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Graphene is a flat monatomic carbon layer where
each atom has covalent bonds with its three neighbors
(see Fig. 1a). Due to its unique mechanical, physical,
and optical characteristics, graphene is promising for
different technological applications. In recent years,
the effects of significant elastic strains on the mechan-
ical and physical properties of graphene and other
low-dimensional carbon-based structures were widely
studied. These studies are in the mainstream of the
actively developing technology based on elastic strains
[1]. For example, it has been found that the thermal
conductivity of graphene and carbon nanotubes
decreases gradually with an increase in the tensile
stress [2]. The optical conductivity of graphene is also
significantly affected by the applied stress [3]. In [4],
the effect of uniaxial stretching deformation on the
optical atomic vibration modes of graphene was stud-
ied by Raman spectroscopy. It was shown that the G
and 2D bands exhibit a significant redshift and the G
band becomes split into two bands due to the symme-
try lowering induced by the lattice strain. The ab initio
calculations demonstrate that the uniaxial stretch
strain of up to 10% does not give rise to the gap in the
electron density of states [5], whereas strains can be as
high as 03–0.4 [6]. The experimental estimate for the
tensile strength of graphene gives a value of 42 N/m
[7]. The enhancement of the Young modulus of
graphene with the temperature increase from 100 to
500 K was revealed by the molecular dynamics calcu-

lations [8]. The nonlinear theory of elasticity was for-
mulated for graphene in [9], where the ab initio calcu-
lations for the constants involved into the defining
relationship are also reported. Linear and nonlinear
stiffness coefficients were also calculated for graphene
through the use of empirical interatomic potentials
[10]. Another version of the nonlinear theory of elas-
ticity for graphene was suggested in [11] and was com-
pared to the experimental data within the strain range
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Fig. 1. (a) Crystal lattice of graphene and translation vec-
tors, a1 and a2, for the unit cell containing two carbon
atoms. (b) Reciprocal space for the graphene lattice with
the first Brillouin zone specified by vectors b1 and b2. Cap-
ital Greek letters denote the high-symmetry points and
directions in the first Brillouin zone.
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up to 30%. Different causes for the deviations of
graphene from the flat shape have been studied: the
applied stress [12, 13], effects of substrate [14, 15], and
thermal fluctuations [16]. The mica substrate can
minimize the deviations of a graphene sheet from the
flat shape caused by thermal fluctuations [17]. The
electron microscopy of freely suspended graphene
sheets reveals the deviations from the flat shape of the
order of 1 nm [18].

The atomic displacement wave arising perpendicu-
lar to the graphene sheet can significantly modify its
electronic properties [13–15]. In this connection,
there appears a task to develop the techniques for con-
trolling the variation of parameters characterizing the
transverse atomic displacements in graphene.

The transverse atomic displacements wave was
studied by the method of molecular dynamics in the
case of uniaxial compression of graphene nanoribbons
in the “armchair” directions using the free and sup-
ported boundary conditions [12]. The interatomic
potential [19] used in [12] leads to a nonzero flexural
stiffness of graphene and at supported boundary con-
ditions, buckling arises at a compressive strain of
0.0086. The periodic transverse displacements appear-
ing in graphene compressed together with the sub-
strate can be used for the selective absorption of
hydrogen to modify the electrical properties of
graphene [13]. The possibility of periodic transverse
displacements in a graphene sheet resulting from the
negative thermal expansion was also discussed [14]. In
addition, it has been demonstrated that the wavelength
and amplitude of the transverse atomic displacement
wave in the freely suspended graphene sheer can be
controlled due to the internal and thermal stresses
[15].

Here, we show that the transverse atomic displace-
ment wave in graphene can also be generated by apply-
ing shear strains.

As follows from the aforementioned works, the
elastic deformation of graphene is an efficient tool for
the modification of its characteristics. Note that the
characteristics can be varied in a wide range since we
should take into account the three-dimensionality of
the space corresponding to planar deformation and
the possibility of distorting graphene by a strain of tens
percent. In this connection, it is important to deter-
mine the theoretical limits for the strain in graphene.
Our study is aimed at the calculation of the surface in
the space of strains and forces, which confines the sta-
bility range for a flat defect-free graphene sheet with-
out taking into account the thermal vibrations and the
effects of the boundary conditions.

The graphene unit cell determined by translation
vectors a1 and a2 (Fig. 1a) contains two atoms, each
having three degrees of freedom, namely, the compo-
nents of the displacement vector. The x axis coincides
with the “zigzag” direction and the y axis coincides
with the armchair direction. The reciprocal space for

graphene is depicted in Fig. 1b where capital Greek
letters denote the high-symmetry points and direc-
tions in the first Brillouin zone.

In this work, the instability of the flat graphene lat-
tice is studied with respect to all 3(N –1) + 3 modes of
linear vibrations, where N is the number of atoms in
the system with periodic boundary conditions. It is
convenient to consider separately 3(N –1) phonon
vibration modes stemming from three modes corre-
sponding to the uniform distortion of the graphene
unit cell. The instability criterion with respect to
phonon vibration modes is the vanishing of frequency
for a certain vibration mode within the first Brillouin
zone. The analysis of stability with respect to three
modes corresponding to the uniform distortion is
reduced to considering the second variation of the
potential energy at small increments in the compo-
nents of the uniform strain. The instability occurs if
the matrix composed of the coefficients in the corre-
sponding linear equations loses its positive definite-
ness.

In this work, this problem is solved by the atomistic
simulations using a standard set of interatomic poten-
tials taking into account the energy needed for a dis-
tortion of valence bonds, as well as changes in valence
and torsion angles. The detailed justification for the
choice of the parameters characterizing these poten-
tials is given in [20]. Note that the used set of inter-
atomic potentials was verified by solving a number of
problems, for example, in the studies of the thermal
conductivity of graphene ribbons with rough edges
[20], the thermal conductivity of carbon nanotubes
interacting with the substrate [21], the properties of
discrete breathers in carbon nanotubes [22], and
vibration modes localized at graphene boundaries [23,
24]. Note that other potentials are also used for
graphene; in particular, the Brenner potential [19] is
quite popular. The characteristic feature of the poten-
tial used in [20–24] is that it reproduces the dispersion
curves of graphene better than the Brenner potential
[21]. Since the stability analysis for the crystal lattice is
based on calculations of the dispersion curves, we
choose the standard set of potentials used in the
molecular dynamics simulations [20]. Let us also
mention interesting works [25, 26] on the structural
modeling of interatomic interactions in graphene.

The standard set of potentials [20] allows us to
determine the length of the valence bond ρ0 = 1.418 Å
for undistorted graphene, for which the equilibrium

lattice parameter is a =  =  = ρ0.

In graphene, we enumerate atoms by three indices
and represent their positions as rijk = ia1 + ja2 + sk,
where integer numbers i and j determine the number
of a unit cell and k = 1, 2 is the number of an atom
within the unit cell. The translation vectors can be

chosen as a1 = a(1, 0) and a2 = (a/2)(1, ) (see
Fig. 1a) and the shear vectors of sublattices are s1 = 0

a1 a2 3

3



JETP LETTERS  Vol. 93  No. 10  2011

STABILITY RANGE FOR A FLAT GRAPHENE SHEET 573

and s2 = (a/2)(1, 1/ ). We subject the graphene lat-
tice to uniform in-plane deformation characterized by
three strain components εxx, εyy, and εxy. For the dis-
torted lattice, the translation vectors should have the
form p1 = a1 + a1H and p2 = a2 + a2H, where the H
matrix has the components h11 = εxx, h12 = h21 = εxy/2,
and h22 = εyy. In the uniformly distorted lattice, the
first shear vector can always be chosen as q1 = s1 = 0,
whereas the second shear vector should be found by
the minimization of the potential energy of the crystal
with respect to its components. As the first approxima-

tion, we can recommend choosing the vector  =
s2 + s2H. Thus, the equilibrium positions of the
graphene atoms under the applied strain can be writ-
ten as rijk = ip1 + jp2 + qk. At the next stage, we solved
the linear stability problem for this equilibrium atomic
array. Analyzing the stability with respect to the
phonon vibration modes, we scanned the first Bril-
louin zone over both coordinates with a step of 0.01π
and we determined six vibration eigenfrequencies at
each point. The crystal was treated as unstable if an
eigenfrequency turned out to be imaginary at least one
point of the Brillouin zone. As was mentioned above,
we also checked the stability of graphene with respect
to small increments in three components of the uni-
form strain. In these calculations, we took into
account the work of applied forces related to virtual
changes in the size and shape of the graphene unit cell.
This corresponds to the assumption that the load-
applying unit is characterized by absolute rigidity.
Note that taking into account the finite rigidity of the
load-applying unit could somehow reduce the stability
range for graphene.

3

q2
1( )

In Fig. 2a, we show the dispersion curves for undis-
torted graphene at the points in the Brillouin zone
located at the Σ, T ', and T segments sequentially con-
necting the points Γ  M  K  Γ (see Fig. 1b).
There are three acoustic and three optical branches.
The acoustic branches with the highest and intermedi-
ate frequencies correspond to the longitudinal and
transverse in-plane atomic vibrations in the graphene
sheet. The low-frequency branch corresponds to the
transverse out-of-plane atomic vibrations. The waves
corresponding to the last branch have zero speed of
sound owing to the vanishing flexural stiffness of
graphene. Note quite satisfactory agreement of our
calculated dispersion curves with those measured by
X-ray [27, 28] and Raman [29] scattering techniques,
as well as with the dispersion curves calculated based
on the empirical potentials [30].

Undistorted graphene is isotropic but the uniform
deformation leads, in general, to the loss of isotropy.
Only under uniform stretching/compression defor-
mation, εxx = εyy ≠ 0, and εxy = 0, graphene remains
isotropic, whereas graphene becomes orthotropic at
zero shear strain and at εxx ≠ εyy ≠ 0.

The stability ranges for orthotropic graphene (at
εxy = 0) in the (εxx, εyy) plane in Fig. 2b. In this figure,
the solid curve bounds the stability range with respect
to phonon vibration modes and the dashed curve is the
boundary of the stability range with respect to small
increments of the uniform strain, disregarding the
work of applied forces related to the virtual distortion
of the graphene unit cell. The second criterion can
obviously be disregarded, since it gives the stability
range boundary partially coinciding with that follow-
ing from the first criterion and, in the other part, it

Fig. 2. (a) Dispersion curves for undistorted graphene. (b) The stability ranges for orthotropic graphene under strains εxx = εyy ≠ 0
and εxy = 0 determined with respect to (solid curve) phonon vibration modes and (dashed curve) small increments of the uniform
strain.
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predicts the higher critical strains in comparison to
those following from the first criterion. It turns out
that this conclusion remains valid for graphene even in
the case of εxy ≠ 0; therefore, we do not address further
the results of the stability analysis with respect to
increments of the uniform strain. However, note that
for a two-dimensional crystal with the Lennard–Jones
interatomic interaction, it is necessary to consider
both stability criterions [31, 32].

In Fig. 3a, the surface bounding the stability range
for graphene in the three-dimensional strain space is
illustrated by its cross sections by the εxy = const
planes. In the chosen coordinate system, the stability
range for graphene does not depend on the sign of
strain εxy. The stability range boundary corresponding
to the cross section εxy = 0.2, which is discussed below,
is shown by the dashed line.

In Fig. 3a, we can see, in particular, that graphene
subjected to shear deformation cannot keep its flat
shape in the absence of applied εxx and εyy strains.

There are data on the values of the critical strains
for graphene at its uniaxial stretching. The following
limiting values for the uniaxial strains in graphene
were determined by the methods of quantum mechan-
ics and quantum molecular dynamics: εxx ≈ 0.38 and
εyy ≈ 0.19 [33]. The calculations in the framework of
the density functional theory (DFT) give the critical
values εxx ≈ 0.37 and εyy ≈ 0.28 (see Fig. 3 in [6]) and
εxx ≈ 0.48 and εyy ≈ 0.30 (see Fig. 3 in [8]). The molec-
ular dynamics calculations for the graphene nanorib-
bons give the critical strain value εyy ≈ 0.31 [34]. The
nanoindentation of graphene by the atomic force
microscope allows obtaining strains up to 0.3 [7].

These values agree well with the results of this work,
εxx ≈ 0.41 and εyy ≈ 0.30.

It is interesting to reveal what forces acting in the
graphene plane appear at the boundaries of the stabil-
ity range. In Fig. 3b, we give the values of forces Tx and
Ty for all curves represented in Fig. 3a. If we assume
that the graphene sheet has a certain thickness h, the
forces can be recalculated to stresses, σ = T/h. It is
usually assumed that the thickness of the graphene
sheet is equal to the interplanar distance in graphite,
h = 3.34 Å [6]. The stability boundary for graphene in
the space of forces is situated in the first quadrant,
implying that graphene cannot preserve its flat shape
under negative (compressive) force components. This
is a consequence of zero flexural stiffness of the
graphene sheet. The maximum forces withstood by
graphene under the uniaxial stretching are Tx ≈
39 N/m (117 GPa) and Ty ≈ 32 N/m (96 GPa). The
maximum shear force withstood by the flat graphene
sheet is about 17 N/m (51 GPa); it can be attained
only under the effect of stretching forces, Tx ≈ 20 N/m
(60 GPa) and Ty ≈ 15 N/m (45 GPa).

The determined values of the uniaxial limiting
forces can be compared to those reported in other
papers. The experiments on the nanoindentation by
the atomic force microscope yield the limiting force of
42 N/m (126 GPa) [7]. Molecular dynamics gives the
limiting force under the uniaxial stretching equal to
Tx ≈ 58.5 N/m (175 GPa) [34] and the quantum
mechanical calculations give the following values for
the limiting forces: Tx ≈ 56 N/m (168 GPa), Ty ≈
40 N/m (120 GPa) [33] and Tx ≈ 40 N/m (120 GPa),
Ty ≈ 38 N/m (115 GPa). We can see that the results of
this work agree well with the available data.

Fig. 3. (a) Surface bounding the stability range for graphene in the three-dimensional strain space represented by its cross sections
by the εxy = const planes. (b) The Tx and Ty forces calculated for the curves shown in panel (a).



JETP LETTERS  Vol. 93  No. 10  2011

STABILITY RANGE FOR A FLAT GRAPHENE SHEET 575

In Fig. 4, we demonstrate an example of the nucle-
ation and evolution of the region with imaginary vibra-
tion frequencies (highlighted by black) in the first Bril-
louin zone after passing across the boundary surface of
the stability range and the further penetration into the
instability range of graphene. In this case, the shear
strain is kept constant, εxy = 0.2, and the components
of the stretching strain are kept equal to each other
being gradually decreased from εxx = εyy = 0.03575 cor-
responding to the boundary of the stability range down
to (a) εxx = εyy = 0.035, (b) εxx = εyy = 0.03 (point A in
Fig. 3a), and (c) εxx = εyy = 0.01.

The postcritical behavior of graphene was studied
by molecular dynamics for the cell containing 80 ×
80 unit cells with the imposed periodic boundary con-
ditions. The equilibrium atomic positions were per-
turbed by small (10–8 Å) initial deviations for all three
components of the displacement vector. The initial
velocities of atoms were assumed to be zero. If atoms
exhibited vibrational motion about their equilibrium
positions with the amplitude of the order of the initial
perturbation, this equilibrium state was considered to
be stable. In the case of the instability of the initial uni-
formly deformed state of graphene, we observed the
motion of atoms to the new equilibrium position and
further vibrations about it.

The postcritical behavior was analyzed in sufficient
detail for the shear strain εxy = 0.2. For this case, the
αβγ curve bounding the stability range is shown in
Fig. 3a as a dashed line. The postcritical behaviors
corresponding to the increase and decrease in the
strain components εxx and εyy were qualitatively differ-
ent. For example, at increasing strain εyy, the penetra-
tion to the instability range across the αβ boundary
was accompanied by the segregation of the valence
bonds oriented along the y axis into weak and strong
bonds. The crossing of the βγ boundary gave rise to the
segregation of the bonds oriented along the x axis. The
most interesting case corresponds to the penetration
to the instability range across the γα boundary, which
is related to the decrease in the εxx and/or εyy strains.

Under these conditions, we did not observe the segre-
gation of the valence bonds, and the loss of stability for
the flat shape of graphene was attributed to the devia-
tions of atoms in the z direction and the formation of
periodic modulations.

An example of the stable graphene configuration
with the periodic modulations of the atomic displace-
ments is presented in Fig. 5 for εxx = εyy = 0.03, εxy =
0.2. At this strain, marked by point A in Fig. 3a, the flat
shape of graphene is unstable, since point A lies out-
side the region bounded by the dashed line. The closed
and open circles in Fig. 5 denote the atoms with posi-
tive and negative displacements in the z direction,
respectively. Under specified parameters of the sys-
tem, the wave of modulated displacements in the
direction of the z axis has a nearly sinusoidal shape
with an amplitude of 1.8 Å and a wavelength of about
60 Å. The atomic displacements in the x and y direc-
tions are more than an order of magnitude smaller
than those along the z axis. The amplitude of this wave
grows with moving away from the stability boundary of
the flat graphene shape. The modulation wavelength
and the orientation of the wave vector depend on the
point in the γα boundary, from which we penetrate
into the instability range.

In conclusion, we have calculated the stability
boundary for the flat graphene shape under the effect
of in-plane strain and analyzed the postcritical behav-
ior of graphene depending on the direction of motion

Fig. 4. Evolution of the region with imaginary vibration
frequencies in the first Brillouin zone after passing across
the boundary surface of the stability range at point εxx =
εyy = 0.03575, εxy = 0.2 and the further penetration into
the instability range of graphene: (a) εxx = εyy = 0.035;
(b) εxx = εyy = 0.03 (point A in Fig. 3a); (c) εxx = εyy = 0.01.

Fig. 5. Graphene structure under strain εxx = εyy = 0.03,
εxy = 0.2 marked by point A in Fig. 3a. Under this strain,
the flat shape of graphene is unstable. The closed and open
circles denote the atoms with positive and negative dis-
placements in the z direction, respectively.
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in the strain space outside the stability range. If the
value of the shear strain is fixed and the penetration
into the instability range occurs with an increase in the
εxx and/or εyy strains, we have observed the segregation
of the valence bonds into weak and strong ones. If the
penetration to the instability range is accompanied by
a decrease in the εxx and/or εyy strains, we have
observed the formation of the stable periodically mod-
ulated atomic displacements in the direction perpen-
dicular to the graphene sheet.
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