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ABSTRACT. In the last decades, fractional differential equations have become
popular among scientists in order to model various stable physical phenom-
ena with anomalous decay, say that are not of exponential type. Moreover
in discrete-time series analysis, so-called fractional ARMA models have been
proposed in the literature in order to model stochastic processes, the auto-
correlation of which also exhibits an anomalous decay. Both types of models
stem from a common property of complex variable functions: namely, mul-
tivalued functions and their behaviour in the neighborhood of the branching
point, and asymptotic expansions performed along the cut between branching
points. This more abstract point of view proves very much useful in order to
extend these models by changing the location of the classical branching points
(the origin of the complex plane, for continuous-time systems). Hence, sta-
bility properties of and modelling issues by generalized fractional differential
systems will be adressed in the present paper: systems will be considered both
in the time-domain and in the frequency-domain; when necessary a distinc-
tion will be made between fractional differential systems of commensurate and
incommensurate orders.

REsuME. Ces dernitres années, les équations différentielles fractionnaires ont
été de plus en plus utilisées par les scientifiques désireux de modéliser divers
phénomeénes physiques stables mais présentant une décroissance lente, c’est-
a-dire qui ne soit pas de type exponentiel. D’autre part, dans le domaine de
I’analyse des séries temporelles, des modéles ARMA fractionnaires ont été pro-
posés de fagon a modéliser des processus stochastiques dont 'autocorrélation
est aussi a décroissance lente. Ces deux types de modeéles proviennent d’une
propriété commune des fonctions de la variable complexe : & savoir, les fonc-
tions multivaluées et leur comportement au voisinage du point de branchement,
ainsi que des développements asymptotiques effectués le long de la coupure qui
relie les points de branchement. Ce point de vue plus abstrait révéle toute son
utilité lorsqu’on veut étendre ces modéles en changeant la position des points
de branchement classiques (1'origine du plan complexe, pour les systémes en
temps continu). Ainsi, nous étudierons les propriétés de stabilité des systémes
différentiels fractionnaires généralisés et les conséquences sur la modélisation :
nous considérerons les systémes tant dans le domaine temporel que dans le
domaine fréquentiel ; et si nécessaire nous ferons la distinction entre systémes
différentiels fractionnaires d’ordres commensurables ou incommensurables.

1. INTRODUCTION
1.1. CONTEXT AND MOTIVATION

In the fields of continuous-time modelling, fractional derivatives have proved
useful in linear viscoelasticity, acoustics, rheology, polymeric chemistry (see e.g.
[24])... For a treatment of so-called fractional differential equations (FDEs), we

refer to [27, chap. 8, sec. 42], [19, chap. 5 & 6] and [10, 12].

© Société de Mathématiques Appliquées et Industrielles. Typeset by IATEX.
D. Matignon: ENST, Dept. TSI & CNRS, URA 820. 46, rue Barrault, 75 634 Paris Cedex 13,
France. Email: matignon@tsi.enst.fr. URL: http://www-sig.enst.fr/~matignon.

Avrticle published by EDP Sciences and available at http://www.edpsciences.org/proc or http://dx.doi.org/10.1051/proc:1998004



http://www.edpsciences.org
http://www.edpsciences.org/proc
http://dx.doi.org/10.1051/proc:1998004

146 DENIS MATIGNON

There has been some recent advances in control theory of such systems (see e.g.
[12] for stability questions, [16] for controllability and observability considerations
and [17] for observer-based controller design), together with interesting applications
(see [18, 22]).

Turning to the infinite dimension (i.e. dealing with FPDEs and introducing a
so-called fractional modal decomposition) has been motivated by the example of a
wave equation in viscothermal medium (see [10, 15, 11, 14]).

Moreover, an interesting idea of generalized fractional differential systems ap-
peared in [30] in a stochastic framework; in this approach however, new branching
points are definitely singular points like poles for meromorphic functions (in the
sense that the modulus of the complex function goes to infinity in the vicinity of
the branching point).

1.2. TECHNIQUES

It is the very multivalued nature of the transfer function that gives its richness to
the model; thus, moving the branching point and studying the consequences both
from spectral and time-domain point of views proves useful when one is interested in
extending these models. The techniques involved in this work are of analytic nature:
we use mostly distributions theory in the sense of Schwartz! (see e.g. [28, chap. 11 &
II1], [8, chap. 1, sec. 3.2 & 5.5]) for the continuous-time domain, complex variable
theory (see [3]), asymptotic expansions (see [4, chap. II]) and special functions (see
e.g. [20, 1, 7]). The very nature of fractional integrals and derivatives can be better
understood 1n the context of so-called diffusive realisations, which will also be used
in the sequel (see e.g. [23, 22, 9, 21]).

1.3. PROBLEMS AT STAKE

Different problems will be considered in the present paper. We will focus on
stability properties of fractional differential systems; only external stability will be
considered.

For systems of commensurate order of derivatives, an algebraic approach com-
bined with the use of asymptotic results (carefully proved or only found in the
literature) gives a well-known stability result (see [10, Appendix B]).

The problem of stability then seems to be left wide open in the case of fractional
differential systems of incommensurate orders of derivatives and also in the case of
generalized fractional differential systems. From a careful asymptotic analysis, we
are able to give a general result of stability and also to provide a constructive method
to determine the asymptotic expansion of the impulse response of the system under
study. Moreover some concrete examples of first and second order systems with
damping of fractional order are carefully examined, using techniques of analytic
nature, such as energy methods and diffusive realisations.

1.4. OUTLINE

The paper is organized as follows: in section 2, we study fractional differential
systems in continuous time; we start with some basic definitions and properties
in subsection 2.1, we then address the problem of stability for systems of com-
mensurate order in subsection 2.2; more general stability results, i.e. for systems of
mcommensurate orders are to be found in subsection 2.3, they give rise to some case
studies in subsection 2.4, where 1t is shown that algebraic and analytic approaches
can be combined in a very creative way.

lan attempt to use Mikusinski calculus has been presented in [6]; for a translation between

distributions theories, see [5, p. 16 & 62 especially] and [2].
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Then, in section 3, generalized fractional differential systems are introduced,
which amounts to moving the location of the classical branching point s = 0; gen-
eralized basic elements are first examined in subsection 3.1, and they are combined
in a natural way to build up generalized fractional differential systems in subsec-
tion 3.2; finally in subsection 3.3, other generalized fractional differential systems
are introduced, namely when more than one branching point is being used; some
examples of application to Bessel functions are also investigated.

2. FRACTIONAL DIFFERENTIAL SYSTEMS IN CONTINUOUS TIME
2.1. DEFINITIONS

For more details, the reader can refer to [10, Appendix A], [8, chapter 1, sec-
tion 5.5] and [27, chapter 2, section 8].

2.1.1. FRACTIONAL INTEGRALS.

DEFINITION 2.1. We define Y,, the convolution kernel of order o for fractional
integrals:

1

9=
for a>0, Yu(t)= ﬁ € LL. (R (2.1)

where I' is the well-known Euler Gamma function.
With this notation, the fractional integral of order a of a causal function or
causal distribution f is:

If 2V, *f (2.2)
REMARK 2.2. This definition coincides with the so-called Riemann-Liouville inte-
gral of fractional order a.

ProrosITION 2.3. The Laplace transform of Yy, us:
L[Yo](s)=s"% for Re(s) >0 (2.3)
We have the important convolution property Y, x Y3 = Y45 for a > 0 and
8> 0, which translates into a sequentiality property: I® o I# = [*+7.
Proof. straightforward. O

REMARK 2.4. In (2.3), the function s — s of the complex variable s is defined
with no ambiguity as the analytic continuation of z — z® on RT into the strip of
convergence of the Laplace transform, namely fe(s) > 0. Hence, for s = p exp(if)
and |f| < w/2, s* has the analytic value s* = p® exp(iaf).

2.1.2. FRACTIONAL DERIVATIVES IN THE SENSE OF DISTRIBUTIONS.

DEFINITION 2.5. We define Y_,, the causal distribution — or generalized function
in the sense of Schwartz (see [28, chapters IT & IIT] and [8, chapter 1, section 3.2]) —
as the unique convolutive inverse of Yy, in the convolution algebra D' (R); with
the use of § — the Dirac distribution — which is the neutral element of convolution,
this reads:

Vig*Y_o =14 (2.4)

The causal distribution Y_,, is in fact the finite part of a divergent integral (in the
sense of Hadamard); more precisely:

Vo 26 { ;i;) } (2.5)
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With this notation, the fractional derivative of order « of a causal function or
distribution f 1s:

DYfEY_ % f (2.6)

REMARK 2.6. This definition does not always coincide with the so-called Riemann-
Liouville derivative of fractional order «; in fact it depends on the regularity of
the function f at the origin. In particular with Riemann-Liouville derivatives,
the fundamental sequentiality property can be violated, moreover it is only a left-
inverse of the fractional integral. A smooth fractional derivative (sometimes called
the Caputo derivative) can also be introduced for regularity requirements when
taking initial conditions into account. For a comparison between these notions, see
e.g. [12].

REMARK 2.7. Only in the integer case @« = n € N do we get distributions, the
support of which is localized at 0; otherwise, the support is RT. We have:

Y., =dM (2.7)
ProrosITION 2.8. The Laplace transform of Y_,, is:
LY_o](s) =s% for Re(s) >0 (2.8)

We then have the important convolution property Y, « Ys = Yo4 5 for any real
numbers «, 8, which translates into a sequentiality property: D® o D? = D¥*F#,

Proof. straightforward. O

REMARK 2.9. The latter property ensures that derivation in the sense of causal
distributions is sequential in the sense of [19, section VI.4], thus allowing for a fully
algebraic treatment of FDEs of commensurate order (see theorem 2.21 in § 2.2.3).

2.1.3. FUNDAMENTAL SOLUTIONS OF THE FRACTIONAL DIFFERENTIAL OPERATOR.
In the sequel, 0 < o < 1 will be assumed. Let us now define the eigenfunctions
of the previous operator D% (see [10, Appendix B] and [26, 20, 1] for more details
and an extensive study of these special functions together with existing links with
generalized Mittag-Leffler functions and their derivatives).

DEFINITION 2.10. We define &,(A,t) as the fundamental solution of the operator
D> — X
~ (Atg)k
a—1
Z/\ Yies1)a =15 Z (F+ a (2.9)
the Laplace transform of which is (s* — A)~! for Re(s) > ax.
It follows that:
D¥EL(AM ) = AEL (M) + 40 (2.10)
But in the case of multiple root, we need to define the j-th convolution of £, (A, 1),
namely:

DEFINITION 2.11. For integer j > 1, we define EXI (A1) as the fundamental solution
of the operator (D% — \)*/:

. °° . (Ata)k
ETAEY CITL L N Y ke = 1 12(;5 L W (2.11)
k=0 k=0

the Laplace transform of which is (s* — A}~/ for Re(s) > ay.
It follows that:

(D™ =\ 9\ t) =6 (2.12)
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REMARK 2.12. With this extended definition (j > 1), we have two notations for
the same function in the case j = 1: &, (A, 1) = EXL(A, ).
REMARK 2.13. When o = 1, £;(A, 1) = exp(At) Y1(¢) is the causal exponential, the
well-known fundamental solution of the operator D! — A.

REMARK 2.14. When o = 1, Sfj(/\,t) = exp(At) Y;(¢) is the causal polynomial-
exponential of degree j — 1, the well-known fundamental solution of the operator

(D' — )%

2.2. STABILITY RESULTS FOR SYSTEMS OF COMMENSURATE ORDER

2.2.1. STABILITY NOTIONS. Following [29, section 6.3], we recall the definition of
external stability:

DEFINITION 2.15. An input/ouput causal linear system defined by its impulse re-
sponse h is externally stable or bounded—input bounded—output (BIBO) iff:

Yue L™ (RY), y=hxue L™ (RT) (2.13)
which is satisfied when h € L' (RT); in this case, we have:
I9lloe < 1Al llullo (2.14)
REMARK 2.16. A convolution kernel in L!(R¥) also provides other types of stabil-
ities, namely:
e stability in the mean: u € L' (RT) = y = hxu € L' (RT), with:
lylle < [1A]l llullx (2.15)
e stability in quadratic mean: w € L? (Rt) = y = hxu € L? (RY), with:
lyllz < [lAlly [|ull2 (2.16)

A sufficient condition for these stabilities is h € L' (R¥); but it must be noted
that h = K& + hy with hy € L' (RT) is a more general case, and ||||; must then
be replaced by |K|+ ||h1]|; in (2.14), (2.15) and (2.16).

2.2.2. BASIC ELEMENTS.

THEOREM 2.17. We have the following asymptotic equivalents for £ (\t) as t
reaches +0o:

o for|arg(N)] < ar/2,

ET (A ) ~ ﬁ { (%)H o=l exp(o® t)}

it has the structure of a polynomaial of degree j—1 int, multiplied by exp(/\l/o‘t).
o for|arg(A)| > an/2,

(2.17)

o=A

EF (A1) ~ J=NTI (2.18)

_*
I'(l—a)
which belongs to L" ([1, +oo[, R), Vr > 1.

Proof. The proof of the theorem requires some analytic insight; we give a sketch of
it in two steps:

e step 1: we compute the inverse Laplace transform of (s® — A\)~/ with a
cut along R7™, in order to tackle the multiformity of the complex function
under study (see [3, ch. IIT]). We are then left with a non zero residue term
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of polynomial-exponential type when |arg(A)| < am, and an integral term,
namely:

B\t = /+Oo Wl \(8) e dp (2.19)
0

the latter formula can be viewed as a continuous superposition of purely
damped exponentials (it is therefore sometimes called the aperiodic multi-
mode, see [25]);

e step 2: we then perform the asymptotic expansion near ¢ = 400 of the
integral term (2.19), which naturally proves to be strongly related to the
Jractional power series expansion at § = 0 of the weight function or measure

w’ , (see e.g. [4, chap. 11, § 2.2]; this is sometimes called the Watson lemma).
a, A g

O

REMARK 2.18. in fact, the very diffusive nature? of the non purely exponential
part of the function £ (A, .) is enlightened by formula (2.19).

REMARK 2.19. the function ¢ + £(),t) is not continous at the origin t = 0 in
general; in fact, the following equivalent can be easily computed:

) tjoc—l
ETAT) ~ Yig(t) = 2.20
(1) ~ Vjalt) = Fs (220)
which proves to be at least locally integrable at the origin.
PROPOSITION 2.20. Basic elements £9(),.) define BIBO systems iff
|arg A| > ag (2.21)
Proof. obvious from definition 2.15, theorem 2.17 and remark 2.19. O

2.2.3. SYSTEMS OF COMMENSURATE ORDER. Let us recall some now classical re-

sults on fractional differential equations (see [10, Appendix B] for a first reference
and [12] later on):

THEOREM 2.21. A transfer function H(s) = R(s%) for RNe(s) > a > 0, where
R = Q/P stands for a rational function with P and @ two coprime polynomials,
and 0 < a < 1 is the fractional order of derivatives, has the main property of:

BIBO stability < |argo|> ag, Yo €T, P(o)=0 (2.22)
In this latter case, the tmpulse response h has the following asymptotics:
h(t) ~ Kt717% as t— +o0 (2.23)

REMARK 2.22. When ¢ = 0 is a single root of P, h(t) ~ Kt~ % ast — +oo,
h ¢ L*(RT) and the system cannot be stable.

Proof. Let us introduce the partial fractions expansion of the rational function
R: R(o) =Y , Z;”:l (iﬁ, then the impulse response h can be computed as
h(t) = >0, Z;”:l 735 £ (A, t). Then, from theorem 2.17, we get the announced
result. O

REMARK 2.23. For aw = 1, this is the classical theorem of location of the poles of a
BIBO system in the complex plane: no poles in the closed right-half plane.

2in the sense of [23, 9, 21].

ESAIM: Proc., VoL. 5, 1998, 145-158



STABILITY OF GENERALIZED FRACTIONAL DIFFERENTIAL SYSTEMS 151

2.3. STABILITY RESULTS FOR SYSTEMS OF INCOMMENSURATE ORDER

In this section, we will abandon the nice algebraic tools which proved useful
in the preceding one, and we will strongly develop analytic reasonings: this will
lead us to a much more comprehensive and much deeper understanding of the very
nature of fractional® differential systems and definitely help us as far as the study
of their stability is concerned.

2.3.1. A GENERAL RESULT.

THEOREM 2.24 (conjecture). Let H(s) = Q(s)/P(s) for Re(s) > a > 0 a transfer
function, where P(s) = > 5 _, px s%* with agp1 > ap > 0 and Q(s) = i, g s™
with Bi41 > G > 0 are no longer polynomials. The system has the main property
of:

BIBO stability <= 3IM, [H(s)|< M Vs, Re(s) >0 (2.24)

Moreover, in the case where no simplification occurs between P and @Q (that is
Vs, Re(s) >0, Q(s) = 0= P(s) # 0), the stability property then reads:

BIBO stability <= P(s)#0 V¥s, Re(s) >0 (2.25)

REMARK 2.25. Note that the condition Re(s) > 0 is very meaningful, because H(s)
1s uniquely determined in the closed right-half complex plane.

So far, this theorem is only a conjecture, and a rigorous proof can not be produced
here. The only technicality to be proved is that such a transfer function A can not
have an infinite number of singularities in the right-half complex plane, and that
all these singularities are of finite order.

The second condition is more important in practise. The notion of simplification
is not straightforward, let us give an example: H(s) = s:__ll cannot be simplified in
any way when « ¢ QQ; it seems that there is a singularity likely at s = 1, but in fact
H is continuous at s = 1, and H(1) = a. Thus the system is stable when o < 1.

REMARK 2.26. This theorem is not constructive in so far as it does not give any
computable information, neither on the poles, nor on the asymptotics of the inverse
Laplace transform h(¢) as ¢ reaches infinity.

The following theorem helps enlighten the structure of the system and can then
be proposed in the following form:

THEOREM 2.27. For such a transfer function H(s), the corresponding impulse re-
sponse can be decomposed into:

T Vi 400
h(t) =D riYi(t) ew+/0 p(x) e~ de (2.26)

i=1j=1

where s; are complex poles in C\R~ and p is a measure (which can be singular

near ¥ = 0). If a singularity is to be found on the cut R™, then the integral term

in (2.26) must be understood in the principal value sense of Cauchy (see [21]).
Moreover, the analytic form of the measure can be computed exactly:

> hmo 2oimo Prqisin((ag — G)7) x@x A
hmo D T2 + 2 0<k<i<p 2Peprcos((ak — ag)m) porte

o) = - = (2.27)

3in fact, fractional should be reserved for systems of commensurate order, while non-integer
would sound more appropriate for systems of incommensurate orders; but the word fractional has
already been widely used in the literature, such as [19, 27].
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Sketch of the proof. See the two steps of the proof of theorem 2.17. The integral
term comes from the cut along R™; it can be computed as follows:

1 _
p(e) = 5o [H((=2)7) = H{(—2)*)] (2.28)
with (—2)* = exp(&ir) z and ((—2)*)* = exp(diar) z®; some tedious computa-
tions then follow and lead to equation (2.27). O

REMARK 2.28 (To what extent is decomposition (2.26) structural?). The

transfer function H is uniquely determined in a right-half plane Re(s) > a >
0, where it is analytic. The impulse response h is computed using the inverse
Laplace transform, namely h(t) = # cc_-l_;;:) H(s)e*t ds, where ¢ > a. Now, in
order to use classical residue calculus, a closed path must be defined, in which
H 18 meromorphic: a cut must therefore be perfomed between the two branching
points s = 0 and “|s| = 400, provided Re(s) < 07; the choice of the path of
integration is free, and the result h does not depend upon the computation method.
A commonly used choice is a cut along R7: it is the most reasonable one, because
it preserves hermitian properties for the roots, and because it clearly separates
between classical dynamics (linear differential systems of integer order) on the one
hand and infinite-dimensional dynamics (namely diffusions) on the other hand;
this intrinsic decomposition can be called structural. Now it seems obvious that
changing the cut will strongly affect the poles in the open left-half complex plane;
also the measure p will change: therefore we are urged at defining what is structural
and what is not.

o the poles s; with Re(s;) > 0, their order and residues are structural elements.
The poles s; with Re(s;) < 0 are also structural if and only if it has been made
clear that a cut along R~ has been used; otherwise they highly depend on the
choice of the cut to perform the computation (straightforward exercise left to
the reader), and thus can not be called structural.

e concerning the integral term, its asymptotic expansion is structural, and it is
highly unique, given by the expansion at the origin & = 0 of the measure pu
only. (Note that it does not depend on the cut that is chosen to perform the
computation, thus proving to be a fully structural component of the decom-
position). More precisely, this integral term can be decomposed into some
pure integrators of fractional orders Y, (¢) with v, > 0 and a regular term in
LY(RT), which behaves like p1 71771 asymptotically.

Now in order to be complete, we need to give the asymptotics of the regular part

of the integral term, which appears in the right-hand side of (2.26), we recall the
Watson lemma:

M M
pm 1 L
pulz) = E ﬂmm +o(x"™) = I(t) = E Hon T +o(t™ 17y (2.29)
m=1 m=1

REMARK 2.29. a very particular case occurs when fractional differential systems
of commensurate order are dealt with, for o = k« and also §; = [ «; then it is
clear that only v, = ma are to be found in (2.29), thus implying an asymptotic
expansion in Y, fiy, 717,

2.3.2. USING DIFFUSIVE BALANCED REALISATIONS. Let us now introduce the so-
called diffusive balanced realisations of fractional integrals and derivatives. These
infinite-dimensional formulations will help us prove some crucial positivity proper-
ties which will be of major help in the studies of stability.
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First consider the infinite-dimensional dynamical system with input w, ouput y
and state ¢ (0 < 8 < 1):

p(€,t) = —EpE,1) + \Jup(@)ult); @0 =0, VEeRT (2.30)

+o0
y(t) = /0 \ 15 (E) (&, 1) dE (2.31)
with pg(&) = %5_5, a positive measure on R7.

THEOREM 2.30. The input-output relation for system (2.30)—(2.31) is y(t) = [Pu(t).
Moreover, we have the positivity property:

T
VT >0, <yu>p= / y(t) u(t) dt > 0 (2.32)
0

Proof. we refer to [23, 22] and references therein. Note that functional spaces must
be specified for these infinite-dimensional dynamical systems to make sense; in
particular, a classical V.C H C V' framework is needed.

Property (2.32) can be found formally by computation:

%/:Oo gng+/ /+Oo 2e,0)dEdt = < y,u > (2.33)

it then makes full sense in the appropriate functional spaces: u € L2(0,T;R) implies
y € L*(0,T;R), and the scalar product is well defined. O

Now consider the infinite-dimensional dynamical system with input u, ouput z
and state ¢ (0 < a < 1):

Oup(&,1) = —51/)(5 )+ Vi-a©ult); ¥(E0) =0, VEERT(2.34)
<) pa® (€ vEn) + V@) de (239)

THEOREM 2.31. The input-output relation for system (2.34)-(2.35) is z(t) = D%u(t).
Moreover, we have the positivity property:

T
VI'>0, <zu>p= / z(t)u(t)dt >0 (2.36)
0

Proof. formally, z = D% = D' o I'=%u; then use ¢ with # = 1 — a. We refer
to [23, 22] and references therein. Once again, functional spaces must be specified
for these infinite-dimensional dynamical systems to make sense; in particular, a
classical V' . C H C V' framework is needed.

Property (2.36) can be found formally by specific computation:

1

+ o0 T + o0
Z 2 2 _
| cends [ [T @urenda =< @)

it then makes full sense in the appropriate functional spaces: w € H!(0,T;RR)
implies z € L?(0,T;R), and the scalar product is well defined. O

REMARK 2.32. In (2.35), the two parts can not be evaluated separately, otherwise
the integrals would both diverge. This is very well understood in the appropriate
functional framework.

REMARK 2.33. Diffusive realisations of fractional integrals /° and derivatives D%,
and other pseudo-differential operators, are very important both from theoretical
and numerical viewpoints:
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e from a theoretical aspect, these formulations help understand the very nature
of fractional integrals and derivatives (as a particular case of long-memory
operators), they also provide natural and straightforward proofs for properties
which would otherwise not be so obvious;

e from a practical aspect, these formulations help define stable numerical schemes
for the approximation of the solution of such systems.

In section 2.4, we will use the positivity properties (2.32) and (2.36) in order
to find sufficient stability conditions for fractional differential systems of commen-
surate or incommensurate orders. Moreover diffusive realisations of fractional in-
tegrals or derivatives through a state of infinite dimension ¢ or ¢ help define a
natural state space, together with appropriate energy functionals, which are both
most useful for stability considerations.

2.4. SOME CASE STUDIES

We propose to study the following very simple examples in order to show the
combined interest of both algebraic and analytic approaches.

2.4.1. A FIRST ORDER SYSTEM WITH FRACTIONAL DAMPING. Consider the follow-
ing first order stable (7 > 0) system perturbed (¢ # 0) by some fractional damping
of order « €10, 1[:

TE4+eD+x=u (2.38)

Using energy methods and diffusions, we can prove that the system is stable
Ve > 0. Let us introduce the global energy functional of the augmented system:

B(t) = Sa*(t) + = By (1) (2.39)

where the energy of the diffusive variable v is Ey(t) = & f+oo EPP(E ) dE > 0, and

2 Jo
compute formally:

) ) t + oo
E(t) =1zt +¢cEy(t) —zu—z’—c¢ /0 /0 (3#/))2(5,7') d§dr (2.40)

Then as soon as the input u has stopped, the global energy starts decreasing;
finally, LaSalle principle will help prove that the augmented state (x,1) of the
global system goes to (0,0) as ¢t = +o0.

But this sufficient condition is not necessary at all: when o = 1/2 for example,

0? — 2pcos(0) o + p? has stable poles for |#] > 7/4 (which is the most accurate
stability result); thus when w/4 < |f| < 7/2, the system is still stable whereas
£ = —2rpcos(f) < 0.
REMARK 2.34. Using energy methods, it is internal stability that is in fact exam-
ined; and contrarily to the finite-dimensional case, internal stability need not imply
external stability. But in this particular case, it can be proved that Vs, Re(s) > 0,
Re(rs+es*+ 1) = rpcos() + € p®cos(af) + 1 # 0 when ¢ > 0; then, applying
theorem 2.24, we find that the system is also externally stable.

2.4.2. A SECOND ORDER SYSTEM WITH FRACTIONAL DAMPINGS. Consider the fol-
lowing second order stable (¢ > 0) system perturbed (pg # 0) by some fractional
dampings of order 1 +« €]1,2[and 1 — 5 €]0, 1[:

i+pDitei+qlli+wie=u (2.41)

Using energy methods and diffusions, we can prove that the system is stable
Vp > 0 and V¢ > 0. Let us introduce the global energy functional of the augmented
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system:

B(t) = S50+ 020 + p Eg(D) + 4 2,0 (2.42)

where the energy of the diffusive variable ¢ is E,(t) = % 0 “p2(E,t)dE > 0, and
the energy of the diffusive variable ¢ is Ey(t) = %f0+oo€1/) (&,t)d¢ > 0. Let us

compute, at least formally:

E(t) = i¥+w? xa:—i—pE¢ —|—qE (t) (2.43)

— uc _p/ /+°° 00) (€, 7) dé dr
o /0 / " e de dr (2.44)

Then as soon as the input u has stopped, the global energy starts decreasing; finally,
LaSalle principle will help prove that the augmented state (x, &, v, ¢) of the global
system goes to (0,0,0,0) as t = +oo.

But this sufficient condition is not necessary at all: when o = 1/2 for example,
ot +po® +c0?+ qo + w? has stable poles iff |argoy| > 7/4; this can lead very
easilytop=—>, o <Oand ¢ = — Zm»’k oiojor < 0, but still € = Zk,l oo > 0
and w? =[], ok > 0 (numerical examples are left to the reader).

REMARK 2.35. Using energy methods, it is internal stability that is in fact exam-
ined; and contrarily to the finite-dimensional case, internal stability need not imply
external stability. In this particular case, we can only conjecture that the system
1s also externally stable.

2.4.3. CONCLUSION. The two preceding examples show how complementary the
algebro-analytic and purely analytic methods can prove to be. Such a coherence
between the two approaches has already been noticed and used (see e.g. [14] where
the energy decay was obtained through diffusive realisations, and asymptotics were
computed using a so-called fractional modal decomposition).

3. GENERALIZED FRACTIONAL DIFFERENTIAL SYSTEMS
3.1. GENERALIZED BASIC ELEMENTS

Considering sq € C instead of 0 as branching point leads us to define the following
basic element in the Laplace domain: ((s — sg)* — A)~! for Re(s) > ax 4, (a cut
being performed along the half-line | — oo + iSm(sg), so]), which proves to be the
fundamental solution of the generalized fractional diﬂerential operator D¢ — A in
the functional space of causal tempered distributions & , with:

D& T = exp(sot) D§ (exp(—sot)T) (3.1)
We can state the following stability results for these basic elements:
PROPOSITION 3.1. Let us denote Eq 5,(A, 1) = L1 |((5 — s0)* — /\)_1 , then:

o when Ne(sg) > 0, these generalized basic elements are all unstable, whatever
the location of A in the complex plane,

o when sy = iwy, the region of stability (namely |argo| > an/2) is fully pre-
served, but the stable dynamics now behave like:

Kyt=t el g5 ¢ = 400 (3.2)

ESAIM: Proc., VoL. 5, 1998, 145-158



156 DENIS MATIGNON

o when Re(sg) < 0, the region of instability in C is shrunk (namely, the interior
of the limiting curve

|1/°‘ cos((arg o)/a) = —|sg| cos(arg sp) (3.3)

|o

in the formerly unstable sector |argo| < an/2); the stable dynamics then

behave like:
Kyt™ 17 @e®t g5 t— 400 (3.4)

Proof. The proof is straightforward, once it has been made clear that &, ;,(A,t) =
exp(sot) Ea,0(A, 1). O

REMARK 3.2. Note that when X = 0, the asymptotics is in Kpt~%¢e*°!; in this
case only, the branching point sy is a singularity in the neighborhood of which the
function goes to infinity (like a pole for a meromorphic function), in the sense that:

lims 5, ](s — s0) ™% =+

REMARK 3.3. From a modelling point of view, the case Re(sg) = 0 is the most
interesting, because a new variety of anomalous decays are being captured.

3.2. (RENERALIZED SYSTEMS

From the careful asymptotic analysis of the previously defined generalized basic
elements, we can now define systems in a straightforward way.

DEFINITION 3.4. A generalized fractional differential (single-input single-output)
system of commensurate order « is defined by:

P(Dg,) y(t) = Q(D5,) u(t) (3.5)
with input u and output y.

It is now clear that such a system is BIBO-stable iff all the poles of the rational
function R in the o-plane lie in the open stability region defined in § 3.1. In this
latter case, the impulse response of the generalized system behaves like:

Kt 172! a5 ¢ > 40 (3.6)

3.3. OTHER GENERALIZED SYSTEMS AND APPLICATIONS

We examined the possibility of having a pole that is disconnected from the
branching point, and then we put these elementary systems in cascade, all of them
sharing the same a and the same sg; in fact, this amounts to considering rational
functions R in the variable o = (s —sg)®, hence providing a much better structured
setting which allows for a fully algebraic treatment of such systems.

But other generalized systems can be defined as well: the o and sg can vary from
one system to the other; we still get nice properties if only series of such systems
are considered. Otherwise the analysis of the whole system is not straightforward:
in [30] for example, cascade of elements with different o and sy but same A = 0 are
considered.

Let us examine an interesting example of application: simulation, convolution
and asymptotic expansion of some intrinsically pseudo-differential function, namely
a causal Bessel function of the first kind and of order 0, h = Jy, the Laplace
transform of which is:

1
H(s) o Vs, Re(s) > 0 (3.7)
Finding the first term of the asymptotic expansion is straightforward thanks to
the results of the preceding section. We have fwo branching points so = ¢ and
$1 = —i: two cuts can be performed, one along the half-line | — oo + 4, 7] and
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another one along the half-line | — co — ¢, —i]. In this doubly cut complex plane,
we have the identity /s + 1 = /s — i\/s + 1, where /5 is uniquely determined on

C\R~ by analytic continuation. Then, in the vicinity of sq = 1, H(s) ~ \/22 \/ssz =

(1/2)t 2 exp(i(t — 7/4)).
In the vicinity of 51 = s3, we get the conjugate estimate, thus leading to the well-
known asymptotic expansion for Jy(t):

h(t) ~ @ cos(t — g) (3.8)

A purely diffusive formulation of & can also be given, namely:

% exp(— 171'/4) , which possess the asymptotics 7T

Lo, [t 1

ht — it —xtd

Q =)y Vaveexzm
1 —it oo 1 —xtd (3 9)
— € ——— e &) X .
T 0 ﬁ\/—l‘—?i

from which diffusive realisation directly follows, which reveals helpful for computa-
tion (numerical simulation) of A itself, or of convolutions by h. Formulation (3.9)
also enables to compute higher order asymptotics if needed.

4. CONCLUSION

In this paper, external stability of linear fractional differential systems has been
extensively studied: the case of commensurate order happens to be a very particular
case of the case of incommensurate orders; the asymptotics of the impulse response
can be computed in the most general case, and are somehow revealed by diffusive
realisations. Some striking, though elementary, examples are dealt with, which
show the combined interest of both analytic and algebraic approaches. Moreover,
extending these techniques to generalized fractional differential systems proves very
much useful, with special application in simulation, convolution and asymptotic
expansion of some special functions, such as Bessel functions, which possess an
intrinsic pseudo-differential nature.

In the very near future, these considerations will be extended to discrete-time
systems, and discrete-time diffusive realisations will be introduced in order to deal
with stability problems of fractional difference systems, and also to reveal the very
diffusive nature of such systems (which might have been overlooked so far in the
literature).
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