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Stability region enlargement through anti-windup strategy for
linear systems with dynamics restricted actuator
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This paper addresses the problem of determination of stability regions for linear systems with

amplitude and successive dynamics restricted actuator through anti-windup strategies.

Considering a linear dynamic output feedback designed with respect to the linear system

(without saturation), an anti-windup design method is investigated to guarantee both the

stability of the closed-loop system and the respect of the controlled output constraints for a

region of admissible initial states as large as possible. Based on the modelling of the closed-

loop system resulting from the controller plus the anti-windup loop as a linear system with

dead-zone and dynamics restricted nonlinearities, LMI stability conditions are formulated.

Numerical optimization procedures are discussed.
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1. Introduction

Physical, safety or technological constraints induce that
the control actuators cannot provide unlimited ampli-

tude signals neither unlimited speed of reaction. The
control problems of combat aircraft prototypes and
launchers offer interesting examples of the difficulties

due to these major constraints. Neglecting both ampli-
tude and dynamics actuator limitations can be a source
of undesirable or even catastrophic behaviours for the

closed-loop system (as the lost of the closed-loop
stability) (Berg et al. 1996). For these reasons, the
study of the control problem or analysis stability

problem with respect to systems subject to both
amplitude and rate actuator saturations has received
the attention of many researchers in the last years (see,

for example, Tyan and Bernstein (1997), Kapila and
Grigoriadis (2002) and Gomes da Silva Jr et al. (2003)).
The anti-windup approach consists in taking into

account the effect of saturations in a second step after a
preliminary design performed disregarding the satura-

tion terms. The idea is then to introduce control
modifications in order to recover, as much as possible,

the performance induced by the previous design carried

out on the basis of the unsaturated system. In particular,

anti-windup schemes have been successfully applied in

order to avoid or minimise the windup of the integral

action in PID controllers, largely applied in the industry.

In this case, most of the related literature focuses on the
performance improvement in the sense of avoiding large

and oscillatory transient responses (see, among others,

Fertik and Ross (1967), Åström and Rundqwist (1989)).
Then, special attention has been paid to the influence

of the anti-windup schemes in the stability and the

performances of the closed-loop system (see, for
example, Kapoor et al. (1998), Kothare and Morari

(1999), Barbu et al. (2000)). Several results on the anti-

windup problem are concerned with achieving global

stability properties. However, global results cannot be

achieved for open-loop unstable linear systems in the
presence of actuator saturation, for which local results

have to be developed. In this context, a key issue

concerns the determination of domains of stability for

the closed-loop system. It is worth noting that the

basin of attraction is modified by the anti-windup loop.

If the resulting basin of attraction is not sufficiently
large, the system can present a divergent behaviour

depending on its initialization and the action of

disturbances.
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More recently, in Cao et al. (2002) and Gomes da Silva
Jr and Tarbourietch (2003) or in the ACC03 Workshop
‘‘T-1: Modern Anti-windup Synthesis’’, some construc-
tive conditions have been proposed both to determine
suitable anti-windup gains and to quantify the closed-
loop region of stability in the case of amplitude saturation
actuator. Different from the references cited above, in
the current paper, we focus our attention on linear
systems with amplitude and successive dynamics
restricted actuator and bounded controlled outputs. To
the knowledge of the authors, this type of actuator has
not been widely studied despite its practical aspect (see,
for example, Tarbouriech et al. (2003, 2004) for some
preliminary results). Results classically obtained for
amplitude and rate saturation actuators (Kapila and
Grigoriadis 2002) do not directly extend to this type of
actuator representation, in which themain characteristics
are that amplitude and dynamics cannot saturate
simultaneously. We aim at designing suitable anti-
windup gains in order to ensure the closed-loop stability
for regions of admissible initial states as large as possible.
Based on the modelling of the closed-loop system
resulting from the controller plus the anti-windup loop
as a linear systemwith dead-zone and dynamics restricted
nonlinearities, original constructive stability conditions
are directly formulated as LMI conditions.
The paper is organized as follows. Section 2 describes

in detail the actuator and the plant under consideration.
The anti-windup strategy is then presented and the
resulting problem of designing the suitable anti-windup
loops is summarised. Section 3 provides the main
theoretical conditions allowing us to exhibit a solution
to the problem studied. In section 4, some computa-
tional analysis issues are addressed. In particular, some
discussion with respect to the tools and technique
developed and the results published in the literature
are pointed out. Finally, the optimization procedure to
obtain an estimate of the basin of attraction of the
closed-loop system as large as possible is described.
In section 5, two numerical examples borrowed from the
literature allow us to underline not only the potentiali-
ties of the method proposed but also the difficulties
inherent to the actuator under study. Some concluding
remarks, in which some future work is evoked, end
the paper.

Notation: For any vector x 2 <n, x� 0 means that all
the components of x, denoted x(i), are non-negative.
For two vectors x, y of <n, the notation x� ymeans that
x(i)� y(i)� 0, 8i ¼ 1, . . . , n. 1 and 0 denote the identity
matrix and the null matrix of appropriate dimensions,
respectively. The elements of a matrix A 2 <m�n are
denoted by A(i, j), i¼ 1, . . . ,m, j¼ 1, . . . , n. A(i) denotes
the ith row of matrix A. |A| is the matrix constituted
from the absolute value of each element of A. For two

symmetric matrices, A and B, A>B means that A�B
is positive definite. A0 denotes the transpose of A.
1m ¼

�
½1 . . . 1�0 2 <m. For any vector u of <m

one defines each component of satu0(u) by
satu0ðuðiÞÞ ¼ signðuðiÞÞminðu0ðiÞ, juðiÞjÞ, i¼ 1, . . . ,m.

2. Problem statement

In this paper, we consider a class of nonlinear systems
obtained by cascading linear systems with actuator
containing some nonlinearities of saturation type as
shown in figure 1.

The actuator considered is a dynamic system contain-
ing amplitude and dynamics restrictions, that is, it is
described via successive time-derivatives of the input of
the plant. By setting

xa ¼

u

_u

..

.

uðq�1Þ

2
666664

3
777775 2 <mq and ya ¼ satu0 ðuÞ 2 <m, ð1Þ

where u(q) denotes the q-order time-derivative of u, the
model of the actuator reads as follows:

_xaðtÞ ¼ AaxaðtÞ þ Ba0satu0ðCaxaðtÞÞ

þ
Pq�1

j¼1

Bajsatuj
�
satu0

�
CaxaðtÞÞ

ðjÞ
�
þ Baqua

yaðtÞ ¼ satu0ðCaxaðtÞÞ,

8>>>><
>>>>:

ð2Þ

where xa is the state of the actuator, ya is the output of
the actuator and ua 2 <ncp is the input of the actuator.
Matrices Aa 2 <mq�mq, Baj 2 <mq�m, j¼ 0, . . . , q� 1,
Baq 2 <mq�ncp and Ca 2 <m�mq are defined by

Aa ¼

0 1 0 0 � � � 0

0 0 1 0 � � � 0

..

. . .
. ..

.

..

.
� � � 1 0

0 � � � � � � 0 1

0 � � � � � � 0 0

2
666666666664

3
777777777775
; Baj ¼

0

0

� � �

� � �

0

Tj

2
66666666664

3
77777777775
;

Ca ¼ 1 0 � � � � � � 0 0
� �

: ð3Þ

yaua y
plantactuator

Figure 1. System under consideration.
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Such a model is the type of actuator encountered in the
control of launchers (see Langouët et al. (2002) in which
m¼ 1 and q¼ 2). Indeed, it allows us to represent the
limitations on the thruster angle of deflection and its
time-derivative present in some phases of the flight path
of launchers, in particular during the atmospheric phase.
Thus, the actuator in the case q¼ 2, m¼ 1 can be
represented in figure 2.
In (2), the positive vectors u0 and uj, j¼ 1, . . . , q� 1,

may be viewed as bounds on the position and
the successive dynamics of the actuator state. Thus, it
clearly appears that one cannot have simultaneously
position and dynamics saturation. Indeed, if the ith
component of the amplitude actuator saturation is
effective (i.e., |Ca(i)xa|> u0(i)) then the corresponding
component of the successive dynamics saturation does
not affect the system (i.e., satuj ðsatu0ðCaðiÞxaðtÞÞ

ðjÞ
Þ ¼ 0

and ðsatu0 ðCaxaðtÞÞ � CaxaðtÞÞ
ðjÞ
¼ 0, j¼ 1, . . . , q� 1).

Moreover, in order to protect the actuator from
important input signal a saturation is added as follows:

ua ¼ saty0 ðycðtÞÞ, ð4Þ

where yc is the output of the controller.
The plant controlled through the previous actuator is

a continuous-time linear system

_xðtÞ ¼ AxðtÞ þ ByaðtÞ

yðtÞ ¼ CxðtÞ

zðtÞ ¼ C2xðtÞ þD2yaðtÞ,

8<
: ð5Þ

where x 2 <n, y 2 <p and z 2 <l are the state, the
measured output and the controlled output vectors,
respectively. A, B, C, C2 and D2 are real constant
matrices of appropriate dimensions. ya 2 <m is both the
output of the actuator and the input of the plant.
Without saturation terms (ua ¼ saty0ðycÞ ¼ yc,

satu0 ðCaxaÞ ¼ Caxa ¼ u and satujðsatu0ðCaxaÞ
ðjÞ
Þ ¼

Cax
ðjÞ
a ¼ uðjÞ, j¼ 1, . . . , q� 1), system (2)–(5) is linear

and reads

_xðtÞ ¼ AxðtÞ þ BuðtÞ

_xaðtÞ ¼ ðAa þ ½Ba0 � � � Baq�1�ÞxaðtÞ þ BaqycðtÞ

yðtÞ ¼ CxðtÞ

zðtÞ ¼ C2xðtÞ þD2CaxaðtÞ:

8>>><
>>>:

ð6Þ

Under the (A,B)-controllability and (C,A)-observability
assumptions, we assume that an nc-order dynamic
output stabilising controller has been determined to
stabilize the linear system (6) and is described as

_�ðtÞ ¼ Ac�ðtÞ þ BcyðtÞ

ycðtÞ ¼ Cc�ðtÞ þDcyðtÞ,

(
ð7Þ

where � 2 <nc is the controller state, y is the controller
input and yc 2 <ncp is the controller output.

Furthermore, in the presence of the saturation
terms, in order to mitigate the undesirable effects of
windup, we want to consider an anti-windup strategy.
For this, we assume that the variables u¼Caxa(t),
ya ¼ satu0ðCaxaðtÞÞ (variables of the actuator), yc
and ua ¼ saty0 ðycÞ (input of the actuator) can be
measured (that is the case in the type of launchers
studied in Langouët et al. (2002)). Hence, some terms
based on the following differences (see Teel (1999),
Cao et al. (2002) for anti-windup in amplitude
saturation case)

satu0 ðCaxaðtÞÞ � CaxaðtÞ
� �
satu0 ðCaxaðtÞÞ � CaxaðtÞ
� �ðjÞ

, j ¼ 1, . . . , q� 1

saty0 ðycðtÞÞ � ycðtÞ
� �

can be added to the system, in particular to the
controller, through adequate gains. The idea in a
classical anti-windup strategy is to use the difference
between the actuator output which can be saturate
and a fictitious signal corresponding to the non-
saturated one in order to reduce the effect of windup.
This idea is directly extended here to the signal
derivative which can saturate leading to the introduc-
tion of degrees of freedom (gains) associated with each
saturated derivative. Thus, considering the dynamic
controller and this anti-windup strategy, the closed-
loop system reads

_xðtÞ ¼ AxðtÞ þ Bsatu0ðCaxaðtÞÞ

_xaðtÞ ¼ AaxaðtÞ þ Ba0satu0 ðCaxaðtÞÞ

þ
Pq�1

j¼1

Bajsatuj
�
satu0 ðCaxaðtÞÞ

ðjÞ
�
þ Baqsaty0 ðycðtÞÞ

_�ðtÞ ¼ Ac�ðtÞ þ BcCxðtÞ þ Gcðsaty0 ðycðtÞÞ � ycðtÞÞ

þEcðsatu0ðCaxaðtÞÞ � CaxaðtÞÞ

ycðtÞ ¼ Cc�ðtÞ þDcCxðtÞ þ Fcðsatu0 ðCaxaðtÞÞ

�CaxaðtÞÞ þ
Pq�1

j¼1

Hcjðsatu0ðCaxaðtÞÞ � CaxaðtÞÞ
ðjÞ

zðtÞ ¼ C2xðtÞ þD2satu0 ðCaxaðtÞÞ,

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð8Þ

ua
..
u

T2

T1 u1

T0

±

±

u0

.
u ya

dt
d

+

+

+
+ u

Figure 2. Actuator under consideration in the case m¼ 1

and q¼ 2.
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where Ec, Fc, Gc and Hcj, j¼ 1, . . . , q� 1, are the anti-
windup gains to be determined. It is worth noticing that,
as mentioned above, in system (8) the added terms are
only active when the saturation occurs.

Remark 1: Preliminary results had been obtained in
Tarbouriech et al. (2004) for the same problem
(actuator model, anti-windup strategy). However, the
part due to Hcj, j¼ 1, . . . , q� 1, was not taken into
account. In that case, some numerical problems
appeared when solving the first condition of
Proposition 1 in (Tarbouriech et al. 2004): in fact this
inequality appeared to be marginally feasible. Some
difficulties could be encountered to have coherent
numerical solutions with LMILab in MATLAB. The
use of SEDUMI solver decreased them. Nevertheless,
by studying carefully this condition, one could appre-
hend that this problem was structural (due to the form
of different matrices of the complete system). In the
current solution, this problem disappears thanks to the
added terms through the gains Hcj, j¼ 1, . . . , q� 1.

In order to deal with system (8), let us define the q
nonlinearities �0 and �j, j¼ 1, . . . , q� 1

�0ðCaxaðtÞÞ ¼ yaðtÞ � CaxaðtÞ ¼ satu0 ðCaxaðtÞÞ � CaxaðtÞ

ð9Þ

�jðCaxaðtÞÞ ¼ satuj
�
yðjÞa ðtÞ

�
� yðjÞa ðtÞ

¼ satuj
�
satu0ðCaxaðtÞÞ

ðjÞ
�

� satu0ðCaxaðtÞÞ
ðjÞ: ð10Þ

From the definition of �0, one gets

satu0 ðCaxaðtÞÞ
ðjÞ
¼ �ðjÞ

0 ðCaxaðtÞÞ þ Cax
ðjÞ
a ðtÞ: ð11Þ

By the same way, one can define the nonlinearity �c

�cðycðtÞÞ ¼ saty0 ðycðtÞÞ � ycðtÞ

¼ saty0

�
Cc�ðtÞ þDcCxðtÞ þ Fc�0ðCaxaðtÞÞ

þ
Xq�1

j¼1

Hcj�
ðjÞ
0 ðCaxaðtÞÞ

�

�

�
Cc�ðtÞ þDcCxðtÞ þ Fc�0ðCaxaðtÞÞ

þ
Xq�1

j¼1

Hcj�
ðjÞ
0 ðCaxaðtÞÞ

�
: ð12Þ

Therefore, the system (8) can be written in a compact
form. For this, define the extended state vector

�ðtÞ ¼ xðtÞ0 xaðtÞ
0 �ðtÞ0

� �0
2 <nþmqþnc ð13Þ

and the following matrices of appropriate dimensions

A¼

A BCa 0

BaqDcC ðAaþ½Ba0 � � � Baq�1�Þ BaqCc

BcC 0 Ac

2
664

3
775

2<ðnþmqþncÞ�ðnþmqþncÞ

B0 ¼

B

Ba0

0

2
64

3
75 Bj ¼

0

Baj

0

2
64

3
75 2<ðnþmqþncÞ�m

Bq ¼

0

Baq

0

2
64

3
75 2<ðnþmqþncÞ�ncp

R¼

0

0

1

2
64

3
75 2<ðnþmqþncÞ�nc

K¼ 0 Ca 0
� �

2<m�ðnþmqþncÞ

C2 ¼ C2 D2Ca 0
� �

2<l�ðnþmqþncÞ

C0 ¼ DcC 0 Cc

� �
2<ncp�ðnþmqþncÞ

ð14Þ

for l¼ 1, . . . , q. Thus, the closed-loop system reads

_�ðtÞ ¼ A�ðtÞ þ ðB0 þ REc þBqFcÞ�0ðK�ðtÞÞ

þ
Xq�1

j¼1

ðBj�jðK�ðtÞÞ þ ðBj þBqHcjÞ�
ðjÞ
0 ðK�ðtÞÞÞÞ

þ ðRGc þBqÞ�cðycðtÞÞ
zðtÞ ¼ C2�ðtÞ þD2�0ðK�ðtÞÞ:

8>>>>>><
>>>>>>:

ð15Þ

For simplicity, �0(K�(t)), �j(K�(t)), �ðjÞ
0 ðK�ðtÞÞ,

j¼ 1, . . . , q� 1 and �c(yc(t)) will be denoted �0, �j,
�ðjÞ
0 and �c. Note that in the absence of saturation one

gets �0¼ 0, �j¼ 0, �ðjÞ
0 ¼ 0, �c¼ 0 and system (15)

becomes a linear system in which the matrix A, defined

in (14), is Hurwitz.
The problem we intend to solve is summarized as

follows:

Problem 1: Determine anti-windup gains Ec, Fc, Gc,
Hcj, j¼ 1, . . . , q� 1, and a set S0 such that

1. (Stability) The asymptotic stability of the closed-
loop system (8) is ensured for any
½xð0Þ0 xað0Þ

0 �ð0Þ0�0 2 S0, where S0 is as large as

possible.
2. (Performance) For any ½xð0Þ0 xað0Þ

0 �ð0Þ0�0 2 S0 the
controlled output z takes values in the set Z0

defined by:

Z0 ¼ fz 2 <l;�z0 � z� z0, z0ðiÞ > 0g: ð16Þ

The implicit objective in Problem 1 is to compute Ec, Fc,
Gc and Hcj, j¼ 1, . . . , q� 1, for enlarging the basin of

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;
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attraction of the closed-loop system, whereas the
amplitude of the controlled output does not become
too large.

3. Theoretical anti-windup gains design conditions

3.1 Preliminaries

Let us consider the generic nonlinearity ’ðvÞ ¼
satv0ðvÞ � v, ’ðvÞ 2 <m and define the following set:

Sðv0Þ ¼ fv 2 <m,w 2 <m;�v0 � v� w� v0g: ð17Þ

Lemma 1: Tarbouriech et al. (2004): If v and w are
elements of S(v0) then the nonlinearity �(v) satisfies the
following inequality:

’ðvÞ0Tð’ðvÞ þ wÞ � 0 ð18Þ

for any diagonal positive definite matrix T 2 <m�m.

Note that in the case of classical sector condition the

nonlinearity �(v), with v¼K�, satisfies inequality (18)

with w¼��K� where � is a positive diagonal matrix

(0��< 1). By using such a choice for w, the conditions

of stability are expressed through BMI conditions

(Tarbouriech et al. 2003).

Moreover, Lemma 1 applies to nonlinearities defined

in (9), (10) and (12). For this, it suffices to define the sets

S(u0), S(uj), j¼ 1, . . . , q� 1, and S(y0) associated to the

bounds u0, uj, j¼ 1, . . . , q� 1, and y0 with adequate

vectors v and w. This will be detailed in the sequel.
Let us define the vectors �1, U1 and �d

0

�1 ¼

�1

�2

..

.

�q�1

2
66664

3
77775 2 <mðq�1Þ; U1 ¼

u1

u2

..

.

uq�1

2
66664

3
77775 2 <mðq�1Þ;

�d
0 ¼

_�0

�ð2Þ
0

..

.

�ðq�1Þ
0

2
666664

3
777775 2 <mðq�1Þ ð19Þ

and the augmented matrices

b1 ¼ B1 � � � Bq�1

� �
2 <ðnþmqþncÞ�mðq�1Þ;

D ¼

KA

..

.

KA
q�1

2
66664

3
77775 2 <mðq�1Þ�ðnþmqþncÞ: ð20Þ

The following proposition provides a solution to

Problem 1 by using Lemma 1, the S-procedure and a

quadratic Lyapunov function.

Proposition 1: If there exist a symmetric positive
definite matrix W, matrices X,Y,Z,N, Q0, Q1, Q2, Q3,

diagonal positive matrices S0,S1,S2 and a block-diagonal

positive definite matrix S3 of appropriate dimensions

satisfying (the symbol * stands for symmetric blocks):

W WK
0
ðiÞ �Q

0
0ðiÞ

	 u20ðiÞ

" #
� 0, i ¼ 1, . . . ,m ð22Þ

W WD
0
ðiÞ �Q0

1ðiÞ

	 U2
1ðiÞ

" #
� 0, i ¼ 1, . . . ,mðq� 1Þ ð23Þ

W Q
0
0 WC

0
0ðiÞ �Q0

2ðiÞ

	 2S0 Z0
ðiÞ �Q

0
3ðiÞ

	 	 y20ðiÞ

2
64

3
75 � 0, i ¼ 1, . . . , ncp ð24Þ

W Q
0
0 WC

0
2ðiÞ

	 2S0 S0D
0
2ðiÞ

	 	 z20ðiÞ

2
4

3
5 � 0, i ¼ 1, . . . , l ð25Þ

then the gains Ec ¼ YS�1
0 , Fc ¼ ZS�1

0 , Gc ¼ XS�1
2 ,

½Hc1 . . . Hcq�1� ¼ NS
�1
3

and the set BðW�1, 1Þ ¼

f� 2 <nþmqþnc; �0W�1� � 1g are solutions to Problem 1.

Proof: First, note that due to the structure of the

system, one gets the following property: K�(j)¼KA
j�,

j¼ 1, . . . , q� 1. According to the nonlinearities �0,�j
and �ðjÞ

0 , j¼ 1, . . . , q� 1, it follows:

. For �0. Lemma 1 applies by considering v¼K�,
w¼E0� and v0¼ u0. Indeed, the corresponding

WA
0
þAW 	 	 	 	 	

S0B
0
0 þ Y0

R
0
þ Z0

B
0
q �Q0 �2S0 	 	 	 	

S1b
0
1 �Q1 0 �2S1 	 	 	

S2B
0
q þ X0

R
0
�Q2 �Q3 0 �2S2 	 	

DW 0 0 0 �S3 	

S3b
0
1 þN0

B
0
q 0 0 0 0 �S3

2
666666664

3
777777775
< 0 ð21Þ
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relation (18) writes

�0
0T0ð�0 þ E0�Þ � 0: ð26Þ

. For �j. Lemma 1 applies by considering

v¼K�(j)¼KA
j�, w¼Ej� and v0¼ uj, j¼ 1, . . . , q� 1.

Indeed, the corresponding relation (18) writes

�0
jTjð�j þ Ej�Þ � 0, j ¼ 1, . . . , q� 1: ð27Þ

. Indeed, by using the augmented vectors �1 and U1,

and by considering the above item, Lemma 1 globally

applies with v¼D�, w¼G1� and v0¼U1, where

G1 ¼ E
0
1 E

0
2 � � � E

0
q�1

h i0
:

. For �c. Lemma 1 applies by considering

v ¼ C0� þ Fc�0 þ�
q�1
j¼1 Hcj�

ðjÞ
0 , w ¼ F0� þ F1�0 þ

�
q�1
j¼1 F2�

ðjÞ
0 and v0¼ y0. Indeed, the corresponding

relation (18) writes

�0
cTc �c þ F0� þ F1�0 þ

Xq�1

j¼1

F2j�
ðjÞ
0

 !
� 0: ð28Þ

Consider E0 ¼ Q0W
�1 and G1 ¼ Q1W

�1. Therefore the

satisfaction of relation (22) implies that the set

eðW�1, 1Þ, with P¼W�1, is included in S(u0). In the

same way, the satisfaction of relation (23) means that set

e(W�1, 1) is included in \
q�1
j¼1 SðujÞ. Hence, the non-

linearities �0 and �j, j¼ 1, . . . , q� 1 satisfy the sector

conditions (26) and (27), respectively.
Furthermore, by defining F0¼Q2W

�1, F1 ¼ Q3S
�1
0

and F2j ¼ Hcj, j¼ 1, . . . , q� 1, one has to prove that

e(W�1, 1) is included in S(y0). That corresponds to

satisfy, 8i ¼ 1, . . . , ncp:

�0 �0
0

� � C0ðiÞ � F
0
0ðiÞ

F 0
cðiÞ � F

0
1ðiÞ

" #
C 0ðiÞ � F0ðiÞ F 0

cðiÞ � F
0
1ðiÞ

� �
�

�0

� �
� y20ðiÞ

:

for � and �0 such that
�0W�1� � 1

�0
0T0ð�0 þ E0�Þ � 0:

(

Indeed, the satisfaction of relation (24) ensures that the

above condition is satisfied and therefore that e(W�1, 1)

is included in S(y0).

Consider the quadratic Lyapunov function V(�)¼ �0

P�, with P¼P0 > 0. The time-derivative of V(�) along
the trajectories of system (15) reads:

_Vð�Þ ¼ �0ðA0Pþ PAÞ� þ 2�0PðB0 þ REc þ BqFcÞ�0

þ 2�0P
Xq�1

j¼1

�
Bj�j þ

�
Bj þBqHcj

�
�ðjÞ
0

�
þ 2�0PðBq þ RGcÞ�c:

Thus, by using the sector conditions (26), (27)

and (28), it follows:

_Vð�Þ � �0ðA0Pþ PAÞ� þ 2�0PðB0 þ REc þ BqFcÞ�0

þ 2�0P
Xq�1

j¼1

�
Bj�j þ

�
Bj þBqHcj

�
�ðjÞ
0

�
þ 2�0PðBq þ RGcÞ�c � 2�0

0T0ð�0 þ E0�Þ

� 2
Xq�1

j¼1

�0
jTjð�j þ Ej�Þ

� 2�0
cTc

�
�c þ F0� þ F1�0 þ

Xq�1

j¼1

F2j�
ðjÞ
0

�

for all � 2 eðW�1, 1Þ.
By using the definition of �ðjÞ

0 , it appears that

ð�ðjÞ
0 Þ

0�ðjÞ
0 � �0Aj

0K
0
KA

j
�. Then, one can write

2�0P
Xq�1

j¼1

ðBjþBqHcjÞ�
ðjÞ
0

�
Xq�1

j¼1

h
�0PðBjþBqHcjÞLj

�ðBjþBqHcjÞ
0P�þð�ðjÞ

0 Þ
0L�1

j �ðjÞ
0

i

�
Xq�1

j¼1

h
�0PðBjþBqHcjÞLj

�ðBjþBqHcjÞ
0P�þ �0Aj

0K
0L�1

j KA
j�
i
:

Hence, by using the augmented vectors �1 and �d
0

defined in (19), and this above inequality, the

right term of the expression of _Vð�Þ writes

�0

A
0Pþ PA 	 	 	 	 	

B
0
0Pþ E

0
cR

0Pþ F0
cB

0
qP� T0E0 �2T0 	 	 	 	

b0P1 � T1G1 0 �2T1 	 	 	

B
0
qPþ G0

cR
0P� TcF0 �TcF1 0 �2Tc 	 	

D 0 0 0 �S3 	

S3b
0
1Pþ S3h

0
cB

0
qP 0 0 0 0 �S3

2
666666664

3
777777775
�
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with � ¼ �0 �0
0 �0

1 �0
c �d 0

0

� �0
, T1 ¼ diagðTjÞ; S3 ¼

diagðLjÞ; j¼ 1, . . . ,q� 1, and h c ¼ ½Hc1 . . . Hcq�1 �.
By denoting W¼P�1, S0 ¼ T�1

0 , S1 ¼ T
�1
1 ,

S2 ¼ T�1
c , one can prove that if relation (21) is satisfied

one has _Vð�Þ < 0 with the gains Ec ¼ YS�1
0 , Fx ¼ ZS�1

0 ,
Gc ¼ XS�1

2 and Hcj, j¼ 1, . . . , q� 1, such that
½Hc1 . . . Hcq�1� ¼ NS

�1
3

. Since this reasoning is valid
for all � 2 eðW�1, 1Þ, � 6¼ 0, one can conclude that
eðW�1, 1Þ is a set of stability for the saturated closed-
loop system. Moreover, the satisfaction of relation (25)
means that for all � 2 eðW�1, 1Þ the resulting controlled
output z remains bounded in its set Z0. Thus,
the satisfaction of relations of Proposition 1 implies
that the anti-windup gains Ec ¼ YS�1

0 , Fc ¼ ZS�1
0 ,

Gc ¼ XS�1
3 , ½Hc1 . . . Hcq�1� ¼ NS

�1
3

and the set
eðW�1, 1Þ ¼ f� 2 <nþmqþnc; �0W�1� � 1g are solutions to
Problem 1. œ

Proposition 1 states a local stability condition for the
closed-loop saturated system (8). In the absence of
controlled output constraints (i.e., z0 ! þ1), the
global asymptotic stability of the closed-loop system
can be considered as follows, provided that the open-
loop system has the required stability assumption.

Proposition 2: If there exist a symmetric positive definite
matrix W, matrices X, Y, Z, N, three diagonal positive
matrices S0, S1, S2 and a block-diagonal matrix positive
definite S3, of appropriate dimensions satisfying

then the gains Ec ¼ YS�1
0 , Fc ¼ ZS�1

0 , Gc ¼ XS�1
2 and

½Hc1 . . . Hcq�1� ¼ NS
�1
3

are such that the closed-loop

system (8) is globally asymptotically stable.

Proof: By considering E0 ¼ K,Ej ¼ KA
j,

j¼ 1, . . . , q� 1, that is, G1 ¼ D, F0 ¼ C0, F1 ¼ Fc and

F2j¼Hcj, j¼ 1, . . . , q� 1, the sector conditions (26),

(27) and (28) are globally satisfied, for any

� 2 Sðu0Þ ¼ <nþmqþnc , � 2 SðujÞ ¼ <nþmqþnc , � 2 Sðy0Þ.

Then the satisfaction of (29) allows us to satisfy
_Vð�Þ < 0, for any � 2 <nþmqþnc along the trajectories of

the closed-loop system, which ensures the global

asymptotic stability of the closed-loop system. œ

4. Numerical anti-windup gains design

4.1 Computational analysis

Conditions to be satisfied in Proposition 1 are under

LMI form in the decision variables, as a consequence of

the use of Lemma 1 and therefore of model (8). This

represents a main advantage with what would be

obtained by using the classical nonlinear sector condi-

tion as in Gomes da Silva Jr et al. (2002) or a polytopic

model as in Cao et al. (2002), for which BMI conditions

have been obtained in the case of amplitude actuator

limitation only (that is without constraints on the

dynamics of the actuator). In the same way, the current

actuator model has been studied in Tarbouriech et al.

(2003) albeit without controller output saturation

(that is �c¼ 0). Classical sector conditions used with

respect to nonlinearities �0 and �j lead to BMI

conditions. In such BMI cases, to obtain anti-windup

gains maximising the estimate of the basin of attraction

of the closed-loop system, one requires to use some

relaxation schemes, which are very sensitive to the initial

considered guesses. In the current case, the solution does

not need neither initial guesses nor iterative schemes.
Moreover, it is important to underline that sufficient

conditions for the global stability of the closed-loop

system can be proposed (as stated in Proposition 2). If

this type of condition can be obtained with the current

modified nonlinear sector condition as well as with the
classical one, it is however not possible by using a
polytopic model to represent the saturated closed-loop
system.

Suppose now that for the considered actuator the
following assumption holds:

Assumption 1: Dimensions m and ncp are such that:
ncp�m and rank(Baq)¼ rank(Tq)¼m, which means that
Tq 2 <m�ncp is full row rank.

This assumption means that the right pseudo inverse to
Tq, denoted T#

q , exists. Note that in the case of launchers
this assumption is verified. When Assumption 1 is

WA
0
þAW 	 	 	 	 	

S
0
0B

0
0 þ Y0

R
0
þ Z0

B
0
q �KW �2S0 	 	 	 	

S
0
1b

0
1 �DW 0 �2S1 	 	 	

S
0
2B

0
q þ X0

R
0
�C0W �Z 0 �2S2 	

DW 0 0 0 �S3 	

S3b
0
1 þN0

B
0
q 0 0 0 0 �S3

2
666666666664

3
777777777775
< 0 ð29Þ
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satisfied, some modified conditions with a reduced

number of LMIs and decision variables can be provided

to solve Problem 1. This point is stated in the following

corollary.

Corollary 1: If there exist a symmetric positive definite

matrix W, matrices X, Y, Z, Q0,Q1,Q2,Q3, Hcj,

j¼ 1, . . . , q� 1, and diagonal positive matrices S0,S1

and S2 of appropriate dimensions satisfying relations (22),

(23), (24), (25) and

WA
0
þAW 	 	 	

S0B
0
0 þY0

R
0
þZ0

B
0
q �Q0 �2S0 	 	

S1b
0
1 �Q1 0 �2S1 	

S2B
0
q þX0

R
0
�Q2 �Q3 0 �2S2

2
66664

3
77775< 0

ð30Þ

Tj þ TqHcj ¼ 0, j ¼ 1, . . . , q� 1 ð31Þ

then the gains Ec ¼ YS�1
0 , Fc ¼ ZS�1

0 , Gc ¼ XS�1
2 ,

Hcj ¼ �T#
qTj, j¼ 1, . . . , q� 1 and the set eðW�1, 1Þ ¼

f� 2 <nþmqþnc; �0W�1� � 1g are solutions to Problem 1.

Proof: The proof follows the same lines as that one of

Proposition 1 and by using Assumption 1. The satis-

faction of relation (31) means that the term

2�0PðBj þ BqHcjÞ�
ðjÞ
0 ¼ 0. It is important to note that

since from Assumption 1 one gets ncp�m, relation (31)

always admits a solution: in particular Hcj ¼ �T#
qTj,

j¼ 1, . . . , q� 1. œ

Proposition 2 can be modified by the same way.

4.2 Optimisation Issues

Proposition 1 provides feasibility conditions. We

can then consider a set �0 with a given shape and a

scaling factor �. For example, let �0 be defined as a

polyhedral set described by its vertices:

�0 ¼ Cofvr; r ¼ 1, . . . , nr, vr 2 <nþmqþncg. Thus, we want

to satisfy ��0 
 eðW�1, 1Þ. For a given �, this problem
reduces to a feasibility problem. The control problem

may be also recasted into a problem of maximizing �,
which corresponds to define through �0 the directions in

which we want to maximize eðW�1, 1Þ.
The problem of maximizing � can be solved by using

the following convex optimization scheme

min�

subject to relations ð21Þ, ð22Þ, ð23Þ, ð24Þ, ð25Þ

� v0r

vr W

" #
� 0 r ¼ 1, . . . , nr:

ð32Þ

Considering � ¼ 1=
ffiffiffiffi
�

p
, the minimization of � implies

the maximization of �.
Other criteria associated to the size of eðW�1, 1Þ,

(e.g. the volume or the size of the minor axis) can

be adopted in order to maximize the stability

region. Moreover, some structural or norm constraints

on the anti-windup gains Ec, Fc and Gc could be

considered (see Gomes da Silva and Tarbouriech

(2003)).
Regarding the bounds on controlled output z, we can

formulate the following comments.

1. The amplitude limitation z0(i), i¼ 1, . . . , l, can be a

priori fixed or can be a decision variable. Hence, by

replacing z0(i), i¼ 1, . . . , l by � (a unique variable for

simplicity) in relation (25) of Proposition 1, we can

try to minimize �. In this case the optimization

problem (32) can be modified as follows:

min�0�þ �1�

subject to relations ð21Þ, ð22Þ, ð23Þ, ð24Þ

� v0r

vr W

" #
� 0 r ¼ 1, . . . , nr

W Q
0
0 WC

0
2

	 2S0 S0D
0
2

	 	 �1

2
664

3
775 � 0

ð33Þ

where �0 and �1 are tuning parameters. � corresponds
to the smallest upper bound on the output peak using

the fact that the ellipsoid eðW�1, 1Þ is an invariant set

in which the closed-loop trajectories remain confined

(see also Boyd et al. (1994)).
2. If we want to guarantee some bound on controlled

output energy, we can remove relation (25) and

replace relation (21) in Proposition 1 by

M L0

L ��1

� �
< 0 ð34Þ

with M is the matrix of relation (21) and

L ¼ ½C2W D2S0 0 0� . The satisfaction of relation

(34) turns out to satisfy

_Vð�Þ þ
1

�
z0z < 0 ð35Þ

with the quadratic function Vð�Þ ¼ �0W�1�. From

(35), one gets

Vð�ðTÞÞ ¼ Vð�ð0ÞÞ < �
1

�

Z T

0

z0z dt, 8T > 0, ð36Þ
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or still

Z T

0

z0z dt < ��, 8T > 0, ð37Þ

for all �ð0Þ 2 ð1=
ffiffiffiffi
�

p
Þ�0 
 eðW�1, 1Þ. In this case, we

want to minimise ��, which corresponds to the

smallest upper bound on the output energy for all

�ð0Þ 2 1=
ffiffiffiffi
�

p
�0 
 eðW�1, 1Þ. Hence, the optimization

problem (32) can be modified as follows:

min �0�þ �1�

subject to relations ð34Þ, ð22Þ, ð23Þ, ð24Þ

� v0r

	r W

" #
� 0 r ¼ 1, . . . , nr

ð38Þ

where �0 and �1 are tuning parameters.

In both cases above, a compromise should be managed

between the size of the region of closed-loop stability

(through the value of �) and the smallest upper bound

on the output (in the output peak case through � and in

the output energy through �).

5 Numerical examples

5.1 Example 1

Let us consider the following open-loop unstable

system borrowed from Gomes da Silva Jr and

Tarbouriech (2003)

A ¼ 0:1; B ¼ 1; C ¼ 1; C2 ¼ 1; D2 ¼ 0:

The actuator (2) is set with q¼ 2, T0¼� 25, T1¼� 10,

Tq¼ 25, and with bounds given as u0¼ 2, u1¼ 50 and

y0¼ 3. For this system, a dynamic stabilizing PI

controller is given by

Ac ¼ 0; Bc ¼ �0:2; Cc ¼ 1; Dc ¼ �2:

The polyhedral set �0 is defined by

�0 ¼ C0

1
0
0
0

2
664

3
775;

�1
0
0
0

2
664

3
775

8>><
>>:

9>>=
>>;,

that is, we are interested in enlarging the set of

admissible initial states of the open-loop system. Using

the optimization problem (33) and the tuning param-
eters �0¼ 100, �1¼ 1, we obtain the following results:

� ¼
1ffiffiffiffi
�

p ¼ 3:0919, � ¼ 10:2499

Ec ¼ 0:1417, Fc ¼ 3:2280,

Gc ¼ 0:0711, Hc1 ¼ 0:4000:

Note that Hc1 obtained from Proposition 1 is exactly
equal to the solution which would be obtained by
numerical implementation of Corollary 1, that is,
Hc1 ¼ �T#

qT1 ¼ 0:4. Simulations are plotted on
figure 3 to compare the results with (solid line) and
without (dashed line) anti-windup, from an initial state
�ð0Þ ¼ ½ 3 0 0 0�0 belonging to eðW�1, 1Þ.

One can check that, without anti-windup, the
trajectory initiated from �(0) does not converge towards
the origin. On the contrary, the anti-windup solution
preserves the stability of the closed-loop system. Finally,
the time evolution of the additional inputs of the
controller provided by the anti-windup strategy are
plotted in figure 4, i.e. �c (solid line), �0 (dashed line)
and _�0 (dotted line). It can be seen that the anti-windup
action only occurs during the first instants when the
saturations are active.

5.2 Example 2

Let us now consider the linearised model of F/A-18
HARV aircraft lateral dynamics (Shewchun and Feron
1999), in horizontal stabilized flight at Mach 0.7 and
altitude 20000 ft

A ¼

�2:3142 0:5305 �15:5763 0

�0:0160 �0:1287 3:0081 0

0:0490 �0:9980 �0:1703 0:0440

1:0000 0:0491 0 0

2
66664

3
77775;

B ¼

23:3987 21:4333 3:2993

�0:1644 0:3313 �1:9836

�0:0069 �0:0153 0:0380

0 0 0

2
66664

3
77775

C ¼
0 0 1 0

0 0 0 1

" #

C2 ¼ 1 0 0 0
� �

; D2 ¼ 1 1 0
� �

:

Governs are limited in amplitude �0 ¼ ½25 10:53 0�0 and
rate �1 ¼ ½100 40 82�0. The controller output saturation
is set to y0 ¼ ½30 20 35�0. The actuator is then defined
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with q¼ 2, for which we consider the following
dynamics:

T0 ¼

�25 0 0

0 �25 0

0 0 �25

2
64

3
75; T1 ¼

�20 0 0

0 �20 0

0 0 �20

2
64

3
75;

Tq ¼

25 0 0

0 25 0

0 0 25

2
64

3
75:

Let us consider the dynamic compensator evaluated in
Pittet (1998) such that the closed-loop poles are placed
in a pre-specified region of the complex plane

Ac ¼

�0:98 0:05 �0:03 �1:84

32:55 �4:09 0:42 �16:22

65:56 �2:90 �6:85 �9:77

10:91 0:20 �0:05 �9:92

2
6664

3
7775;

Bc ¼

0:24 �0:03

0:205 �0:2897

�46:23 0:89

1:59 �0:14

2
66664

3
77775

Cc ¼

32:55 �0:00 �0:63 �10:57

20:11 0:18 �0:26 �7:73

�1:61 �0:73 �0:47 5:40

2
64

3
75;

Dc ¼

�2:77 �0:1

�0:64 �0:11

�4:22 0:19

2
64

3
75

and a polyhedral set of initial condition �0 given by its

vertices with components 1 or �1 of the first four

components corresponding to the aircraft plane. Note

that the extended state vector is of dimension 14, which

does not prevent numerical evaluation of the anti-

windup gains. The solution to the anti-windup design

procedure (33) then is:

Ec ¼

67:8126 61:0215 11:9013

343:3460 277:8643 164:9775

813:1080 750:8726 75:2629

141:9346 126:2512 29:9107

2
66664

3
77775;

Gc ¼

�2:1675 �0:8090 0:2992

�33:2143 0:8957 15:7241

�12:4687 �12:4196 1:4458

�5:5404 �1:2901 1:0108

2
66664

3
77775
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Figure 3. Evolution of the system output y and controller output yc with (solid line) and without (dashed line)
anti-windup strategy.
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Fc ¼

�17:9843 �17:5551 �2:5392

�2:8298 �1:3228 �0:3978

�4:1877 �3:9160 0:6091

2
64

3
75;

Hc1 ¼

0:8 0 0

0 0:8 0

0 0 0:8

2
64

3
75

for which �¼ (1/
p
�)¼ 0.9839 and �¼ 105.03.

Finally, to illustrate the trade-off between the size of

the set of admissible initial states and the performance,

one can see in table 1 different solutions relative to

different weights.
Let us now consider the same aircraft model and

controller but with an actuator of order two restricted

dynamics, that is, limited in amplitude, rate and

acceleration. The actuator is then defined with q¼ 3

where, in plus of matrices T0, T1 and Tq previously

defined (recall that in the first part of the example Tq is

set for q¼ 2 although in this second part of the example

Tq is set for q¼ 3), one considers

T2 ¼

�5 0 0

0 �5 0

0 0 �5

2
4

3
5

and the acceleration limitation is set to

u2 ¼ ½ 200 200 200�0 . In that case, the extended state

vector becomes that of dimension 17. The solution to the

anti-windup design procedure (33) is

Ec ¼

�72:2388 �63:9756 �17:2953

�1915:6343 �1700:6605 �37:01849

�224:7423 �188:5632 �118:4952

�213:6312 �189:6355 �46:6333

2
66664

3
77775;

Gc ¼

�1:9020 �1:8563 1:1083

�17:1957 �19:9843 32:9455

�16:9507 �16:2244 3:9918

�4:2785 �4:2620 3:3720

2
66664

3
77775

Fc ¼

0:0037 �3:9722 0:4191

13:6919 16:5391 3:1088

�39:5226 �33:3721 �8:9584

2
64

3
75;

Hc1 ¼

0:8 0 0 0:2 0 0

0 0:8 0 0 0:2 0

0 0 0:8 0 0 0:2

2
64

3
75

for which �¼ (1/
p
�)¼ 0.8183 and �¼ 152.2761. This

shows the reduction of admissible initial conditions,
related to �, and the reduction of the performance of the
controlled output (increase of the bound �) when
limitations on high order actuator dynamics are
involved.

6. Conclusion

We have addressed the problem of designing anti-
windup gains in order to obtain a region of stability, as
large as possible, for linear systems with amplitude and
dynamics restricted actuator. The strategy developed
consisted in adding the part due to the saturation of the
output actuator both in the state evolution (via Ec) and
in the output of the controller (via Fc), in adding the part
due to the output controller (or input actuator) in the
state evolution (via Gc) and in adding the successive
time-derivative of the saturation of the output actuator
in the output of the controller (via Hcj, j¼ 1, . . . , q� 1).
To do this, sector modified conditions have been used in
order to obtain directly LMI conditions.

In a future work, the problem of measured variables
used to build anti-windup loops should be considered.
Hence, it would be coherent to consider the computation
of some observer in order to effectively access the states
of the actuator.
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strategy with guaranteed stability for linear systems with ampli-
tude and dynamics restricted actuator’’, in Proc. of 6th IFAC
Symposium on Nonlinear Control Systems, Stuttgart, Germany,
2004, pp. 1373–1378.

A.R. Teel, ‘‘Anti-windup for exponentially unstable linear systems’’,
Int. J. Robust and Nonlinear Control, 9, pp. 701–716, 1999.

F. Tyan and D. Bernstein, ‘‘Dynamic output feedback compen-
sation for linear systems with independent amplitude and
rate saturation’’, International Journal of Control, 67, pp. 89–116,
1997.

Sophie Tarbouriech received the PhD degree in Automatic Control in 1991 and the HDR degree
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