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1. Introduction

In this note we show that a large class of measure preserving flows with pure
point spectrum have some Ljapounov-like stability properties. We discuss the
problem by looking at an example. Let Q = {(x, y): x2 + y2 ^ 1} be the unit disc, let
(r, (j)) be the polar coordinates of (x, y) e Q and let \i be Lebesgue measure, restricted
to fi and normalized to n(Q) = 1. O n Q we define two flows St, Tt, teU (where U
denotes the reals) by the conditions St((r, </>)) = (r, 4> + t) and T{((r, (/))) = (r, <j) + rt)
respectively. Then we have two measure preserving dynamical systems:
Dl = (Q, St, t e U, n), and D2 = (Q, Tt,teU, fi) which have the common property

(A) if / e C(Q) then f(Pt), t e U is periodic (where Pt = St(P) or Pt = Tt(P)
according to the system under consideration).

However Dx has pure point spectrum while D2 has not and Dr is Ljapounov stable
while D2 is not. In order to look at a similar but more general situation we replace
condition (A) by

(B) if / e C ( f i ) then for almost all points P the function f(Pt),teR is
Besicovitch almost periodic (this is explained in §2).

Next let d(P, Q) be the Euclidean distance of P, Q and put

+ r
/ f \ i /2

d'(P,Q) = \imsup (2T)"1 d(Pt,Qt)
2dt) .

-T

A set M ^ Q is called B-stable if for e > 0 there is S > 0 such that P,Qe M and
d{P, Q) ^ 3 imply that d'(P, Q) ^ e. Now consider

(C) for every £ > 0 there is a closed set M ^ Q with fi{M) ^ 1—e which is
B-stable.

It is clear that every Ljapounov stable system (and thus in particular Dj) satisfies
condition (C); we simply take M = Q for all e > 0. It turns out that for a large class
of measure preserving flows properties (B) and (C) are necessary and sufficient for
the flow to have pure point spectrum. This fact will follow from similar but more
general statements whose exact formulations are given later. For further comments
we refer to the final paragraph.
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2. Preliminaries

(a) Henceforth, ft is a compact metric space with metric d, and /i is a
probability measure on the Borel field induced by the topology of Q which is then
automatically regular [4, p. 223]. A group St,teU of measure preserving
automorphisms of Q. is given such that the mapping (P, t) -> St(P) from Q x 1R to Q is
measurable. In addition we assume the group St,tsU to have the following
property:

(I) if M £ Q is a closed set then for every closed interval [a, b] the set
(J M,, t e [a, b~\ is a Borel set.

The triple F = (Q, St, t e U, fi) is referred to as a flow.

(b) Use will be made of the ergodic decomposition theory of Bogoljubov-
Krylov [2, 11]. Thus UT^ Q is the set of transitive points which has the following
well known properties (see, for example [11] for details):

(1) UT is invariant against St, t e U and n{UT) = 1,

(2) with P E UT is associated a Borel measure JXP on Q given by

+ T

f(Pt)dt

-T

for all / e C(Q),

(3) /.ip is invariant and ergodic with respect to St, t e 1R and ixP = ixQ if Q = S({P)
for some r e U,

(4) if / e L2(Q, n) then for almost all P e C/r we have

/ G L 2 ( f i , ^ P ) , (a)

(P)

(y)

For additional remarks on the theory of Bogoljubov-Krylov we refer to the final
paragraph.

(c) The flow F = (Q, St,t eU, n) induces a continuous unitary group Ut,t eU
on L2(O, n). Likewise there is associated with each P e UT a flow
Fp = (Q,S,,t eM, Up) which induces a unitary group on L2(Q, ^P), which, for
notational simplicity is also denoted by Ut,teU.

(d) For later use we collect some known facts about flows with point spectrum.
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First, let Ut, t e U be a continuous unitary group on a Hilbert space H. We call / e H
compact with respect to this group if for every sequence tneU,n = 1,2,... there is a
subsequence tj{n), n = 1,2,... such that U,.(n)f, n = 1, 2, . . . is a Cauchy sequence. For
/ G H let H( / ) £ H be the closed, invariant subspace spanned by the elements
UJ, teU. The following then holds:

(11) Ut,teM, restricted to H(/) , has pure point spectrum if and only if / is
compact.

n

Next, call an expression T{t) = J a j e x p ( i / l j t ) , (XjeUJ = l,...,n) a trigonometric
i

polynomial. A function f(t), teU is called Besicovitch almost periodic if (i) / is
locally L2 and (ii) there is a sequence Tn(t) of trigonometric polynomials such that

+ T

rlim(2T)"1 \f{t)-Tn(t)\
2dt exists and tends to 0 as n -• oo. For a detailed

j
-T

discussion we refer to [16]. For P e UT and / e L2(Q, nP) let HP( / ) ^ L2(fi, nP) be
the closed invariant subspace spanned by the elements Utf, teU. The following is
known:

(III) for almost all P e UT the restriction of Ut,teU (acting on L2(Q, nP)) to
HP(/) has pure point spectrum if and only if the trajectory f(Pt), t G U is Besicovitch
almost periodic.

Proofs are given in [16; 14, Chapter 1, §2]. There is a further result, also proved in
[16], which connects (II) and (III), namely:

(IV) if Ut, teU, acting on L2(Q, pi), has pure point spectrum in
H( / ) = Span {UJ, t e U} then for almost all P e UT the trajectory f(Pt), t e U is
Besicovitch almost periodic.

(d) We conclude with some notation. We write Pt in place of St{P). For
/ e L2(fi, fj.) we define /, by ft{P) = f(Pt). The set of bounded Borel functions on Q is
denoted by Bb(Q). Finally, XM 1S t n e characteristic function of M £ Q.

3. Sufficient conditions for pure point spectrum

In this section we give sufficient conditions for a flow to have pure point
spectrum. Henceforth F = (Q, St, t G U, pi) is a fixed flow. We start with two
definitions. In order to formulate the first we put

(27T1 \f(Pt)-f(Q,)\2dt\ .
-r

DEFINITION 1. Let f e L2(Q, fi) be bounded. A Borel set M is called B-stable
with respect to f if for every g > 0 there is a <5 > 0 with the property that

if P, Q G M and d(P, Q) < S then D(f/P, Q) ^ e . (*)
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REMARK. The triangle inequalities D(//Pl 5 P3) ^ D(f/P1,P2) + D(f/P2, P3) and
, Q) ^ D{f/P, Q) + D{g/P, Q) are easily verified.

DEFINITION 2. A point P E UT is called compact with respect to f e Bb (Q) if / is
a compact element with respect to the unitary group Ut,teU on L2(Q, fip).

Next, let M £ l/T be a closed set with ^(M) > 0 and put Mt = {Pt:Pe M}. The
set M* = (J Mt, t e U is an invariant Borel set and its characteristic function XM* is
invariant: #M*(P,) = ZA*»(P)- With / e C(Q) we associate the closed invariant
subspace H(#M./) £ L2(Q, î), spanned by the elements /,ZM*> t e U. Since H(/M*/) is
invariant under Ut, t E U, we can look for the spectrum of Ut, t E U, restricted to the
space H(xM*/). In particular we can ask for sufficient conditions to imply that this
spectrum is a pure point spectrum. Such conditions are contained in the following
theorem.

THEOREM 1. Assume that f e C(Q). Let M £ UT be a closed set with f.i{M) > 0.
Assume that M is B-stable with respect to f and that every P EM is compact with
respect to f. Then U,,teU, restricted to the subspace H(xM*f), has pure point
spectrum.

Proof. By (11) in §2 the theorem is proved if we can show that yai*f is compact.
In order to prove this we proceed in steps.

(51) We consider an arbitrary sequence tnEU,n = 1, 2 , . . . . Our aim is to find
a subsequence sn e U, n = 1,2,... of tn, n = 1,2,... such that fSnxM* is a Cauchy
sequence in L2(Q, ^). To this end we take an arbitrary but fixed denumerable dense
subset Pl5 P2,. . . E M. Since each P} is compact with respect to / we find a double
sequence tnj, n,j = 1,2,... such that (a) t11,t12,... is a subsequence of
tltt2,..., (b) *„+!,!, t n + , . 2 , - is a subsequence of tnl, tn2,... and (c) /„,,/,„,,••• is a
Cauchy sequence with respect to L2(Q,^Pn) for n = l , 2 , . . . . We now put
s,, = fmi> n = 1, 2,. . . and infer by the usual diagonal procedure that (d) sl5 s2,... is a
subsequence of tl,t2,... and fSi,fS2,... is a Cauchy sequence with respect to each
Hilbert space L2(Q, fiPi), n = 1, 2 , . . . .

(52) The next step consists in the verification that fSi,f2,... is a Cauchy
sequence with respect to L2(Q, f.iQ) for every QeM. To this end we note that
D(f/P, Q) is translation invariant: D{f/P, Q) = D{f/P,, Qt). Thus we fix a Q e M and
an s > 0. Since M is B-stable with respect to / there is a S > 0 such that P E M, and
d{P, Q) ^ S implies that D(f/P, Q) ^ e/4. Since Pn, M = 1,2,... is dense in M we can
find a P = Pn such that d(P, Q) ^ 3. Since P is compact with respect to / we can
find an N such that), k ^ N implies that \\fs. — fSk\\P ^ e/4, where || ||P is the Hilbert
space norm in L2(Q, nP). For j , k ^ N we now have

1/2

(1)

+ T
1/2

= linW(27T

(where use of M £ t/7 and / e C(Q) is made).
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With the aid of one of the triangle inequalities and of (1) we infer that

(2) l l / , - / J Q < D(f/QSj, Ps) + D(f/PSj, PSk) + D(f/PSk, QSk).

By translation invariance, since;, k ^ N, and by our choice of P, it follows that each
term on the right hand side of (2) does not exceed s/4, whence \\fSJ-fSk\\Q < £ is
proved for j , k ^ N. Thus Q is compact and we have shown .that

(3) given tx,t2,... eU there is a subsequence s,, = tJn,n — 1 ,2, . . . such that
fsl,fS2,... is a Cauchy sequence with respect to L2(Q, fiQ) for all Qe M.

It is now easy to see that (3) is even true for all Q G M* with M* = (J Mt, t e U. Thus
if QeM* then Q = Pt for some PeM and some teU, and hence pLP = nQ by
§2(b)(3). Since fsl,fS2,... is Cauchy with respect to L2(Q, juP), it is Cauchy with respect
to L 2 (O, fiQ). We thus have shown that

(4) the property in clause (3) holds for all Q e M*.

(S3) The proof now follows from clause (4). Thus let tneU,n = 1,2, . . . be an
arbitrary sequence. By (3) and (4) in (S2) there is a subsequence s l 9 s 2 , . . . such that
fsl,fS2,... is a Cauchy sequence with respect to L2(fi , /AP) for all P e M*. Thus

lim sup \fSn-fsfdfiP = 0
N m, n > N J

for all P G M*. Since / G C(Q) we infer from the dominated convergence theorem
that

(5) lim I dp sup \\fSn-fsfdfiP = 0.

M*

Now the supremum can be interchanged with the first integral sign without
increasing the expression in (5). We thus obtain

(6) lim sup
N m,n> N

M*

Due to the invariance of M* and to equation (/?) in §2 we have

gdfj. = dji gdfip for all g e L2(Q, fi). Clause (6) thus reduces to

(7) lim sup
N m,n » N

M

But (7) just states that fSnxM*,n = 1,2,... is a Cauchy sequence with respect to
Ut,t eU. Thus fxM* is compact and the theorem follows.
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We again write H( / ) for the closed invariant subspace of L2(Q, p.) spanned by the
elements UJ, teU.

COROLLARY 1. Let f e C(Q) be such that there is a sequence
Mk £ UT,k = 1,2,... of closed sets which satisfy

(1) Mk is B-stafcle with respect to f,

(2) if P e Mk then P is compact with respect to f,

(3) li

Then Ut,teU, restricted to H(/) , has pure point spectrum.

Proof. By (1), (2) and Theorem 1, Ut,teU has pure point spectrum in
H(/XMJ)» /c = 1, 2 , . . . . By (3), fxMp k = 1, 2,. . . converges to / in the L2(fi, /*)-sense.
Thus Ut,teU has pure point spectrum in H( / ) by [8, Chapter 10, §1].

COROLLARY 2. Let there be a subset D £ C(fi) which is dense in L2(£2, fi) and
such that every / e D satisfies the assumptions of Corollary 1. Then Ut, t e IR has pure
point spectrum.

Proof. By Corollary 1, Ut,teU has pure point spectrum in H( / ) for feD.
Since D is dense in L2(Q, n), the statement follows from [8, Chapter 10, §1].

4. Necessary conditions for a pure point spectrum

In order to get necessary and sufficient conditions for a flow to have pure point
spectrum we first need a converse to Corollary 1, as follows.

THEOREM 2. Assume that for some f e C(Q), Ut, t e R, restricted to H ( / ) , has pure
point spectrum. Then there is a sequence of closed sets Mk £ UT, k = 1,2,. . . such that

(1) Mk is B-stable with respect to f,

(2) if P G Mk then P is compact with respect to f,

(3) li

Proof We proceed in steps.

(SO) Let Ut,teU have pure point spectrum in H( / ) with Al5 A2,... the list of
eigenvalues and Ll 5 L2, . . . ^ H( / ) the corresponding eigenspaces. By routine
arguments given in [5] there is an invariant Borel set Mo with p.(M0) = 1 such that
(a) if P € Mo then

+ T

fk(P) = lim(2T)-1 [ f{Pt)cKp{-akt)dt
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exists. The function fk is simply the projection of / onto the eigenspace Lk and for
P e Mo we have (b) fk{Ps) = /fc(P)exp (iAks), seU. Since fi-M0 is invariant we may
put fk{P) = 0 on Q - M o ; equation (b) then holds for all PeQ.

(SI) By equation (y) in §2 there is a set Mx ^ Mo n UT with /^(MJ = 1 with
the property that (c) if P e Mi then

+ T

lim(2T) - i
n

f- ZA
1

2 r
dt =

J

n

f-Ifk
1

for n = 1, 2 , . . . . Since l/t, t e IR has pure point spectrum in H( / ) it follows from (II),
(III) and (IV) in §2 that there is no loss in generality in assuming that M1 also
satisfies the property that (d) if P G Mt then P is compact with respect to / .

(S2) Now take e > 0 arbitrary. Let ek, k = 1,2,... be such that
00

efc > h+i > 0, YJ Ek = e- According to Lusin's theorem [4, p. 243] there is for every
i

k a compact set Ck ^ M1 with the following properties: (e) fk is continuous and
hence uniformly continuous on Ck and (f) fi(Ck) > l — ek. Thus C = f]Ck is a
compact set such that ( g j fk,k = 1,2,... is uniformly continuous on C,
(g2) C^MX and(g3)

(S3) Since fk is the projection of / onto the eigenspace Lk of Xk we infer that

= 0. By combining (h) with equation (/?) of §2 we obtain that

2

dpLp = 0 . H e n c e t h e r e is a s e q u e n c e rijj = 1 , 2 , . . . a n d a set

r "i 2
M2 ^ M, with /i(M2) = 1 such that lim /— Yfk d\iP = 0 for PeM2. By

j J i
Egoroff's theorem [4, p. 88] there is a Borel set M2 ^ M2 with

which, for every S > 0, there is a;0 such that) ^ j 0 implies that

f(h) lim

" J
f(i) lim ^

n J

/ -

r" IJ

n

ZA
2

dp.

n

I

> 1 - e/2 in
2

for all PGM'2. Since /i is regular there is a closed set C s M2 with /i(C') ^ 1-e

having the property that (j) on C the sequence
converges uniformly to zero.

f-lfk dfipj = 1,2,...

(S4) Now consider the set A = C n C with C as in (S2) and C as in (S3). The
set A is a compact subset of UT with measure n(A) ^ 1 — 2e and the property that if
P € A then P is compact with respect to / . The theorem is then essentially proved if
we can show that A is ^stable with respect to / . In order to accomplish this last step
we first claim that A is B-stable with respect to each fk. Now fk is uniformly
continuous on A by ( g j and (g2), and because A £ C. Thus for e' > 0 there is a
S > 0 such that if points P,QeA satisfy d{P, Q) ^ S then | / k(P)-/k(f i) | < e'. Since
equation (b) in (SO) holds on the set A we find the relations
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Thus D{fk/P, Q) ^ e' provided that d(P, Q) ^ 5 and P, QeA. Therefore A is indeed
B-stable with respect to fk. From the second triangle inequality in the remark after
Definition 1 .it follows that if a set M is B-stable with respect to g and h then it is
B-stable with respect to g + h. Thus we find that the set A is 5-stable with respect to

"j

Gj = YJ /*> j = 1 > 2 , . . . . It remains to prove the instability of A with respect to / . To

»i 2 -J 1/2

this end we take a j so large that J L,fk dpLP\ ^ e'/3 for all Pe A ((S3)(j)).

j

For e' and Gj = ]T/k we determine a S > 0 such that P,Qe A and d(P, 0 ^ <5
i

imply that D(Gj/P, Q) ^ e'/3. Now we observe that the following triangle inequality
holds:

+ r
/ 2

^ +D{Gj/P,Q)
-T

+ T

f f V/2

lim|(27T1 I
- r

By (Sl)(c) the first and third terms are equal to

1/2

\f-Gj\2dfiP

and

respectively and hence are not larger than e'/3 according to our choice of j ; the
second term does not exceed E'/3 since d(P, Q) ^ 3. Therefore we have
D(f/P, Q) ^ £'• To sum up, given E we have found a closed set A ^ UT with
/̂ (/4) ^ 1 — 2e and the properties (1) if P G A then P is compact with respect to / and
(2) A is B-stable with respect to / . From this the theorem follows immediately.

COROLLARY 1. Assume that f e C(Q). Then U,,teU has pure point spectrum in
H ( / ) if and only if there is a sequence of closed sets Mk, k = 1 ,2 , . . . which satisfy

(a) if P e Mk then f{Pt), t e U is Besicovitch almost periodic,

(b) Mk is B-stable with respect to f and

(c) li

Proof Let a sequence Mk,k = 1,2,... of closed sets satisfy (a), (b) and (c).
Since the measure ^ is regular and n(UT) = 1 it follows from (c) and from §2 (III)
that there is a sequence of closed sets Mk, k = 1,2,... which satisfy
(1) M'k <= Mk n L/r, (2) n{Mk-M'k) ^ 2'\ and (3) if P e Mk then P is compact with
respect to / . Thus M'k, k = 1,2,... clearly satisfies the conditions of Theorem 2 with
respect to / . Therefore Ut,teU has pure point spectrum in H(/) . If, conversely,
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Ut,teU has pure point spectrum in H( / ) then there is a sequence Mk, k = 1, 2, . . . of
closed sets which satisfy (1), (2) and (3) of Theorem 2. By arguments as above we
then find closed sets M'k, k = 1,2,... which satisfy (1') M'k^Mk,
(2') n{Mk-M'k) ^2~k and (3') if P e M'k then f(Pt),teU is Besicovitch almost
periodic. The sequence M'k, k = 1,2,... then clearly satisfies (a), (b) and (c) of the
corollary.

COROLLARY 2. Ut,teU has pure point spectrum in L2(Q, n) if and only if there is a
denumerable subset D ^ C(Q), dense in C(Q) with respect to the supremum norm
sup \f(P)\, such that for every f e D there are closed sets Mk, k = 1, 2, . . . which satisfy

p

(a), {b) and (c) of Corollary 1.

Proof. The group Ut,t eU has pure point spectrum in L2(Q, /*) if and only if for
every / e L2(Q, p) we have that (1) Ut,teU has pure point spectrum in H(/) . On
the other hand, the set of elements / in L2(Q, p.) having property (1) form a closed
linear subspace of L2(Q, p.) [8, Chapter 10, §1]. Since C(Q) is dense in L2(Q, fi), the
statement follows from Corollary 1.

5. Flows in U"

The necessary and sufficient conditions mentioned in Corollaries 1 and 2 to
Theorem 2 do not have the form described in the introduction. In order to obtain
statements of this form we have to restrict the permitted topological spaces.
Henceforth we assume that

(A) Q is a closed subset of U".

On Q we have a distinguished set of continuous functions gi e C(Q),j = 1, 2,. . . , n
which associate to every point P = (x1,...,xn) of Q its j-th coordinate gj(P) = Xj.
We assume that the metric d on Q is the Euclidean metric given by

d(P, Q) — \YJ (dj(P) — 9j{Q))2 \ • We introduce the following distance between the

points P, QeQ:
+ T

f f V / 2

p(P,Q) = lim sup U2T)-1 d(Pt,Qt)
2dt\ .

-T

Finally we need a variant notion of B-stability.

DEFINITION 3. A set M is called B*-stable if for every s > 0 there is a 5 > 0 such
that P,QGM and d(P, Q) ^ 5 imply that p(P, Q) ^ e.

In preparation for Theorem 3 we need a lemma on Besicovitch almost periodic
functions whose proof is completely routine and therefore omitted.

LEMMA 1. Let f(t), g{t), teU be bounded Besicovitch almost periodic

functions ( | /(t) | , \g(t)\ ^ K). Then f + g and fg are Besicovitch almost periodic.
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LEMMA 2. Let Ut,teU have pure point spectrum in L2(O, fi). Then there is a
sequence of closed sets Mk, k = 1,2,... with the properties that

(1) if P e Mk then gj{Pt), t eU is Besicovitch almost periodic for j = 1, 2,... , n,

(2) Mk is B*-stable, and

(3) \imti(Mk) = l.
k

Proof Since Ut,teU has pure point spectrum in L2(fi, ju) it has pure point
spectrum in each subspace H(^) ^ L2(Q, n),j = 1, 2,. . . , n. By Corollary 1 to
Theorem 2 there is a sequence of closed sets Mk, k = 1, 2,. . . such that (a) if P e Mk

then gj(Pt), t e U is Besicovitch almost periodic forj = 1, 2,. . . , n, (b) Mk is B-stable
with respect to gp] = 1,2, ...,n, (c) lim n{Mk) = 1.

kk

We now prove part (2). Fix Mk and £ > 0. By (b) there is a 6 > 0 such that
d{P, Q) ^ S implies that D(gj/P,Q) ^ e/n,j = l,2,...,n. A straightforward
computation then yields

+ T
1/2 n

1

-r

and the proof is complete.

We need also the converse of Lemma 2.

LEMMA 3. Let there be a sequence of closed sets Mk, k = 1 ,2 , . . . such that

(1) if P e Mk then gj{Pt), teU is Besicovitch almost periodic for j = 1 , . . . , n,

(2) Mk is B*-stable, and

(3) lim

Then Ut,teU has pure point spectrum in L2(Q, n).

Proof We make use of Corollary 2 to Theorem 2. For the denumerable, dense
set D ^ C(Q) we define D thus: / e D if and only if there is a polynomial $(xl 5 . . . , x j
in the variables xl,...,xn with rational coefficients such that
f(P) = (^(g^P),..., gn{P)), P e f i . The set D is then clearly denumerable and dense
in C(Q) with respect to the supremum norm. Since for each P e Mk the functions
gj{Pt), teU are Besicovitch almost periodic for j = 1,..., n it follows from Lemma 1
that if P e Mk and / e D then f(Pt), teU is Besicovitch almost periodic. Since
lim n{Mk) = 1 by assumption, all that remains is to verify (b) in Corollary 1 to

k

Theorem 1 for feD. To this end we note that each function feD is Lipschitz
continuous, that is, there is a Cf > 0 such that \f(P)-f(Q)\ ^ Cfd{P, Q). Now we
fix an Mk and an e > 0. By assumption (2) there is a 3 > 0 such that P,Qe Mk and
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d(P, Q) < (5 imply that p(P, Q) < Cjh. For P,QeMk and d(P, Q) ^ S we then
have

+ T+ T

D(f/P,Q)^\\msup\(2Ty1 Cjd(Pt,Qt)
2dt\ =

T I J J
-r

Hence Mk is B-stable with respect to / ; this proves the lemma.

T H E O R E M 3. Under the assumptions of this section, Ut,teU has pure point

spectrum in L2(Q, p.) if and only if there are closed sets Mk, k = 1, 2, . . . such that

(1) if P G Mk then gj{Pt), t eM is Besicovitch almost periodic for j = l,...,n,

(2) Mk is B*-stable, and

(3) \imfi(Mk) = l.
k

6. Remarks

(A) The decomposition theory of Bogoljubov-Krylov is used here in a more
general form than as it is in the literature. In [2, 11] it is assumed that the flow
St,teU satisfies

(i) St(P) is simultaneously continuous in P, t.

In this paper we only assume that

(ii) the mapping U x Q -• Q which associates St(P) with P, t is measurable.

An inspection of [11] shows that clauses (l)-(4) in §2 depend on (i) in only one case,
namely the proof that the measure p,P defined by

+ T

f(Pt)dt,feC(Q),
-T

is indeed invariant. A proof of this fact requires an elementary but somewhat subtle
approximation argument and a shrinking of UT (some transitive points in the sense
of [11] have to be omitted). The full details are worked out in [7] where the theory
of Bogoljubov-Krylov is generalized to arbitrary, measure preserving abelian
groups. An alternative approach would have been to work with the decomposition
theory of Rohlin [13]. However this would have forced the introduction of a number
of notions centering around the concept of measurable partition, making the paper
considerably more involved.

(B) As to the problem, treated here, of characterizing the pure point spectrum
of a flow in "dynamical" terms, there is a remark in [16] to the effect that the flow
(Q, St, t G U, p) has pure point spectrum if and only if for every / G L2(Q, p) the
function f(Pt), t e U is Besicovitch almost periodic for almost all P. However this
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statement is only true if the flow is ergodic as simple counterexamples show
(consider, for example, the flow T2 in the introduction). In the general case one has to
replace the ergodicity requirement by another global condition such as B-stability. In
this connection another well-known result has to be mentioned. Call a flow
F = (Q, S,, teU,n) uniformly Ljapounov stable if it satisfies the condition that

(iii) for e > 0 there is a S > 0 such that for all P, Q with d(P, Q) ^ S we have

d(P,,Qt) < e f o r a11 ' G K -

It is shown at different places that (iii) is equivalent to the existence of denumerably
many eigenvalues Al5 A2,... with the property that

(iv) for / e C ( Q ) there exist eigenfunctions (j)n e C(O), n = 1,2,... (with
4>n(P,) = (/>n(P)exp(//ln£)) and coefficients a),j — \,...,n such that

sup
p

tends to zero as n -* oo.

For details we refer to [6]. The results of this paper (notably Theorem 3) may be
considered as a generalisation of this situation to a much wider class of flows.

(C) Trivial examples which illustrate Theorem 3 are easily obtained by
proceeding as in the introduction, namely by considering various kinds of rotations
and mixtures of rotations. The question arises whether there are more sophisticated
examples to which Theorem 3 is applicable. This is indeed the case. In [9]
N. Kolmogorov constructed a particular flow Fo = (O, St, teU,fi) which has the
properties that (1) fi is the 2-torus, (2) the flow S,,teM is generated by analytical
differential equations, and (3) the induced unitary group Ut,teU has pure point
spectrum, is ergodic and has no other continuous eigenfunctions besides the
constants. Thus the flow Fo is certainly not uniformly Ljapounov stable by the above
remarks. However Theorem 3 is applicable, and so it follows that F o still has some
Ljapounov like stability properties, namely those described by Definition 3 and
Theorem 3, clauses (2) and (3). The details of the Kolmogorov construction are
described in [15, lecture 11]; variations of the construction and extensions to higher
dimensions are given in [10]. Theorem 3 can of course be used in the negative
direction, namely to infer for flows which are known not to have pure point spectrum
that the trajectories do not exhibit the stability properties required by Theorem 3.

(D) As the referee pointed out, there is a stability notion which is equivalent to
instability and which has been considered at several places in the literature; this is
the concept of mean L-stability (S. Fomin [3], J. C. Oxtoby [12], J. Auslander [1]).
In order to adapt this concept to the framework of §5 we extend the definition in [12,
p. 127], given for discrete time systems, to the continuous case. With every Borel set

+ T
r

£ £ | w e associate its upper density d*(E) = limsup {IT) l xE{t)dt, with xE the
T J

-T

characteristic function of E. A Borel set M £ fi is called mean L-stable if for every e
there is S such that P,QeM and d{P, Q) ^ S imply that d{Pt, Qt) ^ e for all t e U
with the possible exception of a set E ^ U (depending on P, Q) of mean upper
density at most e. As the referee observed, mean L-stability and JB*-stability are
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equivalent. We prove one direction of this equivalence. An easy calculation shows
that

+ T

limsup(27)-1 f d(Pt,Qt)dt^p(P,Q),
-T

where d(P, Q) and p{P, Q) are defined as in §5. Now let M be B*-stable. Thus to
e > 0 there is a 8 > 0 with p(P, Q) ^ e2 whenever P, Q e M and d(P, Q) ^ S. By the
inequality displayed above we find that

+ T

lim sup ( 2 7 T 1 d(Pt,Qt)dt ^ e2 .

It then follows that the set E = {t: d(Pt, Qt) ^ e} has mean upper density at most e.
This proves that 5*-stability implies mean L-stability. The proof of the converse is
similar.

(E) There are some open questions which suggest themselves. For instance it
would be important to know if for ergodic flows Theorem 3 still holds if only
conditions (2) and (3) are retained. A related question (suggested by the referee) asks
whether a B*-stable (or, equivalently, a mean L-stable) minimal set has pure point
spectrum. Briefly, the main question is whether under additional conditions one can
eliminate every reference to Besicovitch almost periodic functions. We know of no
proofs for, nor counterexamples to, this conjecture.
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