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Abstract— The increasing demand for data in mobile appli-
cations has created a need for better communications systems.
To satisfy this growing data demand next generation wireless
systems are planned to use millimetre wave carrier frequencies.
At these frequencies, radio shadowing is severe. To compensate
for shadowing, incoming data flows must therefore be split
and sent over several radio interfaces, that may have different
delay properties. This paper analyses the stability properties
of a MIMO data splitter that controls the delay skew between
the data paths. The stability analysis is performed using IQC
stability theory.

Index Terms— Control of networks, stability of nonlinear
systems.

I. INTRODUCTION

Fifth generation (5G) wireless systems are expected to
support several high-performance applications such as auto-
motive safety, remote surgery and networked feedback con-
trol over wireless networks [1]. These applications require
a wireless communication system with low latency and a
constant sampling rate. Violation of these requirements may
have severe consequences on performance and stability, as
discussed in [2]. Current mobile broadband services have
delays of tens of milliseconds, and large delay variations
may occur. This fact makes them unsuitable for these new
high-performance applications.

5G wireless networks will operate at millimetre wave
carrier frequencies. At these frequencies, radio wave prop-
agation has beam-like behaviour where radio shadowing
may be severe [1], [3]. The use of multi-point transmission
may mitigate the effects of radio shadowing. Multi-point
transmission increases the overall stability of the link by
splitting incoming data into several data streams. These data
streams are sent using multiple transmission nodes and are
received at the other side of multiple wireless interfaces.The
delays experienced by each data path may vary depending
on the infrastructure and technologies used to transmit each
data stream. Excessive delay skew in split flows can create
problems with IP protocols, out of sequence packets, packet
discard and retransmission. Thus, the delay skew between
data streams needs to be controlled to reduce delay variation
in the presence of radio shadowing.

In the companion paper [4] an algorithm for control of
delay skew between data paths is proposed. This algorithm
uses the data queues at the transmission nodes as actuators
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to control the downlink delay experienced by each data path.
This strategy ultimately allows the algorithm to control the
downlink delay skew between several data paths. The present
paper responds to the recently released call for more research
on delays in networked control [5]. The main contribution
of the paper is a MIMO stability analysis of the skew
delay controller presented in the companion paper [4], and
reviewed here for clarity of presentation. The analysis is
performed using Integral Quadratic Constraints (IQC) theory
[6].

Reference [4] and the current paper are part of an effort
to tackle several delay control problems that arise in 4G
and 5G wireless mobile communication networks. Related
papers in this effort include [2], [4], [7], [8], [9]. In [8] the
single input single output (SISO) inner loop used in this
paper is described and analysed. Reference [7] describes an
n-node round trip time skew control algorithm for critical
machine type communications. The stability analysis in [7]
combines IQC theory and high-order Padé approximations to
provide a stability limit, in terms of the maximum allowed
round trip loop delay. The main three aspects in which
this paper differs from the work of [7] are (i) the control
loop configuration, i.e. the block diagram and dynamics (ii)
the handling of the time delays as operator components in
the IQC theory, and (iii) the control objective that aims at
controlling the downlink delay rather than the round trip
delay. The paper [2] also treats a round trip delay skew
control objective for the special case of two data paths. In this
case, the stability problem is analysed by a combination of
the SISO Nyquist and Popov criteria. The paper [9] analyses
stability for the case of two data paths as well, but for
the downlink delay skew control objective. The paper [4]
is not focused on stability. It rather analyses the sensitivity
and disturbance rejection properties of the algorithm of this
paper, in order to provide general guidelines for design of the
networked data flow control system. The present paper is thus
restricted to stability analysis. Numerical results illustrating
the performance of the proposed delay skew controller are
available in [4].

The paper is organised as follows: Section II introduces
the networked control architecture. The stability analysis is
described in section III. Section IV presents a numerical
example. Finally, conclusions are drawn in section V.

II. D ELAY SKEW CONTROL

This section reviews a controller that regulates the down-
link delay skew between multiple data paths. The control
scheme was presented in [9] for the two data path case with
the n + 1-data path version treated in the companion paper



[4]. For completeness, and to introduce the notation for the
IQC stability analysis, the description of the networked data
flow controller is provided again here. Fig. 1 shows a block
diagram of the MIMO downlink delay skew controller with
n + 1 transmission nodes and data paths. Cascade control
is used, with a MIMO outer loop controller regulating the
delay skew between data paths, andn+1 SISO inner loops
controlling the queue dwell times.

A. Outer loop

The skew controller in Fig. 1 is located in the node where
the data is split into multiple flows. The outer loop is com-
posed of one delay sum control channel andn delay skew
control channels. The delay skew control channels regulate
the Tskew,i(s) to follow a reference signalT ref

skew,i(s). One
of the data paths is selected as the reference path and it
is denoted by the subscriptr. This data path is associated
with the delay sum control channel. The sum control channel
has a reference signalT ref

sum(s), which sets the total delay
budget available to be distributed between then + 1 data
paths. The network interface uses some of this budget, but the
remaining delay budget is available for distribution between
the transmission node queues of the data streams. The total
delay budget should be high enough to ensure that the control
problem is feasible.

In the outer loop, the error signalsei(s), i = 1, . . . , n and
er(s) corresponding to the skew control channels and the
sum control channel, respectively, are given by

ei(s) = T
ref
skew,i(s)− Tskew,i(s), i = 1, . . . , n, (1)

er(s) = T ref
sum(s)− Tsum(s). (2)

The controllersCskew,i(s) andCsum(s) are used to compute
the corresponding control actionsui(s), i = 1, . . . , n, r as
follows

ui(s) = Cskew,i(s)ei(s), i = 1, . . . , n, (3)

ur(s) = Csum(s)er(s). (4)

These control signals are then passed through a decoupling
matrix M, which enablesCskew,i(s) and Csum(s) to be
designed using SISO techniques.

Static decoupling is performed using the matrixM . This
decoupling matrix was derived in Theorem 1 in [7] and is
given by

M =
1

n+ 1





















n −1 · · · · · · −1 1
−1 n −1 · · · −1 1
...

. . .
. . .

. . . −1 1
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...
. . .

. . . −1 1
−1 · · · · · · −1 n 1
−1 · · · · · · · · · −1 1





















. (5)

The outputs of the static decoupling block are equal to the
reference signals fed into the inner loops plus the downlink
front haul delays.

The signalsT ref
i (s), i = 1, . . . , n, r are the reference

signals for the inner loops. The inner loops are described as

linear dynamic systems with transfer functionsGinner
i (s),

i = 1, . . . , n, r in Fig. 1. The outputs of the inner loops are
the dwell timesTi(s) that are given as follows

Ti(s) = Ginner
i (s)T ref

i (s) i = 1, . . . , n, r. (6)

The objective of the outer loop is to control the difference
between data stream delays at the receiver location. Thus the
signalsTi(s) + TDL

i (s), i = 1, . . . , n, r need to be formed
before computing the delay skews. Next, these signals are
transmitted to the controlling node. These transmissions are
subject to uplink delaysTUL

i , i = 1, . . . , n, r. In this paper,
it is assumed that the uplink delays are time invariant. Thus,
the following assumption is assumed to hold.

A1) The uplink delaysTUL
i , i = 1, . . . , n, r are time

invariant.

This assumption is reasonable at least in the case when
there is no congestion in the uplink. Assumption A1 allows
the delay skews of the outer loop controller to be computed.
The delay skews become

Tskew,i(s) = e−sTUL

i (Ti(s) + TDL
i (s))

−e−sTUL

r (Tr(s) + TDL
r (s)), i = 1, . . . , n, (7)

Tsum(s) =

n
∑

i=1

e−sTUL

i (Ti(s) + TDL
i (s))

+e−sTUL

r (Tr(s) + TDL
r (s)). (8)

The outer loop thus treats the uplink delays as constant
signals, but it treats the downlink delays as dynamic signals.

B. Inner loops

The inner loop controllers apply feedback from the queue
data volume. A block diagram of one of the inner loops is
shown in Fig. 2. This inner loop has been studied previously
in [8] and is also used in [4] and [9]. The reference for
the inner feedback loop is obtained by transforming the
dwell time reference signalsT ref

i (t), i = 1, . . . , n, r to
data volume reference signalsyrefi (t), i = 1, . . . , n, r. This
transformation is accomplished by multiplying the dwell time
reference valueT ref

i (t) by the scheduled wireless data rate
wair,i(t). Consistently, the queue dwell timeTi(t) is obtained
by dividing the queue data volume by the corresponding
scheduled wireless data rate. To incorporate the fact that the
network interfaces have limited capacity, and that the packets
in the downlink are not sent in the uplink direction, a rate
saturation is included in the inner loops.

Next, it needs to be assumed that the embedding in Fig. 2
is working as intended. This embedding allows cancelling the
effect ofwair,i(t) at the input and output of the inner loop.
Assumptions A2 and A3 are introduced for this purpose, cf.
[4].

A2) The bandwidth ofwair,i(t) is significantly higher
than the bandwidth ofT ref

i (t) for i = 1, . . . , n, r.
The following relations therefore hold

1) (wair,i(t))
−1 ≈ (w̄air,i)

−1, i = 1, . . . , n, r.
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Fig. 1. Block diagram of the delay skew control system.
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Fig. 2. Block diagram of one of the inner loops that controls the queue length.

2) L
(

T
ref
i (t)wair,i(t)

)

≈ T
ref
i (s)w̄air,i, i =

1, . . . , n, r.

A3) The inner loops operate as intended, with data flow
rate saturation being inactive.

Note that A3 is only assumed to cancel the effect of the
embedding. The rate saturations are fully retained in the IQC
analysis that follows below.

C. MIMO model for stability analysis

A prerequisite for the IQC stability analysis is to turn the
block diagram in Fig. 1 into a standard representation. In [7]
a similar approach was used. However, in [7], the control
objective, inner loops and external signals were different.
Hence a modified variant of the model is needed here. The
IQC stability analysis is performed on a system having the

following representation

v = Gw + x (9)

w = ∆v. (10)

G is a rational transfer function matrix with no poles in
the right complex half plane.∆ denotes a bounded causal
operator, whilex denotes an external vector signal.v andw
denote the two internal vector signals.

The vector signalv(s) is given by

v(s) =
(

vdel(s)T vsat(s)T
)T

(11)

where

vdel(s) =
(

vdel,1(s) · · · vdel,n(s) vdel,r(s)
)T

(12)

vsat(s) =
(

vsat,1(s) · · · vsat,n(s) vsat,r(s)
)T

(13)

Analogously, the signalw(s) is given by

w(s) =
(

wdel(s)
T

wsat(s)
T
)T

(14)



where

wdel(s) =
(

wdel,1(s) · · · wdel,n(s) wdel,r(s)
)T

(15)

wsat(s) =
(

wsat,1(s) · · · wsat,n(s) wsat,r(s)
)T

(16)

The quantities of (11)-(16) appear in Fig. 3. The operator
∆ accounts for the saturation and the delays in the inner
loops. Thus, the bounded causal operator∆ is composed as
follows

∆v =

(

∆satvsat 0

0 ∆delvdel

)

(17)

where

∆satvsat =










sat1(vsat,1(t)) 0 0 0

0
. . . 0 0

0 0 satn(vsat,n(t)) 0
0 0 0 satr(vsat,r(t))











The part of∆ accounting for the delay is given by

∆delvdel =










vdel,1(t− τ1(t)) 0 0 0

0
. . . 0 0

0 0 vdel,n(t− τn(t)) 0
0 0 0 vdel,r(t− τr(t))











whereτi(t) = TDL
i (t)+TUL

i . Fig. 3 shows a block diagram
that is equivalent to the block diagram of Fig. 1. Notice that
the inner loop controllers are now included in a diagonal
MIMO controller Cinner(s) as follows

Cinner(s) =













C1(s) 0 0 0

0
. . . 0

...
...

. . . Cn(s) 0
0 0 0 Cr(s)













.

Similarly, Gqueue(s) represents the MIMO model of the
queues, i.e.

Gqueue(s) =













1

s+δ1
0 0 0

0
. . . 0

...
...

. . . 1

s+δn
0

0 0 0 1

s+δr













.

The skew controllers are also included within a MIMO
controllerCskew(s) as follows

Cskew(s) =













Cskew,1(s) 0 0 0

0
. . . 0

...
...

. . . Cskew,n(s) 0
0 0 0 Csum(s)













.

The computation ofTskew,i(s), i = 1, . . . , n, andTsum(s)
as in (7)-(8) is now described by the matrixF, which is

given by

F =

















1 0 0 0 −1

0
. . .

. . .
...

...
...

. . . 1 0 −1
0 · · · 0 1 −1
1 · · · 1 1 1

















(18)

This allows the loop in the block diagram in Fig. 3 to be
described in the form of (9)-(10) using

G(s) =
(

0 −Cinner(s)(MCskew(s)F+ I)Gqueue(s)
I 0

)

(19)

x(s) =

(

x1(s)
0

)

x1(s) = Cinner(s)MCskew(s)T
ref
skew(s)

−Cinner(s)(MCskew(s)F+ I)TDL(s)

where

T
ref
skew(s) =

(

T
ref
skew,1(s) · · · T

ref
skew,n(s) T ref

sum(s)
)T

(20)

T
DL(s) =

(

TDL
1 (s) · · · TDL

n (s) TDL
r (s)

)T
(21)

The block diagrams of Fig. 1 and Fig. 2 are now in the
form of (9)-(10) required by the IQC analysis described in
the following section.

III. IQC STABILITY ANALYSIS

This section presents an IQC stability analysis of the
system defined in the previous section. The first step in the
analysis is to review the basic tools and definitions used
in IQC theory [6]. Next, assumptions on the components
of the delay skew control scheme of Fig. 1 and Fig. 2 are
introduced. Finally, the main result in IQC theory [6] is used
to formulate Theorem 1.

A. Tools of Analysis

The following definitions of [6], [10] are needed to set up
the framework for the IQC analysis.

Definition 1: Lm
2 denotes the space ofRm-valued func-

tions f(·) : [0,∞) → Rm of finite energy, i.e.

‖f(·)‖2 =

∫

∞

0

|f(t)|2dt < ∞. (22)

Definition 2: The spaceLm
2e is an extension of the space

Lm
2 , whose members areRm-valued functionsf(·) :

[0,∞) → Rm, such that their time truncation

fT (t) =

{

f(t), 0 ≤ t ≤ T

0, t > T
∈ Lm

2 . (23)

Definition 3: The feedback interconnection ofG and∆

as in (9)-(10) iswell-posedif it defines a causal mapx →
(v,w) on L2e, i.e. for anyx ∈ L2e there exists a solution
(v,w) that depends causally onx. The interconnection is
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Fig. 3. Block diagram used in the IQC stability analysis.

stable if, in addition, the inverse is bounded. This means
that there exists a constantCIQC > 0 such that

∫ T

0

(|v|2 + |w|2)dt ≤ CIQC

∫ T

0

|x|2dt. (24)

In the rest of the paper, the superscriptm in Lm
2e will be

omitted.
A bounded operator∆ is said to satisfy the IQC defined

by Π, if for all v,w
∫

∞

−∞

[

v(jω)
w(jω)

]H

Π(jω)

[

v(jω)
w(jω)

]

dω ≥ 0 (25)

with w = ∆v. The matrixΠ is denoted the multiplier
defining the IQC.

Next assume that the following conditions hold:
C1) G is a proper rational function with real coefficients

and without poles in the closed right half-plane.
C2) The interconnection ofG and τ∆ is well posed

for all τ ∈ [0, 1].
C3) x ∈ L2e.
C4) ∆ is a bounded causal operator.
C5) τ∆ satisfy the IQC defined byΠ.

The main result in IQC theory is then:
Lemma 1 ([6]): Assume that C1-C5 hold. If there exists

ǫ > 0 such that∀ω ∈ R ∪ {∞}
[

G(jω)
I

]H

Π(jω)

[

G(jω)
I

]

≤ −ǫI, (26)

then, the feedback interconnection ofG and∆ of (9)-(10)
is stable.

A summary giving an intuitive explanation of C1-C5
appears in [7], c.f. [6] and [10].

B. Assumptions on the delay skew controller

In addition to assumptions A1-A3, the following assump-
tions are required for the IQC analysis of the delay skew
controller.

A4) δi > 0, i = 1, . . . , n, r and the transfer func-
tions Csum(s), Cr(s), Cskew,i(s) andCi(s), i =
1, . . . , n are proper rational transfer functions with-
out poles in the closed right complex half-plane.

A5) T
skew
ref ,TDL ∈ L2e.

A6) The interconnection ofG and τ∆ is well posed
for everyτ ∈ [0, 1].

Assumption A4 ensures thatG is a proper rational transfer
function with real coefficients without poles in the right
half-plane. The assumption thatδi > 0 for i = 1, . . . , n, r
indicates that Active Queue Management [11] is used in the
inner loops. The assumption on the location of the poles of
the controllers indicates that such controllers must be open
loop stable.

C. Verification of IQC conditions

Before applying the IQC result described in Lemma 1 it
is necessary to verify that assumptions A1-A6 imply that
C1-C5 hold. Condition C1 follows from (19) ifCskew(s),
Cinner(s) andGqueue(s) are proper rational transfer func-
tions without poles in the closed right half-plane. Then, as-
sumption A6 ensures that C1 holds. Assumption A4 ensures
that Cskew(s) and Cinner(s) are bounded operators, thus
A4-A5 ensure that condition C3 is met. From the analysis in
[6], [10] it is well known that conditions C4-C5 are satisfied
by the bounded operators considered in the current paper. As-
sumptions A1-A3 are needed to represent the cascade block
diagram in Figures 1 and 2 into the representation (9)-(10)
used for IQC stability analysis. Assumption A3 was made
with the purpose to make the embedding in Fig. 2 possible
and not with the purpose to ignore the sector nonlinearitiesin
the stability analysis. These nonlinearities are now included
in the stability analysis to give the following result.

Theorem 1:Consider the feedback interaction of (9)-(10)
and assume that the conditions A1-A6 hold. Suppose that
∆ of (17) satisfy the IQC given byΠ. Then, the feedback
interconnection (9)-(10) is stable if there existsǫ > 0 such
that (26) holds∀ω ∈ R ∪ {∞}.

IV. N UMERICAL RESULTS

To illustrate the analysis above, numerical stability results
are given. Proportional controllers are first chosen for the
inner and outer loop. This choice of the controllers provides
insights into the trade-offs in the controller design. The IQC
stability tests were performed using the IQC toolbox [12].



0 50 100 150 200 250 300 350 400

C
skew

2

4

6

8

10

12

14

16

18

20
M

ax
im

um
 r

ou
nd

 tr
ip

 d
el

ay
, 

* , i
n 

m
s

Fig. 4. Maximum round trip delay which guarantees stability, τ∗ ∈

[1ms, 20ms], as a function ofCinner .

For the numerical analysis it is assumed that a saturation
satisfies the IQC of a sector nonlinearity and also the IQC
given by the Popov multiplier. Stability is tested under the
premise that each delay satisfies the IQCs for an uncertain
time-invariant delay, see [6], [12]. The IQC stability tests
search for the maximum round-trip delay,τ∗, which implies
stability of the MIMO control loop. First, consider the casein
which there are three data paths, i.e.n = 2, thatCskew = I3
andCinner = CinnerI3 whereCinner is a constant gain. Fig.
4 shows the maximum round trip delay,τ∗ ∈ [1ms, 20ms],
that guarantees stability as a function ofCinner . In Fig. 4
Cinner varies between10 and400. Note that whenCinner ≤
70 stability is guaranteed forτ ≤ 20ms.

Next, consider the case in which there are two data paths,
i.e. n = 1, that Cskew(s) = Cskew(s)I2 andCinner(s) =
Cinner(s)I2 where

Cskew(s) = 0.1
s+ 5.76

10s+ 5.76
, (27)

Cinner(s) = α
0.22798(s+ 30.49)(s+ 2.3)

(s+ 69.51)(s+ 0.23)
, (28)

and α is the low-frequency gain ofCinner(s), i.e. α =
Cinner(0). Note thatCskew(0) = 0.1. The controllers in
(27)-(28) have the poles and zeros used in [9], but the static
gains are different. IQC stability tests were performed using
α ∈ [10, 20]. Fig. 5 showsτ∗ as a function ofα. The
value τ = −1 denotes that there is no stability guarantee.
In Fig. 5 whenCinner(0) ≤ 16 stability is guaranteed for
τ ≤ 20ms, but if Cinner(0) ≥ 18 then there is no stability
guarantee using the IQC analysis proposed here. This result
is explained by [3].

V. CONCLUSION

The use of multi-point transmissions will compensate the
adverse shadowing conditions at millimetre wave carrier
frequencies. A synchronised arrival of originally adjacent
data packets sent over these flows is crucial for the success
of the multi-point transmission strategy. This paper analyses
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the stability of a recently proposed downlink delay skew
controller. The stability analysis of this MIMO controller
is performed using IQC theory. The numerical results are
consistent with experimental test bed results reported in a
companion paper and related publications.
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