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Abstract. Let u ( f )  be the solution to a hyperbolic equation in a bounded domain s2 c B':~ 

. " ( ~ , t ) = A l l ( x , i ) + u ( t ) f ( ~ ) ~  ( x E Q , O < t  c T )  

u(x .  0) = u'(x. 0) = 0 (x E s2) 

u(.r,t)=O (x E %l, 0 c t < T )  

We assume that U E C'[O. TI is n known function, u(0) # 0, k d  f E Lz(Q) is unknown, 
and r c~ iJs2 is given. We consider an inverse problem of dete-ing f @)(I E Q) from 
[ iJu(f) /anl(x,  t ) ( x  E r, 0 c t c T ) .  For a sufficiently large T > 0, we will show the stability 
estimate of IlfllLqn, by Ilau(f)/anllH,c,,,T:'~tn,. areconstruction formulaof f f" au(f ) /an 
and a Tikhoaov regularization. Our methodology is based on exact boundary cnntrollability and 
a Voltem integral equation of the first kind with kernel U .  

1. Introduction 

We consider an-initialboundary value problem for a hyperbolic equation: 

u"(x, t )  = Au(x, t )  + ~ ( t ) f ( n )  - (x  E S2, t > 0) 

U(& 0) = 0 U'(& 0) = 0 (n E n) (1.1) 
U(X. t )  = o ( X  E an, t > 0). 

Here C2 c Etr is a bounded domain with smooth boundary an, and we set u'(x , t )  = 
a u / a t ( x ,  t ) ,  u"(x, t )  = a2u/a t2(x ,  t ) ,  and A is the Laplacian. Let L 2 ( Q )  be the space of 
all real-valued square integrable functions with the inner product (., .)'qn) and the norm 

The term u@)f(x) is considered to be an external force. External forces in this 
form of separation of variables are important in modelling vibrations. For example, if 
we set u(t) = C O S O ~  (o E Et), then it describes a spatial force which varies harmonically. 
Moreover the system (1.1) is regarded as an approximation to a model for elastic waves 
from a point dislocation source (e.g. Aki and Richards (1980) ch 4). 

We assume that G is a known non-zero C1-function and is independent of the space 
variable x ,  and f E L2(Q is unknown. 

We consider the 
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Inverse problem. Determine f from 

Here r c ai2 is given (see (2.3) below),, T > 0 is an observation time and we set 

where u ( x )  = ( u ~ ( x ) ) .  . . , u,(x))  is the outward unit normal to 80. at x .  

Remark 1. Our methodology proposed in this paper is based on exact boundary 
controllability and is applicable to hyperbolic equations with variable coefficients: 

(1.1’) 

where [ u i j ( . ) } 1 ~ j , j < ~  should satisfy some stricter positivity condition than ,the uniform 
ellipticity (Komornik 1989a). 

u”(x, t )  = Au(x,  t )  + b(x)u(x, t )  + u ( t ) f ( x )  (X E S2, t > 0) 

u(x ,  0) = 0 .  U‘(& 0) = 0 (x  E Q) (1.1”) 
U@. t )  = 0 ( x  E as2, t > 0) 

where b E P(S2) (Komornik 1989b). 

zero Neumann one. 

Remark 2 .  In (1.1) we can consider a more general external force f ( x ) F ( x ,  t) (x  E a, t > 
0) where f E Lz(S2) is unknown and ?? is known and depends also on x .  The inverse 
hyperbolic problem with such F is related to the determination of coefficients (e.g. the 
proof of theorem 3.7 in Isakov (1993) and theorem 4.7 in Klibanov (1992)). In the case 
where r = aQ (that is, the observation boundary is the complete an), we can refer to 
Isakov (1990, 1993) and Klibanov (1992) to obtain the uniqueness of f. Moreover, in 
the case where r is a part of an2, our methodology works in principle if we make serious 
modifications, so that stability estimates as well as uniqueness can be shown by taking’rare 
exceptional cases into consideration (Puel and Yamamoto 1994% b). 

Our methodology is also applicable to other boundary conditions in (1.1) such as the 

If U E C1[O, TI ,  then for any f E Lz(Q), there exists a unique solution’ 

U =~u(Y) E cl([o, T I ;  @(n)) n c2([o, TI; ~ ~ ( n ) )  

to (1.1) and 



for some constant CI > 0 which is independent of f .  The estimate (1.3) can be proved 
by theorem 4.1 (p 44) ih Lions (1988b) and, for completeness, we will give a proof in the 
appendix. 
Henceforth for a measurable subset r of an, we set 

and 

112 
Il4H1(o.T:L2(r)) = (U. ~)~qo,c.yr)) 

for U ,  U E H'(0,  T; L Z ( r ) ) ,  and WS(Q)(s =. 0) denotes the Sobolev space (e.g. Lions and 
Magenes 1972). 

In this paper, we propose the application of a control method for the following three 
topics in ow inverse problem. 

(A) (Stability). We shall estimate I l f l l L z c n ,  by a suitable norm of au(f)/an(x E r, 0 < 
t < T). 

(B) (Reconstruction formula). We shall give a reconstruction formula o f f  in terms of 
au(f)/an. In particular we shall give the Fourier coefficients of f by au(f)/an. 

(C) (Convergence rates of regularized solutions). We shall determine the range 
R(G*)  = {G*u; U E Lz(r  x (0, T ) ) ] .  
Here the operator~G : L2(Q) + L2(r  x (0, T)) is defined by 

and G* is the adjoint operator of G. 
In Yamamoto (1995a), problem B is solved and a characterization of the range 

{au(f)/an; f E L2(n)] is given by which problem A is discussed. On the other hand, in 
this paper, we will give a direct proof of A, and the Fourier coefficients o f f  in terms of 
au(f)/an. Problem C is essential for obtaining convergence rates of regularized solutions 
which are obtained by Groetsch's theory (Groetsch 1984). 

The purposes of this paper are to clarify that a control method (namely the Hilbert 
uniqueness method) offers very unified solutions for the above three problems (A; B and C). 
The Hilbert uniqueness method is widely applicable to various equations (Komomik 1992, 
Lagnese 1991, Lions 198% b, Zuazua 1987, 1993). In this paper, in order to explain the 
essential features for applying the Hilbert uniqueness method to inverse source problems, we 
mainly consider a wave equation (1.1). Applications of our methodology to inverse source 
problems for other types of partial differential equation will be discussed in succeeding 
papers. 
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We conclude this section with reference to Belishev and Kurylev (1991) where the 
Dirichlet-to-Neumann map approach (e.g. Isakov (1993)) is discussed in  terms of boundary 
control techniques. 

This paper is composed of six sections. In section 2, we will precisely formulate 
the three problems in our inverse problem and state the main results in theorems 1, 2 
and 3 respectively for problems A, B and C. In section 3 we will apply theorem 3 for 
obtaining a convergence rate of regularized solutions toward the exact solution by a variant 
of Tikhonov's regularization. In sections 4 to 6, we will prove respectively theorems 1-3. 

2. Formulation and main results 

Throughout this paper, for an arbitrarily fixed xo E Rr, we set 

r+(Xo) = { X  E an; ( X  -x0 ,  U(X) )~ ,  > 01 

R~ = ~ ~ ( x ~ )  = SUPI~X - - X ~ I ~ , ;  x E an] 

and, for an observation time T > 0 and a put r of an where au(f)/an is observed, we 
assume 

Furthermore let U satisfy 

u(0) # 0 U E C'[O. TI. (2.4) 

First we can state the answer to problem A. 

Theorem I (Stability). Under the assumptions (2.2)-(2.4). there exists a constant C = 
C(n, r, T ,  xo) > 0 such that 

~~ for any f E L2(Q).  

Remark 3. Our governing equation in (1.1) is hyperbolic so that, for uniqueness and 
stability, we have to choose a large observation time T satisfying (2.2). The restriction on 
the geometry of r arises from the assumption for a result concerning the exact controllability 
by the Hilbert uniqueness method (e.g. ch I sections 7 and 10 in Lions (1988b)). In many 
cases, it t y n s  out that (2.2) requires that T should be greater than the diameter of Q. 

Second we proceed to discussion of the second problem B stated in section 1. For this, 
we define three operators A, il and Q. 
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Definition of the operator A in L'(S2). Let A be the realization of -A in &'(a) with 
Dirichlet boundary condition Au(x)  = -A+) and D(A)  = (U E HZ(n); ulan = 01. Let 
us number the eigenvalues of A repeatedly according to their multiplicities: 

0 < hi < A2 < h3 < . . . . (2.6) 

That is. if the multiplicity of hi is m, then hi appears in (2.6) m times. Let q5k be an 
eigenfunction for the eigenvalue hk  of A (k  > 1). We can choose {&&>I such that 

(q5b q5I)L'(n) = b. (2.7) 

Here we set SkI = l ( k  = l ) ,  = 0 (otherwise). 

Definition of the operator IIt LZ(Q) -+ L2(r  x (0, T ) ) .  We show: 

Lemma I Exact confrollabiliry. (Lions 1988a, b). On the assumptions (2.2) and (2.3), to 
each 40 E Lz(s2) we can construct a unique U = u(q50) E L z ( r  x (0, T ) )  in such a way that 
the following properties hold. 
(i) The weak solution q5 =@(U) E CO([O, TI; L'(Q)) n C'([O, TI; H- ' (Q))  to 

q5"(x, t )  = A@@, t )  ~ (x  ,E Q, 0 e t < T )  

q5(x, 0)  = q5o(x) 

+ ( x ,  t )  = V ( X ,  t )  

$ ( x ,  2) = o  

&'k 0) = 0 (x  E n) 
( X  E r, o < t T )  

(X E an\ r,o < r < T )  

(2.8) 

satisfies 

(ii) There exists a constant Cz = C&2, T ,  xo) > 0 such that 

(2.10) 

for any 40 E Lc?(n) .  

Here H-'(Q) denotes the dual of Hd(S2) (U E H'(Q) ;  ul;jn =O]. 
By lemma 1, we can define a bounded linear operator Il : L2(Q) + L z ( r  x (0, T ) )  

by 

W O  = m o )  (40 E L*(Q)). . ,  (2.11) 

Remark 4.  For the unique existence of a weak solution to (2.8), we cai refer, for example, 
to theorem 4.2 (pp 46-7) in Lions (1988b). 
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Dejinition of the operator @: Lz(l?x (0, T ) )  + H'(0 ,  T ;  L2(r)). Let us consider a 
Volterra equation of the second kind 

qX, 0) = o ( X  E r). 
This is uniquely solvable in 0 E HL(O, T ;  LZ(r)) for any r~ E L2(r  x (0, T ) )  by using the 
resolvent kernel and we have 

ll0llw(o.r:a(r)) 6 C ~ l l r ~ l l ~ ~ ( r x ( o , ~ ) )  (v E L2(r x (0, T ) ) )  

with some constant C, > 0 (e.g. Tricomi (1985)). Then we can define a bounded linear 
operator @ : Lz(r  x (0. T ) )  + HL(O, T ;  L2(r ) )  by 

0 = @ r ~  r~ E L2(r  x (0, T ) ) .  (2.13) 

Now we are ready to state a formula for reconstruction of f in terms of au(f)/an. 

Theorem 2 (Reconstruction formula). We assume (2.2)-(2.4), and set 

Then we have 

for k I .  In particular, 

(2.15) 

Remark 5. Since [O&>l can be constructed only by 52, T ,  r, and is independent of 
f E Lz(Q), conclusion (2.15) means that the kth Fourier coefficient of an unknown f is 
given in terms of datum au(f)/an. 

Remark 6. For (0k)a21,  we can further show (theorem 4 in Yamamoto (1995a)) that the 
system [ @ k ] k > l  is a Riesz basis (e.g. Gohberg and Krein (1969)) in H'(0 ,  T ;  L Z ( r ) )  under 
the assumptions (2.2)-(2.4). 

Finally we will discuss problem C. 

Theorem 3 (Range of G*). Under (2.2)-(2.4), we get 

R(G*) = (G*y; y E L2(r x (0. T ) ) ]  3 Hd(Q). (2.16) 

Further,more we can prove that R(G*) c H'(Q) by an argument,on regularity of 
solutions of a hyperbolic equation with non-homogeneous boundary values (cf Lions 
(198Xb)). This theorem is proved by 

(i) the range of the adjoint of an observation map G coinciding with a reachable set of 
a control system associated with (1.1) (e.g. Engl et a1 (1995)); and 

(ii) a reachable set is Hd (a) by the Hilbert uniqueness method (Lions 1988a, b). 
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3. Application of theorem 3 to a regularization method 

Let us recall that the operator G : L2(Q) 4 L2(r x (0, T ) )  is defined by (1.4). As is 
proved in Yamamoto (1995a), the operator G is compact from L2(S2) to L z ( r  x (0, T)), so 
that the problem of solving 

y = G f  (3.1) 

with respect to f E L2(Q) for a given y E L2(r  x (0, T ) )  is ill-posed. 

available data ys: 
In this section, assuming that yo = Gfo, we consider reconstruction of fo from inexact 

l l~s  - YoIlLyrx(o.r)) < 6 (3.2) 

where S > 0 is a noise level. The reconstruction problem is to find reasonable 
approximations fss for fo by using data~ys. By the reasonable approximations fss, we 
mean that we can stably construct fs from ys and that lims,o llfs - foll~z(n) = 0. Since G 
is compact and R(G) is a proper closed subset of L2(r  x (0, T ) )  (Yamamoto 1995b), we 
must be concerned with the following difficulties: 

(i) ys E R(G) does not necessarily hold no matther how small 8 > 0 is. 
(ii) G-' : R(G) C L2(r  x (0, T ) )  + L2(Q)  is not continuous, although G is injective 

by theorem 1 in section 2. 
For overcoming these difficulties, various regularization techniques have been proposed 

(e.g. Baumeister (1987). Groetsch (1984, 1993), Hofmann (1986), Tikhonov and Arsenin 
(1977)). In this section, according to Groetsch (1984), ch 3, we consider the following 
regularization. 

Regulurizution. Let a > 0 be a parameter. Minimize the functional 

Fu(f) = IIGf -YsiI2*(rxco.r)) +aYlIfII$(n) (3.3) 

over f E P(n). 
Then, by Groetsch (1984), for an arbitrarily fixed %> 0, there exists a unique minimizer 

f," for a given ys E L2(r x (0, T ) ) ,  and if f," and ft are minimizers of Fa respectively 
with ys and 5, then - 

llf," - fusllLZ(Q) < C3llys - a ' W x ( 0 , T n  

for a constant C, > 0-which is independent of ya, 5. Here we call f," a regularized 
solution. Moreover, if we choose parameters a = a(8) such that 

82  
lim - = 0 
6 - 4  a(8) (3.4) 

then 

However, the choice (3.4) of regularizing parameters does not guarantee any concrete 
convergence rates in (3.5). If we can pose an additional assumption on fo, then we can 
derive a concrete rate under suitable choices of regularizing parameters. That is, 
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Theorem 0 (Corollary 3.1.3 (p  35) in Gcoetsch (1984)). If 

fo E 'WG")  (3.6) 

and 

a! = u(8) = c46 

for an arbitrarily given constant c4 0, then 

llf: -'follLYn) = 

(3.7) 

aS6+0. 

Thus we can combine theorem 3 with this theorem and we have: 

Theorem 4 (Convergence rates of regularized solutions). 
01 = u(8) satisfying (3.7), then 

If fo E HA (52) and we choose 

llf: - f o l l L ~ c m  = o m  
aS6-0. 

Remark 7. 
(1995b), where asymptotic behaviour for the singular values of G is given. 

For another regularization to our inverse problem, we refer to Yamamoto 

4. Proof of theorem 1 

Let us consider another initial valueiboundary value problem for a hyperbolic equation: 

w"(x, t )  = Aw(x,  t )  (X  E Q. t > 0) 
w ( x ,  0)  = 0 w'(x.0) = f ( x )  ( X  E Q) (4.1) 
w ( X ,  $1 = o (x  E as2, t > 0). 

For any f E L2(Q),  to (4.1), there exists a unique solution w = w ( f )  E 
Co([O, TI; Hi(Q)) n C'([O, TI; LZ(Q) )  (e.g. lemma 3.6 (p 39) in Lions (1988b)) and 

Ilw(f)IIL"(O,T:Hd(n)) + ~~w(f)'ll~N(O.r:Lz(~)) < C511fllL2(n) (4.2) 

for some constant C, > 0. First we show: 

Lemma 2 (Komornik 1989a, Lions 1988b). We assume (2.2) and (2.3). Then there exists 
a constant C = C(52, r, T, X O )  > 0 such that 

for any f E Lz(Q). 
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Moreover we show: 

Lemma 3. We denote an operator K : L2(r x (0, T ) )  -+ H'(0,  T ;  LZ(r) )  by 

( K g ) ( x ,  f) = lo u(t - s)g(x.s)ds (x  E r, 0 < I c T ) .  (4.3) 

Then there exists a constant C, = C,(Q, T )  =- 0 such that 

CT' 11 Kg IIw(o,T:L2(r)) < IIg IIL2(rm.T)) 6 c6 11 K g  llw(0.7: ~2(r)) (4.4) 

for any g E L2(r x (0, T) ) .  

Proof of femma 3. By U E C'[O, TI, taking time derivatives in (4.3), we get 

w ( x ,  t )  = u(O)g(x, t)+ u'(t-s)g(x.  s) ds (x  E r, 0 e t i T ) .  

We have o(0) #.O by the assumption (2.4), so that this is a Volterra equation of the second 
kind with respect to g. Consequently we obtain 

at  l 

(e.g. Tricomi (1985)). Moreover, directly from (4.3), we get 

I l ~g l l L~ ( rz (0 .T ) )  < C~llglI'~(rx(0.T)). 

Combining (4.5) with (4.6), we reach (4.4). 

(4.6) 

0 

Next we can show a key lemma which connects our inverse problem with an exact 
controllability problem. 

Lemma 4. For any f E C,"(Q), we have 

u ( ~ ) ( x ,  t )  = ( K u J ( ~ ) ) ( x .  t )  = u ( s ) w ( ~ ) ( x ,  t - S)ds ( X  E 0, > 0). (4.7) 

Remark 8. The relation (4.7) holds for any f E Lz(Q). In fact, we can prove (4.7) for 
f E L2(Q) by approximating f E L2@)  by functions in C,"(Q) and using estimates (1.2) 
and (4.2). 

Proof of lemma 4. This lemma is seen directly from Duhamel's principle. For convenience, 
we give the proof here. Let us  set^ the right-hand side of (4.7) by Z(x , t ) .  It is 
sufficient to prove that ;. E CO([O, TI; Hd(Q)) n C'([O, TI; LZ(Q))  satisfies (1.1). By 
f E Cp(Q), the solutions u(f) and w ( f )  are smooth on a x [O, TI.  In particular, 
ii E Co([O, TI;  Hi (Q)) n C'([O, TI; Lz(Q))  and, moreover, by direct computations we see 
that ;satisfies (1.1). By the uniqueness of solutions to (1.1). weget Z(x, t )  = u ( f ) ( x ,  t ) ( x  E 

0 Q, t > 0). This completes the proof of lemma 4. 
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Now let us complete the proof of theorem 1. It is sufficient to prove (2.5) for 
f E Cr(S2). In fact, let us assume that (2.5) holds for f E Cr(S2). Let f E L'(S2) 
be given arbitrarily. Then since Cr(S2) is dense in LZ(S2), we can take fn E Cp(S2) such 
that I l f ,  - fllLica) + 0 as n + W. By our present assumption, we can get 

On the other hand, by (1.3), we have 

Thus we can reach (2.5) for any f E L'(S2). 

smooth on a x [0, TI, we have 
Finally let us proceed to the proof of (2.5) for f E Cr(S2). Since w(f) is sufficiently 

Therefore we get by (4.7) 

(4.8) 

Consequently by lemma 3, we obtain 

(f E c,"(Q)). 

Now by applying these inequalities in lemma 2, the estimate (2.5) for f E C,"(S2) is 
U straightforward. Thus the proof of theorem 1 is complete. 

5. Proof of theorem 2 

It suffices to prove theorem 2 for f E Cr(S2) by the estimate (1.3) and the denseness of 
Cr(S2) in L'(S2). Henceforth let f E Cr(L-2). Then, using an eigenfunction expansion of 
w(f), we can see 

where the series is convergent in H'(0 .  T ;  L*(r)). 
Next we prove: 
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Lemma 5. ,Under the assumptions (2.2) and (2.3), we have 

For the proof, first we show: 

Lemma 6. Let p(x ,  t )  and q ( x ,  t )  be sufficiently smooth and satisfy 

p”(x,  t )  = Ap(x, r )  ( x  E sl, 0 < t e T )  

p ( x ,  T )  * 0 pyx .  T )  = 0 (x E a) 
and 

q ” ( x , t ) = A q ( x , t )  ( x ~ S 2 , 0 < t < T )  

q(x, 0) = 0 

q(x,  t )  = o 
q’(x,  0) = f (XI 

( X  E asl, o < t < T I .  
(x E sl) 

Then 

(5.3) 

Proof of lemma 6. Since p and q are sufficiently smooth, the following calculations are 
justified. 

(by integration by parts) 

(by integration by parts and p(x ,  T) = 0, q’ (x ,  0) = f (1)) 

namely 

Applying the Green formula, and q(x, t )  = O(x E an, 0 < I e T), we see (5.4). 
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Proof of lemma 5. Let @ be the solution to 

@"(x,t) = A@(x, t )  

@ ( x ,  T) = 0 

$(x, t )  = U ( X ,  t )  

$ ( X ,  t) = o 

(x E 52, 0 c t < T )  

(x E n) @'(x, T )  = 0 

( X  E r, o c: f < T) 
(x  E an \ r, o c: t < T )  

for U E LZ(r x (0, T) ) .  For any U E L2(r x (0, T)) ,  we can define the weak solution @ and 
we can prove (theorem 4.2 (pp 46-7) in Lions (1988b)) that there exists a unique solution 
@ = $(U) E Co([O, T I ;  L2(Sl)) n C1([O, TI; H - ' ( ! 2 ) )  and, moreover, 

(5.6)~ l l@(~ ) I l t~o .~ :~~ (n ) )  + Il@(~)'lI~~(o.~:x-~cn,, < CI IluIIL2(rx(o.r)). 

For @(U), the following equation holds: 

for any U E L2(r  x (0, T ) )  and 1 2 1. 

Proofof (5.7). First let us assume that U E CT(r x (0, T ) ) .  Then the solution @ = @(U) 
is so smooth that we can set p(x ,  t) = @ ( u ) ( x ,  t )  and q ( x ,  t )  = (sinfir/&@{(x) in 
lemma 6. Therefore noting the boundary condition of @(U) in (5.5). we can obtain' (5.7) 
for any U E C?(r x (0, T ) ) .  

Finally we have to prove (5.7) for any U E LZ(r x (0, T ) ) .  Since CT(r x (0, T ) )  is 
dense in L2(r x (0, T ) ) ,  we can choose U,, E CF(r x (0, T ) )  (n > 1) such that 

11% - ~ ~ ~ L ~ ( ~ x ( O , T ) ) ~ ~  0 

as n --f CO. As is already proved, we have (5.7) for u,(n > 1). By (5.6) with U - U,,, we 
can make n tend to 00 in (5.7), so that we complete the proof of (5.7). 

Let us complete the proof of lemma 5. In lemma 1, for k > 1, we take @o(x) = 
-@k(x) (x  E 0) and set U = -rI@k E L2(r x (0, T)) (k  2 I). Then @(U) satisfies (2.8) 
with @O = -@k and (2.9). By uniqueness of weak solutions to (5.3, we see @(U) = @(U). 
Therefore, applying this U in (5.7), we obtain 

by the orthonormality (2.7) of [#nlk>1. Thus the proof of lemma 5 is complete. 0 

LetK* : R ( K )  -+ LZ(rx (O, 'T) )  betheadjointoftheoperatorK: L2(rx (0 ,  T ) )  --f 
H1(O, T : L 2 ( r ) ) .  Then we can directly verify 

(5.8) 
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Therefore by definition (2.13) of Q, the equality 

K * Q ~  = 7 (7 E L z ( r  x (0, T ) ) )  (5.9) 

holds. 
We are ready to complete the proof of theorem 2. In fact, we have 

(by (2.14) and (4.8)) 

6. Proof of theorem 3 

We define an operator L : L2(S2) --f L2(r  x (0, T ) )  by 

a w w  L f  =- 
an 

where w(f) is the solution to (4.1). By lemma 2, the operator L is bounded from LZ(C2) 
to L2(r x (0, T ) ) .  By (4.8), we decompose G as 

Gf = KpLf (f E L2(n) )  (6.2) 

where we regard K as an operator from L2(0, T ;  L2(r)) to itself and we set K = KLL 
Therefore we get G" = L*Ki2, so that we have 

R(G*) = (L*u; v E R(K;,)]. 

On the other hand. we directly see (.Y;2q)(x, t )  = f a ( [ - t ) q ( x ,  [)d[ (n E r, 0 < t .c T ) ,  
so that R(K;,)  = [U E NI (0, T ;  L 2 ( r ) ) ;  U(., T )  = 0) by (2.4). Consequently we obtain 

(6.3) R(G*) = (L*u; U E H 1 ( O ,  T; L Z ( r ) ) ,  U(., T )  = O}. 
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Thus, for the proof, we have only to determine R(L*).  For this, we need 

for any U E L2(r x (0, T ) )  and f E L2(S2). Here we recall that @(U) E Co([O, TI;  L2(Q))f l  
C'([O, TI;  ff-'(Q)) is the weak solution to (5.5). At the end of this section, we will prove 
(6.4). 

Relation (6.4) implies 

(Lf, u)Lz(rr(o,n) = (f, -$(U)(.* 0))rqn) 

namely 

L*U = -@(u)( . ,o )  E L z ( r  x (0, T ) ) .  (6.5) 

By (6.3) we have 

R(G*) = (@(U)(., 0); U E H'(0, T ;  L2(r ) ) ,  U(., T )  = 0). (6.6) 
This relation is the first point (i) mentioned just after the statement of theorem 3. To 
complete the proof of theorem 3, as the~second point (ii) mentioned after the statement of 
theorem 3, we show an exact controllability result by the Hilbert uniqueness method. 

Lemma 7 (Theorem 6.4 (p  75) in Lions (1988b)). We assume (2.2) and (2.,3). For any 
(+o, @ I )  E H,'(Q) x L2(Q), there exists a U E Hd(0, T ;  L2(r)) such that 

@(W. 0) = @o(x) @(U)'@? 0) = @l(X) ( x  E Q). 

Therefore from (6.6) we can reach R(G*) 3 HJ(S2), the conclusion of theorem 3. 

Proof of (6.4). First let us assume that U E CF(r x (0, T ) )  and f E CF(S2). Then @(U) 
and w ( f )  ate sufficiently smooth, so that lemma 6 and the boundary condition in (5.5) 
imply 

Therefore we see (6.4) for U e Cp(r x'(0, T ) )  and f E Cp(S2). 
Finally let U E L2(r x (0, T ) )  and f E LZ(n). Since CF(r x (0, T ) )  and CF(L2) 

are dense respectively in Lz(r  x (0, T ) )  and L2(S2), there exist U, E C?(r x (0, T)) and 
f n  E C,"(n) (n 2 1 ~ ~ ~ ~ ~ ~ ~ ~ i l ~ ~ - ~ l l ~ ~ ~ r x ~ o , ~ ~ ~  + 0, Il.&-fIl~2cni -+Oasn 4 00. 

By (5.6) and lemma 2, we see 

ll@(UnK.iO) - ?b(U)(.,O)IIL.P(n) - 0 
i a ; y n )  --__ a w ) l l  , - and 

an LZ(Cx(0.T)) 

as n --f 0. Therefore we can let n tend to CO in (6.4) with U = U, and f = f,,, so that we 
obtain (6.4) for any U E Lz(r x (0, T)) and any f E L2(Q). 
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Appendix. Proof of (1.3) 

First by theorem 4.1 (p 44) in Lions (1988b), we see 

for any f E L2(n). 
Let z be the weak solution to 

z"(x, t) = Az(x,  t) + u' ( t ) f (x )  

z(n, 0) = 0 

z(x, t )  = 0 

( x  E Q, 0 < t < T )  

(x  E n) z ' (x ,  0) = u ( O ) f ( x )  

(x  E an, 0 < t < T ) ,  

Since u'f E L'(0,  T :  L2(n)) and u(0)f E LZ(C2), it follows from lemma 3.6 (p 39) and 
theorem 4.1 (p 44) in Lions (1988b) that 

z E co([o, TI; ~;(n)) n cL([o, TI; L ~ ( Q ) )  (A2) 
and 

~ <c; IlfllL.cn, 

for any f E L2(s2). By (2) we can set 

u ( x ,  t )  = z(x, s) ds ( x  E Q, 0 < t < T )  l .-. 

so that Z E Cl([O, T I ;  Hd(Q)) n C2([0, TI; L2(Q))and Z satisfies (1.1). By uniqueness of 
weak solution (lemma 3.6 (p 39) in Lions (1988b)), we get 

(x  E n, 0 < f < T )  

( x  E n, 0 < t < T ) ,  

u ( f ) ( x ,  t )  = Z(x, t )  

z(x, r )  = u ( f ) ' ( x ,  t )  

and 

Therefore (AI)-(A3) imply (1.3). 
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