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Abstract. Let #(f) be the solution o a hyperbolic equation in a bounded domain 2 C R":

u(x, ) = Aalx, ) + o (D F(xY xeQ,0<t<T)
wlx, W =u'(x.0)=0 reg)
u{x, 1y =0 (xedR,0<t <T).

We assume that o & C1[0. 7] is a2 known function, o(0) 3£ 0, and f & L2(Q) is unknown,
and I" C_d%2 is given. We consider an inverse problem of determining f(x){x & ) from
[dulf)/on](x, t)(x € [',0 < ¢t < T). For a sufficiently large T > 0, we will show the stability
estimate of || (| 20y by I F}/ 8nll g1 (o, g2¢ry- @ reconstruction formula of f from du(f)/dn
and a Tikhonov regularization. Our methodology is based on exact boundary controlfability and
a Volterra integral equation of the first kind with kernel o,

1. Infroduction

‘We consider an’initial/boundary value problem for a hyperbolic equation:

' (x, 1) = Aulx, )+ o () Fx) T(xef2,r>0)
ulx,0 =0 wW(x,0) =0 (x e Q) (1.1}
u{x,t) =0 (x €852, t > 0). ’

Here £2 < R’ is a bounded domain with smooth boundary 382, and we set w'(x,t) =
du/0t(x, 1), u"(x.1) = 8%u/0:*(x, 1), and A is the Laplaclan Let L2(2) be the space of
all real-valued square integrable functions with the inner product (-, -}r2g and the norm
I Ulz2e-

The term o (¢)f(x) is considered to be an external force. External forces in this
form of separation of variables are important in modelling vibrations, For example, if
we set o(t) = coswt (w € R), then it describes a spatial force which varies harmonically.
Moreover the system (I.1} is regarded as an approximation to a model for elastic waves
from a point dislocation source (e.g. Aki and Richards (1980) ch 4).

We assume that ¢ is 2 known non-zero C!-function and is independent of the space
variable x, and f € L%() is unknown.

We consider the
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Inverse problem. Determine f from
du
a—(x,t) (xelld<t<T).
n )

Here I' C 382 is given {see (2.3) below)}, T > 0 is an observation time and we set
du s du
5@ = ; wEWgoe) (redR)

where v(x} = (v1(x)y....v.(x)) is the outward unit normal to <2 at x.

Remark 1. Our methodology proposed in this paper is based on exact boundary
controllability and is applicable to hyperbolic equations with variable coefficients:

r

ety = 5 2 (g 2%
CW(x, 1) = ,; o (a,,(x) 7 (x,t)) + o) f(x) (xr € 2,t>0)

u(x,H=0 w'(x,00 =0 {x ed) (1.1
ulx, ) =0 (xecd2, t>0)

where {ai;(-)}1<i j¢- should satisfy some stricter positivity condition than the uniform
ellipticity (Komornik 1989a).

u"(x, 1) = Aulx, ) + bx)u(x, £) + o () f(x) (xe,t>0
ulx.0)=0. Wix,H=0 (x € ) (1.1M
u(x, ) =0 (xed2,t>0

where b € L%(Q) (Komornik 1989b).
Our methodology is also applicable to other boundary conditions in (1.1) such as the
zero Neumann one.

Remark 2. In(1.1) we can consider a more general external force f(x)5(x,t) (x € 2, >
- 0) where f € L%($2) is unknown and & is known and depends also on x, The inverse
hyperbolic problem with such & is related to the determination of coefficients (e.g. the
proof of theorem 3.7 in Isakov (1993) and theorem 4.7 in Klibanov (1992)). In the case
where T' = 3Q (that is, the observation boundary is the complete 8Q), we can refer to
Isakov (1990, 1993) and Klibanov (1992) to obtain the uniqueness of f. Moreover, in
the case where T' is a part of 92, our methodology works in principle if we make serious
modifications, so that stability estimates as well as uniqueness can be shown by taking rare
exceptional cases into consideration (Puel and Yamamoto 1994a,b).
If o € CYO, T), then for any f € L3(S2), there exists a unique solution’

u =u(f) € C'([0, T]; H{ () N C*({0, T1; LX)
to (1.1) and

dulf) e HYO, T; L*(35)).
on
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Moreover we have

(P oo, e + 1 () Nlzm, ron2an € Cill Fllzen (f € LX) (1.2)
(lemma 3.6 (p 39) in Lions (1988hk)} and
3 . . .
) <Clflae  (F € L@ 13
Roimgriiieo) ’ )

. for some constant C; > 0 which is independent of f. The estimate (1.3) can be proved
by theorem 4.1 (p 44) in Lions {1988b) and, for completeness, we will give a proof in the
appendix.

Henceforth for a measurable subset T of 82, we set

r du du
(u,v)ﬂlmm)ﬁf f e, (0(x, )+ o= (e, 720 1) ) dSe
s e t at
and
el o, 220y = (@, “)flff/lzco.r;ﬂ(r‘))

for u, v € HY(0, T; LA(), and H5(2)(s > 0) denotes the Sobolev space (e.g. Lions and
Magenes 1972).

In this paper, we propose the application of a conirol method for the following three
topics in our inverse problem.

(A) (Stability). We shall estimate || £} 2y by a suitable norm of du(f)/dn(x € ', 0 <
r<T).

{B) (Reconstruction formula). We shall give a reconstruction formula of £ in terms of
au(f}/9n. In particular we shall give the Fourier coefficients of f by du(f)/on.

(C) (Convergence rates of regularized solutions). We shall determine the range
R(G™ = [{G*v; v € LT x (0, TYH)).
Here the operator G : L2(Q) — L3(I" % (0, T)) is defined by

9u(f) ) (1.4)
n

Gf =

and G* is the adjoint operator of G.

In Yamamoto (1995a), problem B is solved and a charactenzatmn of the range
[8u(f)/dn; f € L*(2)} is given by which problem A is discussed. On the other hand, in
this paper, we will give a direct proof of A, and the Fourier coefficients of f in terms of
du(F)/an. Problem C is essential for obtaining convergence rates of regularized solutions
which are obtained by Groetsch’s theory (Groetsch 1984).

The purposes of this paper are to clarify that a control method (namely the Hilbert
uniqueness method) offers very unified solutions for the above three problems (A, B and C).
The Hilbert uniqueness method is widely applicable to various equations (Komornik 1992,
Lagnese 1991, Lions 1988a, b, Zuazua 1987, 1993). In this paper, in order to explain the
essential features for applying the Hilbert uniqueness method to inverse source problems, we
mainly consider a wave equation (1.1). Applications of our methodology to inverse source
problems for other types of partial differential equation will be discussed in succeeding
papers.
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We conclude this section with reference to Belishev and Kurylev (1991) where the
Dirichlet-to-Neumann map approach (e.g. Isakov (1993)) is discussed in terms of boundary
control technigues.

This paper is composed of six sections. In section 2, we will precisely formulate
the three problems in our inverse problem and state the main results in theorems 1, 2
and 3 respectively for problems A, B and C. In section 3 we will apply theorem 3 for
obtaining a convergence rate of regularized solutions toward the exact solution by a variant
of Tikhonov’s regularization. In sections 4 to 6, we will prove respectively theorems 1-3.

2. Formulation and main results

Throughout this paper, for an arbitrarily fixed xq € R, we set
[+ (x0) = {x € 32; (x — xo, v(x))pr > 0} 2.1)
Ro = Ro{xo) = sup{lx ~xolg-; x € 982}

and, for an observation time T > 0 and a part " of 382 where du(f)/dn is observed, we
assume

T >2Rgy : (2.2)

T 3 [y (x0). ’ 2.3)
Farthermore let o satisfy '

o #0 oeC'0.T]. - t2.4)
Fi-rst we can state the answer to problem A.

Theorem I (Stability). Under the assumptions (2.2)~(2.4), there cxists a constant C =
C(2, 0, T, xo) > 0 such that

du(f)
an

u(f)
on

SlAlpe £C (2.5)

HUO.T;L2(I7)

HUY(O, T:LD)

for any f € L2(). C

Remark 3. Qur governing equation in (1.1) is hyperbolic so that, for uniqueness and
stability, we have to choose a large observation time T satisfying (2.2). The restriction on
the geometry of I" arises from the assumption for a result concerning the exact controllability
by the Hilbert uniqueness method (e.g. ch I sections 7 and 10 in Lions (1988b)). In many
cases, it turns out that (2.2) requires that T should be greater than the diameter of £2.

Second we proceed to discussion of the second problem B stated in section 1. For this,
we define three operators A, IT and ¢,
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Definition of the operator A in L*(2). Let A be the realization of —A in Z2() with

Dirichlet boundary condition Au(x) = —Au(x) and D(A) = {u € H*(Q); u|se = 0}. Let
us number the eigenvalues of A repeatedly according to their multiplicities:

0<l1-§_lg§k3$..-. (26)

That is. if the multiplicity of 4; is m, then A; appears in (2.6) m times. Let ¢ be an
eigenfunction for the eigenvalue Ay of A (k = 1). We can choose {¢; )1 such that

(@ Py = Bu. ) 2.7
Here we set 8y = 1{(k =), = 0 (otherwise).
Definition of the operator T1: L} () — LT x (0, T)). We show:
Lemma I Exact controllability. (Lions 1988a,b). On the assumptions (2.2) and (2.3), to-
each ¢ € L2(2) we can construct a unique v = v(gp} € L2(I" x (0, T)) in such a way that
the following properties hold. ;

(i) The weak solution ¢ = ¢(v) € C%([0, T]; LX) N C([0, T]; H-1(2)) to

¢"x, ) = Ap(x, 1)  (x€Q,0<t<T)
$(x, 0} = do(x) $'(x,0)=0 (x € 2)

(2.8)
¢(x. t)=rv{x, 1) (xel0<t<T)
${x, 1y =0 (xed2\[L0<t=<T)
satisfies
¢x, Ty=0 &'(e, T)=0 (x € Q). (2.9)
(ii) There exists a constant Cy = C3(82, T, xo) > O such that
Nul@oll ey < Calidoll 2 2.10)

for any ¢ € L3 ().
Here H~1($2) denotes the dual of H}(Q) = {u € HY(Q); ulag = 0}.
By lemma 1, we can define a bounded linear operator IT : L2() — L*(I" x (0, T))
by
Mo = v(gho) (¢ € LA(Q)). o 2.11)

Remark 4. For the unique existence of a weak solution to (2.8), we can refer, for example,
to theorem 4.2 (pp 46-7) in Lions (1988h). -
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Definition of the operator ®: L*(I'.x (0,T)) — H'(0,T; L*(T)). Let us consider a
Volterra equation of the second kind

‘ | |
5 (@F'Cx, D) + f (/& — DO'(x, £) + ol — DB(x, ) O = n(x, 1)
t

2.12
(xelL0<t=<D) @12)

8x, =0 (xel).

This is uniquely solvable in 8 € H'(0, T; L*(I")) for any 5 € L2(I" x (0, T)) by using the
resolvent kernel and we have

180l & 0,7:22¢0n < CallnllLzarxeo,ry (ne L} x (0, TH)

with some constant C3 > 0 (e.g. Tricomi (1985)). Then we can define a bounded linear
operator & : L*(I" x (0, T)) — H'(0, T; L*(I) by

8 = dn n e LY x (0, T)). (2.13)
Now we are ready to state a formula for reconstruction of f in terms of du(f)/dn.

Theorem 2 (Reconstruction formula). We assume (2.2)—(2.4), and set

G = —®Ig, (k= 1. ' (2.14)
Then we have
]
(o0om = (2L, 0) .19
n HYQ,T, LY

for & 2z 1. In particular,

Fe Z (Bu(f)

Remark 5. Since {fili»1 can be construcied only by €2, T, T, and is independent of
f € L*(R), conclusion (2.15) means that the kth Fourier coefficient of an unknown f is
given in terms of datum 3u{f)/dn.

) &y
HEO,TSLHTY)

Remark 6. For {0}r»), we can further show (theorem 4 in Yamamoto (1993a}) that the
system {f}iz1 is a Riesz basis (e.g. Gohberg and Krein (1969)) in H 10, T; L*(T")) under
the assumptions (2.2)—(2.4).

Finally we will discuss problem C.

Theorem 3 (Range of G*). Under (2.2)-(2.4), we get
R(G*) = {G*y; y € LET x (0. T} D H} (). (2.16)

Furthermore we can prove that R{(G*) C H!() by an argument on regularity of
solutions of a hyperbolic equation with non-homogeneous boundary values (cf Lions
{1988b)). This theorem is proved by

(i} the range of the adjoint of an observation map & coinciding with a reachable set of
a control system associated with (1.1} {e.g. Engl et al (1995)); and

(ii} a reachable set is HJ (§2) by the Hilbert uniqueness method (Lions 1988a, b).
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3. Application of theorem 3 to a regularization method

Let us recall that the operator G : LY(Q) — L*(I" x (0, T)) is defined by (1.4). As is
proved in Yamamoto (19952}, the operator G is compact from L2(R) to LT x (0, T)), s0
that the problem of solving

y=Gf (3.1)

with respect to f € L2($2) for a given y € L¥(I" x (0, T)) is ill-posed.
In this section, assuming that yg = Gfy, we consider reconstruction of f; from inexact
available data y;:

lvs — Yollc2rxco.ry = 8 7 (3.2)

where § > 0 is a noise level. The reconstruction problem is to find reasonable
approximations fis for fy by using data ys. By the reasonable approximations f3s, we
mean that we can stably construct f; from y; and that lims_,g | f5 — follz2¢) = 0. Since G
is compact and R(G) is a proper closed subset of LZ(T" x (0, T)) (Yamamoto 1995b), we
must be concerned with the following difficulties:

(i) ¥s € R(G) does not necessarily hold no matther how smali 8 > 0 is.

(i) G : R(G) < LA x (0, T)) —> L*() is not continuous, although G is injective
by theorem 1 in section 2.

For overcoming these difficulties, various regularization techniques have been proposed
(e.g. Baumeister (1987), Groetsch (1984, 1993), Hofmann (1986), Tikhonov and Arsenin
(1977)). In this section, according to Groetsch (1984), ch 3, we consider the foliowing
regularization.

Regularization. Let o > 0 be a parameter. Minimize the functional
Fo ) = 1GF = yslGaenory + 21 Flll2ce) (3.3)
over f € L3(Q).
Then, by Groetsch (1984), for an arbitrarily fixed ¢ > 0, there exists a unique minimizer

f8 for a given y; € LA x (0,T)), and if £ and f2 are minimizers of F, respectively
with ys and y, then

s 73 ~
I Fo = Fillezay < Csllys — Fsllzeoxo,m

for a comstant C3; > 0-which is independent of y;, 3;. Here we call f[f a regularized
solution. Moreover, if we choose parameters & = «(8) such that

8
;1-1;% ) =0 3.4)
then
lim 172 = follizey = 0. 3.5)

However, the choice (3.4) of regularizing parameters does not guarantee any concrete
convergence rates in (3.5). If we can pose an additional assumption on fj, then we can |
derive a concrete rate under suitable choices of regularizing parameters. That is,
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Theorem O {Corollary 3.1.3 (p 35) in Groetsch (1984)). 1f
fo € R(G") : (3.6)
and
o =ce(d) = c4d (3.7)
for an arbitrarily given constant ¢4 > 0, then
172 = follzey = OT/3)
as § — 0.
Thus we can combine theorem 3 with this theorem and we have:

Theorem 4 (Convergence rates of regularized solutions). ¥ fy € H}(2) and we choose
a = o(8) satisfying (3.7), then

12 = follsxen = O3)
as § — 0.
Remark 7. For another regularization to our inverse problem, we refer to Yamamoto
{1995b), where asymptotic behaviour for the singular values of G is given.
4, Proof of theorem 1
Let us consider another initial value/boundary value problem for a hyperbolic equation:

w’(x, 1) = Awlx, 1) xe.t>0
w(x,0) =0 w'(x,0) = f(x) (x € ) 4.1}
wix, ) =0 (xed82,t=0).

For any f e L?%*Q), to (4.1), there exists a unique solution w = w(f) €
CO([10, TT; HF () N ([0, T}; LX) (e.g. lemma 3.6 (p 39) in Lions (1988b)) and

(O o 7 2oy + T (f Yllze.7:20n < Csll fll 22y (4.2)
for some constant Cs > 0. First we show:

Lemma 2 (Komornik 1989a, Lions 1988b). We assume (2.2} and (2.3). Then there exists
a constant C = C(R, I, T, xp) > 0 such that

— || w(S)
¢ Iu on

aw(f)
an

Sl fllpe € “

LAC20.7Y) LA =(0.T)

for any f € L(S).
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Moreover we show:

Lemma 3. We denote an operator K : LX(T" x (0, T)) — H0, T; L*T)) by
t
Kg)x, 1) = [ ot —s)g(x,s)ds xelL0<t<T). .3
0

Then there exists a constant Cs = Cg{£2, T) > 0 such that

CEI||K81[H1(0.T;L2(F)) < lgllzzrxo.y € CollKgl g .20y 4.4)
for any g € L3I x (0, T)).
Proof of lemma 3. By o € C'[0, T), taking time derivatives in (4.3), we get

3(Kg)
af

(x,8) = o (Mglx, I)+f o' (t—s)g(x, 5 ds xel,0<t<T).
0

We have o (0) 52 0 by the assumption (2.4), so that this is a Volterra equation of the second
kind with respect to g. Consequently we obtain

_1 || 9(Kg) 3(Kg)
Ce ! ™ < lglzexomy € Cs 3 rg 4.5)
LU %(0,7T)) LT %(0.7))
{e.z. Tricomi {1983)). Moreover, directly from (4.3), we get
K gl < CallgllLzrxo.my- (4.6)
Combining (4.5) with (4.6), we reach (4.4). O

Next we can show a key lemma which connects our inverse problem with an exact
controllability problem.

Lemma 4. For any f € C§°(£2), we have
&
u(f)x,2) = (Kw(f))x. 1} = f o{s)w(f)x,t ~s)ds (xe,t>0). @7
0

Remark 8. The relation (4.7) holds for any f &€ L*($2). In fact, we can prove (4.7) for
f € L*() by approximating f & L2(§2) by functions in C$°() and using estimates (1.2)
and (4.2).

Proof of lemma4. This lemma is seen directly from Duhamel’s principle. For convenience,
we give the proof here. Let us set the right-hand side of (4.7) by #(x,r). It is
sufficient to prove that @ e C%([0, T}; Hj(Q)) N C'([0, T}; L*(2)) satisfies (1.1). By
Ff e C§P(R2), the solutions u(f) and w{f) are smooth on 2 x [0, T]. In particular,
# e C%(10, T]; Hy () N CY([0, T]; L*(2)) and, moreover, by direct computations we see
that ¥ satisfies (1.1). By the uniqueness of solutions to (1.1), we get #(x, £) = u(f)(x, ){x €
£, t > 0). This completes the proof of lemma 4. O
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Now let us complete the proof of theorem 1. It is sufficient to prove (2.5) for
f € C(2). In fact, let us assume that (2.5) holds for f € C§°(2). Let f € L)
be given arbitrarily. Then since C§°(£2) is dense in L2(£2), we can take f, € C5°(£2) such
that | f; — fllz2y — 0 as n — oo. By our present assumption, we can get

du on
¢ [ 24l <Ml < € |22 (3.
on H'0,T:L3(T) on HYO, T LY
On the other hand, by (1.3), we have
ou(fn) ‘ du(f)
| morraay o o riiaay

Thus we can reach (2.5) for any f € L2($2).
Finally let us proceed to the proof of (2.5) for f € C§°(2). Since w( 1) is sufficiently
smooth on  x [0, T, we have

(f )

ifta(s)w(f)(x,z.‘—s)ds=f o(s) (x,t—s)ds (xed,0<t<T).
an 0 [}

Therefore we get by (4.7)

Bzg(nf)a,t) =fnro*(s)%(x,t-s)ds=1§' (%ﬂ> (x,1) xeT,0<r<T).

4.3)
Consequently by lemma 3, we obtain

Bu(f)
Ton

“ dw(f)
HUO, 7LD an

(f & G

au(f)
dan

£
LAT=(0,T)}

B0, T; L)

Now by applying these inequalities in lemma 2, the estimate (2.3) for f € C{°(R) is
straightforward. Thus the proof of theorem 1 is complete.

5. Proof of theorem 2

It suffices to prove theorem 2 for f € C°(82) by the gstimate (1.3} and the denseness of
CP(R) in L*(§2). Henceforth let f € C§P(S2). Then, using an eigenfunction expansion of
w{f), we can see

aw(_f) sin A.kt gy

x, 1) = Zcf, We@— @ Gel0<i<D (5.1)

where the series is convergent in H'(0, T; L2(I™).
Next we prove:



Inverse source hyperbolic problem 491

Lemma 5. Under the assumptions (2.2) and (2.3), we have

sin/A;t 8 1 ifk=1
( i a%"”‘”‘) =‘S”“E{o if ke 1
d LT %(0.T)) ! ’

For the proof, first we show:

Lemma 6. Let p(x,t} and g(x,?) be sufficiently smooth and satisfy

P ) = Aplx, )  (xeQ,0<t<T)

pix, V=0  px.TN=0 (xeQ) ©2)
and
g'(x,1) = Aglx, ) (xeQ,0<t<T)
g(x,0)=0 g'(x,0) = fx) (x € Q) (5.3)
g(x,8)=10 (xedR,0<t < T).
Then

f pr,0)F(x) dx = — f ' f e, 2 (x, 1) s, d. (5.4)
Q o Jig an

Proof of lemma 6. Since p and g are sufficiently smooth, the following calculations are
Jjustified.

T T -
f [Ap(x.r}q(x,t)dxdt=f (/ P’ x, r)q(x,t)dr)dx (by (3.2))
o Ja 2 \Jo

T
= f52 ([p'(x, Hale, D - fo P, ) (x, 1) dt) dx
" (by intggration by parts)
T
=—f[ P(x, g’ (x,1)dtdx
CJedo
by p'(x, T) = g{x,0) =0)
T
= [ [ s ngrwnaas [ peormas
aJo o
(by integration by parts and p(x, T) =0, ¢'(x, 0) = £(x))
T
=f fp(x,t)Aq(x,t) dxdt-}-f plx, 0y fx)dx
t Jo 7 Q

(by (5.3))

namely

T
f f (@ ) Ap(x, 1) — plr, )Aq(x, 1) dx dt = f p(x, 0)F (x) dx.
[} Q Q

Applying the Green formula, and g(x, 1) =0(x € 32,0 <t < T), we see (3.4).
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Proof of lemma 5. Let 1 be the solution to
v(x, 1) = Ayr(x, 1) (xef,0<t<T)
Px, TY=0 ¢x. Ty=0 (x € Q)
wrix, ) =v(x, ) xell0<t<D)
Yix, =0 xedQ\LOl<t <D

for v € L3I x (0, T)}. Forany v € L*(I" x (0, T)), we can define the weak solution y and
we can prove (theorem 4.2 (pp 46-7) in Lions (1988b)) that there exists a unique solution
¥ =) e C¥0, TT; LX) N C1([0, T1; E~'()) and, moreover,

I @l e,z + 1 @Y lzo@r m-tien < Crllvll L2, - (5.6)

For yr(v), the following equation holds:

f (o), O)r(x) dx = — f f oG, s‘"‘f”i"ﬂ( ydSedt  (5T)

for any ve L3I x (0, T)) and [ = 1

Proof of (5.7). First let us assume that v € C°(T" x (0, T)). Then the solution ¢r = ¢ (v)
is so smooth that we can set p{x, 1) = ¥ (V){x, ) and g{x, ) = (sin mt/ﬁ;)¢;(x) in
lemma 6. Therefore noting the boundary condition of 9¥r(2) in (5.5), we can obtain (5.7)
for any v € C§°(T" x (0, T)).

Finally we have to prove (5.7) for any v € L3I x (0, T). Since C*(I" x (0, T)) is
dense in L*(T" x (0, T)), we can choose v, € CPT x (0, 7)) (n 2 D) such that

lve — vl 2rxry —> 0

as n —» 00. As is already proved, we have (5.7) for v,{n = 1). By (5.6) with v — v, we
can make n tend to oo in (5.7), so that we complete the proof of (5.7).

Let us complete the proof of lemma 5. In lemma 1, for £ > 1, we take ¢p(x) =
—p(x)(x € ©) and set v = ~IIgg € LT x (0, T))(k > 1). Then ¢(v) satisfies (2.8)
with ¢y = —¢ and (2.9). By uniqueness of weak solutions to (5.5), we see (V) = ¢(v).
Therefore, applying this v in (5.7), we obtain

sin /A Oy ) sm«/_;t agy
—, — gy —ey(x, 1) —-—(x)dS'xdt
( Vi on’ LT %(0,TD) ‘[ [

= fg@&(x)@(x)dx:f?kt
by the orthonormality (2.7) of {@:}r»1. Thus the proof of lemma 5 is comgplete. O

Let K* : R(K) — LA(Tx (0, T)) be the adjoint of the operator X : L} (0, T)) —
HYO, T : L2(IM). Then we can directly verify

T
(K*R)(x, 1) = o (OA'(x, 1) +f (0'(E ~ ) (x,§) + o (E — )h(x, 5)) dE
(xelL0O<t<T). (5.8)
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Therefore by definition (2.13) of &, the equality
K*®n=n (ne L x©7TH (5.9)

holds.
We are ready to complete the proof of theorem 2. In fact, we have

(3”‘” ),ek) - (x (3“'” }) , @(—nqﬁk))
on HYO, T LT dn / BYO,T; L))

(by (2.14) and (4.8))

= ( i) (K*fb)(—mm)
on LAC0,TY)

- (*’“"f ), -—n@c) by 5
an L3(C%(0,TY)

o - A_ a
=Z(fa $rdore (Mﬂ —-Hgbk)
b=t ' L2 % (0, 7))
(by (3.1))
= Z(f > B r2eendu (by lemma 5)
=]

=(f, )L ).

Thus the proof of theorem 2 is complete. | -0

6. Proof of theorem 3
We define an operator L : L*(Q) — L*(T" x (0, 7)) by

dw(f)
an

Lf = (6.1)

where w(f) is the solution to (4.1). By lemma 2, the operator L is bounded from LAQ)
to LT x (0, T)). By (4.8), we decompose G as

Gf = KppLf (F € L) (6.2)

where we regard K as an operator from L2(0, T; L*(I")) to itself and we set K = K.
Therefore we get G* = L"K},, so that we have
R(G") = {L*v; v € R(K]2))-

On the other hand. we directly see (K,n)(x, 1) = [ o(§—n)n(x, £)d§ (x € 1,0 <z < T),
so that R(K},) = f{v € HI0, T; L2(TY; v(-, T) = 0} by (2.4). Consequently we obtain

R(G*) = {L*v;v € H'(0, T; L*(T)), v(-, T) = 0}. (6.3)



494 M Yamamoto

Thus, for the proof, we have only to determine R(L*). For this, we need

f f o, H 0 nds.dr = f P @), 0) F(x) dx 64)

forany v € L2(I'% (0, 7)) and f Lz(sz). Here we recall that ¥ (v) € CO([0, T1; L2 (@)N
CH{[0, TT; H~(£2)) is the weak solution to {5.5). At the end of this section, we will prove
(6.4).

Relation (6.4} implies

(Lf, Wrarxo.ry = (=¥ ()6 Mg

namely

L*v = —y (), 0) ve L3I x (0, ). (6.5)
By (6.3) we have

R(G*) = (¢ (), 0 v € HYO, T; LYY, v(-, T) = 0}. (6.6)

This relation is the first point (i) mentioned just after the statement of theorem 3. To
complete the proof of theorem 3, as the second point (i) mentioned after the statement of
theorem 3, we show an exact controllability result by the Hilbert uniqueness method.

Lemma 7 (Theorem 6.4 (p 75) in Lions (1988b)). We assume (2.2) and (2.3). For any
(o, Y1) € HE(Q) x L2(R), there exists a v € H(0, T; LA(T) such that

Y (v)(x. 0) = Yolx) Y) (x, 0) = Y1 (x) (x € 2).
Therefore from (6.6) we can reach R(G*) D H}(£), the conclusion of theorem 3.

Proof of (6.4). First let us assume that v € C§°(T x (0, T)) and f € C§°(2). Then ¥ (v}
and w(f) are sufficiently smooth, so that lemma 6 and the boundary condition in (5.5)
imply

/wcv)(x 07 () dx = — f j ¥ 02 ¢, s, a

—f fv(x, (f)(x 1) dS.de. 6.7)
0 r

Therefore we see (6.4} for v € C°(I" x(0, T)) and f € C§°(2).

Finally let v € L(T" x (0, T)) and f € L%(Q). Since CP(T x (0, TY) and CP(Q)
are dense respectively in L2(T" x (0, T)} and L*($2), there exist v, € C°(I" x (0, 7)) and
o € C32(2) (n 2 1) such that lu, —v|| 2rx,rp — O W — fllzay — Oasn — o0
By (5.6) and lemma 2, we see

19 (- 0) — @) (-, Ol 2y — O

and

du(f)  duw(f)

an an —0

L’(["x(ﬂ'.T))

as n —» 0. Therefore we can let  tend to oo in (6.4) with v = v, and f = f;, so that we
obtain (6.4) for any v € LT x (0, 7)) and any f € L%(S).
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Appendix. Proof of (1.3)

First by theorem 4.1 (p 44) in Lions (1988b), we see

du(f)
an

for any f € L3(Q).
Let z be the weak solution to

I, ) =Az(x, D+’ (1) f(x) (xeR,0<t <T)
Z{x, ) =0 Z(x, ) =@ fx) (x e )
Z(x, 1) =0 xed,0<t<T).

Since o’ f € L0, T: L3(R)) and o (0) f € L*(8), it follows from lemma 3.6 (p 39) and
theorem 4.1 (p 44) in Lions (1988b} that '

z € C([0, TT; Hy () N CH([0, T} LA(R)) . (A2)

< Cill flleey (Al)
LT x(0.T)

and
az
an

<Cl (lle’ Flvo.r; ey + 1o @ Fllze)
LA 0, TY) ,

. KO fllzzs
for any f € L*(R). By (2) we can set
I
E(x,t):[z(x,s)ds (xe0<t<T)
0
so that % € C'([0, TY; Hy () N C3([0, T}; L%(2))and ¥ satisfies (1.1). By uniqueness of
weak solution (lemma 3.6 (p 39) in Lions (1988b)), we get
u(f)x, 1) = 3u(x, 1) (xeQ,0<t<T)
and
z(x, 1) = u{fY{x, 1) (xeR,0<t<T).
Therefore (A1}-(A3) imply (1.3).
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