki = B ⊗
∧i

E .

PROPOSITION 5.3.5. We have C =
⊕

λ Sλ(E)⊗ V ∨λ .

5.3.6. Littlewood complexes. For a partition λ, define the Littlewood complex

Lλ• by

Lλ• = HomGL(E)(Sλ(E), K•),

where E is of sufficient dimension. Proposition 5.3.5 and the acyclicity of the

Koszul complex show that

Hi(L
λ
•) =

{
V ∨λ if i = 0

0 otherwise,

and so Lλ• is a resolution of the simple object V ∨λ . Furthermore, it is clear that K•
is built from polynomial Schur functors applied to V̂∗, and so each Ki is projective

in Reppol(GA)op. In fact, we have

Lλi = Sλ/(1i )(V̂∗).

Thus Lλ• is a projective resolution of V ∨λ ; in fact, it is minimal.

5.3.7. The projective resolution L•λ of V ∨λ gives an injective resolution

0→ Vλ→ Sλ(V)→ Sλ/(1)(V)→ · · · → Sλ/(1i )(V)→ · · · → Sλ/(1ℓ(λ))(V)→ 0

in Reppol(GA). By Theorem 5.3.1, Reppol(GA) is equivalent to Modf
A, which is

in turn equivalent to the category ModK (see the discussion in 5.3.2). Under these

equivalences, the above injective resolutions become the injective resolutions of

simple objects of ModK described in [SS1, Theorem 2.3.1].
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5.4. Schur functors for objects with trace, universal property, and

specialization

5.4.1. Let A be a tensor category. Define T (A) to be the category whose objects

are pairs (A, t), where A is an object of A and t is a map A → C, and whose

morphisms are the obvious things. We will typically suppress the t from notation.

Given A ∈ T (A), define K(A) to be the object of A(ds) given by L 7→ A⊗L .

Functoriality with respect to morphisms in (ds) makes use of t , and is as defined

in 5.2.2. For an object M of Modf
(us), define

SM(A) = M ⊗(ds) K(A).

Then M 7→ SM(A) defines a covariant functor Modf
(us) → A which is left-exact

(see 2.1.9), and a tensor functor (since ∐∗K(A) is a tensor kernel; see 2.1.16).

THEOREM 5.4.2. To give a left-exact tensor functor from Reppol(GA) to a tensor

category A is the same as to give an object of T (A). More precisely, letting M be

the object of Modf
(us) corresponding to V, the functors

ΦA : LEx⊗(Modf
(us),A)→ T (A), F 7→ F(M)

and

ΨA : T (A)→ LEx⊗(Modf
(us),A), A 7→ (M 7→ SM(A))

are mutually quasiinverse equivalences of categories.

Proof. The proof is the same as that of Theorem 3.4.2.

Remark. This theorem can be rephrased as follows: the functor T : TenCat →

Cat is corepresented by Reppol(GA), with the universal object in T (Reppol(GA))

being V. See 2.2.11 for notation.

5.4.3. The specialization functor. The object Cd defines an object of

T (Reppol(GA(d))), and so by Theorem 5.4.2 we obtain a left-exact tensor

functor

Γd : Reppol(GA)→ Reppol(GA(d)),

which we call the specialization functor.

5.4.4. Specialization via invariants. The group GA(∞) is the subgroup of

GL(∞) consisting of matrices where the top left entry is 1, and all other entries

in the first row are 0. Let Gd be the subgroup of GA(∞) which agrees with
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the identity matrix outside of the upper left d × d block, and let Hd be the

subgroup which agrees with the identity matrix outside the complementary block.

The group Gd is isomorphic to GA(d), while Hd is isomorphic to GL(∞) – the

infinite general linear group. One can show that Γd(V ) = V Hd ; we leave this to

the reader. Since a polynomial representation of GA(∞) restricts to a polynomial

representation of Hd , and the category of such representations is semisimple, we

obtain the following.

PROPOSITION. The specialization functor Γd is exact.

5.4.5. Let T0 = T (Vecf) be the category of pairs (V, t), where V is a finite-

dimensional vector space and t : V → C is a linear map. Let T1 be the subcategory

on objects where t is nonzero. As in previous cases, one can build functors

between Reppol(GA) and Fun(T1,Vecf). For each d, define Hd ⊂ GA(∞) as in

5.4.4. Let A be the category of representations of GA(∞) such that each element

is stabilized by Hd for some d. Define a functor

F : A→ Fun(T1,Vec),

as follows. For U ∈ A and V ∈ T1, pick an isomorphism V ∼= Cd , and put

F (U )(V ) = U Hd (see 3.4.7 for how to make this canonical).

THEOREM 5.4.6. The functor F induces an exact fully faithful tensor functor

Reppol(GA)→ Fun(T1,Vecf).

Proof. The proof is similar to the proof of Theorem 3.4.9. We have exactness in

this context due to the exactness of the specialization functor.

6. The symmetric group

6.1. Representations of S(∞)

6.1.1. Algebraic representations. Let B = {1, 2, . . . , }, and let S = S(∞) be

the group of permutations of B which fix all but finitely many elements. The group

S acts on V by permuting the basis vectors {ei}i∈B. We say that a representation of

S is algebraic if it appears as a subquotient of a direct sum of the representations

Tn = V⊗n . We let Rep(S) denote the category of algebraic representations. It is

an abelian tensor category. Some remarks follow.

(a) We use the notation S when we think of the symmetric group on the

‘representation theory side’ and S when we think of it on the ‘diagram

category side’.
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(b) For an integer d > 0, we let Gd (respectively, Hd) be the subgroup of S(∞)

which fixes all i > d (respectively, i 6 d). Then Gd = S(d), while Hd is

isomorphic to S(∞). The two subgroups commute, and so Gd × Hd is a

subgroup of S(∞).

(c) The representation V∗ of S(∞) is isomorphic to V, so we do not gain

anything by considering tensor powers of V∗.

(d) One can also define the category R̂ep(S) of pro-algebraic representations.

‘Continuous dual’ provides an equivalence of Rep(S)op with R̂ep(S).

6.1.2. In preparation for some of the proofs in this section, we will need a few

basic facts about the representation theory of the symmetric groups.

• If ν1, . . . , νr is the set of partitions obtainable from λ by removing a single box,

then dim Mλ = dim Mν1 + · · · + dim Mνr [SS2, (2.8)].

• The multiplicity of Mµ in the tensor product Mλ⊗(M(n−1,1)⊕C) is the number

of ways to remove a single box from λ and add it back to get µ [Sta, Exercise

7.81].

6.1.3. An analog of Weyl’s construction (finite case). Before we study the

structure of Rep(S), we give a construction of the irreducible representations

of the finite symmetric groups S(d) analogous to Weyl’s construction for the

classical groups. Let T d
n = (Cd)⊗n . Let t : T d

1 → C be the augmentation map,

sending each ei to 1, and let ti : T d
n → T d

n−1 be the map given by applying t to the

i th factor. Let s : T d
2 → T d

1 be the map ei ⊗ e j 7→ δi, j ei , and let si, j : T d
n → T d

n−1

be the map obtained by applying s to the i th and j th factors and inserting the

result in the final tensor factor. We let T d
[n] be the intersection of the kernels of the

ti and si, j . It is clear that T d
[n] is stable under the action of Sn ×S(d) on Tn . For a

partition λ of n, we put

V d
λ = HomSn

(Mλ, T d
[n]).

This space carries an action of S(d). Before stating the main result, we introduce

a piece of notation: for a partition λ = (λ1, . . . , λr ) and an integer k, we let λ[k]

be the sequence (k, λ1, . . . , λr ). This is a partition if k > λ1.

PROPOSITION. The representation V d
λ is isomorphic to Mλ[d−n] if λ[d − n] is a

partition, and 0 otherwise.

Proof. We will use the partition algebra An(d), which will be defined in

Section 6.3. There is an action of An(d) on T d
n so that the image of An(d) in
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End(T d
n ) is the full centralizer of the action of Sd (Theorem 6.3.6). The generators

of this action are summarized in 6.3.5. From this description, we see that, if In is

the ideal generated by the generators pi and pi+ 1
2
, then An(d)/In = C[Sn], and

that T d
[n] is exactly the subspace of T d

n annihilated by In . By the double centralizer

theorem, we have a decomposition

T d
n =

⊕

λ

Xλ ⊠ Yλ,

where Xλ is an irreducible representation of An(d) and Yλ is an irreducible

representation of S(d). From the previous discussion, T d
[n] is the direct sum of

those Xλ ⊠ Yλ for which the action of In is identically 0 on Xλ, and in this case

Yλ = V d
λ .

First suppose that d−n > λ1. We show that V d
λ is a nonzero irreducible module

by a character calculation. We use the following fact: the multiplicity of Mµ in

Sλ(C
d) is given by the coefficient of the Schur polynomial sλ(x1, . . . , xd) in the

plethysm sµ(1, x1, . . . , xd, x2
1 , x1x2, . . . ) (that is, plugging in all monomials in

x1, . . . , xd of all possible degrees) [Sta, Example 7.74]. Using the combinatorial

definition of Schur polynomials as a generating function for semistandard Young

tableaux [Sta, Section 7.10], this immediately implies that Mλ[d−n] appears with

multiplicity 1 in Sλ(C
d), and that, if Mµ appears, then we must have

∑
i>2 µi 6

|λ|. In particular, Mλ[d−n] is in the kernel of all maps of the form T d
n → T d

n−1

discussed above, so we conclude that V d
λ
∼=Mλ[d−n].

Now suppose that λ1 > d − n. We claim that V d
λ = 0. It is easy to see that

the construction of T d
[n] is stable with respect to d in the following sense: if we

identify Cd ⊂ Cd+1 as the subspace spanned by e1, . . . , ed , then T d
[n] ⊂ T

(d+1)
[n] , so,

in particular, V d
λ ⊂ V

(d+1)
λ . Pick d ′ so that λ1 = d ′ − n + 1. It is enough to show

that V
(d ′)

λ = 0.

By what we have already shown, V
(d ′+1)
λ = M(d ′+1−n,λ), so V

(d ′)

λ , if nonzero,

must be of the form M(d ′+1−n,µ), where µ is obtained from λ by removing a single

box. We claim that the multiplicity mµ of M(d ′+1−n,µ) in T (d ′)
n is strictly bigger

than the dimension of Mλ (this implies that V
(d ′)

λ = 0 by the discussion above

on the relationship between T n
d and T

[n]
d ). Let ν1, . . . , νr be all partitions we can

get from λ by removing a single box. For each i , the multiplicity of M(d ′−n+1,νi )

in T
(d ′)

n−1 is dim Mνi . So, from the dimension equation and tensor product rule in

6.1.2, they each contribute dim Mνi to mµ, and so far we see that mµ > dim Mλ.

Finally, let η be the result of removing a single box from µ (the only obstruction

to the existence of η is if n = 1, but, in this case, the proposition is trivial). Then

the multiplicity of M(d ′−n+2,η) in T
(d ′)

n−1 is at least 1, and it also contributes to mµ,

so we conclude that mµ > dim Mλ, which proves the claim.
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Remark. This traceless tensor construction for the symmetric group was

also considered by Littlewood in [Lit2, Section 4]. However, he phrases the

construction in terms of the quadratic and cubic invariants of the symmetric

group.

6.1.4. An analog of Weyl’s construction (infinite case). Much of the above

discussion carries over to the infinite case. We define the maps ti : Tn → Tn−1

and si, j : Tn → Tn−1 as before, and let T[n] be the intersection of their kernels. For

a partition λ of n, we put

Vλ = HomSn
(Mλ, T[n]).

This space carries an action of S(∞) and obviously forms an algebraic

representation. We have a decomposition

T[n] =
⊕

|λ|=n

Mλ ⊠ Vλ (6.1.4.1)

of Sn ×S(∞) modules. We have an exact sequence

0→ T[n]→ Tn → (Tn−1)
⊕n(n+1)/2, (6.1.4.2)

where the rightmost map is the n maps ti and the n(n − 1)/2 maps si, j .

PROPOSITION 6.1.5. The Vλ constitute a complete irredundant set of simple

objects of Rep(S).

Proof. Since Vλ =
⋃

d≫0 V d
λ and each V d

λ is an irreducible representation of S(d)

(for d ≫ 0), the representation Vλ is irreducible. An induction argument using

(6.1.4.1) and (6.1.4.2) shows that every simple object of Rep(S) is isomorphic

to some Vλ. Finally, we show that if Vλ is isomorphic to Vµ then λ = µ. It is

possible to give an argument similar to the cases of the classical groups above. To

do this, one replaces the maximal torus with the subalgebra of the group algebra

of the symmetric group generated by the Jucys–Murphy elements [OV, Section 2]

X i , which is the sum of the transpositions (1, i) + (2, i) + · · · + (i − 1, i), and

is well defined for the infinite symmetric group. The relevant character theory is

explained in [OV, Section 5]. The punchline is that V d
λ has a basis vT indexed by

standard Young tableaux T of shape (d − |λ|, λ) which is an eigenbasis for X2,

X3, . . . , Xd . The eigenvalue of X i on vT is the content (row index minus column

index) of the box of T which contains the label i . Furthermore, this eigenbasis is

compatible with the inclusions V d
λ ⊂ V

(d+1)
λ , so is well defined for d →∞, and

we see that Vλ ∼= Vµ if and only if λ = µ.
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Remark. One can picture Vλ as corresponding to the Young diagram λ[∞], that

is, λ placed below an infinite first row.

PROPOSITION 6.1.6. Every object of Rep(S) has finite length.

Proof. This is just like the proof of Proposition 3.1.5.

PROPOSITION 6.1.7. The simple constituents of Tn are those Vλ with |λ| 6 n.

Proof. This is just like the proof of Proposition 3.1.6.

REMARK 6.1.8. The analogs of Propositions 3.1.9 and 3.1.10 do not hold. For

example, the map T1 → Tn taking ei to e⊗n
i is S(∞)-equivariant, and therefore

the irreducible V(1) occurs as a submodule of Tn for all n.

6.2. Modules over Sym(C〈1〉)

6.2.1. In this section, we relate Rep(S) to the category of modules over the

tca A = Sym(C〈1〉) = Sym(V). We let Mod
fg

A denote the category of finitely

generated A-modules, and we let ModK be the Serre quotient of Mod
fg

A by the

category Modf
A of torsion A-modules; see [SS1, Section 2] for background on

this category. Write

T : Mod
fg

A → ModK

for the quotient functor and

S : ModK → Mod
fg

A

for its right adjoint. The category ModA is equivalent to the category Mod(us), as

discussed in Section 5.3.

6.2.2. Let M be an A-module, thought of as an object of Mod(us). Thus M

assigns to each finite set L a vector space ML , and to each injection L → L ′

of finite sets a map of vector spaces ML → ML ′ . Define

T ′(M) = lim
−→
L⊂B

ML,

where the colimit is over the finite subsets L of B. It is clear that T ′(M) is

an S-module. A simple computation shows that T ′(A ⊗ V⊗n) is an algebraic

representation of S. As every finitely generated A-module M is a quotient of a

finite direct sum of modules of the form A ⊗ V⊗n , and direct limits are exact,
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we see that T ′(M) is a quotient of an algebraic representation, and therefore is

algebraic. We have thus defined an exact functor

T ′ : Mod
fg

A → Rep(S).

It is clear that T ′ kills Modf
A, and therefore it induces an exact functor

Φ : ModK → Rep(S).

6.2.3. Let M be an S-module. Given a finite set L of cardinality d , choose

a bijection L → d, and put S′(M)L = M Hd (Hd is defined in 6.1.1); more

canonically, define S′(M)L via a limit as in 3.4.7. Then S′(M) defines an object of

Mod(us). We claim that S′ takes algebraic representations to finitely generated A-

modules. Since S′ is left-exact, it suffices to verify the claim for a simple algebraic

module Vλ. In fact, since Vλ injects into Tn , for some n, it is enough to show that

S′(Tn) is finitely generated. This is a simple computation, which we leave to the

reader. We have thus defined a left-exact functor

S′ : Rep(S)→ Mod
fg

A .

There is an obvious isomorphism T ′S′ = id and natural transformation id→ S′T ′,

and these give S′ the structure of a right adjoint of T ′. We define

Ψ : Rep(S)→ ModK

to be the composition Ψ = T S′.

THEOREM 6.2.4. The functors Φ and Ψ are mutually quasiinverse equivalences

between ModK and Rep(S).

Proof. It follows from what we have already done that ΦΨ = id and that there is

a natural map η : id→ ΨΦ. It suffices to show that η is an isomorphism. Let M be

an object of Rep(S). We have a natural morphism f : M→ S′(T ′(M)). As T ′( f )

is an isomorphism and T ′ is exact, we see that T ′(ker f ) = T ′(coker f ) = 0. If

N is a finitely generated A-module with T ′(N ) = 0, then N has finite length. We

thus see that ker( f ) and coker( f ) have finite length. This shows that T (ker f ) =

T (coker f ) = 0, and so T ( f ) is an isomorphism. Thus, for any M ∈ ModA,

the natural map T M → T (S′(T ′(M))) = Ψ (Φ(T M)) is an isomorphism. Since

every object of ModK is of the form T M for some M ∈ ModA, this proves the

result.

COROLLARY 6.2.5. The categories Rep(S) and Modf
A are equivalent.
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Proof. This follows from Theorem 6.2.4 and [SS1, Theorem 2.5.1], which states

that ModK and Modf
A are equivalent.

COROLLARY 6.2.6. The categories Rep(S) and Reppol(GA) are equivalent.

Proof. This follows from Corollary 6.2.5 and Theorem 5.3.1.

Remark. This equivalence can be realized as an ‘infinite Schur–Weyl duality’, as

follows. Let t ∈ V∗ be as in 5.1.1. Define V⊗∞∗ to be the direct limit of the V⊗n
∗ ,

where the transition maps are given by v 7→ v⊗ t. Concretely, an element of V⊗∞∗
is a finite sum of tensors of the form v1⊗v2⊗v3⊗· · · , where vi ∈ V∗, and for all

but finitely many i we have vi = t. The group S(∞) acts on V⊗∞∗ by permuting

tensor factors. We thus have a functor

Rep(S)→ Repapol(GA), M 7→ HomS(M,V⊗∞∗ ).

(Here apol means ‘anti-polynomial’; see 5.1.1.) This functor is a contravariant

equivalence. Since Repapol(GA) is the opposite category of Reppol(GA), the above

functor induces a covariant equivalence Rep(S)→ Reppol(GA).

6.2.7. Compatibility with tensor products. The equivalences of 6.2.4, 6.2.5, and

6.2.6 are not equivalences of tensor categories using the usual tensor structures.

We now describe an alternative tensor structure on ModK which the equivalence

6.2.4 respects. Identifying ModA with Mod(us), define the pointwise tensor product

⊠ as in 2.1.13, that is, by (M⊠N )L = ML⊗NL . It is not difficult to show that this

preserves Mod
fg

A . Furthermore, if M has finite length and N is finitely generated

then M ⊠ N has finite length. It follows that ⊠ induces a tensor structure on

ModK . Since tensor products and direct limits commute, the functor T ′ in 6.2.2 is

a tensor functor if we use the ⊠ tensor structure on ModA. It follows that Φ and

Ψ are equivalences of tensor categories if we use ⊠ on ModK .

PROPOSITION 6.2.8. If M and N are finitely generated projective A-modules

then so is M ⊠ N.

Proof. Let A′ be the GL(∞)-equivariant Weyl algebra on C〈1〉; see 2.3.6. By

Proposition 2.3.6, a finitely generated A-module is projective if and only if the

action of A on extends to an action of A′. The proposition follows from the fact

that the pointwise tensor product of two A′-modules admits a natural A′-module

structure. (To see this, note that one can think of an A′-module as an object M

having compatible A-module and A-comodule structures. The pointwise tensor

product of A (co)modules is again an A (co)module, so all that remains to verify

is that compatibility is preserved. We leave this to the reader.)
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PROPOSITION 6.2.9. If M and N are injective objects of ModK then so is M⊠N.

Proof. This follows from Proposition 6.2.8 and the fact [SS1, Remark 4.2.7] that

the functor T is an equivalence between the categories of projectives in Mod
fg

A

and injectives in ModK .

PROPOSITION 6.2.10. The tensor product of two injectives in Rep(S) is again

injective.

Proof. This follows from Proposition 6.2.9 and the fact that the equivalence of

Theorem 6.2.4 is compatible with the ⊠ tensor product.

PROPOSITION 6.2.11. The object V⊗n of Rep(S) is injective.

Proof. By Proposition 6.2.10, it suffices to treat the n = 1 case. An easy

computation shows that V= T ′(A⊗V)= Φ(T (A⊗V)). Since A⊗V is projective

in Mod
fg

A , its image under T is injective in ModK . The result follows, since Φ is

an equivalence.

6.2.12. The objects Sλ(V). By Proposition 6.2.11, the Schur functors Sλ(V)

are injective in Rep(S). In contrast to previous situations, that is, 3.2.14,

4.2.9, and 5.2.5, these objects are not indecomposable. For example, we have

Sym2(V) = I(2) ⊕ I(1), where we write Iλ for the injective envelope of the

simple Vλ. Determining the general decomposition of Sλ(V) into indecomposable

injectives seems like a difficult problem. It is also an interesting problem to

calculate the multiplicities of simple objects in Sλ(V), and one can interpret

the intermediate step of decomposing into indecomposable injectives as putting

additional structure on these multiplicities.

6.3. The partition algebra and category

6.3.1. The monoid Pn . Let Vn be the set of vertices {x1, x ′1, . . . , xn, x ′n}. We will

think of {x1, . . . , xn} as being the ‘bottom’ vertices and {x ′1, . . . , x ′n} as being the

‘top’ vertices, as in 3.2.2. Let Pn denote the set of partitions of Vn . We give Pn

the structure of a monoid, as follows. Let U and U ′ be two partitions of Vn . Put

U above U ′; that is, identify the bottom row of vertices of U with the top row of

vertices of U ′, and merge all parts of U and U ′ which overlap. Let n(U ,U ′) be

the number of connected components (including singletons) which are contained

entirely in the middle row; discard these parts, and all vertices in the middle row.

The resulting partition is the composition UU ′. The symmetric group Sn sits inside
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of Pn as the set of partitions in which each part contains exactly one vertex from

the top row and one from the bottom row.

6.3.2. The algebra An . Let An be the free C[t]-module spanned by Pn . We

write XU for the element of An corresponding to the partition U ∈ Pn . We give

An the structure of an algebra by defining XU XU ′ to be tn(U ,U ′)XUU ′ . For a number

α ∈ C, we let An(α) be defined similarly to An , but with α in place of t ; of course,

An(α) is just the quotient of An by the two-sided ideal generated by t − α. The

algebra An is called the partition algebra, and it was introduced in [Mar] and

[Jon] (see also [HR]).

6.3.3. The An(d)-module T d
n . We now give T d

n the structure of a An(d)-

module. We use notation similar to that in 3.2.4. Let U be an element of Pn ,

and let v be an element of T d
n . We assume, without loss of generality, that v is a

pure tensor of basis vectors ei1
⊗ · · · ⊗ ein

, where each ik is between 1 and d . The

element w = XΓ v is defined as a product over the parts of U , so we just have to

describe the contribution of each part.

• A part {xk1
, . . . , xkr

} concentrated in the first row contributes 1 if ik1
= · · · = ikr

and 0 otherwise.

• A part {x ′ℓ1
, . . . , x ′ℓs

} concentrated in the second row contributes∑d

j=1 fℓ1
(e j) · · · fℓs

(e j).

• A part {xk1
, . . . , xkr

, x ′ℓ1
, . . . , x ′ℓs

} which meets each row (so r > 0 and s > 0)

contributes fℓ1
(ei) · · · fℓs

(ei) if ik1
= · · · = ikr

= i and 0 otherwise.

We leave it to the reader to verify that this is a well-defined action. As in previous

cases, it is important that the parameter t of An has been specialized to d.

6.3.4. An example. We now give an example of the module structure introduced

above. Suppose that n = 4 and that U is the partition

x1 x2 x3 x4

x ′1 x ′2 x ′3 x ′4

• • • •

• • • •

Thus {x1, x2, x ′1} constitutes one part, as does {x4}. Then

XΓ (ei1
⊗ ei2

⊗ ei3
⊗ ei4

) = δi1,i2
· ei1
⊗ ei3

⊗

(
d∑

j=1

e j ⊗ e j

)
.
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6.3.5. Generators of An . Generators for the partition algebra are given in [HR,

Theorem 1.11(d)]. We explain the action of these generators on T d
n (see [HR,

Section 3]).

• For 1 6 i 6 n − 1, the generator si swaps the tensor factors in positions i and

i + 1.

• For 1 6 i 6 n, the generator pi replaces the i th tensor factor with e1+· · ·+ ed .

• For 1 6 i 6 n−1, the generator pi+ 1
2

is defined by e j1⊗· · ·⊗e jn 7→ δ ji , ji+1
e j1⊗

· · · ⊗ e jn .

Let In be the ideal generated by the pi and pi+ 1
2
. Then An(d)/In

∼= C[Sn], where

the generators for C[Sn] are the images of the si .

6.3.6. The action of An(d) on T d
n obviously commutes with that of S(d). The

following is the main result on how these actions relate. See [HR, Theorem 3.6]

for a proof.

THEOREM (Martin). The natural map An(d) → EndS(d)(T
d

n ) is always

surjective, and it is an isomorphism for d > 2n.

6.3.7. We now wish to apply the theory of the partition algebra in the infinite

case, to obtain a diagrammatic model for Rep(S). As in previous cases, there is a

problem: partitions concentrated in the bottom row would involve infinite sums.

As before, our solution is to simply disallow them. Again it is more convenient to

work with a category than attempting to create a single algebra.

6.3.8. The downwards partition category, denoted (dp), is the following

category. Objects are finite sets. A morphism L → L ′ is a partition of L ∐ L ′

in which each part meets L . Given a morphism L → L ′ represented by U

and a morphism L ′ → L ′′ represented by U ′′, the composition L → L ′′ is

represented by the partition obtained by gluing U and U ′ along L ′ and merging

parts which meet. The automorphism group of L in (dp) is the symmetric group

on L; however, there are self-maps of L which are not isomorphisms. Disjoint

union endows (dp) with a monoidal functor ∐. We let ⊗ = ⊗# be the resulting

convolution tensor product on Mod(dp), as defined in 2.1.14. We also have the

upwards partition category, denoted (up), with everything reversed.

Remark. The category (dp) is very different from all the previous combinatorial

categories we have considered: it is not weakly directed. This causes the theory

of modules over (dp) to be significantly more complicated than the previous
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theories, and most of the results of Section 2.1 break down. For instance, we

will see that any nonzero module over (dp), even a simple module, is nonzero on

all sufficiently large finite sets. A few of the more formal results from Section 2.1

(for example, the existence of the convolution tensor product) do remain true,

with the same proof, and we will take care when citing them.

6.3.9. Before getting to the main result of this section, Theorem 6.3.30, we need

to establish some intermediate results on the structure of Mod(dp). We summarize

these results here.

• In 6.3.10–6.3.14, we define certain classes of maps in (dp) and prove

elementary results about them.

• In 6.3.15–6.3.18, we define the notion of a (weakly) minimal element of a

representation of (dp), and prove a lifting result for these elements.

• In 6.3.19–6.3.22, we define objects K n of Mod
gf

(dp), and prove that they are

projective.

• In 6.3.23–6.3.28, we show that K n has finite length and that every finite length

object of Mod
gf

(dp) is a quotient of a finite direct sum of the K n .

6.3.10. Let f : L → L ′ be a morphism in (dp) defined by a partition U =

{Ui}i∈I .

• We say that f is a monomorphism if every part of U meets L ′ and contains

a unique element of L . This coincides with the categorical notion of

monomorphism; that is, if g1 f = g2 f , then g1 = g2. The composition of

two monomorphisms is again a monomorphism, and if g f is a monomorphism

then so is f .

• We say that f is an epimorphism if every part of U contains at most one element

of L ′. This coincides with the categorical notion of epimorphism; that is, if

f g1 = f g2, then g1 = g2. It is clear that the composition of two epimorphisms

is again an epimorphism, and that if f g is an epimorphism then so is f .

• We say that f is proper if each Ui meets L ′. A composition g f is proper if

and only if f is. If f is proper then the partition U then defines a morphism

f t : L ′ → L , which we call the transpose of f ; obviously f t is proper and

( f t)t = f . If f is a monomorphism then it is proper, f t is an epimorphism,

and f t f = idL . If f is a proper epimorphism then f t is a monomorphism and

f f t = idL ′ .
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• We say that f is rectangular if Ui has the same number of elements of L and

L ′, for each i . Rectangular maps are proper. If f is any proper map then f f t

and f t f are rectangular idempotents.

If f is a monomorphism and M ∈ Mod(dp), then f induces an injection ML →

ML ′ , since f t provides a left-inverse. In particular, if M 6= 0 then ML 6= 0 for all

sufficiently large L .

PROPOSITION 6.3.11. Any morphism f in (dp) can be factored as f = hg, where

g is an epimorphism and h is a monomorphism.

Proof. Let U = {Ui}i∈I be the partition representing f . Let J ⊂ I be the set of

indices i for which Ui meets L ′. Define a partition U ′ = {U ′i }i∈I of L∐ J by letting

U ′i be (Ui ∩ L) ∪ {i} or (Ui ∩ L) depending on if i ∈ J or not. Define a partition

U ′′ = {U ′′i }i∈J of J ∐ L ′ by U ′′i = {i}∪ (Ui ∩ L ′). Then U ′ defines an epimorphism

g : L → J and U ′′ defines a monomorphism h : J → L ′ and f = h.

PROPOSITION 6.3.12. Let f : L → L ′ be a morphism in (dp) represented by a

partition U such that some part of U contains more than one element of L. Then

there is a factorization f = hg, where g is a proper nonmonomorphism.

Proof. Let U = {Ui}i∈I be the partition representing f . Define a partition U ′ =

{U ′i }i∈I of L ∐ I by setting U ′i = (Ui ∩ L) ∪ {i}. Define a partition U ′′ = {U ′′i }i∈I

of I ∐ L ′ by U ′′i = {i} ∪ (Ui ∩ L ′). Then U ′ defines a proper nonmonomorphism

g : L → I , and U ′′ defines a morphism h : I → L ′ and f = hg.

PROPOSITION 6.3.13. Let f : L → L ′′ be a nonmonomorphism in (dp). Then f

can be factored as f = hg, where g : L → L ′ with #L ′ < #L.

Proof. Let U = {Ui}i∈I be the partition representing f . There are two ways that

f could fail to be a monomorphism.

In the first case, every part of each Ui contains a unique element of L , but some

part does not meet L ′′. Let J ⊂ I be the set of indices i for which Ui meets L ′′.

Set L ′ = J . Define a partition U ′ = {U ′i }i∈I of L∐L ′ by U ′i = (Ui ∩L)∪({i}∩ J ).

Define a partition U ′′ = {U ′′i }i∈J of L ′ ∐ L ′′ by U ′′i = {i} ∪ (Ui ∩ L ′′). Then U ′

defines a morphism g : L → L ′, and U ′′ defines a morphism h : L ′ → L ′′ and

f = hg. Note that #J < #I = #L , so g has the required property.

For the second case, some part of Ui contains at least two elements of L . Set

L ′ = I . Define a partition U ′ = {U ′i }i∈I of L ∐ L ′ by U ′i = (Ui ∩ L) ∪ {i}, and

define a partition U ′′ = {U ′′i }i∈I of L ′ ∐ L ′′ by U ′′i = {i} ∪ (Ui ∩ L ′′). Then U ′
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defines a morphism g : L → L ′, and U ′′ defines a morphism h : L ′ → L ′′ and

f = hg. Note that #I < #L , so g has the required property.

PROPOSITION 6.3.14. Let f and f ′ be monomorphisms L → L ′. Then either

(a) there exists an automorphism σ of L such that f ′ = f σ , in which case

f t f ′ = σ , or

(b) f t f ′ is a proper nonmonomorphism.

Proof. Since both f and f ′ are monomorphisms, f t f ′ is proper. If (b) fails, then

f t f ′ is a monomorphism. In particular, σ = f t f ′ is an automorphism of L . Note

that f f t : L ′ → L ′ is a partition {Ui}i∈I with the property that, for each Ui , the

intersection of Ui with both copies of L ′ are the same subset. This implies that

f f t f ′ = f ′, that is, f ′ = f σ , so (a) holds.

6.3.15. Minimal elements. Let M be an object of Mod(dp). We say that x ∈ ML

is minimal if f (x) = 0 for all f : L → L ′ which are nonmonomorphisms. We say

that x ∈ ML is weakly minimal if f (x) = 0 for all f : L → L ′ which are proper

nonmonomorphisms. We let ∆L(M) denote the set of weakly minimal elements

of ML . Obviously, ∆L defines a left-exact functor Mod(dp)→ Vec.

PROPOSITION 6.3.16. An element x ∈ ML is weakly minimal if and only if

f (x) = 0 for all noninvertible rectangular idempotent elements f of the monoid

End(L).

Proof. If x is weakly minimal and f is a noninvertible rectangular idempotent

then f (x) = 0 since f is proper and not a monomorphism. Conversely, suppose

that f (x) = 0 for all noninvertible rectangular idempotents. Let f : L → L ′ be

a proper nonmonomorphism. Write f = hg, with g an epimorphism and h a

monomorphism. Then g is necessarily proper and not a monomorphism. We thus

have (gt g)(x) = 0. Since gt is a monomorphism, this implies that g(x) = 0, and

so f (x) = 0.

PROPOSITION 6.3.17. Let f : V → W be a surjection of finite-dimensional

vector spaces. Let {X i}i∈I be a family of idempotents operating on both V and

W such that f (X iv) = X i f (v). Let V ′ (respectively, W ′) be the set of elements

of V (respectively, W ) annihilated by all the X i . Then f induces a surjection

V ′→ W ′.
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Proof. It is clear that f maps V ′ into W ′. We must prove that it does so

surjectively. Let R̃ be the noncommutative polynomial ring in the X i , and let

ǫ : R̃ → C be the algebra homomorphism sending each X i to 0. Let R be the

image of R̃ in End(V ), a finite-dimensional algebra. Both V and W are R-

modules.

If W ′ = 0 then there is nothing to prove, so suppose that W ′ 6= 0. For any x ∈ R̃

and w ∈ W ′, we have xw = ǫ(x)w. Since the left side only depends on the image

of x in R, this shows that ǫ factors through R. Write R =
⊕n

i=1 Ri , where each

Ri cannot be further decomposed into a direct sum, and let pi : R → Ri be the

projection map. Then ǫ factors through some pi , say p1. Let I1 = rad(R1). Then

R1/I1 is a simple algebra that admits an algebra homomorphism to C, and it is

therefore isomorphic to C. We thus see that I1 = ker(ǫ). Since ǫ(X i) = 0, we find

that p1(X1) ∈ I1. Thus p1(X i) is both nilpotent and idempotent, and therefore

it vanishes. Since R1 is generated as an algebra by the p1(X i), it follows that

R1 = C.

Let e ∈ R be the central idempotent corresponding to R1. Suppose thatw ∈ W ′.

Let v ∈ V be such that f (v) = w. Since X i e = 0 for all i , we see that X i ev = 0

for all i ; that is, ev ∈ V ′. As ǫ(e) = 1, we see that ew = w. Thus f (ev) =

e f (v) = ew = w, which shows that w ∈ f (V ′). This completes the proof.

PROPOSITION 6.3.18. The functor ∆L : Mod
gf

(dp)→ Vec is exact.

Proof. This follows immediately from Propositions 6.3.16 and 6.3.17.

6.3.19. The object K n . Let n be an integer, and let Cn be the vector space with

basis e1, . . . , en . For a finite set L , put K n
L = (C

n)⊗L . Given a morphism L → L ′

in (dp) represented by a partition U , we define a morphism f : K n
L → K n

L ′ as

follows. Given a map α : L → n, let eα be the basis vector
⊗

i∈L eα(i) of K n
L . Then

f (eα) = 0 if α is nonconstant on the partition U ∩ L of L . If α is constant on this

partition, let β : L ′ → n be the unique function such that β(x) = α(y) if y ∈ L

is in the same part as x ∈ L ′. Then f (eα) = eβ . Thus K n defines an object of

Mod
gf

(dp). We note that K 0
L is 0 if L is not empty and C if L is empty.

6.3.20. The relationship between K n and∆L . Let v be the element e1⊗· · ·⊗en

of K n
n . Then v is obviously weakly minimal, and thus it belongs to∆n(K

n). Given

any morphism K n → M , we therefore get an element of ∆n(M) by taking the

image of v. This defines a map of functors

εn : Hom(dp)(K
n,−)→ ∆n.

PROPOSITION. The map εn is an isomorphism; that is, (K n, v) corepresents ∆n .
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Proof. Let α : L → n be a map of sets. For i ∈ n, let Ui be the subset {i}∪α−1(i)

of n ∐ L . Then {Ui}i∈n defines a partition of n ∐ L , and a map fα : n → L in

(dp). Let eα be as above. One easily verifies that eα = fα(v), which shows that

v generates K n . It follows that εn is injective, for, if f : K n → M is a map with

f (v) = 0, then f = 0.

We now show that K n is surjective. Thus letw ∈ Mn be weakly minimal. Define

a map ηL : K n
L → ML by ηL(eα)= fα(w). Clearly η(v)= w, so it suffices to show

that η defines a map K n → M in Mod(dp). Let g : L → L ′ be a map in (dp). We

must show that g(ηL(eα)) = ηL ′(g(eα)) for all α : L → n. We consider two cases.

• Case 1: α is not constant on the pieces of g. Let x and y be in the same part

of g, with α(x) 6= α(y). Then g(eα) = 0 by definition. On the other hand, x

and y belong to the same part of g fα, and so g( fα(w)) = 0 by 6.3.12. Thus

g(ηL(eα)) = ηL ′(g(eα)) = 0.

• Case 2: α is constant on the pieces of g. Define β : L ′ → n by β(x) = α(y) if

x and y belong to the same piece of g. Then g(eα) = eβ , by definition. A short

computation shows that g fα = fβ , as morphisms of (dp), and so g( fα(w)) =

fβ(w). Thus

g(ηL(eα)) = g( fα(w)) = fβ(w) = ηL ′(eβ) = ηL ′(g(eα)).

6.3.21. The above proof can be modified to get an analogous result for (dp) ×

(dp) which we will need later, so we record it here. Pick integers m, n > 0, and,

for M ∈ Mod(dp)×(dp), let ∆m,n(M) be the subspace of elements x ∈ M(m,n) which

are weakly minimal with respect to both factors of (dp); that is, ( f, g)(x) = 0

whenever f or g is a proper nonmonomorphism. Let pi : (dp)× (dp)→ (dp) be

the projections for i = 1, 2, and set K m,n = p∗1 K m ⊠ p∗2 K n . Let v ∈ K m,n
m,n be the

element (e1⊗· · ·⊗em)⊗(e1⊗· · ·⊗en). Given any morphism K m,n → M , we get

an element of∆m,n(M) by considering the image of v, and hence we get a map of

functors

εm,n : Hom(dp)×(dp)(K
m,n,−)→ ∆m,n.

PROPOSITION. The map εm,n is an isomorphism; that is, (p∗1 K m ⊠ p∗2 K n, v)

corepresents ∆m,n .

PROPOSITION 6.3.22. We have that K n is a projective object of Mod
gf

(dp).

Proof. This follows from the above Propositions 6.3.18 and 6.3.20.
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PROPOSITION 6.3.23. Suppose that M ∈ Mod(dp) is generated by the minimal

elements of ML . Then any subobject N of ML is generated by the minimal

elements of NL .

Proof. Let x be an element of NL ′ . Then we can write x =
∑n

i=1 fi(yi), where yi

is a minimal element of ML and fi : L → L ′ is a monomorphism. Choose such

an expression with n minimal. Let i 6= j . Then fi and f j do not differ on the

right by an automorphism of L , as otherwise we could find an expression with n

smaller. It follows from Proposition 6.3.14 that f t
i f j is not a monomorphism, and

so f t
i ( f j(y j)) = 0 by minimality of y j . As f t

i fi = idL , we see that yi = f t
i (x).

This shows that each yi belongs to NL , which completes the proof.

COROLLARY 6.3.24. Let M be as in Proposition 6.3.23. Then the map

{subobjects of M} → {subspaces of ML}, N 7→ NL

is injective.

Proof. It suffices to show that N ⊂ N ′ if and only if NL ⊂ N ′L . The ‘only

if’ direction is obvious. Thus suppose that NL ⊂ N ′L . If x ∈ NL ′ then, by

Proposition 6.3.23, we can write x =
∑n

i=1 fi(yi) with yi ∈ NL and fi : L → L ′.

By assumption, each yi lies in N ′L , and thus fi(yi) lies in N ′L ′ . It follows that x

belongs to N ′L ′ , and so N ⊂ N ′.

COROLLARY 6.3.25. Let M be as in Proposition 6.3.23 and suppose that ML is

finite dimensional. Then M has finite length.

PROPOSITION 6.3.26. The object K n has finite length.

Proof. The statement is obvious for n = 0. Assume now that K n−1 is finite length.

Let M be the subobject of K n generated by those K n
L with #L < n. Choose linear

maps fi : Cn−1 → Cn , for 1 6 i 6 r , such that, for any L with #L < n, the map

r⊕

i=1

(Cn−1)⊗L → (Cn)⊗L

induced by the fi is surjective. It follows that the map f : (K n−1)⊕r → K n

induced by the fi is surjective when evaluated on any set L with #L < n. Thus

the image of f contains M . Since K n−1 is generated in degree n − 1 (as shown

in 6.3.20), the image of f is contained in M . Thus image( f ) = M , and so M has

finite length by the inductive hypothesis.
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Let N = K n/M . Then N is generated by the element v = e1⊗· · ·⊗en , since K n

is. If f : L → L ′′ is a nonmonomorphism then we have a factorization f = hg,

where g : L → L ′ with #L ′ < #L . Since NL ′ = 0, we have g(v) = 0, and so

f (v) = 0. It follows that v is minimal. Thus the minimal elements of NL generate

N . Since NL is finite dimensional, N is finite length by 6.3.25. Thus K n is an

extension of two finite length objects, and therefore is finite length.

LEMMA 6.3.27. A finite length object of Mod(dp) is graded-finite.

Proof. A finite length object is finitely generated, and every finitely generated

object is graded-finite since (dp) is Hom-finite.

PROPOSITION 6.3.28. An object of Mod(dp) is of finite length if and only if it is a

quotient of a finite direct sum of the K n .

Proof. Since K n is finite length, so is any quotient of a finite direct sum of the K n .

Now suppose M is a finite length object of Mod(dp). Then M belongs to Mod
gf

(dp) by

Lemma 6.3.27. Let n > 0 be minimal with Mn nonzero. Then any element of Mn

is minimal by Proposition 6.3.13, and thus is in the image of a map from K n by

Proposition 6.3.20. It follows that there is a nonzero map K n → M . The cokernel

of this map is of smaller length than M , and thus, by induction, it is a quotient

of a sum of the K n . Since M belongs to Mod
gf

(dp) and the K n are projective in this

category, it follows that M is a quotient of a finite direct sum of the K n .

6.3.29. For an object L of (dp), put KL = V⊗L . Extend K to a functor on (dp)

as in 6.3.19. In fact, K is the direct limit of the K n . Clearly, K defines an object

of Rep(S)(dp). We thus have functors

Φ : Modf
(dp)→ ModS, Ψ : ModS→ Mod(dp)

defined by the same formulas as in 2.1.10. Here we write ModS for the category

of all S(∞)-modules. The following is the main theorem of this section.

THEOREM 6.3.30. The functors Φ and Ψ induce mutually quasiinverse

contravariant equivalences of tensor categories between Rep(S) and Modf
(dp).

Proof. Let Vn = C[S/Hn]. If V is any representation of S then HomS(Vn, V ) =

V Hn . One easily verifies that the map f : Vn → Tn provided by e1⊗· · ·⊗en ∈ T Hn
n

is injective, which shows that Vn belongs to Rep(S). A simple computation shows

that (V⊗L)Hn = (Cn)⊗L , and so Ψ (Vn) = K n . Another simple computation shows

that Φ(K n) = ∆n(K) is the subspace of V⊗n spanned by tensors of the form eα,
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where α : n → B is an injection. This space is the image of f , and so Φ(K n) =

Vn . Furthermore, one can verify that, with these identifications, the natural maps

Vn → Φ(Ψ (Vn)) and K n → Ψ (Φ(K n)) are the identity maps.

If V is an algebraic representation of S then it is a quotient of a finite direct

sum of the Vn (pick a finite set of generators for V ; they are all Hn-invariant for n

large), and so Ψ (V ) is a subobject of a finite direct sum of the K n , and therefore

is of finite length by Proposition 6.3.26. Similarly, if M is a finite length object of

Mod(dp) then it is a quotient of a finite direct sum of the K n by Proposition 6.3.28,

and so Φ(M) is a subobject of a finite direct sum of the Vn , and is therefore

algebraic. Thus Φ and Ψ induce functors between Rep(S) and Modf
(dp).

By Proposition 6.2.11, V⊗L is an injective object of Rep(S), and so Ψ is exact

on algebraic representations of S. It follows that ΦΨ is a left-exact functor from

Rep(S) to itself and that ΨΦ is a right-exact functor from Modf
(dp) to itself.

Lemma 6.3.31 below, combined with what we have already shown, establishes

that the natural maps id → ΦΨ and id → ΨΦ are isomorphisms (on Rep(S)

and Modf
(dp)).

We now show that Φ is a tensor functor. Proposition 2.1.16 does not literally

apply, since (dp) is not weakly directed, but we can follow the same plan. In fact,

looking at its proof, it is enough to show that, if M and N are finite length objects

of Mod(dp) and M ′ and N ′ are arbitrary objects, then the natural map

Hom(dp)(M,M ′)⊗Hom(dp)(N , N ′)→ Hom(dp)×(dp)(p
∗
1 M ⊠ p∗2 N , p∗1 M ′ ⊠ p∗2 N ′)

is an isomorphism. Following the proof of Lemma 2.1.15, and appealing to

Proposition 6.3.28, it suffices to treat the case where M = K m and N = K n . We

then have p∗1 M ⊠ p∗2 N = K m,n in the notation of 6.3.21. By Propositions 6.3.20

and 6.3.21, it thus suffices to show that the natural map

∆m(M
′)⊗∆n(N

′)→ ∆m,n(M
′
⊠ N ′)

is an isomorphism. This, however, is straightforward, and is left to the reader.

Since Ψ is the quasiinverse of Φ, it too is a tensor functor.

LEMMA 6.3.31. Let A be an abelian category, let F : A → A be a left (right)

exact functor, and let η : id→ F be a natural transformation. Suppose that there

is a class Q of finite length objects of A such that

(a) η(Q) is an isomorphism for Q ∈ Q; and

(b) every finite length object of A is a sub (quotient) of an object in Q.

Then η(M) is an isomorphism for all M of finite length.
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Proof. It suffices to prove the ‘left’ and ‘sub’ form of the lemma. Let M be a finite

length object of A. We can find an exact sequence 0→ M → Q → Q ′ with Q

and Q ′ in Q. We obtain a commutative diagram

0 // F(M) // F(Q) // F(Q ′)

0 // M

OO

// Q

OO

// Q ′

OO

where the vertical maps are the η. The result now follows from a simple diagram

chase.

COROLLARY 6.3.32. The tensor categories Rep(S) and Modf
(up) are equivalent.

6.4. Symmetric Schur functors, universal property, and specialization

6.4.1. Symmetric Schur functors. For a tensor category A, let T (A) be the

category of tuples (A,m,∆, η), where A is an object of A, and m : A ⊗ A→ A

and ∆ : A→ A⊗ A and η : A→ C are morphisms in A, such that the following

hold.

• m defines an associative commutative algebra structure on A.

• (∆, η) defines a counital coassociative cocommutative coalgebra structure on

A.

• m∆ = id and ∆m = (m ⊗ 1)(1⊗∆).

Let A ∈ T (A). Given a map f : L→ L ′ in (dp), we define a map ϕ : A⊗L → A⊗L ′

as follows. Suppose that f is represented by the partition U = {Ui ∐ U ′i }i∈I ,

where Ui ⊂ L and U ′i ⊂ L ′. We first define a map ϕi : A⊗Ui → A⊗U ′i to be the

composition of the multiplication map A⊗Ui → A with the map A→ A⊗U ′i , which

is either the counit (if U ′i is empty) or comultiplication (if not). The map ϕ is then

the tensor product of the ϕi . We define K(A) to be the object of A(dp) given by

L 7→ A⊗L . For an object M of Modf
(up) and A ∈ T (A), define

SM(A) = M ⊗(dp) K(A).

Then M 7→ SM(A) defines a covariant functor Modf
(up) → A which is left-exact

and a tensor functor (we use a modified version of Proposition 2.1.16; see the
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proof of Theorem 6.3.30). We call SM the symmetric Schur functor associated

to M .

Remark. Let A be an object of T (A), and let A⊗L → A⊗L ′ be a map built out of

m, ∆, and η. One can represent such a composition graphically: multiplications

are represented by convergences and comultiplications by divergences, and

counits are terminal points. For example, the map A⊗4→ A⊗2 given by∆m⊗ηm

is represented by the diagram

• • • •

• •

The connected components of this picture define a partition of L ∐ L ′, and one

can show that two compositions are equal if they define the same partition. This

is the reason K(A) is well defined.

EXAMPLE 6.4.2. Take A = Rep(S). Then V naturally has the structure

of an object of T (A). The counit V → C is the augmentation map. The

comultiplication V → V ⊗ V sends ei to ei ⊗ ei , while the multiplication

V ⊗ V→ V sends ei ⊗ e j to δi, j ei . The object K(V) of A(dp) is the object K of

6.3.29, and M 7→ SM(V) is the equivalence Modf
(up)→ Rep(S).

THEOREM 6.4.3. To give a left-exact tensor functor from Rep(S) to an arbitrary

tensor category A is the same as to give an object of T (A). More precisely, letting

M be the object of Modf
(up) corresponding to V, the functors

ΦA : LEx⊗(Modf
(up),A)→ T (A), F 7→ F(M)

and

ΨA : T (A)→ LEx⊗(Modf
(up),A), A 7→ (M 7→ SM(A))

are mutually quasiinverse equivalences.

Proof. The proof is the same as that of Theorem 3.4.2

Remark. This theorem can be rephrased as follows: the functor T : TenCat →

Cat is corepresented by Rep(S), with the universal object in T (Rep(S)) being

V. See 2.2.11 for notation.

6.4.4. The specialization functor. The permutation representation Cd of S(d)

defines an object of T (Rep(S(d))), just as in 6.4.2. We therefore obtain a left-

exact tensor functor

Γd : Rep(S)→ Rep(S(d))
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from the universal property of Rep(S). We call this functor the specialization

functor. The kernel K(Cd) associated to Cd in 6.4.1 is just the object K d

(equipped with its S(d) action) defined in 6.3.19. If we identify Rep(S)op with

Modf
(dp), then Γd is just the functor Hom(dp)(−, K d).

6.4.5. Specialization via invariants. We now give a more direct description of

specialization from the point of view of representation theory.

PROPOSITION. We have a natural identification Γd(V ) = V Hd .

Proof. Under the equivalence Modf
(dp) ≃ Rep(S), the module K d goes to the

representation Vd = C[S/Hd] (see the proof of Theorem 6.3.30). So Γd(V ) =

HomS(Vd, V ) = V Hd .

Remark. Since Γd is a tensor functor, the above result shows that, if V and W are

algebraic representations of S, then (V ⊗W )Hd = V Hd ⊗W Hd .

6.4.6. Derived specialization. As Rep(S) has enough injectives, the derived

functor RΓd of Γd exists. To compute this on simple objects Vλ, we can use

the injective resolutions I •λ that one gets from using [SS1, Theorem 2.3.1] and

Theorem 6.2.4. The calculation is carried out in [SS1, Section 7.4], the result

being as follows.

THEOREM. Let λ be a partition and d > 1 an integer. Either RiΓd(Vλ) vanishes

for all i , or it is nonzero for a unique i , and then it is an irreducible representation

of S(d).

Precisely, RiΓd(Vλ) is nonzero if and only if there exists a border strip R ⊂ λ

with the following properties: (i) R is connected; (ii) R contains the last box in

the first row of λ; (iii) R has height i ; (iv) µ = λ \ R has d boxes. If such a border

strip exists, then RiΓd(Vλ) is the irreducible Vµ of S(d).

6.4.7. Let T0 = T (Vecf). Given a finite set L , the vector space AL with basis

{ei}i∈L naturally has the structure of an object of T0: multiplication is given by

m(ei ⊗ e j) = δi j ei , comultiplication by ∆(ei) = ei ⊗ ei , and the counit is the

augmentation map. If L → L ′ is an injection of sets then the induced linear map

AL → AL ′ is a morphism in T0. We thus obtain a functor (us)→ T0, where (us)

is the upwards subset category of 5.2.1. In fact, we have the following.

PROPOSITION. The functor (us)→ T0 is an equivalence of categories.
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Proof. We first prove essential surjectivity. Let A be an object of T0. For

psychological reasons, it will be easier to work with B = A∗, the linear dual

of A. The space B is a commutative associative unital ring, equipped with a map

∆ : B→ B⊗ B which is cocommutative and coassociative and satisfies m∆ = id

and∆m = (m⊗1)(1⊗∆). From these identities, one can deduce that∆ respects

multiplication; that is, ∆(xy) = ∆(x)∆(y); this is most easily seen by appealing

to the remark in 6.4.1. Note that ∆ need not preserve the identity of B, however.

Being finite dimensional, the algebra B is artinian. We thus have a

decomposition B =
∏

i∈L Bi of B into local rings, where L is some finite

index set. Each factor corresponds to some minimal idempotent ei . The minimal

idempotents of B ⊗ B are the elements ei ⊗ e j , and a general idempotent of

B ⊗ B can be written as a sum of these elements with coefficients 0 or 1.

Since ei is an idempotent of B and ∆ respects multiplication, ∆(ei) is an

idempotent of B ⊗ B. We can therefore write ∆(ei) =
∑

n,m Ai
n,men ⊗ em , where

each Ai
n,m is 0 or 1. Applying the identity∆m = (m⊗1)(1⊗∆) to ei⊗ei , we find

that Ai
n,m = δn,i Ai

n,m , which shows that Ai
n,m = 0 if n 6= i . By symmetry, we find

that Ai
n,m = 0 if m 6= i , and so only Ai

i,i can be nonzero. The identity m∆ = id

shows that Ai
i,i is indeed nonzero. We have thus shown that ∆(ei) = ei ⊗ ei for

all i .

This identity implies that ∆ maps Bi into Bi ⊗ Bi . The multiplication map

m : Bi ⊗ Bi → Bi gives Bi the structure of a Bi ⊗ Bi module. Since∆ is a section

of m, it follows that Bi is a summand of Bi⊗Bi , and thus is projective as a Bi⊗Bi

module. Let d = dim(Bi). Since Bi⊗Bi is local, any finite-dimensional projective

module over it is free, and thus has dimension divisible by d2 = dim(Bi ⊗ Bi).

Thus d2 | d, and so d = 1. This shows that Bi = Cei for each i , and so B is

spanned by the ei . Hence A is isomorphic to C[L], which completes the proof of

essential surjectivity.

To complete the proof of the proposition, we must show that any map f : AL →

AL ′ in T0 comes from an injection L → L ′. Note that the elements ei of AL are

precisely the idempotents of AL which map to 1 under the counit. It follows that

f has to map the set {ei}i∈L to the set {ei}i∈L ′ . Furthermore, this induced map must

be injective, since the idempotents are orthogonal. This completes the proof.

6.4.8. The universal property of Rep(S) yields a left-exact tensor functor

Rep(S) → Fun(T0,Vecf). Identifying T0 with (us) by Proposition 6.4.7, and

Fun((us),Vec) with ModA, where A = Sym(C〈1〉), this functor coincides with

S′ from 6.2.3. It follows from what we have shown, and facts about ModA from

[SS1], that this functor is fully faithful, and its essential image consists of finitely

generated saturated A-modules. The analogs of the unproven statements in 3.4.10

can be deduced in this case from the results in [SS1, Section 4.2].
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7. Branching rules

7.1. Classical groups

We now discuss some canonical functors between the classical representation

categories that have been considered in this paper. They come in four different

flavors, and calculating their effect on simple objects can be interpreted as

calculating classical branching rules. All of these functors are exact and respect

tensor products.

• Diagonal embeddings G ⊂ G × G lead to tensor product functors

⊗G : Rep(G)× Rep(G)→ Rep(G)

for G ∈ {GL,O,Sp}. We discuss this for G = O (which is the same as G = Sp

by Theorem 4.3.4) in 7.5, and for G = GL in 7.6. See 7.11 for a specific

example.

• Dual to the tensor product functors, we have comultiplication functors

∆G : Rep(G)→ Rep(G × G)

for G ∈ {GL,O,Sp}. These can be defined by applying the appropriate

universal property of Rep(G) to the object V ⊠ V, where V ∈ Rep(G) is

the vector representation, or by restricting along an appropriate embedding

G × G → G (which exists because G is infinite). These are discussed in 7.8.

• We have inclusions G ⊂ GL for G ∈ {O,Sp} which lead to restriction functors

resG : Rep(GL)→ Rep(G).

These are studied in 7.9.

• Dual to the restriction functors, we have polarization functors

polG : Rep(G)→ Rep(GL)

for G ∈ {O,Sp}. These are defined by putting either a symmetric or skew-

symmetric nondegenerate pairing on V ⊕ V∗ for V,V∗ ∈ Rep(GL), and

applying the relevant universal property, or by restricting along an appropriate

embedding GL→ G. They are discussed in 7.10.

The corresponding branching rules for all of these functors have been classically

studied, and we refer to [HTW] for these rules. All of the rules follow the

same pattern: they are sums over products of Littlewood–Richardson coefficients.
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We will deduce the rules for tensor product and restriction using some general

formalism for diagram categories and some calculations with symmetric groups.

7.2. Other groups

The inclusion GA ⊂ GL yields a restriction functor Rep(GL) → Rep(GA),

where Rep(GA) is the category of algebraic representations of GA(∞). This is

likely an interesting construction to study, but we do not consider it here. The

inclusion also yields a restriction functor Reppol(GL) → Reppol(GA), which

we have already studied: the image consists of the injective objects of the

target category (Proposition 5.2.5). There are also maps from Reppol(GA) to the

categories Rep(GL), Rep(O), Rep(Sp), and Rep(S) given by the natural objects

admitting a trace map, namely, V⊗ V∗, Sym2(V),
∧2
(V), and V.

The inclusion S ⊂ GL yields a restriction functor Rep(GL) → Rep(S),

which, as far as we know, has not been well studied, likely because it is difficult

to understand (see 6.2.12). The quadratic invariant on V ∈ Rep(S) gives us a

left-exact tensor functor

resS : Rep(O)→ Rep(S)

using Theorem 4.4.2. We are also unaware of any results on this functor.

7.3. We begin with a general formula that makes the pushforward in 2.1.4 more

explicit. Let Λ and Λ′ be categories as in 2.1.1, and let F : Λ→ Λ′ be a functor.

Let Π be the category of tuples (x, y, f ), where x ∈ Λ and y ∈ Λ′, and f is

a morphism f : F(x) → y. A morphism (x, y, f ) → (x ′, y′, f ′) consists of a

morphism x → x ′ in Λ and a morphism y → y′ in Λ′ such that the obvious

diagram commutes. We typically abbreviate the object (x, y, f ) by f and write

Πx,y for the objects of the form (x, y, f ). We say that f = (x, y, f ) is irreducible

if any morphism (x, y, f )→ (x ′, y, g) is an isomorphism. We write Π irr for the

full subcategory of irreducible objects. Note that for any f ∈ Πx,y we have maps

from Aut( f ) to Aut(x) and Aut(y).

PROPOSITION 7.4. Choose x ∈ Λ and y ∈ Λ′, and let V be a representation of

Aut(x). Let { fi}i∈I be a complete irredundant set of irreducible objects of Πx,y .

Then we have a natural isomorphism

(F#(Sx(V )))y =
⊕

i∈I

Ind
Aut(y)

Aut( fi )
(V )

as representations of Aut(y). (Here Ind denotes the adjoint to restriction along

the natural homomorphism Aut( fi)→ Aut(y).)
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Proof. Put M = Sx(V ). Essentially by definition, we have

(F#(M))y = lim
−→

(x ′,y, f )∈Π

F(Mx ′).

There is a natural map

lim
−→

f ∈Π irr
x,y

F(V )→ lim
−→

(x ′,y, f )∈Π

F(Mx ′).

Since any map f → f ′ with f ∈ Π irr
x,y and f ′ ∈ Πx ′,y is an isomorphism, the

above map is injective. We claim that it is surjective. Suppose that f ∈ Πx ′,y . We

must show that the image of F(Mx ′) corresponding to f in the right direct limit

comes from the left direct limit. If x ′ is not isomorphic to x , then Mx ′ = 0, and

there is nothing to show. Also, if f is irreducible, there is nothing to show. Thus

suppose that x = x ′ and that f is not irreducible, and choose a map f → f ′ with

f ′ ∈ Πx ′′,y with x not isomorphic to x ′′. Then the image of F(Mx) corresponding

to f in the right direct limit factors through the image of F(Mx ′′) corresponding

to f ′, and thus vanishes. This establishes the claim.

We have thus shown that the natural map

lim
−→

f ∈Π irr
x,y

F(V )→ (F#(M))y

is an isomorphism. The result is now a simple calculation; note that Π irr
x,y is a

groupoid, so the direct limit is easy to calculate.

7.5. Tensor products (orthogonal group)

We now determine tensor product multiplicities in Rep(O), recovering [Koi,

Theorem 3.1], by applying Proposition 7.4 on the functor∐: (db)×(db)→ (db).

Recall that we use c to denote Littlewood–Richardson coefficients 2.2.7.

PROPOSITION. The multiplicity of Vν in Vλ ⊗ Vµ is

∑

α,β,γ

cλα,βc
µ

β,γ cνα,γ ,

where the sum is over all partitions α, β and γ .

Proof. The multiplicity in question is the same as the multiplicity of Mν in Mλ ⊗

Mµ taken in Mod(db), and this is what we compute. Let ℓ = |λ|, m = |µ|, and

n = |ν|. Let L be a set of cardinality ℓ, and choose M and N similarly, but with m

and n. Suppose that ℓ+m−n is a nonnegative even number; otherwise there is no
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map L ∐ M → N in (db), and the multiplicity is 0. Choose a set E of cardinality

(ℓ+ m − n)/2, and choose injections E → L and E → M and a bijection

(L \ E)∐ (M \ E)→ N .

The elements of E can be regarded as the edges of a matching on L ∐ M , and so

we have a map f : L∐M→ N in (db). This map is clearly irreducible (see 7.3 for

the definition), and any irreducible map is isomorphic to f . By Proposition 7.4,

we thus find that the evaluation of Mλ ⊗ Mµ on N is given by

Ind
Aut(N )

Aut( f ) (Mλ ⊠ Mµ). (7.5.1)

We have

Aut( f ) = SL\E ×SM\E ×SE .

The maps from Aut( f ) to SL , SM , and SN are the obvious ones. To compute the

induction in (7.5.1), we take invariants under the kernel of the map Aut( f ) →

Aut(N ) and then form the more usual induction from the image to Aut(N ). The

map Aut( f )→ Aut(L)× Aut(M) factors as

SL\E ×SM\E ×SE

→SL\E ×SM\E ×SE ×SE

→SL ×SM ,

(7.5.2)

where the first map uses the diagonal map on SE and the second is a product of

inclusions of Young subgroups. When we restrict the representation Mλ ⊠ Mµ of

the group on the final line to the second line, we use the Littlewood–Richardson

rule; when we further restrict to the first line, we take the tensor product of the

two representations of SE that show up. The final result is

⊕
cλα,βc

µ

γ,δMα ⊠ Mγ ⊠ (Mβ ⊗Mδ).

The sum is taken over all partitions α, β, γ , δ with |β| = |δ| = #E . The

representations appear in the same order as the groups in the first line of (7.5.2).

Now, the kernel of Aut( f )→ Aut(N ) is SE . We thus need to form the invariants

of the above representation under this group. This is easy: it amounts to enforcing

β = δ and discarding the final factor in the above equation. We thus have

⊕
cλα,βc

µ

γ,βMα ⊠ Mγ .

This representation is one of the group SL\E × SM\E , which is identified with

the image of Aut( f ) → Aut(N ). We thus need to induce this representation to
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Aut(N ). This is accomplished using the Littlewood–Richardson rule. The result

is ⊕
cλα,βc

µ

γ,βcηα,γMη.

This completes the computation of the induction (7.5.1). Taking the Mν

component gives the final answer. Note that it is unnecessary to impose the

condition |β| = #E in the final answer, as this is required for the product of

Littlewood–Richardson coefficients to be nonzero.

7.6. Tensor products (general linear group)

The tensor product multiplicities in Rep(GL) are given in [Koi, Theorem 2.4].

The proof is similar to the calculation for Rep(O), so we omit it, but we give the

statement.

PROPOSITION. The multiplicity of Vν,ν′ in Vλ,λ′ ⊗ Vµ,µ′ is given by
∑

cλα,βcλ
′

α′,β ′c
µ

γ,β ′c
µ′

γ ′,βcνα,γ cν
′

α′,γ ′,

where the sum is over all partitions α, α′, β, β ′, γ , γ ′.

7.7. Graphical representation of tensor product multiplicities

Suppose that Γ is an undirected graph whose edges are labeled by partitions;

we write λ(e) for the partition on edge e. Given a function µ from the vertices of

Γ to partitions, we define

cΓ (µ) =
∏

e=(i, j)

c
λ(e)

µ(i),µ( j),

where the product is taken over the edges of Γ . We define

cΓ =
∑

µ

cΓ (µ),

where the sum is over all functions µ. Let Γ be the following graph:

•

•

•
λ

µν

Then Proposition 7.5 can be rephrased as [Vν : Vλ ⊗ Vµ] = cΓ .

Now let Γ be the graph

•

•

••

•

•
λ

µ′

ν′

λ′

µ

ν
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Then Proposition 7.6 can be rephrased as [Vν,ν′ : Vλ,λ′ ⊗ Vµ,µ′] = cΓ . Note that

the roles of λ, µ, and ν are not the same: λ and µ border edges labeled by primed

variables, while ν does not. On the other hand, the relationships of the edges are

preserved by the rotation

(µ, ν, λ, µ′, ν ′, λ′)→ (λ′, µ, ν, λ, µ′, ν ′).

That is, we have the following equality of multiplicities:

[Vν,ν′ : Vλ,λ′ ⊗ Vµ,µ′] = [Vµ,µ′ : Vλ′,λ ⊗ Vν,ν′].

This is not unexpected, as it holds in the finite-dimensional case.

7.8. Comultiplication

We state the formulas for the functors ∆G , without proof.

PROPOSITION. We have the following.

• The multiplicity of Vµ,µ′ ⊠ Vν,ν′ in ∆GL(Vλ,λ′) is

∑
cαµ,νc

β

µ′,ν′c
λ
α,γ cλ

′

β,γ ,

where the sum is over all partitions α, β, γ .

• The multiplicity of Vµ ⊠ Vν in ∆O(Vλ) is

∑
cαµ,νc

λ
α,2β,

where the sum is over all partitions α, β.

• The multiplicity of Vµ ⊠ Vν in ∆Sp(Vλ) is

∑
cαµ,νc

λ
α,(2β)†,

where the sum is over all partitions α, β.

7.9. Restriction maps

We now study the restriction functors

resO : Rep(GL)→ Rep(O), resSp : Rep(GL)→ Rep(Sp).

Consider the functor F : (dwb) → (db) which sends a biset (L+, L−) to

the set L+ ∐ L− and which does the obvious thing to morphisms. Then

F# : Modf
(dwb) → Modf

(db) becomes the restriction functor Rep(GL) → Rep(O)

via the contravariant equivalences of Theorem 3.2.11 and Theorem 4.2.6. There
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is a similar functor (dwb) → (dsb), and similar comments apply to its relation

with Rep(GL)→ Rep(Sp).

To get the branching rule from GL to O, we apply Proposition 7.4 to

F : (dwb)→ (db). Let Vλ,λ′ be a simple object in Rep(GL), and use Wµ to denote

the simple objects in Rep(O).

PROPOSITION. The multiplicity of Wµ in res(Vλ,λ′) is

∑
c
µ

α,βcλα,2γ cλ
′

β,2δ,

where the sum is over all partitions α, β, γ, δ. A similar formula holds for the

restriction to Rep(Sp) if we replace 2γ and 2δ in the sum with (2γ )† and (2δ)†.

Proof. Let ℓ = |λ|, ℓ′ = |λ′|, and m = |µ|. Let L be a biset with #L+ = ℓ and

#L− = ℓ′, and let M be a set of size m. We work directly in the language of

Modf
(dwb) and Modf

(db). Then Vλ,λ′ becomes SL(Mλ ⊠ Mλ′). Suppose that

r = ℓ+ ℓ′ − m ≡ 0 (mod 2).

(If not, then there is no map F(L)→ M in (db), and the multiplicity is 0.) Choose

nonnegative integers i and j such that i+ j = r and i 6 ℓ and j 6 ℓ′. Let E+ and

E− be sets of cardinality i and j , and choose injections E+→ L+ and E−→ L−,

a bijection (L+\E+)∐(L−\E−)→ M , and a perfect matching on E = E+∐E−.

This data gives us a map f = fi, j : F(L)→ M in (db), and hence an element

ofΠL ,M (see 7.3 for the definition). This map is irreducible if and only if there are

no edges in the perfect matching of E that go from E+ to E− (otherwise, we could

delete these edges to get a smaller biset L ′, and there would be a morphism (L ,M,

f ) → (L ′,M, f ′)). In particular, both i and j are even. The isomorphism class

of this map depends only on i and j , and every irreducible map F(L) → M is

isomorphic to one of this form. By Proposition 7.4, we thus find that the evaluation

of F#(SL(Mλ ⊠ Mλ′)) on M is given by summing

Ind
Aut(M)

Aut( fi, j )
(Mλ ⊠ Mλ′) (7.9.3)

over all possible values of i and j . We have

Aut( f ) = SL+\E+ × (Si/2 ⋉ (Z/2)
i/2)×SL−\E− × (S j/2 ⋉ (Z/2)

j/2),

where the semidirect product groups are the automorphism groups of the perfect

matching on E+ and E−. The maps from Aut( f ) to Aut(L+), Aut(L−), Aut(E+),

and Aut(E−) are the obvious things. To compute the induction in (7.9.3), we take
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invariants under the kernel of the map Aut( f ) → Aut(M), and then form the

usual induction from the image to Aut(M).

To get the action of Aut( f ) on Mλ⊠Mλ′ , we restrict along the obvious inclusion

Aut( f )→ Aut(L+)× Aut(L−). If we do this and take invariants under

ker(Aut( f )→ Aut(M)) = (Si/2 ⋉ (Z/2)
i/2)× (S j/2 ⋉ (Z/2)

j/2),

then, noting that the restriction of Mη from S2n to Sn ⋉ (Z/2)n contains an

invariant if and only if all row lengths of η are even [Sta, Example 7.A2.9], we

get ⊕
cλα,2γ cλ

′

β,2δMα ⊠ Mβ .

Here, the sum is over all partitions subject to the condition |γ | = i and |δ| = j ,

and Mα ⊠ Mβ is a representation of SL+\E+ × SL−\E− , which is the image of

Aut( f )→ Aut(M). Calculating the induction replaces Mα⊠Mβ with
⊕

c
µ

α,βMµ.

To obtain the final result, we sum over all possible values of i and j ; this

simply amounts to dropping the conditions |β| = i and |β ′| = j . Taking the Mµ

component of the above gives the stated result.

The formula for resSp can be deduced in a similar manner, or by applying

orthogonal–symplectic duality (Theorem 4.3.4) to what we have already

established.

7.10. Polarization

Finally, we state the branching rules for the polarization functors

polO : Rep(O)→ Rep(GL), polSp : Rep(Sp)→ Rep(GL).

Let Wλ denote either a simple object of Rep(O) or Rep(Sp), and let Vµ,µ′ denote

a simple object of Rep(GL).

PROPOSITION. The multiplicity of Vµ,µ′ in polO(Wλ) is

∑
cλ
α,(2β)† cαµ,µ′,

where the sum is over all partitions α, β. Similarly, the multiplicity of Vµ,µ′ in

polSp(Wλ) is ∑
cλα,2βcαµ,µ′ .

7.11. Example

We now give an example demonstrating how the stable theory can be applied

to problems at finite level. For notational ease, we let Uλ be the irreducible V 4
λ of

Sp(4), when λ has at most two parts (see 4.1.2). Suppose that we want to compute
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the tensor product of U(2,1) and U(1,1). We first compute the stable tensor product

using Proposition 7.5:

V(2,1) · V(1,1) = V(3,2)+ V(2,2,1)+ V(3,1,1)+ V(2,1,1,1)+ V(3)+ V(1,1,1)+ 2V(2,1)+ V(1).

This equality holds in K(Rep(Sp)). We now apply RΓ4, which is a ring

homomorphism from K(Rep(Sp)) to K(Rep(Sp(4))). By Theorem 4.4.6, the

complex RΓ4(Vλ) has at most one nonzero cohomology group, and it can be

computed using a certain combinatorial rule. If λ has at most two parts, then

Γ4(Vλ) = Uλ, and the higher derived functors vanish. When λ has exactly three

parts, the complex RΓ4(Vλ) is acyclic. Finally, we have R1Γ4(V(2,1,1,1)) = U(2,1).

So

U(2,1) ·U(1,1) = U(3,2) −U(2,1) +U(3) + 2U(2,1) +U(1).

Since Rep(Sp(4)) is semisimple, the above equality in K-theory gives an actual

decomposition of representations

U(2,1) ⊗U(1,1) = U(3,2) ⊕U(3) ⊕U(2,1) ⊕U(1).

The same principle can be used to compute any of the other branching rules at

finite level.

8. Questions and problems

8.1. General theory

The biggest question raised by this paper is whether the material can be treated

in a uniform manner. We do not know the answer, but offer one observation.

Let E1, . . . , En be infinite-dimensional vector spaces, let G i = GL(Ei), let G =

G1×· · ·×Gn , and let V be a polynomial representation of G such that V ∗ has an

‘approximate’ open dense orbit: we mean that this representation and group is a

union of finite-dimensional spaces and groups, respectively, and we ask that each

finite-dimensional space has an open dense orbit.

Let H be the generic stabilizer of V ∗. By definition, H is a subgroup of G,

and so each Ei is a representation of H . Call a representation of H algebraic

if it is a subquotient of a finite direct sum of tensor products of the Ei , and let

Rep(H) be the category of algebraic representations. Let A = Sym(V ), so that

Spec(A) = V ∗, and let ModK be the Serre quotient of Mod
fg

A by the subcategory

of modules with proper support. There is a functor ModK → Rep(H) given by

taking the fiber at a generic point. In certain cases, this is an equivalence, and

ModK is equivalent to Modf
A, and we recover some of the results of this paper.
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These cases are as follows.

• n = 1, V = E , H = GA(∞), Rep(H) = Reppol(GA).

• n = 1, V = Sym2(E), H = O(∞), Rep(H) = Rep(O).

• n = 1, V =
∧2
(E), H = Sp(∞), Rep(H) = Rep(Sp).

• n = 2, V = E1 ⊗ E2, H = GL(∞), Rep(H) = Rep(GL).

Unfortunately, we do not know how to prove the claims we have just made except

by invoking the results of this paper, and so we are unable to use this setup to

develop the theory. Also, we are unaware of how the symmetric group fits in to

this picture.

8.2. Plethysms

Let T be as in 4.4.1, and let A be a tensor category. If (A, ω) ∈ T (A) and M

is an object of Rep(O), then we obtain an object SM(A) of A from the universal

property of Rep(O). In fact, ω induces a symmetric form on SM(A), and so if N

is a second object of Rep(O) then one can make sense of SN (SM(A)). Can one

functorially define an object N ◦ M of Rep(O) such that SN◦M(A) is naturally

isomorphic to SN (SM(A))? The natural guess is to put a symmetric form on M

and define N ◦M to be SN (M). However, there is not a canonical choice of form,

so this construction is likely not functorial.

8.3. Positive characteristic

An interesting (but difficult) problem is to extend the results of this paper to

positive characteristic. One encounters difficulties from the very beginning: the

polynomial theory of GL(∞) is not semisimple in positive characteristic, and the

equivalence between it and representations of symmetric groups breaks down.

8.4. Algebraic representations of GA

What is the structure of Rep(GA), the category of all algebraic representations

of the infinite general affine group? (We only determined the structure of the

category of polynomial representations.)

8.5. Tannakian duality

If G is an algebraic group then Rep(G) is a rigid tensor category admitting

a fiber functor (an exact faithful functor to Vecf). Tannakian duality provides

a converse to this statement, when certain mild hypotheses are satisfied. The

categories we have considered, such as Rep(GL), are not rigid tensor categories,

since they lack a good notion of duality. However, the forgetful functor to

Vec could reasonably be called a fiber functor. Is there any sort of Tannakian

formalism for this class of categories?
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8.6. Maps between derived categories

It is desirable to have a better understanding of the functors (both tensor and

not) between the derived categories of the representation categories we have been

considering. Some specific questions are the following.

(a) What are the universal properties of Db(Rep(GL)), Db(Rep(O)), etc.?

(b) What are the auto-equivalences groups of Db(Rep(GL)), etc.?

(c) The categories Reppol(GA) and Rep(S) are equivalent as abelian categories,

not equivalent as tensor categories, but have isomorphic Grothendieck rings.

Are their derived categories equivalent, as triangulated tensor categories? We

suspect not, but do not have a proof.

8.7. A degeneration

As we have mentioned in 1.3.4, the structure constants for multiplication

in K(Reppol(GA)) are the Littlewood–Richardson coefficients cλµ,ν , while

those for K(Rep(S)) are the stable Kronecker coefficients gλµ,ν . The stable

Kronecker coefficient gλµ,ν is nonzero only if |λ| 6 |µ| + |ν|, and, when we

have equality, it is the Littlewood–Richardson coefficient cλµ,ν . It follows that

the ring K(Rep(S)) can be naturally filtered in such a way that the associated

graded is K(Reppol(GA)). The Rees algebra construction provides a flat C[t]-

algebra with generic fiber K(Rep(S)) and special fiber K(Reppol(GA)). Is there

a corresponding categorical construction? That is, does there exist a reasonable

family of categories over the affine line A1 with generic fiber Rep(S) and special

fiber Reppol(GA)?

8.8. Structure of functor categories

The category C defined in 3.4.10 and its analogs are quite interesting and

deserve study. We plan to return to this topic in a future paper.
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