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We consider a Volterra discrete system with nonlinear perturbation

x(n + 1) = A(n) x(n) +
n∑

s=0

B(n, s)x(s) + g(n, x(n))

and obtain necessary and sufficient conditions for stability properties of the zero
solution employing the resolvent equation coupled with the variation of parameters
formula.
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1 INTRODUCTION

In this paper, we have studied the stability properties of the zero solution
of the nonlinear perturbed volterra discrete system

x(n + 1) = A(n)x(n) +
n∑

s=0

B(n, s) x(s) + g(n, x(n)) (1.1)

where g(n, x(n)) is continuous in x and satisfies |g(n, x(n))| ≤ λ(n) |x(n)|,
where λ(n) is such that 0 ≤ λ(n) ≤ N < +∞, for some constant N.

Moreover, A(n), B(n, s) are n×n matrix functions on Z+ and Z+×Z+,
respectively. Recently, several authors have studied the behavior of solutions
of variant forms of (1.1). Medina [10], [11], [12], Eloe, Islam and Raffoul [5],
and Raffoul [13], obtained stability and boundedness results of the solutions
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of the homogenous part of (1.1) by means of representing the solution in
terms of the resolvent matrix. Eloe et al. [5] and Elaydi et al. [4], used the
notion of total stability and established results on the asymptotic behavior
of the zero solution of (1.1). Their work heavily depended on showing or
assuming the summability of the resolvent matrix. For more results on
stability of the zero solution of Volterra discrete system we refer the reader
to Crisci, Komanovskii and Vecchio [2], Elaydi [3] and Agarwal and Pang
[1]. This research is a continuation of the research initiated by the authors
in [6] and related to the work in [5]. In this paper we extend some of the
results in [7], and later in the paper, we furnish an example as an application
to some of our theorems, in which we show the summability of the resolvent
matrix.

For x ∈ Rk, |x| denotes the Euclidean norm of x. For any k × k matrix
A, we define the norm of A by |A| = max{|Ax| : |x| ≤ 1}. We define the set
C(n) = {φ ∈ Rk : φ : [0, n] → Rk} with the norm ||φ|| = max{|φ(s)| : 0 ≤
s ≤ n} on it.

For each n0 ∈ Z+, and φ ∈ C(n0), there is a unique (vector) function
φ : Z+ → Rk on 0 ≤ s ≤ n0 on [n0,∞) with x(s) = φ(s) for 0 ≤ s ≤
n0. Such a function x(n) is called a solution of (1.1), and is denoted by
x(n, n0, φ). Throughout the paper we write x(n) for x(n, n0, φ) unless it is
stated otherwise.

We have also used the resolvent of (1.1) in the analysis. In particular, we
have obtained various conditions for the stability properties of the zero solu-
tion of (1.1). The resolvent matrix R(n, s) associated with the homogeneous
equation of (1.1)

x(n + 1) = A(n)x(n) +
n∑

s=0

B(n, s) x(s) (1.2)

satisfies the resolvent matrix equation

R(n + 1, s) = A(n) R(n, s) +
n∑

u=s

B(n, u) R(u, s) (1.3)

if s ≤ n, R(s, s) = I and R(n, s) = 0 if n < s, or,

R(n, s + 1) (A(s)− I) +
n−1∑
u=s

R(n, u + 1)B(u, s) + ∆sR(n, s) = 0 (1.4)

if s ≤ n, R(n, n) = I and R(n, s) = 0 if n < s, where ∆sR(n, s) = R(n, s +
1)−R(n, s).
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Recently, Eloe, Islam and Raffoul arrived at the resolvent equation (1.4) and
therefore, for its proof we refer the interested reader to [5].

2 STABILITY

Definition 2.1. The zero solution of (1.1) is stable if for each ε > 0 and
n0 ≥ 0, there exists δ > 0 such that [φ ∈ C(n0), ||φ|| ≤ δ, n ≥ n0] implies
|x(n)| < ε. It is uniformly stable (US) if δ is independent of n0.

Definition 2.2. The zero solution of (1.1) is uniformly asymptotically sta-
ble (UAS) if it is US and there exists a δ0 > 0 with the property that for
each ε > 0 there exists a T = T (ε) > 0 such that [n0 > 0, φ ∈ C(n0), ||φ|| <
δ0 andn ≥ n0 + T ] imply |x(n, n0, φ)| < ε.

Theorem 2.1. Let

Q(n) = |A(n) |+ λ(n) +
∞∑

u=n

|B(u, n)|.

Suppose that, for all n ≥ n0 ≥ 0,

∞∑
n=n0

Q(n) |R(n, n0) | < ∞ ,

∞∑
u=n

Q(u)|R(u, n+1)| ≤ K1 Q(n) < ∞, (2.1)

and for the upper bound N, on λ(n), 0 ≤ N K1 < 1, hold. Then the zero
solution of (1.1) is stable.

Proof. Suppose that x(n) is a solution of (1.1). If R(n, s) satisfies (1.4),
then x(n) is given by, see [5],

x(n) = R(n, n0)φ(n0) +
n−1∑
s=n0

R(n, s + 1)
n0−1∑

u=0

B(s, u) φ(u)

+
n−1∑
s=n0

R(n, s + 1) g(s, x(s)). (2.2)

First we take the absolute value on both sides of (2.2), multiply through by
Q(n) and then sum from n = n0 to n = ∞ to obtain
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∞∑
n=n0

Q(n) |x(n)| ≤
∞∑

n=n0

Q(n) |R(n, n0)| ||φ||

+
∞∑

n=n0

Q(n)
n−1∑
s=n0

|R(n, s + 1)|
n0−1∑

u=0

|B(s, u)| ||φ||

+
∞∑

n=n0

Q(n)
n−1∑
s=n0

|R(n, s + 1)|λ(s) |x(s)|

≤
∞∑

n=n0

Q(n) |R(n, n0)| ||φ||

+
∞∑

n=n0

n∑
s=n0

Q(n) |R(n, s + 1)|
n0∑

u=0

|B(s, u)| ||φ||

+
∞∑

n=n0

n∑
s=n0

Q(n) |R(n, s + 1)| λ(s) |x(s)|.

By changing the order of summations, we have

∞∑
n=n0

n∑
s=n0

Q(n) |R(n, s + 1)| =
∞∑

s=n0

∞∑
n=s

Q(n) |R(n, s + 1)| .

Thus, from the above inequality, we obtain

∞∑
n=n0

Q(n) |x(n)| ≤
∞∑

n=n0

|R(n, n0) |Q(n) ||φ||

+
∞∑

s=n0

∞∑
n=s

Q(n) |R(n, s + 1)|
n0∑

u=0

|B(s, u) | ||φ||

+
∞∑

n=n0

∞∑
u=n

Q(u) |R(u, n + 1)|λ(n) |x(n)|. (2.3)

By (2.1) there exists an M1 > 0, and M2 > 0 such that

∞∑
n=s

Q(n)|R(n, s)| < M1, and
∞∑

s=n

Q(s)|R(s, n + 1)| < M2.
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Let

C∗(n0) =
∞∑

s=n0

n0∑

u=0

|B(s, u)|.

Then from (2.3), we have
∞∑

n=n0

Q(n) |x(n)| ≤ M1 ||φ||+ M2

∞∑
s=n0

n0∑

u=0

|B(s, u)| ||φ||

+N K1

∞∑
n=n0

Q(n) |x(n)|

≤ M1 ||φ||+ M2 C∗(n0)||φ||

+N K1

∞∑
n=n0

Q(n) |x(n)| .

Solving for
∑∞

n=n0
Q(n) |x(n)|, we get

∞∑
n=n0

Q(n) |x(n)| ≤ ||φ|| (M1 + M2 C∗(n0))
1−N K1

. (2.4)

Next we rewrite (1.1) as

∆ x(n) = D(n) x(n) +
n∑

s=0

B(s, u) x(s) + g(n, x(n))

where I is the identity matrix and D(n) = A(n)− I. By summing the above
equation over n from n0 to n− 1 we get

|
n−1∑
s=n0

∆x(s)| =

∣∣∣∣∣
n−1∑
s=n0

[
D(s) x(s) +

s∑

u=0

B(s, u) x(u) + g(s, x(s))

] ∣∣∣∣∣

≤
∣∣∣∣∣

n−1∑
s=n0

[
D(s) x(s) +

s∑

u=n0+1

B(s, u) x(u) + g(s, x(s))

] ∣∣∣∣∣

+

∣∣∣∣∣
n−1∑
s=n0

n0∑

u=0

B(s, u)x(u)

∣∣∣∣∣

≤
∞∑

n=n0

|D(n) | |x(n)|+
∞∑

n=n0

n∑
u=n0

|B(n, u)| |x(n)|

+
∞∑

n=n0

λ(n) |x(n)|+
∞∑

n=n0

n0∑

u=0

|B(n, u)| ||φ||.
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By interchanging the order of summations in the second term of the right
side of the above inequality, we arrive at

|
n−1∑
s=n0

∆x(s)| ≤
∞∑

n=n0

[
|D(n) |+

n∑
u=n0

|B(n, u)|+ λ(n)

]
|x(n)|+ C∗(n0) ||φ||

≤
∞∑

n=n0

Q(n) |x(n)|+ C∗(n0) ||φ||. (2.5)

By substituting (2.4) into (2.5), we get

|
n−1∑
s=n0

∆x(s) | ≤ ||φ|| (M1 + M2 C∗(n0))
1−N K1

+ C∗(n0) ||φ||.

Thus,

|x(n)− x(n0)| ≤ ||φ||
[ ||φ|| (M1 + M2 C∗(n0))

1−N K1
+ C∗(n0)

]
.

But |x(n)| − |x(n0)| ≤ |x(n)− x(n0)|, and hence we have

|x(n)| ≤ ||φ||
[
(M1 + M2 C∗(n0))

1−N K1
+ C∗(n0) + 1

]
.

This completes the proof. We remark that if C∗(n0) is uniformly bounded,
then Theorem 2.1 implies that the zero solution of (1.1) is US.

Theorem 2.2. Suppose
i.

sup
n≥n0≥0

∞∑
s=n

|R(s, n0)| < +∞, (2.6)

sup
n≥n0≥0

{
|R(n, n0) |+

n0−1∑

u=0

|
n−1∑
s=n0

R(n, s + 1) B(s, u)

}
< +∞, (2.7)

sup
n≥n0≥0

λ(n)
∞∑

s=n

|R(s, n + 1) | ≤ L < 1, (2.8)

and there exist a D > 0 such that

∞∑
s=n0

( ∞∑
n=s

|R(n, s + 1) |
n0−1∑

u=0

|B(s, u) |
)
≤ D (2.9)



UNIFORM STABILITY 7

then the zero solution of (1.1) is uniformly stable. ii. If the zero solution
of (1.1) is uniformly stable and

sup
n≥n0≥0

n−1∑
s=n0

|R(n, s + 1)| < ∞ (2.10)

then (2.7) holds.
Proof.
i. Suppose that (2.7) - (2.9) hold. Summing (2.2) over n from n = n0 to
n = ∞ and using |g| ≤ λ|x|, we get

∞∑
n=n0

|x(n)| ≤
∞∑

n=n0

|R(n, n0) | ||φ||

+
∞∑

n=n0

(
n−1∑
s=n0

|R(n, s + 1) |
n0−1∑

u=0

B(s, u) ||φ||
)

+
∞∑

n=n0

(
n∑

s=n0

|R(n, s + 1) | | g(s, x(s)) |
)

≤
∞∑

n=n0

|R(n, n0) | ||φ||

+
∞∑

n=n0

(
n∑

s=n0

|R(n, s + 1) |
n0−1∑

u=0

B(s, u) ||φ||
)

+
∞∑

n=n0

∞∑
s=n

|R(s, n + 1) | λ(n)|x(n)|.

From (2.6), there exists a positive constant F such that
∑∞

s=n |R(n, n0)| ≤ F.
Thus, using (2.8) and (2.9) we arrive at

∞∑
n=n0

|x(n)| ≤ F +
∞∑

s=n0

( ∞∑
n=s

|R(n, s + 1) |
n0−1∑

u=0

B(s, u)

)
||φ||

+L
∞∑

n=n0

|x(n)‖. (2.11)

Hence (2.11) yields
∞∑

n=n0

|x(n)| ≤ F ||φ||+ D ||φ||+ L

∞∑
n=n0

|x(n) |.
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Thus,
∞∑

n=n0

|x(n)| ≤ (F + D) ||φ||
1− L

. (2.12)

Using equation (2.2), we obtain

|x(n)| ≤ |R(n, n0)| ||φ||+
n0−1∑

u=0

(
|

n−1∑
s=n0

R(n, s + 1)B(s, u) |
)
||φ||

+
n−1∑
s=n0

|R(n, s + 1)|λ(s) |x(s)|. (2.13)

By (2.7) and the fact that λ(n) is bounded, there exists a constant P > 0
such that |R(n, s)|λ(s) ≤ P for 0 ≤ n0 ≤ s ≤ n. Also by (2.7), there exists
a constant E > 0 such that

sup
n≥n0≥0

{
|R(n, n0)|+

n0−1∑

u=0

|
n−1∑
s=u0

R(n, s + 1)B(s, n)|
}

< E.

Thus (2.12) and (2.13) yield

|x(n)| ≤
{
|R(n, n0)|+

n0−1∑

u=0

|
n−1∑
s=n0

R(n, s + 1)B(s, u) |
}
||φ||

+P
n−1∑
s=n0

|x(s)|

≤ E ||φ||+ P
(F + D) ||φ||

1− L
:= J ||φ|| (2.14)

Thus, (2.14) implies that the zero solution of (1.1) is US.
Suppose that the zero solution of (1.1) is US. Then for For ε = 1, there

exists a δ > 0 such that [n0 ≥ 0, φ ∈ C(n0), ||φ|| ≤ δ, n ≥ n0] implies
|x(n, n0, φ)| < 1. Let m be a positive integer and define the sequence of
functions φm by

φm(u) = v a−m(n0−u) on 0 ≤ u ≤ n0. (2.15)

Let ψm(u) = δ
2va−m(n0−u) for 0 ≤ u ≤ n0. Then, |ψm(u)| ≤ δ

2 . Hence
we have |x(n, n0, ψm(s))| < ε . It is clear from (2.15) that φm(n0) = v and
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|φm(s)| ≤ 1 for 0 ≤ s ≤ n0. Thus, from (2.2) we have

|R(n, n0)| δ2 ≤ |x(n, n0, ψm)|+ δ

2
|

n−1∑
s=n0

R(n, s + 1)
n0−1∑

u=0

B(s, u) a−m(n0−u)|

+|
n−1∑
s=n0

|R(n, s + 1)| λ(s) |x(s, n0, ψm(s))|

≤ 1 +
δ

2
|

n−1∑
s=n0

R(n, s + 1)
n0−1∑

u=0

B(s, u) a−m(n0−u)|

+|
n−1∑
s=n0

|R(n, s + 1)| λ(s). (2.16)

Now, for fixed n,

|
n−1∑
s=n0

R(n, s + 1)
n0−1∑

u=0

B(s, u) a−m(n0−u)| → 0 as m →∞.

By (2.10), there exists a G > 0 such that
∑n−1

s=n0
|R(n, s + 1)|λ(s) ≤ G.

Thus from (2.16)

|R(n, n0)| ≤ 2
δ
(1 + G). (2.17)

Next, let φ ∈ C(n0) with ||φ|| < 1. Define ψ = δ φ. Then ||ψ|| < δ. Thus,
by the definition of δ, we have |x(n, n0, ψ)| < 1 for all n ≥ n0. It follows
from (2.2) and (2.17) that
∣∣∣∣∣

n−1∑
s=n0

R(n, s + 1)
n0−1∑

u=0

B(s, u) ψ(u)

∣∣∣∣∣ ≤ |x(n, n0, ψ)|+ |R(n, n0)| |ψ(n0)|

+
n−1∑
s=n0

|R(n, s + 1)|λ(s) | |x(s, n0, ψ)|

≤ |x(n, n0, ψ)|+ |R(n, n0)| ||ψ(n0)||+ G

≤ 1 + 2 (1 + G) + G.

Hence,

|
n0−1∑

u=0

n−1∑
s=n0

R(n, s + 1)ϕ(u)| ≤ 1
δ
|
n0−1∑

n=0

n−1∑
s=n0

R(n, s + 1)ψ(n) | ≤ 3
δ
(1 + G)
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for n ≥ n0 and the proof is complete.
The next Lemma gives necessary and sufficient conditions for the uni-

form boundedness of R(n, s). Its proof is modeled after Lemma 2.2 of [5].

Lemma 2.1. There exists a positive constant H such that |R(n, s)| ≤ H
for n ≥ s ≥ 0 if and only if

sup
n≥s≥0

∣∣∣∣∣
n−1∑
u=s

R(n, u + 1)

(
D(u) +

u∑
v=s

R(n, u + 1)B(u, v)

)∣∣∣∣∣ < ∞. (2.18)

Proof. By solving equation (1.4) for 4sR(n, s), and summing it from s to
n− 1 and then changing the order of summations, we arrive at

R(n, s) = I +
n−1∑
u=s

R(n, u + 1) [A(u)− I] +
n−1∑
v=s

n−1∑
u=v

R(n, u + 1)B(u, v)

= I +
n−1∑
u=s

R(n, u + 1)D(u) +
n−1∑
u=s

u∑
v=s

R(n, u + 1)B(u, v)

= I +
n−1∑
u=s

R(n, u + 1)

[
D(u) +

u∑
v=s

B(u, v)

]
.

Hence, the result follows.

For Theorem 2.4, we assume

sup
n≥n0≥0

n0−1∑

u=0

|
n∑

s=n0

R(n, s + 1) B(s, u)| < +∞. (2.19)

Theorem 2.3. Suppose that |R(n, s+1)| ≤ H(s) for 0 ≤ s ≤ n < ∞ with

sup
n≥0

n−1∑

s=0

H(s) λ(s) ≤ K for K > 0. (2.20)

Then, the zero solution of (1.1) is US if and only if (2.7) holds .
Proof. If (2.7) holds, then for 0 ≤ n0 ≤ s ≤ n, we have |R(n, s + 1)| ≤
H(s) < ∞. From (2.13), we obtain
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|x(n)| ≤
{
|R(n, n0) |+

n0−1∑

u=0

|
n−1∑
s=n0

R(n, s + 1) B(s, u) |
}
||φ||

+
n−1∑
s=n0

|R(n, s + 1)| λ(s) |x(s)|

≤ E ||φ||+
n−1∑
s=n0

H(s) λ(s) |x(s)|.

Applying the discrete Gronwall’s inequality, see [9], we get

|x(n)| ≤ E ||φ|| exp

(
n−1∑
s=n0

H(s) λ(s)

)
≤ E ||φ|| exp(K) := L||φ|| (2.21)

This proves that the zero solution of (1.1) is US. The proof of the converse
of this theorem is similar to the proof of the converse of Theorem 2.2.

Theorem 2.4.
(i) If (2.7)-(2.9) and (2.18)-(2.19) hold, then the zero solution of (1.1) is
US.
(ii) If the zero solution of (1.1) is US and (2.10) holds, then (2.18)- (2.19)
hold.

Proof. Conditions (2.18)-(2.19) hold if and only if (2.7) holds. Therefore
the results follow directly from Theorem 2.2.

Theorem 2.5.
i. Suppose that (2.6)-(2.9), and

{
|R(n, n0) |+

n0−1∑

u=0

|
n−1∑
s=n0

R(n, s + 1)B(s, u) |
}
→ 0 (2.22)

as n− n0 → +∞ uniformly,

n−1∑
s=n0

|R(n, s + 1)| → 0, (2.23)

as n− n0 → +∞ uniformly hold. Then, the zero solution of (1.1) is UAS.
ii. If the zero solution of (1.1) is UAS and (2.23) hold, then (2.22) holds.
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Proof. Suppose that (2.6)-(2.9) hold. Then, by Theorem 2.2, the zero
solution is obviously US. Let B1 > 0 be given and φ ∈ C(n0) on 0 ≤ s ≤ n0

with ||φ|| ≤ B1. Then, it follows from (2.13) and (2.14) that,

|x(n)| ≤
{
|R(n, n0)|+

n0−1∑

u=0

|
n−1∑
s=n0

R(n, s + 1)B(s, u) |
}
||φ||

+
n−1∑
s=n0

|R(n, s + 1)|N J ||φ||

≤
[
|R(n, n0)|+

n0−1∑

u=0

|
n−1∑
s=n0

R(n, s + 1)B(s, u) |
]

B1

+

[
N J

n−1∑
s=n0

|R(n, s + 1)|
]

B1.

From (2.22) and (2.23), it follows that for any ε > 0, there exists a constant
T > 0 such that
[
|R(n, n0)|+

n0−1∑

u=0

|
n−1∑
s=n0

R(n, s + 1)B(s, u) |+ N J
n−1∑
s=n0

|R(n, s + 1)|
]

<
ε

B1

for all n ≥ T + n0. Thus, |x(n)| < ε for all n ≥ T + n0. This implies that
the zero solution of (1.1) is UAS.

Conversely, suppose that the zero solution of (1.1) is UAS. Then it is
US. Let φ ∈ C(n0) with ||φ|| ≤ 1. Then, for any ε > 0, there exists T > 0
such that |x(n, n0, φ)| < ε for n ≥ T + n0. By making use of (2.16) and by
the argument of Theorem 2.2 (ii), we have |R(n, n0)| < ε for all n ≥ T + n0.
Now using (2.13) in (2.2), we get

|
n0−1∑

u=0

(
n−1∑
s=n0

R(n, s + 1)B(s, u)

)
φ(u)|

≤ |x(n, n0, φ)|+ |R(n, n0)|+ N J
n−1∑
s=n0

|R(n, s + 1)| < 3 ε

for all n ≥ T + n0. This implies

n0−1∑

u=0

|
n−1∑
s=n0

R(n, s + 1)B(s, u)| < 3 ε
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for all n ≥ T + n0. This shows that (2.22) hold and the proof is complete.

Remark 2.1. The function

|R(n, s)|+
n−1∑
u=s

|
s−1∑

v=0

R(n, u + 1)B(u, v) | (2.24)

can serve as a Liapunov functional to directly verify conditions (2.7) and
(2.22)-(2.23). (See Example 3.1).

Lemma 2.2. The resolvent R(n, s) → 0 as n − s → +∞ uniformly if and
only if {

I +
u=n−1∑

u=s

|R(n, u)|
(

D(u) +
u∑

v=s

B(u, v) |
)}

→ 0 (2.25)

as n− s → +∞ uniformly.

The proof follows directly from Lemma 2.1.

Theorem 2.6.
(i) If (2.6)-(2.9), (2.23)-(2.25), and

n0−1∑

u=0

|
n−1∑
s=n0

R(n, s + 1)B(s, u) | → 0 (2.26)

as n− n0 → +∞ uniformly hold, then the zero solution of (1.1) is UAS.

The proof of Theorem 2.6 follows directly from Lemma 2.2 and Theorem 2.5.

Using (2.21) of Theorem 2.3, we obtain the following theorem which is
more practical when the sum of R(n, s+1) with A(n) and

∑n
s=0 B(n, s) can

be estimated.

Theorem 2.7. Suppose that (2.7) and (2.20) hold. Then, the zero solution
of (1.1) is UAS if and only if (2.22) and

n−1∑

s=0

|R(n, s + 1)|λ(s) → 0 for n− n0 → +∞ uniformly (2.27)

hold.
Proof. Suppose that (2.7) and (2.20) hold. Then, by Theorem 2.3, the zero
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solution is US.
Let B1 > 0 be a given constant and φ ∈ C(n0) on 0 ≤ s ≤ n0 with

||φ|| < B1. Using (2.21) in (2.2), we obtain

|x(n)| ≤
{
|R(n, n0) |+

n0−1∑

u=0

(
n−1∑
s=n0

R(n, s + 1) B(s, u)

)}
||φ||

+L
n−1∑
s=n0

|R(n, s + 1)|λ(s) ||φ||.

Applying (2.22) and (2.27) in the above inequality gives the UAS. The con-
verse of this theorem follows from the proof of the converse of Theorem 2.5.

3 SCALAR EQUATION

We end the paper by furnishing an example in which we show that the zero
solution of the scalar nonlinear volterra discrete equation

x(n + 1) = a(n) x(n) +
n∑

s=0

b(n, s) x(s) + g(n, x(n)) (3.1)

where |g(n, x(n))| ≤ λ(n)|x(n)|, is UAS.

Example 3.1. Consider equation (3.1) and suppose there are positive
constants γ, h,B and K with K < 1 satisfying the following conditions for
t ≥ 0:

(i) −a(n) + K
(
1−

n∑

s=0

|b(n, s)|) > 0,

(ii) For each γ > 0, there exists h > 0 such that
n+h−1∑

s=n

|a(s)| ≥ γ,

(iii)
1

|a(n)|
n0∑

s=0

|b(n, s)| → 0 as n−n0 → +∞ uniformly on {n | a(n) 6= 0},

(iv)
n0−1∑

s=0

|b(n, s)| ≥ λ(n) for n0 ≥ 0,



15 TOUHID M. KAHANDAKER AND YOUSSEF N. RAFFOUL

(v)
n∑

0

λ(s) < ∞ for all n ≥ 0, and

(vi)
∞∑

u=0

|b(u, s)| ≤ B.

Then the zero solution of (3.1) is UAS.
Proof. Define the discrete Liapunov functional, see [5], V (s) on [0, n − 1]
by

V (s) = |R(n, s)|+
n−1∑
u=s

s−1∑

v=0

|R(n, u + 1)| |b(u, v)|

where R(n, s) is the resolvent of (3.1) with g = 0, satisfying

R(n, s + 1) a(s) +
n−1∑
u=s

R(n, u + 1) b(u, s)−R(n, s) = 0, R(n, n) = 1.

Then using (i) we have

4V (s) = |R(n, s + 1)| − |R(n, s)|

+
n−1∑

u=s+1

s∑

v=0

|R(n, u + 1)| |b(u, v)| −
n−1∑
u=s

s−1∑

v=0

|R(n, u + 1)| |b(u, v)|

≥ (−|a(s)|+ 1) |R(n, s + 1)|

−|R(n, s + 1)| |b(s, s)| − |R(n, s + 1)|
s−1∑

v=0

|b(s, v)|

=

(
1− |a(s)| −

s∑

v=0

|b(s, v)|
)
|R(n, s + 1)|

≥ ( 1
K
− 1

)|a(s)||R(n, s + 1)|. (3.2)

So we have, 4V (s) > 0.
This yields that for n ≥ n0 ≥ 0, V (n0) ≤ V (n) = |R(n, n)| = 1. That is,

|R(n, n0)|+
n−1∑
u=n0

n0−1∑

v=0

|R(n, u + 1)| |b(u, v)| ≤ 1. (3.3)

Hence (2.7) is satisfied.
By summing (3.2) from 0 to n− 1, we obtain

( 1
K
− 1

) n−1∑

s=0

|a(s)||R(n, s + 1)| ≤ V (n)− V (0) ≤ 1 (3.4)
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or
n−1∑

s=0

|a(s)||R(n, s + 1)| ≤ K

1−K
=: D.

Note that (3.3) implies that there exists a constant H > 0 such that

sup
s≥n0≥0

|R(n, s + 1)| = H ≤ 1 for 0 ≤ s ≤ n < ∞.

Hence, by (v) we have

sup
n≥1

n−1∑

s=0

H λ(s) < ∞.

Thus condition (2.20) is satisfied and by Theorem 2.3, the zero solution
of (3.1) is US. By (iii), for any ε > 0 there exists N1 > 0 such that for
u ≥ N1 + s− 1 implies

s−1∑

v=0

|b(u, v)| ≤ ε

(3 + B)D
|a(u)|.

Thus, for n ≥ N1 + s− 1 we have

s+N1−1∑
u=s

|R(n, u + 1)|
s−1∑

v=0

|b(u, v)|

=
n−1∑
u=s

|R(n, u + 1)|
s−1∑

v=0

|b(u, v)|+
n−1∑

u=s+N1

|R(n, u + 1)|
s−1∑

v=0

|b(u, v)|

≤ ε

(3 + B)D

n−1∑

u=s+N1

|R(n, u + 1)||a(u)|+
s+N1−1∑

u=s

|R(n, u + 1)|
s−1∑

v=0

|b(u, v)|

≤ ε

3 + B
+

s+N1−1∑
u=s

|R(n, u + 1)|
s−1∑

v=0

|b(u, v)|. (3.5)

Let β = K
1−K and α = 3+B

εβ . By (ii), there exists an h > 0 such that∑s+h−1
v=s |a(v)| ≥ α, and

|R(n, ns + 1)|β
s+h−1∑

v=s

|a(v)| ≤ β
s+h−1∑

u=s

|R(n, u + 1)||a(u)|,

for ns ∈ [s, s + h− 1] and n ≥ s + h, where

|R(n, ns + 1)| = min
s≤u≤s+h−1

|R(n, u + 1)|.
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Using (3.4) in the above inequality we arrive at

|R(n, ns + 1)| ≤ 1

β
∑s+h−1

v=s |a(v)|
<

ε

3 + B
.

Choose N > 1 so that βNε
3+B > 1. For each n0 ≥ 0 and n ≥ n0 +(N +1)(N1 +

h− 1), define {nj} with

n(j − 1) + N1 ≤ nj ≤ n(j − 1) + N1 + h− 1, j = 1, 2, 3.....N

such that
|R(n, nj + 1)| < ε

3 + B
. (3.6)

It follows that nN ≤ n0 + N(N1 + h− 1) and by (3.4) we arrive at

N∑

j=1

( nj+N1−1∑
u=nj

β|R(n, u + 1)||a(u)|) ≤
n−1∑
u=n0

β|R(n, u + 1)||a(u)| ≤ 1.

Since βNε
3+B > 1, it follows from the above inequality there exists nk, 1 ≤ k ≤

N such that

N

nk+N1−1∑
u=nk

β|R(n, u + 1)||a(u)| ≤ 1.

Or,
nk+N1−1∑

u=nk

|R(n, u + 1)||a(u)| < ε

3 + B
. (3.7)

Since V (s) is increasing, we have

V (nk) ≤ V (nk + 1).

Hence, using (3.5)-(3.6) and (vi) we arrive at

|R(n, nk)|+
n−1∑
u=nk

nk−1∑

v=0

|R(n, u + 1)| |b(u, v)|

≤ |R(n, nk + 1)|+
n−1∑
u=nk

nk−1∑

v=0

|R(n, u + 1)| |b(u, v)|

+
n−1∑

u=nk+1

|R(n, u + 1)| |b(u, nk)|

≤ ε

3 + B
+

2ε

3 + B
+

B ε

3 + B
= ε.
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This yields

|R(n, n0)|+
n−1∑
u=n0

n0−1∑

v=0

|R(n, u + 1)| |b(u, v)| = V (n0) ≤ V (nk) < ε (3.8)

for n ≥ n0 + (N + 1)(N1 + h − 1) ≥ nk, N > 3+B
βε . Hence condition (2.22)

is satisfied. Next, for n ≥ n0 + (N + 1)(N1 + h− 1) ≥ nk we have by using
condition (iv) in (3.8).

|R(n, n0)| +
n−1∑
u=n0

|R(n, u + 1)|λ(u)

≤ |R(n, n0)|+
n−1∑
u=n0

|R(n, u + 1)|
n0−1∑

v=0

|b(u, v)|

≤ |R(n, n0)|+
n−1∑
u=n0

n0−1∑

v=0

|R(n, u + 1)||b(u, v)|

< ε. (3.9)

Hence, (2.27) follow directly from (3.9) and the zero solution of (3.1) is
UAS by Theorem 2.7.
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