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ABSTRACT

Lyapunov stability, uniform stability, and asymp-
totic stability for a class of systems of multiple Volterra
integral equations are studied. Stability results are ob-
tained using a representation for the solution in terms of
a fundamental solution (a generalization of the fundamental
matrix in the theory of ordinary differential equations).

Criteria for stability in terms of the fundamental
solution are established for the general linear equation
under consideration. A nonlinear perturbed equation is
studied and results concerning the preservation of stabili-
ties from the linear to the perturbed equation are given.
Lipschitz and little o type nonlinearities are considered.

The general results are then applied to several
special equations and conditions for various stabilities
are given in terms of the kernels in these equations. The
results established may also be used to study stability of
the characteristic value problem for hyperbolic partial

differential equations.

vii



CHAPTER 1

INTRODUCTION

The goal of this dissertation is to define and study
various types of Lyapunov stability for a class of systems of
Volterra integral equations in several independent variables.
The main results are concerned with preservation of stability
from a linear equation to a perturbed nonlinear equation.

The initial value problem for ordinary differential

equations

f(x,u)

u' (x)

(1.1)

u(xo) u,

is equivalent to the Volterra integral equation
u(x) = uy + J f(t,u(r))dr.

The general Volterra equation in one independent variable

X
a(x) = ¢(x) + j hix,7,u(1))dt (1.2)

*0
may then be thought of as a generalization of the initial

1



value problem (1.1). This has motivated recent papers by
Bownds and Cushing ([5], [6], [7], (8} in which they general-
ized much of the stability theory for the initial value
problem (l1.1) to the integral equation (1.2).

In a sense, the mixed partial derivative is the
natural generalization of ordinary derivative [39, pp. 147-
148). From this point of view the hyperbolic partial dif-
ferential equation of the form

uxy = g(x,y,u)

is the natural two dimensional generalization of the ordinary

differential equation
u' = f(x,u).

Many authors (e.g., (15], ([17], [39])) have been guided by
this analogy, and the theory for the characteristic value

problem

ny =dg (lelu)
u(x,yq) = ¢1(X) ¢1(x0) = ¢2(yo) (1.3)

u(xo,y) = ¢z(y)

parallels the theory for the initial value problem (1.1) in

many respects. This suggests considering stability questions
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for (1.3). But in the same way that the initial value problem
for ordinary differential equations is equivalent to an inte-
gral equation, the characteristic value problem (l1.3) is

equivalent to the integral equation

X Yy
u(x,y) = ¢1(X) + ¢2(y) - ¢1(x0) + [ [ g(r,s,u(xr,s))dsdr.
X0'Yp

But this is just a special case of the general integral equa-

tion in two independent variables

u(x,y) = ¥(x,y) + Ix Jy k(x,y,x,s,u(r,s))dsdr. (1.4)
¥o' Yo

Keeping in mind the relation between u'(x) and uxy(x,y),

and the progress made by Bownds and Cushing in generalizing

from (1.1) to (1.2), one is then led naturally to stability

considerations for the equation (1.4).

The Volterra equation to be considered here is a
generalization of (1.4) in several respects, but the motiva-
tion for considering this equation stems ulgimately from the
initial value problem (1.1) and, as indicated in the previous
paragraphs, noting the analogies and generalizations of this
problem. It will be seen that the stability results obtained
here are consistent in the sense that many of the results due
to Bownds and Cushing and the results from ordinary differ-

ential equations follow as special cases.



4

One approach to stability problems for nonlinear ordi-
nary differential equations and nonlinear Volterra integral
equations in one independent variable is the following. Con-
sider a linear equation which is stable in some sense. Sup-
pose a nonlinear perturbation is now introduced. We study
the linear equation and the perturbation to obtain results of
the following general form: if the stability possessed by the
linear equation is strong enough and the nonlinear perturba-
tion is small in some sense then the nonlinear equétion is
also stable in some sense. This is the approach employed in
this dissertation.

In this approach the concept of a fundamental solu-

tion plays a major role. This is true for two reasons:

i) the original nonlinear integral equation may be re-
placed by an equivalent integral equation involving
the fundamental solution and

ii) the strength of the stability assumed on the linear
equation may be expressed in terms of the fundamental

solution.

A fundamental solution will be defined for the Volterra inte-
gral equation under consideration. It will be seen that it
is a generalization of the fundamental solution used by
Bownds and Cushing [5]) for Volterra integral equations in
one variable which is in turn a generalization of the funda-

mental matrix in the theory of ordinary differential equations.



Also, we will see that it is, under certain conditions, a
generalization of the classical Riemann function of the
adjoint operator associated with a hyperbolic operator.

We give a brief outline of the organization of the
dissertation. The remainder of this chapter is dedicated to
setting down a concise notation, introducing the equations
to be studied, and defining the stabilities for these equa-
tions. Then the mathematical results needed to establish
the stability results are considered. These consist pri-
marily of the equivalent integral equation in terms of the
fundamental solution and a Gronwall type inequality. The
stability results for the general linear equation and the
perturbed equation are then established. These stability
criteria for the general equation are couched in terms of
the fundamental solution. We then consider some special
equations where it is possible to establish, via the funda-
mental solution, stability results directly in terms of the
kernels in the equations. Finally, an application for partial

differential equations is discussed.

1.1 Notation

Much of the analysis will be simplified by intro-
ducing the notation which follows. Unless otherwise speci-
fied this notation will be adopted for the remainder of the

dissertation.
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We shall use x = (X;,X,/e00/%) € R" where R de-
notes the set of real numbers. If x, y ¢ R® then x <y
iff x, <y; for i=1,2, ..., n. If a, b¢R" then
[a,b] will denote the set [a,b] = {x|x ¢ R",a < x < b}.
If ae€R®, then [3a,®) = {x|x ¢ R",3a < x < =},
Various norms will be used and those used most often

are listed as follows:

|+ an arbitrary vector norm on R®
Y
|'|1 the £, norm on R® (i.e., if x ¢ R® then
xly = 3 Il
X[, = xX. 1)
1= L I%
el the £, normon R" (i.e., if x ¢ R® then

|xlo = max{|xy [ 1%5]0eeslxn | D)

if a ¢ R® and gsla,») +» R® so that g is

Il
bounded, then "guo 2 = 8up|g(x) |
’ x>a
el the matrix norm such that if M is an m x n com-

plex matrix then |[[M|| = sup{|Mx||x ¢ R®,|x| = 1}.

Let o denote a combination of the integers
{1,2,...,n} taken k At a time. Suppose a particular com-
bination of k elements of {1,2,...,n} has been selected.
The elements in this combination may always be ordered. It
will be convenient to assume that this is always done. Thus,
if a) = {il,iz,...,ik} is a combination of {(1,2,...,n}

then i, < 12 € o0 € i,. For each combination aps Wwe



let ap = {1,2,...,n} - @, . We note that @y is also a

combination of the integers {1,2,...,n} and we may assume

the elements in ui to be ordered.,

Let a, = {il,iz,...,ik} be any combination. For
n

X ¢ R° we define x, = (X. ,X; ,..0,X; ). We denote the
%y i, iy
10", iy oy
multiple integral symbol I I cee I by I » and
a, ‘a; a; a,
1 =2 k k
the sequence of differentials dri dri cee dri by dr, .
k “k-1 1 k
If g:R" + R" we define Iy & x (x) = 9, (x) and
1 12 Tk %%

by a pure mixed partial of g(x) we mean a partial of the
form g, (x) for some &, with 1 <k <n. For x, ye¢ R"

a
k
we introduce the following: let

X; ig &y
wi(x,y;ak) = ‘ and

y; 1eoy

wix,yio ) = (w) (X,yi0)w,(x,yi0% ), ..., w (x,y;%)). For
example, suppose n =5, a, = {1,3,5}), x = (Xg 1% s X50%ysX5) o
and y = (y),¥,/¥3:¥4/¥g) then w(x,y;a3) = (y;,X,,¥3+%X4/¥g)
and  w(y,x;®3) = (X),Y5,Xq/Y4sXg) .



1.2 The Volterra Equation and Definitions of Stability

In this section the general form of the Volterra
equation will be given. The general equation will be written
out without the notation introduced in Section 1.1 and then
written concisely using that notation.

Let a ¢ R® and u(x), ¢(x) be functions from rR®

to R™. For each combination o, = {il,iz,...,ik} let
h, . (X, 1XqseoesX_,X.
1112"'ik 1’72 n’"i,
<r <x , and z ¢ R
'3 ey O
the equation of the form

¢T: seee,s; ,2) map x > a,
i i -
2 k

a to Rm. We shall then consider

u(xlpxzyooo’xn) = ¢(x1'x2100"xn)

n
+ I h, (X{/X,re00,X_,X. , (1.5)
iE=l a, 11 172 n'tiy

u(x X eee X, - 'r X. ceea X ))dr
1’72 A TR Mk SRR SRS '“n i,

X, X
n-1 n i, 1
I Ia hiliz(xl'x2’o.o’x ,r- ,r- 'u(x1'x2’000'

L. L, n’'"i,’'"i
11“1 12—ll+1 ail 12 1 2

. r eeoe X
xll-l illxil+1l ’ iz—l’rizlxiz+l’...'xn)drizdril



n-k+1 n-k+2

n
L T
i,=1 1,=1,+1 ip=i,

(xl’xZ't.o'xn'ri ’ri ’.o.’rl

1' 2 lk’u(xllooo'

*® o0 h- : .
ai lllznnolk
k

X. - 'r- ’x. ,...,X. - 'r- ,X. I.oo’x ))
i, 1 i, 1l+1 i 1 i, 1k+l n

dr. dr. ...dr,
1y 1x-1 s |

o o o o

X2 X

IXII I "
+ ces h (X 1XyresesXo 1y yT0nyeee,L
1 72 n

u(rl,rz,...,rn))drndrn_l...drl.

This is a system of m Volterra integral equations in n
independent variables. We notice that there are 2" - 1 in-
tegrals in the right hand side of Equation (1.5) by observing
that the number of integrals in the term involving
n-k+1 n-k+2 n
121 i mi$1 i =iz #1 is (") and that (%) = 2" -1
1 2™ 1 kK ‘k-1 k n kop k' .
For each combination a = {il'iz""’ik}' let the

function hi be denoted by ha . Then using the

112...1k k
notation introduced in Section 1.1, we have



10

i1=1 iz=il+l i, =i, .+1la,

n-k+l n-k+2 n J.'ZI. ) I ik
290 h
a a

. (x oo
1112...ik 1 ’
k

X 0X: peeesE: (X 000X, 40X ,X; pecey
n’"i, i, 1l i, 1l il 11+1

. +1,...,xn))dri dr, ...dri

X: _qsF; oX
ip=1774y iy k ig-1

k 1

, ak,u(W(X.r;ak)))drak
(Here the summation ranges over all combinations . of k
of the integers {1,2,...,n}). Equation (1.5) may now be
written in the form

X

a
k
u(x) = ¢(x) + I h (x,r, ,u(w(x,r;a )))dr_.(1.6)
Zk a, “k %k k %
k
1<k<n

We simplify the notation further by using Z in place of the
particular summation ) except in instances where use -
%k
1<k<n
of the latter may help to clarify a discussion. Also, we
will sometimes refer to the function ¢(x) in Equation (1.6)
as the initial function for that equation.

We will now turn to defining stability for a solu-

tion of Equation (1.6). Let a ¢ R® be fixed. Let N
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denote a normed space of functions mapping x > a to r®
and denote the normon N by |*Jl. The normed space

(N,)l*ll) will be referred to simply as N.

Definition 1l.1. Let ¢(x) ¢e N and let u(x) be a

solution of Equation (1.6) for x > a > a corresponding to

$(x). The solution u(x) is stable on the space N if for

each a > a and any € > 0 there exists a G(a,e) such
that if ¢ ¢ N and ||¢ - ¢}l < §(a,e) then any solution
u(x) of Equation (l1.6) corresponding to ¢(x) exists on

~
x > a and satisfies [lu - u"o a S E-
’

Definition 1.2. Let ¢(x) ¢ N and let u(x) be a

solution of Equation (1.6) for x > a > a corresponding to

¢(x). The solution u(x) is asymptotically stable on the

space N if we have the following:
i) Equation (1.6) is stable on N
ii) for each a > a there exists a §(a) > 0 such that if
; ¢ N and "3 - ¢]]| < 6(a) then any solution u(x) of
Equation (1.6) corresponding to a(x) exists for x > a

and satisfies lim|u(x) - u(x)|] = o.
|x|+w

We point out that part ii) of Definition 1.2 means
that for each € > 0 there is a T = T(a,c.a) so that if
u$ - ¢ll < 6(a) and x > T(a,e.g) then |G(x) - u(x)| < €.
In particular, T may depend on ;. This dependence does

not occur in asymptotic stability for ordinary differential
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equations and has led to consideration of a distinct type
asymptotic stability for integral equations in which T does
not depend on 3. For further discussion in the case n =1
see [7]. The author is interested in this distinction and
hopes to investigate the distinction for Equation (1.6) at
some future time.

Since all vector norms on RF are equivalent, the
norm on Xx ¢ kn and the norm on G(x) - u(x) ¢ R® in part

ii) of Definition 1.2 need not be the same norm.

Definition 1.3. Let ¢(x) e N and u(x) be a solu-

tion of Equation (1.6) for x > a > a. corresponding to ¢(x).

The solution u(x) is uniformly stable on the space N if

given any € > 0 and any a > a there exists a §(e) such
that if $(x) € N and H; - ¢l < 6(e) then any solution
G(x) of Equation (1.6) corresponding to s(x) exists for

x > a and satisfies lla - u"o'a < €

We will occasionally use the abbreviations A.S. for
"asymptotic stability" (or "asymptotically stable") and U.S.
for "uniform stability" (or "uniformly stable").

The distinction between Definition 1.1 and 1.3 is
that the ¢ in Definition 1.3 is independent of a » a. We
will see that the concept of uniform stability for Equation
(1.6) on the space ) plays a central role in preservation

of stability results.
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We note that in the case n = 1, Equation (1.6)

becomes

X1

u(xl) = ¢(x;) + Ia hl(xl,rl,u(rl))dr1
1

and the Definitions 1.1-1.3 reduce to the definitions given
by Bownds and Cushing [5]. If hl(xl,rl,z) is independent
of Xq and if the space N in these definitions is Rm,
then these definitions coincide with the stability defini-
tions for ordinary differential equations [16].

We now list the function spaces on which the various

stabilities will be studied.

Ng = {¢(x)|¢:(3,) » R", ¢ 4is continuous and bounded}. The

norm to be used on N, is "'"0,5’

Nl = {¢(x)]|¢p:[a,») = Rm, ¢ is continuous and bounded, ¢x

a
k
is continuous and bounded for each o, with 1 <k < n}.
The space N, will be normed by [l¢ = H¢"0'3 + 1 ey “0,5
a a
k k
1<k<n
Nz = {¢(x)|¢p:[a,=) + Rw, ¢ 1is continuous and bounded, ¢x
a
k

is continuous for each Oy with 1 <k <n,

I_ _ sup |¢x (x)Idxa < ®}. N, will be normed by
a a k
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- -]
lol = el g+ 3 [_ _ sw le, olax, .
02 %% 5& B e XXy e <@ xak %k
1cken kK K
Ny = {6(x)]|o:1a -+ R", ¢(x) is constant}. N; will have

the norm [[¢} = |¢].

The sup appearing in the definition of the norm on

N is necessary, since otherwise the integrals would be

2
functions of x,, and [+ would not be a norm. Also, we
k
note No 2 N2 b} N3.
We will now be concerned with stability results on
various spaces for equations of the form

X

a
k
ui(x) = ¢(x) + I K (x,r )u(w(x,r;a,))dr (1.7)
Eaa @ oy kT ey
k
and
X
%%
u(x) = ¢(x) + I K (x,r Ju(w(x,r;a, ))dr
2al @ oy kT ey
%
X
+ J f(x,r,u(r))dr (1.8)
a

where u and ¢ map x> a to R, K, disan mXxm
k
<ry <x and £
% T %k 7%
to R". It will be sufficient

matrix function on x > a and a

- = m
maps x >a, a<r <x, R
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to assume f£f(x,r,0) = 0, and to study the stability of the
solution u Z 0 corresponding to ¢ = 0. This is true
since a change of variables involving a particular solution
under investigation will result in an equation of the form
(1.8) in which the function f satisfies f(x,r,0) = 0. We
will then say Equation (1.8) is stable (A.S., or U.S.) when
the solution u = 0 is stable (A.S., or U.S.). The termin-
ology "Equation (1.8) preserves stability (A.S., or U.S.) on
N" means that if Equation (1.7) is stable (A.S., or U.S.) on

N then Equation (1.8) is also stable (A.S., or U.S.) on N.



CHAPTER 2

BASIC MATHEMATICAL TOOLS

In this chapter we obtain several results that will
be needed in establishing our stability results. Although
developed here for the express purpose of studying stability,
some of these results are interesting generalizations of
known results and hold promise for application in other
areas.

We include a section on existence and uniqueness not
so much as a tool, but rather so we may concentrate on the
other qualitative criteria set down in the stability

definitions.

2.1 Existence and Uniqueness

It is not the goal of this section to give the most
general conditions under which Equation (l1.6) has a unique
global solution, but to show there are reasonable conditions
insuring global existence and uniqueness. The reader is
referred to a paper by Suryanarayana [36] for other results
pertaining to global existence and uniqueness for Equation
(1.6).

We will be concerned in this section, and in the
remainder of the dissertation, with continuous solutions
for the Equation (1.6). The existence and uniqueness

16
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theorem is obtained using Banach's contraction principle and

the following lemmas will be useful.

Lemma 2.1. Let  be a region in R". Let g:Q2 + R
satisfy 0 < mAi g(x) <M for all x ¢ Q. Let c(Q)
= {¢(x)]|¢:Q » Rm, ¢ is continuous and bounded on 1}.
Then the function "-Hg:C(Q) + R defined by "¢"g

= sup |$(x)]g(x) is a norm on C(R) and it is equivalent
xef

to the norm "¢"0 = sup |¢(x)]|. Therefore (C(R),|l*ll.) is
xefl g9

a Banach space.

Proof. Let 0 denote the function in C(R) map-
ping all x ¢ @ to the zero element of R®. Since

|0(x)] = 0, we have "5“9 = sup |0(x)]|g(x) = 0. Now sup-

Xef
pose ||¢]l. = 0. Then sup |¢(x)[g(x) = 0, and hence
g xef
|¢(x)|g(x) = 0. But g(x) >m > 0 implies [¢(x)]| = O.

Therefore ¢ = 0. Take any ¢ ¢ R and ¢ ¢ C(2). Then
lcoll . = sup |co(x)[g(x) = |c| sup |¢(x)[|g(x) = |c|lj¢ll . For
9 xeQ xeQ g

any ¢10 ¢2 € C(R) we have "¢1 + ¢2"g
= sup [, (x) + ¢,(x)|g(x) < sup (|¢,(x)] + |6,(x)])g(x)
xefd xefd

sup |, (x)]g(x) + sup |¢,(x)|g(x) = {l6,ll + li¢,ll,- Thus
sup 14,090 + sup 19,00 loglly + lell

"'"g is a norm on C(R). Take any ¢ ¢ C(R). Using the

Ia

hypothesis on the function g(x) we have m|¢(x)|

< |o(x)]g(x) < M|¢(x)|. Hence m sup [¢(x)]| < sup |é(x)]|g(x)
xef xef
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<M sug |¢(x)] and m H¢Ho < H¢"g 5_MH¢"0. Thus, the norms
X€

“-ﬂg and "'"0 are equivalent on C(Q) and, since
(C(Q)."-"o) is a Banach space, so is (C(Q),"-"g). This

completes the proof.

Remark 2.1, We will use the following easily estab-
lished fact. Suppose g:[a,b] + R. Suppose (xk) is any

sequence in [a,b] so that 1lim X =Y with Xy #y for
K-+

each k. Then 1lim g(x) =1L if and only if 1lim g(x,) = L.
x>y k4o

We will also use the following form of the dominated
convergence theorem to establish the continuity of certain

integrals which will be of interest to us.

Dominated Convergence Theorem [18, p. 195]. Let E

be a bounded measurable subset of R" having finite measure.
Suppose g, :E + R so that g, is measurable for each
k=1, 2, ... . Suppose

i) 1lim gk(x) = g(x) almost everywhere in E,
k+w

ii) there is a constant M so that. [g,(x)]| < M for all
X ¢ E and k=l’2'ooo.
Then lim I gy (x)av = J g(x)av.
E E

k>

We now use the facts above to prove the following lemma.
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Lemma 2.2. Suppose h(x,r_) has values in R® and

%
aak < r“k < x“k < bak.

for each x ¢ [a,b], h(x,ra ) 1is continuous in Xy with
k k

is defined for x ¢ [a,b], Suppose

and for each r with a <r
k X k k %k % - %

is continuous in x where < Xq

k k
. Suppose there is a constant M

IA
®
A
o
= 4
®
~

Ia
(=2
LY

M for x ¢ [a,b]l, a;, Xr, < x4

k xak k k k
< ba « Then the function I(x) = [ h(x,ra )dra is

k a, k k

k
continuous on [a,b].

Proof. Let o, = {il,iz,...,ik} and h(x,rak)

= (hl(x,rak), hz(x,rak), cees hm(x,rak)). Take any Jj 8o

that i < j <m and consider the function Ij(x)

Xa

k
= I hj(x,ra )dra . The vector function I(x) will be
a

k k
%k
continuous if Ij(x) is continuous for each j.

We define the function Hj(x,rcl ) for x ¢ ([a,b]l,
k

by
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\ 0 x ¢ {a,b], r, > Xy for some 1 ¢ a,

For each x ¢ [a,b]l, h(x,ra ) 1is continuous in Ty for
k k

a <r < Xy oo Therefore, hj(x,ra ) 1is continuous in
I k

r for each x ¢ [a,b] with a, <r, < x, . Then for
k k k

each x ¢ [a,b]l, the function HJ(x,ra ) is discontinuous
k

on the set

k
E. (x) = U {(xr; +C; ,e0esf; _1,X; ,X, yeoer: )|
ay p=1 11774, i 1 i 1p+1 i,

- ir. ix ,m=l,2,...,p-l,p+l, esey k}.
lm lm im

For each x ¢ [a,b] each set in the union forming E, (x)
k

is a subset of a k - 1 dimensional plane. Thus, if vy
is the k-dimensional lebesque measure on Rk, we have

Vk(Ea ) = 0. Therefore, for each x ¢ [a,b], the function

k
Ej(x r. ) is measurable in r for a, <r, <b_ .
’ Oy oy ak - ak - uk
Now take any X € [a,b]. We will now fix r, and
k

let x approach X. Suppose we have r < X_ . Then,
%x %k



since the function hj(x,rOl ) 1is continuous in x for each
k
r with r <x <b and a_, < x_,
% % 7 % T %k % T % T %
that 1lim Hj(x,ra ) = lim hJ(x,ra ) = hJ(E,ra ) = Hg(f,ra ).
= k k k

<b.,,, we see

a a

X+X k X+X

Suppose now r is such that r, > X, for some i ¢ a,.
oy i i k

Then we have 1lim Hj(x,ra ) =0 = Hj(I,ra ). Finally, r,
- k k k
X+X
‘may be in E_ (X). If x* X so that x, > r_ , we then
a a, = *a
k . k k
have 1lim Ej(x,ra ) = HJ(E,ra ). However, if x + X so
X*X k
that X3 < x4 for some i ¢ Oy then liﬂ Hj(x,rak) = 0,
X+X
Therefore, except on the set E, (X), we have 1lim Ej(x,ra )
k - k
i X*X
= HJ(x,ra ).
k

Now consider any sequence (xn) < [a,b] so that (xn

21

)

+ X and X ¥x for n=1, 2, ... . We define the sequence

. e 1)
of functions gn(ra ) h (xn,ra ) on [aa ,ba ]. By the
k k k k
arguments above, we see that each gn(ra ) is measurable in
k
r and that lim g (r ) = hJ(x,r_ ) almost everywhere.
%k n+e k %%

Also, from the definition of Fj(x,ru ) and the hypothesis,
k

= |FJ
it follows that Ign(rak)l |h (xn,rak)l <M for all n.

Then, using the dominated convergence theorem as given above,

we have
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b“k b“k
lim I.(x ) = lim I Rl (x_,r )dr = lim I (r_ )dr
e 10 ple ) n'fa ' o T le )y e ey
a a
k k
b(l xak
= R (X,xr_ )dr. = I RI(x,r. )dr. = I (X).
Iaa eyt oy a, e ey TS
X X

Thus, by Remark 2.1, we see that 1lim Ij(x) = Ij(f) and
X+X
Ij(x) is continuous on [a,b]. Hence, I(x) is continuous

on [a,b] and the proof is complete.

The following theorem gives sufficient conditions for
existence and uniqueness of a continuous global solution of

Equation (1.6).

Theorem 2.1. Suppose for each o, with 1 <k <n,

the functions h_(x,r_ ,z) with x ¢ [a,b], a <
% % % T %

< x <b , and z ¢ R" map into R® and satisfy:
% T~ %

i) ha (x,ra ,2) 1is continuous on its domain

k k
ii) there is a constant M > 0 such that |h_(x,r_ ,2z,)
m
- hak(x'rak'ZZ)' < Mlzl - zzl for all z,, z, € R.

Suppose ¢:[a,b] + R™ continuously. Then Equation (1.6)

has a unique continuous solution on ([a,b].
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Proof. Let C[a,b] = {g(x)|g:(a,b]) + R® and g

continuous}. Let A be any positive number such that

n
A >1 and §13X:ll < 1. Consider the norm, denoted by
"'"A- on Cla,b] such that if g ¢ cla,b] then
n
flall, = sup |g(x)|exp{-A( ] x;)]. The space (cla,bl,ll*ll))
xe {a,b] i=1

will be denoted by CA[a,b]. By Lemma 2.1, cx[a,b] is a
Banach space.
Define the map T on CA[a,b] such that if

g e Cl[a,b] then

(Tg) (x) = ¢(x) + § J h (x,r ,g(w(x,r;e,)))dr_ .
a_. % Ok k Gx

Since each ha is continuous in x, ra , and z and g
k k

is continuous, we see that h_(x,r ,g(w(x,r;ak))) is
%% %

continuous on the compact set x ¢ [a,b], a <r < X
a, — o — @
k k k
< b, for each a,. Thus from Lemma 2.2 it follows that
k
X
%k
the function I h (x,r ,g(w(x,r;ak)))dr is continuous
a_ % %k o

k
ok

on [a,b] for each ay . Then since ¢(x) is continuous

T:CA[a,b] + cxla,bl-



Take any gyr 9, € cx[a,b].

Xa

k
| (Tgy) (x) - (Tg,) (x)]| < ZI lhak(xpr

aak

a

"

Igl (w(xlr;ak) ))

- h (x,rak,gz(w(x,r;ak)))ldrak.

k

Using hypothesis ii), we have

X

a
k
[rgp ) = (o G0l < 3 lgy wlx,zia)
a
%%
= 92 (W(X,I‘;Gk)) Idrak
xak
= Mfla Igl(W(x,r;ak)) - gz(w(x,r;ak))l
a
k

i=1 i=1

Xa

| A

Gk 1=

A

n
Mgy - gpll\Igexplr( } xp)).

Recalling that X > 1, we have

n n
exp[-l(_z wi(x,r;ak ))lexp[A( ) wi(x,r;ak))]dra

k n
M"gl = gz"ki[ exP[A(.lei(x'riak))]dru
a

k

k

24
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Mllgy=-g,ll n
| (Tgy) (x) - (Tg,) (x) | < ———i———"’-—l{expwizlxin

Mllgy-g,ll n n_ n
= ———%——z—lexpll(izlxi)lil = B2 lyg, - 92"AexP[*(i£1x1)l°

n
Therefore |(Tg,) (x) - (ng)(x)lexp[-k(.zlxi)]
i=

M(2"-
-i—x—llﬂgl - g,ll, and thus |Tg, - Tq,ll,

n n
M(2 l)lgl - gzﬂx. But we have taken XA so that Eizx—ll

i

Ia

< 1. Therefore T is a contraction on cA[a,b] and has a
unique fixed point in CA[a,b]. Thus Equation (1.6) has a
unique continuous solution on ([a,b). This completes the

proof.

The contraction principle of course has been used by
many authors to establish existence and uniqueness for both
differential and integral equations. In the usual treatment,
a map is defined from the continuous functions normed by the
sup norm to itself. Then, even though the hypotheses are
sufficient to insure global existence, it is necessary to
choose a smaller interval so that the map will be a con-
traction. In Theorem 2.1 we have avoided this problem by
observing that there are many ways in which C[a,b] may be
normed to obtain a Banach space, and that T will have a
fixed point if it is a contraction on just one of these

spaces. We see that {Cx(a,bll - o < ) < w} jis a family
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of Banach spaces and that in Theorem 2.1, we have selected
one on which T will be a contraction. This approach to
global existence and uniqueness for the initial value
problem of ordinary differential equations and for a special
case of Equation (1.6) has been considered by Bielecki [3],
[4] . These ideas have also been given in a different form
by Chu and Diaz [12]. Their approach is to show that the
map under consideration has a fixed point if and only if a
related composition map has a fixed point. Using their ap-
proach one has no need to change from sup norm on cCf(a,bl.

We will use Theorem 2.1 in the form of the following

corollaries.

Corollary 2.1. Suppose for each combination oy

with 1 <k < n the functions h_ (x,r

oy °k'2) with x > a,

m

a <r <x <= and z ¢ R map to R" and satisfy:

i) h_ (x,r_ ,z) is continuous on its domain
%% %

ii) there are continuous scalar functions vy_ (x,r

) 20
“x Cx

defined for x > a, a <r < X < «» such that
- % ~ % T %

Ihak(x,rak,zl) - hak(x'rak'22)| < yak(x,rak)lzl - z,|

for all zy, z, € Rm.

Suppose ¢(x) is continuous for x > a. Then Equation (1.6)

has a unique continuous solution on x > a.
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Proof. Suppose this is not true. Then there is a
point b ¢ R® with b > a so that on [a,b] Eqﬁation (1.6)
fails to have a solution or has more than one solution. But
the hypotheses of Corollary 2.1 insure the hypotheses of
Theorem 2.1 so there must be a unique continuous solution on

[a,b]. This contradiction completes the proof.

For the linear equation we obtain the following

corollary directly.

Corollary 2.2. Suppose for each ay with 1 <k <n

the m x m matrix functions Ka (x,ra ) are continuous for
k k

x>a and a, <r < x < », Suppose ¢(x) is con=-
- a, —a a
k k k
tinuous for x > a. Then Equation (1.7) has a unique con-

tinuous solution for x > a.

2.2 The Fundamental Solution
and Representation Theorems

We now turn our attention specifically to the Equa-
tions (1.7) and (1.8). As mentioned previously, the concept
of a fundamental solution is important for our stability
analysis. Here we will introduce the fundamental solution
and use it to establish an integral representation for the
solution of Equation (1.7). We will also use the funda-
mental solution to obtain an integral equation which is

equivalent to Equation (1.8).
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The following lemma will be useful.

Lemma 2.3. Suppose K(x) is an m x m matrix func-
tionon x >a and g(x) maps x > a to rR", Suppose
both functions have continuous pure mixed partials of all

orders less than or equal to n on x > a. Then

X
J K(r)g,.(r)dr = K(x)g(x) - K(a)g(a)
a

X

a
k
- ) [a K(w(a,r;ap))g, (wla,rjoy))dr,

O0<k<n=-1
X
a
Kk k
D Vi I S CTCOR PR S PTCTE T e (2.1)
oy a, oy k
1<k<n k

Proof. The proof is by induction. 1In the case n =1,

Equation (2.1) is just the ordinary integration by parts

formula,
X1
[ krpe, rpar) = kgl - Klxgalxy)
a; 1
N
- K_ (r,)g(r,)dr,.
r 1l 1l 1l
a, 1l

Now assume the result is true for any n. We now consider
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X, a, re Rn+1 such that a < r < x. We also introduce

the following: if r = (rl,rz,...,rn,r then

n+1)

r = (rz,r3,...,rn,rn+l), if x = (xl,xz,...,xn+l) then

X = (xz,x3,...,x 'xn+1)’ and if a = (al,az,...,an+1) then
a= (ajsa3,ec00a 02 1) We notice then that r = (rl,f),

X = (xl,x), and a = (al,E). With this notation we consider

X —

X 1l ,x

I K(r)gr(r)dr = I [I_K(rl,r)gr ;(rl,r)dr]drl. (2.2)

a a a 1

1

Let 8, denote any combination of the n integers
{2,3,...,n,n+tl} taken k at a time. Once agin if
Bk = {ii,ié,...,ii}, we will assume ii < ié < a0 < ii.

Now using the induction hypothesis in Equation (2.2) we have

X

X 1
K(r)g_(r)dr = I (k(z,,X)g_ (r,,X) - K(r,,a)g_ (x,,a)
Ia r a, e 1 ry 1’
XBk
-1 [ kG wE e, 5 (rwE g6,
By ‘a 178 k
By k
O<k<n-1
ka
+ 7 (-l)kl_ K- (rl.w(f.f;sk))g (ry W (X,T; i By) )dr ldr
B a B
k B 'k
1<k<n

X xl

1l
= Ja K(rl,x)grl (rl,x)dr1 - [ K(rl,a)gr

. (rl,S)d::1
1 1

1
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x) "By
- K(x,,w(a,r;B lg_ = (r yw(a,r;8,))dr, dr
g Ia JE 1 k rer 1l k Bk 1l
k k
0<k<n-1
(2.3)
Xy "By
k — — -— - —
+ g (-1) Ia IE K;B (rl.W(x,r;Bk))grl(rl.w(x.r;ﬁk))drgkdrl
k 178, 'k

l<r<n

For each Bk’ using Fubini's theorem (see Appendix A, or

[32]) and the integration by parts formula, we obtain

X
xy T8y L L _
J I_ K; (rllw(xlr;sk))gr (I'l,W(X,r;Bk)_!drB drl
a, B 1 k
1%, Pk

B
k
= [ Rp g wGR T g ey W (R, 18,00,
By k

- I K= (allw(;‘-r;i Bk))g(alrw(il;i Bk))d?Bk

1 - — - — —
- Ja I‘ KrlFB (rl,w(x,r;Bk))g(rl,w(x,r;Bk))derdr1 (2.4)
k

Using Equation (2.4) and



X

1
I K(rl.i)grl(rl,i)drl = K(x)g(x) = K(al.f)g(al.f)
a

1

*1
- K. (r,,x)g(r,,x)dr
Ial ry 1 1 1

in Equation (2.3) we see that

X
J K(r)gr(r)dr = K(x)g(x) - K(al,i)g(al,i)

a
xl _ B xl _ _
- LlKrl(rl,x)g(rl,x)dr1 - LlK(rl,a)grl(rl,a)dr1
X
*1, Bk o L _
- g I j_ K(rl,w(a,r;sk))gr T (rl,w(a,r;gk))drB drl
a,’a 178 k
k 91778, k
O<k<n-1
X B
fL DR R G E g g teg M Fig) A,
By 8, Pk
k
1<k<n
xek
- [ R e Fig))atay wiE s ) ) aE,
B, Pk k
k
X
*1, Bk L L _
- Ial 5 Krl;ak(rl.W(x.r;Bk)q(rl.w( 'r’Bk))drskdrll (2.

Bx

31

5)
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Using the induction hypothesis again we have

x
J_K(alf)g;(al,F)dF = K(al,i)g(al,i) - K(a)g(a)
a

X
8
k
- E [; K(al.w(a.r;Bk))gi.-8 (al,w(a,rgsk))drsk
k By k
O0<k<n-1
xBk
k - — - — -
v L COR Tk (@) wE g9ty wE 8 ))aT,
1<k<n k
Thus
K(alli)g(alli)
xBk
k - — - — -
+ 1 (- I_ Kz (ay,wix,rig))gla),wix,r;p))drg
1<k<n k
ka
= K(a)g(a) + g I; K(al’W(a’r’Bk))ng (al,w(a,r;sk))drBk
k. By 3
O<k<n-1l

X
+ st(al,r)g;(al,r)dr.
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Using this in Equation (2.5) we obtain

X
X 1
K(r)g_(r)dr = K(x)g(x) - I K_(r,,x)g(r,,x)dr
Ia r a, ry 1 1 1l
R
- K(r,,a)g_ (r,,a)dr
a, 1l ry 1 1l
X
X1, B L L _
- Ia S K wEFBIg, o (r)w@EEi8)) T dar)
k 1%, k
0<k<n-1
ka
v 1 DR R (xg (EFi8) ) g (xy (K, Fi8)) ) OF,
Bk ag Bk k
k
1<k<n
X
z()"xl * (ry,w(E,T:8,))g(r, ,w(X,T;p,))dT
- -1 I I K= (r,,w(x,r;8,))g(xr,,w(x,xr;p,))dr 6 dr
6 a )z rry 1 1Ti Py 1 k By 1
By k
1<k<n
ka
- K(a)g(a) - g I_ K(al,w(a,r;sk))g-fB (al,w(a,r;sk))drBk
k Bk k
O<k<n-1

X
IE_K(al,f)g?(al,r)dr.
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Therefore

rK(r)qr(r)dr = K(x)g(x) - K(a)g(a)
a

X1
- [I K(r,,a)g. (r,,a)dr

a 1l r1 1l 1

1l

x

By
+ g j_ K(a,,w(a,r;8))gx (a;,w(a,r; el))di'ell
1°%g, By
x
x, 8
1. A
- ] I I_ K(r,,w(a,r;8))g_ = (x,,w(a,r;B,))dr, dr
B, '2, aBl 1 1 rerl 1 1 B, 1
X
B2
] [ K@@ T ey (a) W@ Eigy))aE, ]
X
L x B
1, B o _ _
- (] I I_ K(rl,w(a,r;sk))grlg xl,w(a.r;ak))drskdrl
Be'21° g, Bx
x
B+l
voL L K wE ey, e CRUICRTR LA

B+l Br+1

a
B+l



X
*1, Bn-1 L
) _  Klry,w(@,rig,_y))

B._,’a,’a
n-1 "1 "8 4

x
g, = (xr,,w(a,r;g__,))dr dr, + I K(a,,r)g—=(a,,r)dr]
r:lran-1 1 '**"Pn-1 Bpey 1 3 1777ty

*1
[I K_ (r,,X)g(r,,x)dr
a, r, 1’ 1’ 1l

By

CD2E TRy g w89 (k) W R F ) ) F
5,35 5 2

D s () (% 18y Vg (e ow (5, F38y))0F, ary)

35



p.4
8
k
(-l)klg I; K;B (x) ,w(X,T;8,))g(x,,w(X,x;8,))Ar
k Bk k
X
X1 Px-1 _
+ ] K_ = (ry ,w(X,x;B)_4))

rlr

B,_q’a,’a _
k-1"21"%p, k-1

g(rl,w(f,F;Bk_l))dF

dr,]
Bk-l 1l

X
(-1)“+1I K_(r)g(r)dr.
a

Hence

X
[xmrg,mrar = kg - k(@ gta)
a

X

a.
k
- 1| kwariege, MGamia)ar
Gk a ak a
%k
0<k<n

k

s 2
k
+ ) (-l)kI K (w(x.r:ak))g(w(x.r;ak))dra

k

By

36
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This completes the proof of Lemma 2.3

We now give the definition of a fundamental solution

for Equation (1.7),
x

u(x) = ¢(x) + ZJ K (x,r )u(w(x,r;ak))dr for x > a > a.
a. % % Oy -

Definition 2.1. Suppose the matrix function A(x;§&)

satisfies the matrix equation

x
Oy

A(x;E) = + ZJ K. (x,r )A(w(x,r;a, );E)dr (2.6)
Ea oy oy k ay

k

for a <a <& <x<® Then A(x;f) will be called a

fundamental solution for Equation (1.7).

If the matrix functions Ka (x,ra ) are continuous
k k
for x >a, a. <r <x_ <o then the fundamental solu-
= a, —a, — @
k k k
tion exists, is unique, and is continuous in x for each
fixed & with x > £. This may be seen by applying corollary
2.2 to the vector equation

X

Oy
uj(x) = @, + IE Kak(x,ra

j )uj(w(x,r;ak))dra
%x

k k
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where ej is the jth column of I. The matrix with uj(x)
as its jth column is then the unique fundamental solution.

The following théorem and its corollaries are basic

to our analysis.

Theorem 2.2. Suppose for each oy with 1 <k <n

the matrix function Kak(x,r ) is continuous for a < x <

%k
and a, <r < X < o, Suppose ¢{(x) is continuous and
- "a, — "o
k k k
has continuous pure mixed partials of all orders less than
or equal to n for a < x < ®, Let A(x;f) be the funda-

mental solution for Equation (1.7). Then the unique con-

tinuous solution of Equation (1.7) for x > a is

u(x) = A(x;a)d(a)

X
a
k
+ Z[ A(x;wla,riop)) e, (wla,r;e))dr . (2.7)
a, oy Ok
k

Remark 2.2. We will prove Theorem 2.2 under the

following additional hypotheses on the fundamental solution:

i) suppose for each x > a the fundamental solution A(x;g)
is continuous in ¢ for a < & < x, and
ii) suppose for each b > a there is a constant M(b) so

that {ja(x;€)]] < M(b) for a < £ < x < b.
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We will see in Section 2.3, with the aid of the inequality
developed there, that continuity of the matrix functions
K, (x,ra ) is sufficient to insure the additional assump-
k. k
tions made here. Thus, Theorem 2.2 will be complete once

these facts are established in Section 2.3.

Proof of Theorem 2.2. (Under the additional assump-

tions given in Remark 2.2), Take any b > a. From the discus-
sion preceding this theorem it follows that for each fixed

£ > a the fundamental solution A(x;f) is continuous in x
for x > g&. Thus, for each O and each r, with

K
a £r, < ba , the function A(x;w(a,r;ak))q;r (w(a,r;ak))
k k L
is continuous in x for x ¢ [a,b] and r < X <b .
O — Oy — O
k k k
By Assumption i) of Remark 2.2 and the continuity of b (x)
o
k
it follows that for each x ¢ [a,b] the function

A(x;w(a,r;ak))¢r (w(a,r;ak)) is continuous in r, with

a k
k
a <r < X o+ Using Assumption ii) of Remark 2.2 and the
O.k - ak - ak
continuity of ¢ (x) we also see that
3
A(x;w(a,r;ak)Mr (w(a,r;ak)) is bounded for x ¢ [a,b]
a
k

and a <r < x < b . Thus, by Lemma 2.2, the inte-
%k “x 9% — %
grals in Equation (2.7) are continuous on [a,b] and u(x)

given by Equation (2.7) is also continuous on [a,b].
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We now show by direct substitution that u(x) given
by Equation (2.7) satisfies Equation (1.7) on [a,b].  Let
Y also denote a combination of the integers {1,2,...,n}
taken k at a time and let s = (sl,sz,...,sn) ¢ R®. Then

putting u(x) as given by Equation (2.7) into the right

hand side of Equation (1.7) we obtain

a
k
b (x) + [ K (x,r_ ) [A(w(x,z50,) 12) ¢ (a)
z a Gy o‘k k

+ 7 Ia A(w(x,ria);w(a,s;v;))

[ (w(a,s;y;))ds_ ldr (2.8)
sYi i Y Oy

X

a
k
= ¢(x) + [ ] Ia Kak(x,rak)A(w(x,r;ak);a)drak]¢(a)

a
k a
likgn k
w. (x,r;a.)
xak Yy k
+ z Z I K (x,xr )
a a
oy Y a“k aYi k k

i<k<n i<i<n

A(W(x,r;ak);w(a,s;yi)MSY (w(a,s;yi))dsyidrak.
i
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Now consider any integers p and q such that 1 < p<n

and 1 < q < n. We verify the following in Appendix A.

w (x,r;ap)

J pI K. ( )
X,x
a a ap ap

dra

A(w(x,r;a );w(a,s;v ))¢
P T s a %

y (w(a157¥q))dSY

q

J q] P K (x )
= X,xr

a a
ay ‘W, (a.s,Yq) p P

A(w{x.r:ap);w(a,S:Yq))¢s (w(a,s';yq))dru dsY .

Y P q

q

Using this in Equation (2.8) we have the right side of Equa-

tion (2.8) equal to

(x,rak)A(w(x,r;ak);a)drak]¢(a)

Yi ™
D[ o K (x,7, )
Y; ‘a a, ‘v, (a’s‘Yi) k k
1<i<n k

A(w(x,r;ak);w(a,S;Yi))druk)¢s (wla,s;y;))ds

Yy Y
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= ¢(x) + [A(x;a) - Ild(a)

X
Y
i
+ ) I [A(x;w(a,s;y;)) - I]¢ (w(a,s;v;))ds
Yj, a‘y, 1 SYi b § Yi
. h K
1<i<n
in
= A(x;a)¢(a) + ] I A(x;w(a,s;Yi))¢s (w(a.s;Yi))d'sY
1<i<n i
in
+ [¢(x) - ¢(a) - ] I ¢_. (w(a,s;yv;))ds, 1.
Y ‘ay vy B

1<i<n *

Using Lemma 2.3 with K(x)

£ I and g(x) = ¢(x) we see that
X
i
000 - s@ = T [ e, wlasiyhasy =o.
Y;i aY. i
l<i<n. 1
Therefore
X
“x
o(x) + ) I K (x,r, ) [AGw(x,rig);a)¢(a)
ae ‘a % k
a
l<k<n X
w, (x,r;a)
Yy k A
+ ] I A(w(x,r;a,)iwla,s;y;))
k i
Yi aY
l<i<n i
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¢s (wla,s;v;))ds ]drmk = A(x;a)¢ (a)

Y3 i
in
+ 1 | TAtwtasv e, (la,sivg)ids, = uto.
Yi aY Y3 i
1<i<n i

But since b is arbitrary, u(x) given by Equation (2.7)
is the unique continuous solution for x > a. This completes

the proof.

Remark 2.3. We notice that in the special case
¢(x) = ¢ (a constant), the solution of Equation (l.7) is
just u(x) = A(x;a)¢ and there is no need for the assump-
tion on A(x;£) given in Remark 2.2. (In this case the
continuity of u(x) follows directly.) We will later use
this fact to prove that the continuity of the functions
Kak(x,rak) implies the continuity of A(x;£) 4in the ¢
variable.

We have the following important corollary for the
nonlinear Equation (1.8). The importance of this result, as
mentioned earlier, is that we have an equivalent integral

equation for the solution of the nonlinear Equation (1.8) in

terms of the fundamental solution.

-~

Corollary 2.3. Suppose for each a) with 1 < k < n,

the function Ka (x,ra ) is continuous for a < x < » and
k k
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a <r < x < », Suppose ¢(x) is continuous and has

a, - ‘o, - o

k k k
continuous pure mixed partials of all orders less than or
equal to n for x > a. Suppose f(x,r,zZ) is continuous for

as<r<x<w zc¢ R" and for each o, with 1 <k <n

k
the function %;g—(x,w(x,r;ak),z) is continuous for a < x
]

k
< o, a, < r, < X, <o, and 2z ¢ R". Let A(x;E) Dbe
k k k
the fundamental solution for Equation (1.7). Then u(x) is
a continuous solution of Equation (1.8) if and only if u(x)

is a continuous solution of

X
a
k
u(x) = A(x;a)¢e(a) + I A(x;w(a,r;a,))é (w(a,r;a,))dr
} a L k ax
o k
k
X 3 r
+ J A(x;r)gF[I f(r,s,u(s))ds)dr (2.9)
a a

Proof. We first prove necessity. Suppose u(x) is
a continuous solution of Equation (1.8) for x > a and con-
sider the equation

*a
k

ux) = ¢(x) + ZIaa Ky, (XiTq VUM TIa))dE,
k

X
+ I f(x,r,u(r))dr. (2.10)
a
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This is a linear equation since the last term depends only on
X. The unique continuous solution of Equation (2.10) is

u(x), since u(x) satisfies Equation (1.8). Letting

x
o(x) = ¢(x)+I f(x,r,u(r))dr, Equation (2.10) becomes
a
xmk
u(x) = ¢(x) + I K, (x,r, )u(w(x,r;a. ))dr, . (2,11)
! a, "k %k koo
k
But  $. (wla,r;a.)) = ¢, (w(a,r;a)) +
@ &y
W(a,rray)
+ FEE_J f(wla,r;a),s,u(s)ds =¢_ (w(a,r;o)) for
ak a ak

r
l<k<n=-1 and $_(r) = ¢ (x) + g%{ f(r,s,u(s))ds. The
a

continuity assumptions on f and its partials imply that
$¥(r) is continuous. Thus using Theorem 2.2 the solution

of Equation (2.11) is

ulx) = u(x) = A(x;a)¢(a) +

+ ZI A(x;w(a,r;a ))é. (w(a,ria.))dr
a

o k

X s (% _
+ I A(x;r)§;[I £(r,s,u{s))dsldr
a a

Therefore u satisfies Equation (2.9).
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To prove sufficiency, assume u*(x) is continuous
and satisfies Equation (2.9). Consider the linear equation

X
a
k
u(x) = ¢(x) + I K. (x,r, Yu(w(x,r;a,))dr
z k dk k a

o a
a

k
%k

X
+ J £(x,r,u*(r))dr.
a

But the solution of this is given by

u(x) = A(x;a)¢(a)

X
a
k
+ ZI A(x;w(a,r;o.))¢. (w(a,r;a ))dr
a ¢ Ok o
Oy k
X 5 (T
+ I A(x:r)gglj f(r,s,u*(s))dsdr = u*(x).
a a

Therefore u*(x) satisfies Equation (1.8) and the proof is

complete,

The following corollary will be useful in establish-

ing various stability criteria.

Corollory 2.4. Suppose all of the hypotheses of

Theorem 2.2 hold. Suppose in addition the fundamental solu-
tion A(x;f) for Equation (1.7) has continuous pure mixed

partials of all orders less than or equal to n in the §
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variable for a < § < x. Then the solution of Equation (1.7)

for x > a is

u(x) = ¢(x)

X

o S
a“k the

Proof. Fix x > a. Let K(&) = A(x;g) and g(g)

%
+ 10X AL o mig)) elwix,rig))ar, (2.12)

= ¢(¢) in Lemma 2.3. Then noting that K(x) = A(x;x) =1

we obtain

X
I A(x:r)d:r(r)dr = ¢(x) - A(x;a)¢(a)
a

x

Q.
k
- ) Ia A(x;w(a,r;ak))¢r (w(a,r:ak))dra

ay oy L k
0<k<n-1
X
a
k[ ¥ |
2T 0N A Guweria ) ewixrie)dr
o a, oy k
1<k<n k
Therefore

u(x) = A(x;a)¢(a)
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k
+ ] J Alx;w(a,r;o))e,.  (w(a,r;a ))dr,
a

ak o ak k

a
k
= ¢(x) + ) (-l)kI A, (X:W(x.r;ak))¢(w(x,r;0k)dra .
a, a, ak k
1<k<n k

This completes the proof.

In the case n =1 Equation (l1.8) becomes

X
1
ulx;) = ¢(xy) + I [K(xy,xy)u(r,)

bt |

+ f(xl,rl,u(rl))]dr1 (2.13)

with a;, x;, r) € R, %) >a; and a; <r; <x;. In
this case the fundamental solution for the linear equation
satisfies

*1

A(x):8) =T+ IE K(x,,ry))A(r,:¢))dry, a; < g5 < X,
1

and the integral equation equivalent to Equation (2.13) is

X
1
u(x,) = Alxy;a,)¢(a;) + I [A(xl:r1)¢r1(r1)

a
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r
a f? ds.]d
+ d-?l-{ f(rl,sl,u(sl)) sll rl. (2.14)
21
Equation (2.14) is used by Bownds and Cushing in their inves-
tigations of stability for Equation (2.13). When Equation
(2.13) is equivalent to an initial value problem the funda-
mental solution is the fundamental matrix Y(xl)Y-l(gl)
from the theory of ordinary differential equations, and
Equation (2.14) is the well known variation of constants

formula.

When n = 2, Equation (1.8) is

-

*

u(xl'xz) = ¢(x1,x2) + Ia Kl(xl'XZ'rl)u(rl'xz)drl
1
%2
+ I Kz(xl,xz,rz)u(xl,rz)dr2
a
2
X1 ,%2
+ J j K2(xl,xz,rl,rz)u(rl,rz)drzdr1
a,’a
1 "2
X X,
+ I I f(xl,xz,rl,rz,u(rl,rz))drzdrl. (2.15)
a;’a,

The fundamental solution A(xl,xz;gl,gz) for the linear

equation satisfies

%

A(xl'xz;gl'gz) =1 + Ia Kl(xl’xZ'rl)A(rl’xl;El'EZ)drl
1
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*2
+ Ja K2 (xlllerz)A(xllrz;gllgz)drz
2

1,%2
+ Ja I K12(xl,xz,rl,rz)A(rl,rz;El,Ez)drzdrl.
The equation equivalent to Equation (2.15) is

u(xl,xz) = A(Xllx2331'a2)¢ (allaz)

X
<
a

X
2
+ I A(x11x25311r2)¢r (al'rz)drz
a, 2

1l
A(xllxz;rl la2)¢rl (rllaz)drl
1

X1.%2
+ I J [A(X, ,X,:;Ty,C,) 0 (r,,r,)
a 17727712 r1r2 1’72

1 22
42 Ty k2

+ FE-F?_{J I f(rl,rz,sl,sz,u(sl,sz))dszdsl}]drzdrl.
172 a1 a2

We will return to stability considerations for special cases

of Equation (2.15) later in the dissertation.

2.3 A Gronwall Type Inequality

In 1919, T. H. Gronwall [21]) made use of a lemma
which, in a generalized form, is a basic tool in the theory

of ordinary differential equations. The following generalized
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version of that original lemma is now known as Gronwall's
lemma or Bellman's lemma (sometimes the Gronwall-Bellman

lemma) [21}.

Gronwall's Lemma. Suppose u(t) and g(t) are

real valued, nonnegative, and continuous functions of the

real variable t for ty < t < 1. Suppose

t

u(t) <c + I g(sju(s)ds (t5 <t < 1) (2.16)
t
0

holds where ¢ is a nonnegative constant. Then

t
u(t) <c exp[[ g(s)ds] (tg <t < 1). (2.17)

to

This result is useful in the theory of ordinary differential
equations for such topics as, uniqueness, continuous de-
pendence, comparison results, and stability considerations.

The lemma has been generalized in several ways and
for a variety of motives [1], (11}, [(14], (15], [33], (34],
[{39], (41]. 1In this section we will establish a generaliza-
tion of this lemma which is particularly suited to our
stability study. We will return to a discussion of the con-
nection between this generalization and those of other authors

later in this section.
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Our result is based on the following theorem which

can be found in [24, p. 18].

Theorem 2.3. Suppose F is a complete metric space

and is partially ordered (the symbol of the partial order
will be <) in such a way, that if an increasing sequence
(yn) C F has the limit Yor then Yn < Yo for all n.
Let T be an order preserving (fl < f2 = Tfl < sz) con-
traction on F. Let f0 be the unique fixed point of T.

Then f ¢ F and f < T(f) implies f < fo.

Proof. Suppose f ¢ F and f < T(f). Since T is
order preserving £ < T(f) < Tz(f) < T3(f) < ... < T (f).

Since T 1is a contraction we have lim Tn(f) = fo. But
n->o

(T®(£)) 4is then an increasing sequence in F and therefore
T (f) < f0 for each n. 1In particular, £ < T(f) < fo and

the proof is complete.

As in Section 2.1, let Cl[a,b] = {g(x)]|g:[a,b] » rR",
g continuous} and let CA[a,b] be the Banach space of

functions Cl[a,b] normed by

n
Hg"x = sup |g(x)|exp[-A{ ] x;}] for any real A. Let
x¢ [a,Db] i=1

K < CA[a,b] be the positive cone of functions such that
¢ € K if and only if each of its component functions is non-
negative. We may use K to establish a partial order on

Cx[a,b]. The partial order is defined such that if gy
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g, € CA[a,b], g1 < 9, iff g, = 9; € K. We notice that this
partial order has the property that if (gn) is an increasing
sequence in CA[a,b] converging to 9 then g, < 99 for
all n.
We have the following generalization of Gronwall's

lemma.

Theorem 2.4. Suppose ¢(x) is continuous on [a,b].

Suppose for each &, with 1 <k <n, the mxm matrix
function Ka (x,ra ), defined for x ¢ [a,b] and a,
k k k

<r < X < b, has nonnegative elements on this domain.
e " "SR

Then if u(x) ¢ C[a,b] and

X
s ]

ul{x) < ¢(x) + ZI Ka (x,ra )u(w(x,r;ak))dra (2.18)
a, k k k
k
then u(x) < v(x) where v(x) is the unique continuous

solution of the equation

X

a
k

v(ix) = ¢(x) + I K (x,r_ )v(w(x,r;a, ))dr
Z a ak ak k ak

Qa

k
for x ¢ [a,b]. (2.19)

Proof. Since each Ka (x,ra ) 1is continuous on the
k k

compact set a < x < b and a <r < x < b , there is an
- - % T % % T %
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M so that [k (x,r, )} <M on this domain. Choose A so
k k

n.
that A > 1 and ﬂi&x_ll < 1. Define T on CA[a,b] such
that for g ¢ C,[a,b],
X
Oy

(Tg) (x) = ¢(x) + XI Kak(x,ruk)g(w(x,r;ak))drak.

a“k
The argument used in Theorem 2.1 shows that T is a con-
traction on Cx[a,b].

Suppose gy, 9, € CA[a,b] such that gy < 95i then
gl(w(x,r;ak)) < gz(w(x,r;ak)). Since the elements in the
matrix K, (x,ra ) are nonnegative we have

k k

Kak(x,rak)gl(w(x,r;ak)) < Kak(x,rak)gztw(x.r;ak)),
hence
X
[
K (x,r_ )g,(w(x,r;a,))dr
a, %k °k 1 kT ey
k
X
%k
< I K (x,r_ )g,(w(x,r;a, ))dr
a % 9 2 kM7 a
%k

k

and
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a
k
(Tg,) (x) = ¢(x) + ] K (x,r. )g, (w(x,r;a,))dr
1l Z aa ay oy 1 k oy
k
xak
< ¢(x) + I K (x,r_ )g,(w(x,r;a ))dr, = ( ) (x).
X aa ak ak 2 k oy ng
k

Therefore T is an order preserving contraction on CA[a,b].
The hypothesis on u(x) implies that u < Tu. Then by Theorem
2,3, u<v wvwhere v is the unique solution of v = Tv.

This completes the proof.

The following corollary gives a useful property of

the fundamental solution.

Corollary 2.5. Suppose ¢ € KC CA[a,b]. Suppose

the m x m matrix functions Ka (x,ra ) are continuous and
k k

have nonnegative entries for x ¢ [a,b] and a, <r, <x
k
< b, . Then the unique continuous solution v(x) of
k
X
%k
vix) = ¢(x) + ZI K, (x,r Jviw(x,r;a))dr,
a k k k
%k

is in K. (i.e., v > 0).

Proof. Since ¢ ¢ K we have ¢ > 0 and thus u = 0
satisfies inequality (2.18). Therefore the solution v of
Equation (2.19) satisfies 0 = u < v. This completes the

proof.
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Corollary 2.5 may also be established by noting that,

in the case ¢ > 0, the restriction of the map T, defined
in Theorem 2.4, to K is a contraction on K. Since K is
a closed subset of the complete space CA[a,b], K is com-

plete. Thus, the unique fixed point of the restriction of T

to K is in K,

Remark 2.4. If we consider the partial order as given
above on the continuous functions defined for x > a then the
results of Theorem 2.4 and Corollary 2.5 may easily be ex-
tended to hold for the unbounded region x > a.

Remark 2.5. Suppose for each Oy Kak(x,rak) is
continuous and has nonnegative elements for x > a and

a <r <x < e, Let Aj(x:E) be the jth column of

the fundamental solution, and let ej be the jth column
of the identity matrix I. Then, since A(x;§) satisfies
Equation (2.7) we see that

X

)Aj(w(x.r;ak);e)dra .

Gx
Aj(x;E,') =e. + IE Kak(x,::(x X

] ay k
Thus from Corollary 2.5 and Remark 2.4 it follows that
Aj(x;E) >0 for a<f <x <= and each j. Therefore all
the elements in the matrix A(x;{) are nonnegative on

a<f <x < o,
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We will now use the Gronwall inequality to show that

continuity of the kernels K, (x,r ) implies the additional
k k
assumptions made on A(x;{) in Remark 2.2. We begin with a

preliminary lemma.

Lemma 2.4. Let £ and &° be such that £ > £° > a.

Suppose each of the matrix functions K, is constant. Then
k

the fundamental solution for Equation (1.7) satisfies A(x;§)

=a(x - (£ -£8%;6% for x>¢6>¢%> a,

Proof. Take £ > £? and x > E. We recall that

xc‘k
A(x;Eo) satisfies A(x;Eo) = I + ZI K, A(w(x,r;ak);ﬁo)dra .
0 k k
2
%y
. e . 0
For each a, = {i,,i.,ees,i, } let r! =1r, - (§. =-E&;)
k i
k 1/=2 ip p p ip

i
for 1 <p <k. When r, = &, we have r! = 69 , and
-5 - i i . i lp

P P
when r, = X; we have ri = x, - (& ). Thus

b X 1 i

p0
- Ei
P P p P

P p

Xa

I+ Z[

k
Rg WX = (£ - £%ir - (& - a°);ak);£°)drak
0
€ )
k %% % 0 0
=1+ ZI KQRA(W(X = (E =-&7)ixr'ia)ig )dr&k

=a(x - (£ - £9;£9.
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Therefore by uniqueness it follows that A(x;§)
=alx - (5 - £9;£% for a <&< g0 < x. This completes

the proof.

Lemma 2.5. Suppose each of the matrix functions

K (x,r ) is continuous for x >a, a <r < x <
a, ’ o : oy @ e
Let A(x;£) be the fundamental solution for Equation (1.7).

Then

i) for each b > a there is a constant M(b) such that
la(x;E) || < M(b) for a <& < x < b;
ii) for each fixed x > a, A(x;E) is continuous in § for

a<g <x,

Proof. i) Take any b > a. From the continuity of

the functions X_ 6 (x,r. ) it follows that there exists a

a a

k k
constant M(b) so that [[K, (x,r, )|| < M(b) for each a,
k k
and x € [a,Db] a <r < x < b, . Since A(x;§)
R i

satisfies Equation (2.7) we have

xmk
la(x;6)ll <1+ EZI HA(w(x,r;ak);E)"dra .
& k
%y
Let A*(x;f) be the fundamental solution for the scalar

equation
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X
%x
u(x) =1 + ﬁfj u(w(x,r;ay))dr . (2.20)
aa %
k
Using Theorem 2.4 we see that [|A(x;&)|| < A*(x;§) for
a<g<x<b.
The function A*(x;a) is continuous on [a,b] so
there is a constant M(b) such that A*(x;a) < M(b) for

all x ¢ [a,b]. Take any & and x such that a < § < x

IA

A*(x - (§ - a);a)

b. Using Lemma 2.4 we have A*(x;§)

< M(b). Thus [[A(x;E)fl < M(b) for a < § < x < b,

]

ii) Take any x > a, € >0, and &, & ¢ [a,x].

Choose any b > a. As in part i) there are constants

M(b), M(b) so that for each o, K (x,r )| <™ and

k
A(x;E) ]l < A*(x;8) <M for a <& < x <b. (A*(x;§) is the

s ]

fundamental solution for Equation (2.20).)

Let R, (E) ={r_ |& <r <x_ )} and let V,_ de-
a oy ak ak A aL k
note the k-dimensional Lebesque measure on Rk. Then, if
k
a, = {i.,i,,...,i,}, we have V_ (R, ()= 0 (x, - &, ).
k 1’72 k k™o, p=1 ip is

For each a,, vk(Ra (£)) 1is a uniformly continuous function
k

of £ on [a,x]. Thus there is a Ga such that if El'
k

£, € la,x] with |g; - &yl < 5°k then |vk(nak(gl))

-V (R, (E,))] ¢ ————.
k™ ay "2 | 2(2R-1)M



Let Ej. = max{gilgg} and g = (-E-ll52IOOOIEn) .
§= min {6 )} and take £, £° so that g - EOI°° <
o '3
1<k<n
Thus |£-E|_ = max {|g, - fil} < 8. Likewise IEO
l<i<n 2
< §. Then observing that
Rak(E) = Rak(g) U (Ruk(g) - Rak(g)) where
Rak(ﬁ) n (Rak(E) - Rak(E)) = ¢ and
R (% =R ® v (R, % -RrR (E) where
o %k %x %x
0 0 =
Rak(E ) N (Rak(E ) - Rak(E)) = ¢
we see that
dr, =V (R (§) = R (E)) =V, (R (E)f
IR (£)-r_ (E) ay k ay oy k oy
%k %k
-V (R (&)) and
k 220 1)MM2
[ e ar, =viR €% - R @)
R (& )-Rak(ﬁ) k k k

%

- Vk(Ra

0
(€7)) - Vi (R,
Kk k

(E)) < 2

2(2"-1) MM

60
Let

- g|w

(2.21)

(2.22)
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Thus for |§ =~ EOI°° < § we have

Ia(x;€) - a(x;EQ) |l

Xa

< "I K, (x,r_ )A(w(x,r;a );E)dr
- z g ak ak ak k ak .

o
k
0
- K (x,r_ )A(w(x,r;a);E)dr_ |.
J o % % k %k

From the expressions in (4.21), (4.22) and the estimates for

K (x,r ) and A(x;&) it follows that
oy O

IA(x;E) - Aalx;e%

< [J Ik (x,r_ )A(w(x,r;a,);E&)|dr
U oer, @ oy ey . k
%k %y

+ 6 _Ixg (xlrak)A(w(x,r;ak);go)udrak]
Ry, (€1 Rg ()

b 4
a

k

+ ZHIg Kak(x,rak)[A(W(x.r;ak);i) - A(w(x.r;ak):ﬁo)]drak"
a
k
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X

a
X
+ HXI la(wix,r;e);E) - A(w(x,r;ak);Eo)"dra
|3 k
k
X
%
+ M Ig Ia(wix,ria);E) - A(w(x,r;akkgo)"drak.
a
k

Rl

Using Theorem 2.4, Remark 2.3, and the fact that A*(x;f) <M
we have |[|A(x;E) - A(x;EO)H < A*(x;E)(&) < €. This completes

the proof of Lemma 2.5.

Remark 2.6. The conclusions of Lemma 2.5 show that
we need not have made the additional assumptions on A(x;§)
in Remark 2.2. Thus Lemma 2.5 completes the proof of Theorem

2.2 as stated in Section 2,2.

Remark 2.7. If we assume the hypotheses of Theorem
2.4 for x > a and in addition assume that ¢(x) has con-
tinuous pure mixed partials of all orders less than or equal
to n on x > a then the conclusion of Theorem 2.4 in
terms of the fundamental solution A(x;{) for Equation (1.7)

is that u(x) satisfies

%

u(x) < A(x;a)é¢(a) + ZI Alx;w(a,r;ag))e_ (w(a.r:ak))drak.
a Ok
k

If we assume further that A(x;f{) has continuous pure mixed



63
partials of all orders in & for a < § < x then, by
Corollary 2.4, the conclusion of Theorem 2.4 becomes

xmk
u(x) < ¢(x) + 2(-l)kj A, (xsw(x,x;0.)) 6 (wix,r;a))dr, .
a“k o k
We will now discuss some other generalizations of
Gronwall's lemma and show how some of these follow from
Theorem 2.4 (and Remark 2.7). We first note that Gronwall's
lemma as stated at the beginning of this section is a par-
ticular case of Theorem 2.4. In that lemma wu(t) satisfies
the scalar inequality
t

u(t) < c + I g(s)u(s)ds t, s real, to <t <,
t
0

The fundamental solution for integral equation

t
u(t) = c+-I g(s)u(s)ds

to

t
is A(t;g) = exp[[ g(s)ds]. Then using Theorem 2,4 and
3

Remark 2.7, we have

t
u(t) < A(t;to)c = C exp[[ g(s)ds] (to <t <1,
t

0

Conlan and Diaz [15]) have used the following gener-

alization of Gronwall's lemma to study existence for an nth
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order hyperbolic partial differential equation. The statement
of their result is as follows: if Yy, M, L are nonnegative
constants, and if in the region 0 < x < b(b ¢ R",b > 0) the

real valued function u(x) is continuous and nonnegative,

and if
X
ak X
u(x) <y +1L Z I u(w(x,r;ak))dra + MI u(r)dr (2.23)
ak Oa k 0
k

1<k<n-1

for x ¢ [0,b] then u(x) < YK for all x ¢ [0,b], where
K 1is a constant depending on M, L, and b,

We see that under their hypotheses we may apply
Theorem 2.4 and Remark 2.7.to infer that u(x) < A(x;0)Y.
However, from Lemma 2.5, Part i) it follows that there is a
constant K = K(b) depending on b, L and M so that
|A(x;0) | < K(b). Thus using our approach we obtain the re-
sult given by Conlan and Diaz.

Another generalization for a scalar equation in two
independent variables has been given by Snow [33]. Through-
out this discussion x, y, r, s, a, b, §, n will be
real and u, ¢ and g will be scalar functions. We state
here a modified version of the result given in [33]. Let
D be the rectangle given by 0 <r <a, 0< s <b. Sup-
pose ul(r,s), ¢(r,s), and g(r,s) are continuous on D

and g(r,s) >0 on D. Let P(x,y) be a point in D and
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and let G be the rectangle with opposite corners (0,0) and

P(x,y). Suppose R(r,s;x,y) 1is the solution of the problem
R g(r,six,y) = g(r,s)R(xr,s;x,y) (2.24)
R(X'S;XIY) =1, R(rIYPXIY) = 1.

Let DT be connected subdomain of D which contains P(x,y)
and on which R(r,s;x,y) > 0. Then if G C p* and if

u({x,y) satisfies

X

Y
I g(r,s)u(r,s)dsdr (2.25)

u(x,y) < ¢(x,y) + J
00

then u(x,y) also satisfies

u(x,y) < ¢(x,y) + J:IZ¢(r,S)g(r,S)R(r,s;x,y)dsdr. (2.26)
The function R(r,s;x,y) introduced here is the Riemann
function for a special hyperbolic partial differential equa-
tion., We will discuss this function R in more detail in
Section 4.5 (see also [19]1, [35], [37]) and use h re some
facts which will be given in that section.

We will now show that Snow's result also follows from
Theorem 2.4. Let A(x,y:£,n) be the fundamental solution

for the equation
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Xry

u(x,y) = ¢(x,y) + I I g(r,s)u(r,s)dsdr. (2.27)
0’0

If ¢, g, and u are as above and if u satisfies in-

equality (2.25) then by Remark 2.7, u satisfies

X
u(x,y) < ¢(x,y) -IoAr(X.y:r.y)¢(r.y)dr (2.28)

Xy

Yy
- I As(x,y;x,s)¢(x,s)ds + I J Ars(x,y;r,s)¢(r,s)dsdr
0 0

0
provided Ar(x,y;r,y), As(x,y;x,s), and Ars(x,y;r,s) are
continuous. We will use the following relation between

R(r,s;x,y) as given by Equation (2.24) and the fundamental

solution A(x,y;&,n) for Equation (2.27):
A(x,y;&,n) = A(§,n;x,y) = R(x,y;&,n) = R(§,n;x,y) (2.29)

(Here we are assuming A(§,n;x,y) is the solution of the
usual equation even though § < x, n <y.) We will establish
the identity (2.29) in Section 4.5.

Using identity (2.29) we have

E¢m
A(x,y;&,n) = A(g,n;x,y) =1 + J I g(r,s)A(r,s;x,y)dsdr.
X'y

n
Thus Ag(x.y:s,n) = I g(g,s)A(g,s;x,y)ds and Ag(x,y:E,y)
4

= 0, Similarly An(x,y;x,n) = 0. Also, Agn(x,y;i,n)
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= g(g,N)A(E,n;x,y) = g(&,n)A(x,y;E€,n). The functions AE'

A

» and A are continuous and inequality (2.28) becomes
n En

u(x,y) < ¢(x,y) + Ixfyg(r,s)¢(r,s)A(x,y;r,g)dsdr.
a’‘b

Then using identity (2.29) we obtain (2.26), which is Snow's

conclusion.

Snow has given a similar result for systems in two
independent variables [34] and Young [41] has generalized
Snow's result for the scalar case in two independent variables
to the case of n independent variables. The author feels
that these inequalities may be obtained using Theorem 2.4 in
a manner similar to that given above and plans to study these
in more detail at some future time.

Although it does not follow from Theorem 2.4, we
mention another inequality of interest given in [1]). It is
referred to there as Wendroff's inequality. Suppose c¢ is a
real nonnegative constant and u(x,y), v(x,y) are nonnega-
tive continuous scalar functions. Suppose u(x,y) satisfies

X(y

u(x,y) <c + I I v(r,s)u(r,s)dsdr (2.30)
€n

Xty
I v(r,s)dsdr].

u(x,y) <c exp[I
£'n
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This result gives an exponential estimate for the fundamental

solution A(x,y:;&,n) for the equation
Xry
u(x,y) =c + I I v(r,s)u(r,s)dsdr
€n

where c¢ > 0, v(x,y) is continuous and nonnegative. We see

that A(x,y:;&,n) must satisfy
Xry
0 < A(x,y;&,n) < exp[f I v(r,s)dsdr].
€'n
We point out that although Wendroff's inequality gives an

explicit bound for u satisfying (2,.30) it is not the best

estimate which may be obtained for u.



CHAPTER 3
GENERAL STABILITY RESULTS

In this chapter we will establish our main stability
results. As mentioned earlier our approach is one of seeking
conditions for preservation of stability from the linear equa-
tion to the nonlinear perturbed equation. It is then natural
that we begin by considering different kinds of stability for
the linear equation (1.7) before pursuing questions of
preservation.

We will assume throughout this chapter that a ¢ R®
is fixed, and that the matrix functions Kak(x,rak) are con-

tinuous for x > a and a <r < X < o,

3.1 Stability of the General Linear Equation

The following theorem gives important characteriza-
tions of stability, uniform stability, and asymptotic sta-
bility on the space N3. We point out that if ¢(x) 4is any
of the spaces No, Ny, Ny, or Ny then it is continuous
for x > a, so we always have existence (and uniqueness)

for Equation (1.7) for a < a < x < =,

Theorem 3.1. Let A(x;fE) be the fundamental solu-

tion for Equation (1.7). Then
69
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i) Equation (1.7) is stable on Ny if and only if there
exists a constant M(a) (M depends on a > a) such

' that [|A(x;a)|| < M(a) for x > a.

ii) Equation (1.7) is uniformly stable on N3 if and only
if there is a constant M, independent of a, so
that |[A(x;a)fl <M for a <a <x <=,

iii) Equation (1.7) is asymptotically stable on N, if and
only if 1lim [|[A(x;a){l = 0 for each a > a.

| x| +e
Proof. 1) We first proof sufficiency. By Theorem

2.2, the solution of Equation (1.7) for any ¢ € N, and for

x>a>a is u(x) = A(x;a)¢. Then |u(x)| < J|A(x;a)||¢]

IA

M(a){l¢]]. For any € > 0, take ¢ ¢ N, such that el

< IE%ET = §(a). Thus |u(x)| < % for x > a and therefore

Hu“o a S % < €. This means Equation (1.7) is stable on N,.
’

We now prove necessity. Take any € > 0 and any
a > a. There is a é4(a) > 0 such that if ¢ ¢ N, with el
< §(a) and if u is the solution of Equation (1.7) cor=-
responding to ¢ then Hu"o a < €+ Now take ¢ e N, so that

’

I3l = 1. Let u(x) be the solution of Equation (1.7) cor-

. [\ . - §
responding to 3$. Since "u"o'a = "A(x,a)IJHO'a < e it
follows that |A(x;a)¢| < Z% for x > a. Thus [[A(x;a)l|

= sup |A(x;a)é] i'%? for x > a.

$|=1
ii) The argument here is the same as that given in

part i) except that § and M are now independent of a > a.
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iii) We first prove sufficiency. Take any a 3,3.

Since Ilai.m latx;a)]] = 0 and A(x;a) is continuous in x
x|+

there is an M(a) so that |[[A(x;a)]] < M(a) for x > a.
Thus by part i) of this theorem Equation (1.7) is stable on

N Take any € > 0 and any ¢ ¢ Ns3. The solution of

3.
Equation (1.7) for x > a corresponding to ¢ is u(x)
= A(x;a)¢. Since Ilai.m llaA(x;a)|| = 0 there is a T = T(a,c,¢)
X| >

such that if |[x| > T then |[[A(x;a)] < H%H. Thus |u(x) |

< lla(x;a)|lli¢ll < € for |x| >T and lim |u(x)| = 0.

|x|-no
We now prove necessity. In this proof we specialize

the vector norm and use l-ll. If K is any constant m x m

matrix with elements k and ¢ € N;, then we have kil

ij
=  sup |K¢|1 = max [ Y Iki'll (see [16], p. 41). Let ey
le =1 1iem i=1

= (0,0,-oo'0j_l'1’0j+l'ooo'om) fOI‘ j = 1' 2' L N ) m. Then

for each j, "ejﬂ = |ej|1 = 1. There is a §(a) such
that ¢ ¢ N; and lloll = |¢|l < § then the solution u(x)

of Equation (1.7) corresponding to ¢ satisfies 1lim Iu(x)l1
xll-no

= 0, Take any € > 0. For each j, let uj(x) be the

solution of Equation (l1.7) corresponding to ¢j = gej. Thus

for each j there exists a Ty such that if |x|, > Tj
Se = .
then Iuj (x)|, <3 Let T IT;;:m{'rj}, and let Ay, (x;a)

denote the elements in A(x;a). Then for x so that |x|,

8 _omom .
> T we have |uj(x)|1 = IA(x,a)-zej|l = igl’kglAik(x'a)zﬁkjl
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m
< %?. Therefore ] lAij(x;a)I <¢ for j=1, 2, ..., m
i=1

m
and [[A(x;a)fl = max [ ] IAij(x;a)ll < €. Thus

1<j<m i=1
lim [|A(x;a)|| = 0 and since all vector norms are equivalent
lel*w
on R®, 1lim ||]A(x;a)|| = 0. This completes the proof of
X | o

Theorem 3.1.

Remark 3.1. If in Equation (1.7) the matrix func-

tions K_ (x,r_)
% = %
(1.7) cannot be asymptotically stable on N,. In this case

0 for 1 <k <n -1, then Equation

Equation (1.7) becomes

X
u(x) = ¢ + I K, (x,r)u(r)dr. (3.1)
a n ‘

Thus u(al,xz,x3,...,xn) = ¢ for all (xz,...,xn) ¢ Rn-l

and u(x) cannot go to zero as |xl + o, We also point out
that this means the fundamental solution A(x;£) for Equa-
tion (3.1) cannot approach zero as |x| + =,

The following theorems give sufficient conditons
for stability, U.S., and A.S., for Equation (1.7) on the

space N,, Ny and N, respectively.

Theorem 3.2, Let A(x;{) be the fundamental solu-

tion for Equation (1.7). Then we have the following:
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i) Suppose there is a constant M(a) such that [[A(x;E)]l
< M(a) for a <ac<§&<x <= Then Equation (1.7)
is stable on N,.
ii) If the constant M in part i) is independent of a,
then Equation (1.7) is uniformly stable on N,.
iii) Suppose Equation (1.7) is uniformly stable on N, and

lim f|]A(x;£)|| = 0 for each & > a. Then Equation (1.7)

le+oo

is asymptotically stable on Ny,

Proof. i) Take any a > a and any € > 0. From
Theorem 2.2, the solution of Equation (1.7) for any ¢ ¢ N2

is given by Equation (2.7). Therefore

lu(x)| < fla(x;a)ll]¢(a)|

Xa

k
+ 5[ Clamiwtamaile, Wiz lar,
a a k
a k
k
xa.

k ,
< M(a) [fiell, = + I ¢ (w(a,r;a ))|dr_ 1
- 0,a z a l T k I ak
ak k

< M@ lielly 7 + Z[_ sup lo, (x)|ar, 1 = M(a) [loll.
! a

“k a K a k k

€
If ¢ ¢N, and [l¢] < W%E)" §(a) then |u(x)| < 5 for
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x > a. Thus Ilullo'a < % < ¢ and Equation (1.7) is stable
on NZ'

ii) The proof here is the same as part i) except the
choice of ¢ 4is independent of a and hence we have uniform
stability for Equation (1.7).

iii) Since Equation (1.7) is uniformly stable on N3
there is a constant M such that la(x:€)|] <M for a < a
£ § < x <=, Therefore by part i) Equation (1.7) is stable
on Nz.

Take any a > a. The fundamental solution A(x;§)
for Equation (1.7) is defined only for a < § < x < », We
therefore introduce the matrix function A(x;£) defined for

X, & > a given by

A(x;8) a <g <x<=
A(x;€) = (3.2)

0 £ > a, Ei > xi for some i with 1 < i < n.

From the assumption that lle la(x;€)l] = 0 for each & > a,
x|+

it follows that Ilzi.m IA(x;€)|| = 0 for each £ > a. We see
X| oo

that [[A(x;8)]| = |IA(x;8)]l <M for a <& <x < and
IK(x;e) || = 0 4if £, > x; for some i.

For each fixed x and a, = {il.iz,...,ik} the
matrix function X(x;w(a,&;ak)) is discontinuous on the

k - 1 dimensional set
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k

= U {(ay,a,ses0sa; _, r. ,a resed; _q4X
A4 1’72 1,7i,'"1,41 i 1 ip

E
p=1 1

a ’
+
ip 1

’

""aik-l'rik'aik+l"°"an)laiq < riq < iq' A . # ip}.

Recalling that Vi is the k-dimensional Lebesque measure on

Rk, we see that Vk(Ea ) = 0. Thus for each x the function
k

IA(x;w(a,E;a,))|]] is integrable on sets of the form [a_ ,b. ].
k oy "y

Take any € > 0. For any x > a and any Oy let
R (x) ={r |la, <r <x } and R  (x) = [a,») - R (x).
%k % % T % T % *k %k
Take any ¢ ¢ N,. There is an X > a such that

€
I _ sup |¢r (r)ldra < —
R, (8 2a' SFar, < % kooamz-n
oy k k
Take any x so that |x|_> |x|_  and let pe R" be such
that p= (|x|_,|x|_s...s|%|_.). The solution of Equation
(1.7) corresponding to ¢ is given by Equation (2.7).

Therefore

lu(x)| < fla(x;a)ll|¢(a)]

X
a

k
+ IIa "A(x;w(a.r:uk))HMr (wla,riay))|ar,

ay k

%%

and thus
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[u(x)| < lla(x;a) (|4 (a) |
Pak
+ 1A (x;w(a,r;a,)) ] ¢ (w(a,r;a,)|dr_ .
3 e, ez,

%

Thus
lu(x)| < lla(x;a)(||¢(a)|

+ I IE(x;w(a,x;a )) ]| ¢ (w(a,r;a,))|dr
X R, (%) i Ta, ) 197,
k

o e
Rag(p)-Rak(i) al""k'<"r°"k<m %k

(r) |dr
%

and since R, (p) = R, (x) < ﬁ& (X) we obtain
k k k
lu(x) | < [[a(x;a)li|¢(a) |

+ ZJ - "K(X7W(aar;ak))ﬂl¢r (w(a,r;a))|dr, + §.
Fay, %k k

For each x the function "K(x;w(a,r;ak))ﬂ is discontinu-

ous in r, on Ea n [aOl X ]. Then since ¢r (w(a,r;ak))

k k x % ay
is continuous on the compact set R (x) and |JA(x;E)]| < M,
* hd

we see that HK(x;w(a,r;ak))"Mr (w(a,r;a)))| is measurable
a
k
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and uniformly bounded for r, in R, (X). Since
k k
lim JJA(x;E)|| = 0 for each & > a it follows that
| % | +e0
lim ||A(x;wla,r;a ) {||¢. (w(a,r;a,)) =0 for r "€ R (X).
le_’w ’ k ruk k ak. ak

Using the dominated convergence theorem (see Section 2.1) we

have

lim I Ax;wla,r;a )|l ¢ (w(a,r;a,))]ldr. =0
|x]+=R (i)“ k Ta, )| "
k

for each Gy e Thus there is a Tl so that for each ays
IX(x;w(a,ria))|l|¢. (wla,r;a.))|dr, < ——=—— when

Ina () k Ta k @y 3(2"-1)

k

|x| > T Also, there is a T, such that lIa(x;a) |

1.
< §T$%ETT when |x|, > T,. Let T = max{IEI“,Tl,Tz}. There-

fore for x with |x|_ > T we see that |u(x)|<-§T$%;TT

- Jota)]| + 2———%——— + % = ¢, Thus lim |u(x)| = 0 and the
3(2 '

_1) |x|+eo
proof is complete.

Theorem 3.3. Suppose A(x;f) is the fundamental

solution for Equation (1.7). Then we have the following.

i) If there exists a constant M(a) such that

X
a

k
Ia(x,a)|| + ZI "A(x;w(a,r;ak))"dra < M(a) for
a k
%k
x > a > a, then Equation (1.7) is stable on N,.
ii) If the constant M 1in part i) is independent of a,

then Equation (1.7) is uniformly stable on N;.
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iii) If for each a > a,

X
a

k
la(x;a) || + ZI lhl.(x;w(a,r;t:tk))Hdrmk +0 as |[x| + =,
a
%k
then Equation (1.7) is asymptotically stable on Nl'
Proof. i) Take any a > a, € >0, and any ¢ ¢ N,;.
From Theorem 2.2, the solution of Equation (1.7) for x > a

is given by Equation (2.7). Thus

fu(x) ] < lla(x;a)(||¢(a) |

Xa

k
+ J A (x;w(a,r;a))|l]¢ (w(a,r;a,))|dr
5l e, L

ak k

X

X
< lellthatxza) |} + EI HA(x;w(a,r:ak))Hdrakl < M(a) |4l

aak

For ¢ ¢ N; such that [[¢ff < EE%ET = 6(a) then |u(x)]| < %
and thus "u"o’a < % < €.

ii) This follows from the argument used in part i)
except § will now be independent of a.

iii) From Lemma 2.5, Lemma 2.2, and the hypothesis
of part iii) it follows that the expression given in part 1)
is bounded for x > a. Thus by part i) we see that Equation
(1.7) is stable on N;. In the proof of part i) we obtained

the estimate
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Xa

k
"A(x;w(a,r;ak))"dra ]
a k
%k

jueal < loltiacsarl +

for the solution of Equation (1.7) for any ¢ ¢ Nl. It
follows directly from this and the hypothesis of part iii)

that lim |u(x)| = 0. This completes the proof.

| %]+

Theorem 3.4, Let A(x;f) be the fundamental solution

for Equation (1.7). Suppose for each x > a, and each

ay s AE (x;8) 1is continuous in & such that a < § < x.
%k
Let EO = No n {¢|¢:Rn -+ Rm, ¢ (x) continuous and ¢x (x)
a
k
continuous on x > a} (ﬁo is normed by Ilﬂo 7). Then we
’

have the following.

i) If there is a constant M(a) so that
X
N
) "Ar (x;w(x,r;ak))udra < M(a), then Equation
aa ak k
k
(1.7) is stable on ﬁo.

ii) 1If the constant M in part i) is independent of a > a

then Equation (1.7) is uniformly stable on LPY
xok
iii) 1I1f 2[ "Ar (x;w(x,r;ak))ﬂdr +0 as |x| + =,
a, o %x
k
Then Equation (1.7) is asymptotically stable on ﬁb

N {¢|¢:R" + R™, Jo(x)]| + 0 as |x]| + =},
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Proof. i) Take any a >a, € >0, and ¢ ¢ N,.
By Corollary 2.4, the solution of Equation (1.7) corresponding

to ¢ 1is given by Equation (2.12). Thus |u(x) < "¢Mo 3
’

x
«
k

+ ||¢u0';[2[a "Ara (x;w(x.r;ak))lldrak] < lislly g1 + mea)].
@y k

Hence for ¢ ¢ ﬁb with H¢"0'5 < +§ =T = §(a) we have

€
Huﬂo'; L3 <€
ii) This proof is like that of part i) except now §
is independent of a.
iii) Take any a > a. Since for each a,,

Xa

k
ZI lla (x;w(x,r;ak))ﬂdr is continuous on x > a and
a, Ta %x -
oy k X
%k
since by hypothesis ZI "Ar (x;w(x,r;ak))"dra + 0 as
a, oy k
k
xmk
|[x|] + « it follows that ZI A (x;w(x,r;ak))"dr is
a Ta %
a, k

bounded for x > a. Then part i) implies Equation (1.7) is

stable on N, N {6(x)|¢:R™ » R®, |o(x)| » 0 as |x]| + =}.
For ¢ ¢ ﬁb the solution u of Equation (1.7) satisfies
x
%%
lutal < lotal + lollg,z11[ la, twtx,rsa)llar, 1.
oy %x
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Asymptotic stability of Equation (1.7) on
N, 0 {6(x)|¢:R™ » R*,|¢(x)| + 0 as |x]| + =} now follows
from this estimate, hypothesis iii), and the fact that
[¢(x)] + 0 as |x| + =». This completes the proof.

These theorems generalize results obtained by Bownds
and Cushing [5] for the case n = 1. Also, in the case n =1,
when Equation (1.7) is equivalent to an initial value problem,
we see that Theorem 3.1 specializes to give well known re-
sults for the linear ordinary differential equations [1l6].

3.2 Preservation of Stability for
Lipschitz Type Nonlinear Perturbations

We now turn our attention to the nonlinear Equation
}(1.8). We will prove that, under conditions to be specified
on the function f£(x,r,z), the nonlinear equation will re-
main stable when the linear equation is sufficiently stable.

The following lemmas will be useful.

Lemma 3.1. Let g:[a,») + R such that g ¢ Llls,w)
N c[a,») and such that g(x) > 0 for x > a. Then the

unique continuous solution of the scalar integral equation

x
u(x) =1 + I g(r)u(r)dr (3.3)
a

is uniformly bounded in a and x with a <a < x < =,
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Proof. For each a >a the successive approximations
for Equation (3.3) converge uniformly to the unique continu-
ous solution. Consider the successive approximations
X

uo(x).s 0 uk(x) =1 + Iag(r)uk_ltr)dr k=1, 2, ... .

Let zk(x) = uk+1(x) - uk(x) k=0,1, 2, «e. . We see

k-1
that u, (x) = ) zj(x). If u(x) is the unique continuous
j=0
solution of Equation (3.3) for x > a, then u(x) = lim uk(x)
K+oo
uniformly on x > a.
X
Since 2z,(x) =1 and z.(x) = Iag(r)zk_l(r)dr for
k=1, 2, ... we have
X X r
|z, (x) | = Ig(r)zo(r)dr < I g(r)explzf g(s)dsldr.
1
a a a
Since
3 r r
5;(exp[2[ g(s)ds]} > 2g(r)exp[2[ g(s)ds]) (3.4)
a a
we have
1(* 2 r
|zl(x)| < IjayE{explzfag(s)ds]}dr
1 x
< ieprZI g(r)dr]) (3.5)

a



for x > a (see Walter [39], p. 142 and p. 148)., Assume

X
[z (x) ]| < ;%explzj g(r)dr] for x > a. We then have
a

r

x x
|2y XV ] < I g(r) |zy (r)|dr < ;t[ g(r)exp[ZI g(s)dsldr.
a 277a a

Using (3.4) and (3.5) again, we see that

X r x
| 2 o1 (%) < Eféﬁfag%{EXPIZIag(S)dS]}dr < ;ﬁ%iexPIZIag(r)dr]

and hence

X

|zj(x)| i‘ljexPuI g(r)dr] for x>a and j=0,1, 2, ...
2

a

Thus

X

a

® X ® .
Ju(x) | < .Zolzj(x)l < exp[ZI g(s)ds]._X_o(%-)J = 2exp[2[ g(s)ds].

J= a J

But since g € L,[a,») and g(x) > 0 it follows that u(x)
1 2

[+ ]

< 2exp[j_g(s)ds] and this bound holds for any x and a
a

such that a < a < x < @». This completes the proof.

Consider the following hypotheses on the m-dimen-

83

sional vector valued function f£(x,r,z) defined for a < a

m . C o
<r<x<e, z€R, |z|] <b where b is a positive

constant.
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(H1) The function £(x,r,z) <1is continuous and there exists
a continuous function B(x,r) > 0 so that

.lf(x,r,zl) - £(x,r,z,)| < B(x,r) |2y~ 2 for z

2! 1’

z, € rR", |24, |z

(H2) There exists a continuous scalar function y,(x) > 0

such that |[£f(x,x,2)| < vo(x)|z] for |[z] <b, x>a

o«
and such that I_yo(r)dr < @, For each o, (1l < k < n),
a

k

the function %Eg—(x,w(x,r;ak),z) is continuous for

x>a>a, a, <a, <r, <x <=, and [z| <b.
- ; k

Suppose for each ) there exists a continuous scalar

function Yo (x,ra ) > 0 such that

k k
3k -
|ax (x,w(x,r;ak),z)l <Y, (x,r, )|z| for x> a > a.
ay k k
a <a <r <x <o, |z|] < b and such that
ay ay ) a
r
[
- v, (r,s_)ds_ dr < =,
ala % % %
/'

Let ¢(x;a) be the solution of the linear Equation

(1.7) associated with the nonlinear Equation (1.8) for
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a <ac<x<w» and corresponding to ¢(x). If ¢, (x) is

%

continuous on x > a for each o we have, by Theorem 2.2,

®(x;a) = A(x;a)¢(a)

X

%
+ 5[ Tamiwtarige, (ularig)ar (3.6)
a %%

O
%
where A(x;£) is the fundamental solution for Equation (1.7).

We now give an important lemma.

Lemma 3,2. Suppose ¢(x) and by (x) are continu-

%

ous on Xx > a > a. Let A(x;£) be the fundamental solution
for Equation (1.7) and suppose f(x,r,z) satisfies (Hl1l) and
(H2) . Suppose Equation (1.7) is uniformly stable on N,.

Then there is a constant L > 0 independent of a such that
if the solution ¢(x;a) of Equation (1.7) corresponding to ¢

1

satisfies “0(x;a)"o a S bL™ "~ then the solution u(x) of
’

Equation (1.8) exists and satisfies |u(x)| < Luo(x;a)"o a
4

for x > a.

Proof. The function f(x,r,z) may be extended
in such a way that the extension ¥(x,r,z) is defined and
satisfies (H1), (H2) for a<a<r<x<we, z ¢ R. From
Corollary 2.1 it follows that Equation (1.8) with the per-

turbation taken to be f(x,r,z) has a unique continuous
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solution u(x) on x > a. Using Equation (3.6) and Corollary

2.3 we see that
X 3 ) o

u(x) = ¢(x;a) + I A(x:r)ﬁlf f(r,s,u(s))dsldr
a a

X
= ¢(x;a) + ] A(x;r) [E(r,r,u(x))
a

r
Oy k=

3 f
+ ZJ =~ (r,w(r,s;a,),u(w(r,s;a,)))ds_"ldr.
a ara k k ak

o k
Since Equation (1.7) is uniformly stable on Ny there exists
an M such that [[A(x;r)]| <M for a<ac<r<x<w», Using

this and (H2) we obtain

[u(x) | < lle;a)IIO'a + ME[yo(r) ju(r) |

r

+ (r,s ) |u(w(x,s; ds ldr.
XL Y“k s"k lulw(r,s;a)) | sak

Let v(x) = sup |u(r)|. We then have
a<r<x

X
vix) < lletxa)ll,  + MI J(r)v(r)dr
’ a

t“k
where Y(r) = Yolr) + II Y, (r,sa )dsa . Let A*(x;f) be
a k k k
a
k
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the fundamental solution for the scalar equation

u(x) = ¢(x) + MIXT(r)u(r)dr.
a
It follows from (H2) that ¥(r) > 0 and ¥(r) ¢ Llla,“)
N C(a,=). Thus by Lermma 3.1 there exists a constant L > 0
such that 0 < A*(x;§) <L for a <& < x <=, Continuity
of v(x) for x > a follows from the continuity of u(x)
and we may therefore apply Theorem 2.4 in the form of Remark

2.7 to bbtain

vix) < A*(x;a)lle(xsa)lly o < Lie(x;a)lly ,.

Thus "p"o'a < LH¢(x;a)“0’a. 1f u'qb(x;a)llo’a < L™l we see

that |u(x)| < b for all x > a and, since f(x,r,z)

= f(x,r,z) for z with |[z| < b, u(x) must satisfy Equa-

tion (1.8) on x > a. This completes the proof of Lemma 3.2.

In the remainder of the dissertation we will refer
to an arbitrary space of functions on x > a as N. We will
assume that functions in N are continuous and have contin--
uous pure mixed partials of all orders less than or equal
to n.

We now give preservation of stability results.

Theorem 3.5. Suppose f satisfies (H1l) and (H2).

Suppose Equation (1.7) is uniformly stable on N3. Then
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Equation (1.8) preserves stability and uniform stability on
any space N and preserves asymptotic stability on any space

N such that N3 C N.

Proof. We see that preservation of stability and
uniform stability for Equation (1.8) are immediate conse-
quences of Lemma 3.2.

We now turn to preservation of asymptotic stability.
Take a > a and € > 0. Since Equation (1.7) is asymptoti-
cally stable on N it is stable on N and since stability
is preserved we see that Equation (1.8) is stable on N.
Thus for any c¢ > 0 there exists a Go(a) such that if
"¢"N < §5(a) then the solution u(x) of Equation (1.8) satis-
fies "u"o'a < c. Asymptotic stability of Equation (1.7) on
N means there exists a §;(a) such that if “¢”N < 8, (a)
then the solution ¢(x;a) of Equation (1.7) corresponding

to ¢ satisfies 1lim |0 (x;a)| = 0. Let

Ix'-no
§(a) = min{éo(a),él(a)}. Take ¢ ¢ N such that
"¢"N < §(a) and let u(x) be the solution of Equation (1.8)

corresponding to ¢. With v(x) and ¥Y(r) as in Lemma 3.2

and using Corollary 2.3 we see that

X
lu(x)| < |o(x;a)| + j IIA(x;x) |y (x)v(r)dr
a

x
|#(x;a)| + cI la(x;r)||y(x)dr.
a

A
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By Theorem 3.1 there exists an M such that [A(x;g)]l <M

for a<a<f<x<» Let R(x) = {r|re R",a <r < x}
[

and R(x) = {a,»®) - R{x). Since I_Y(r)dr < » there exists
a

an X such that J_ _ Y(r)dr < 355. Then for x such
R(x)

that |[x|_ > [x]_  we have

lu(x)| < |e(x;a)| + CJ lla (x;x) Iy (x)dr

R(x)NR(X)
" c] Ao [T (x)dx
R(x)~-[R(x)NR(X)]
and
lu(x)| < |¢(x;a)] + c] _ Ix(x;x) [y (r)ar
R(x
+ cI_ _ 1B ) Y (x)dr (3.7)
R({x)

where A(x;f) is defined by Equation (3.2).
Since Equation (l1.7) is asymptotically stable on N

and N, ©€N it follows that Equation (1.7) is asymptotically

3
stable on N3. Thus from Theorem 3.1 we see that

lim JJA(x;E)]] = 0 for each § >a, x > & > a and hence
X| T '

lim ||A(x;E)|| = 0 for each & > a. Recalling that

<>
X| T

IA(x;E)]] <M we see ||A(x;£)]]y(r) is uniformly bounded and
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lim ||A(x;x)||[Y(x) = 0 for r € R(X). Thus using the domi-

lxlw"“

nated convergence theorem we obtain lim [ _ IR0 ¥ (x)ar

| x| *® 'R(X)
= 0. Then there is an M, such that for x with |[x|_ > M,
we have I _ & x;x) |y (xr)ar < f%. Also there exists an M,

R(x)
so that |#(x;a)| < 5 when |[x|, > M,. Let

M = max{|X|_,,M;,M;}. Then for x with [x|, > M we have

from Equation (3.7)

_ _¥Y(r)dr < e.

u(x)| < €+ ol ) + cMI
lu(x)] < 5 TS )

Thus lim |u(x)| = 0 and Equation (1.8) is asymptotically

||+
stable on N. This completes the proof.

For n =1, Theorem 3.5 reduces to a result obtained
by Bownds and Cushing [5]. Further specialization to the
case when the Volterra equation is equivalent to an initial
value problem in ordinary differential equations
(K, (x,7,) = Ky (r)) ,£0x),5,2) = £(r),2) 4 € Ny), yields
results given in Coppel [(16].

Examples given in [16] show that the hypothesis of
uniform stability on N3 in Theorem 3.5 cannot be weakened
to stability on N, and also that the integrability con-
dition on the function Yo(x) in (H2) cannot be weakened to

Yo(x) > 0 as [x] + ». The scalar equation in one independent
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(x=x) _ l]z

variable with a = 0, Kl =0, and f(x,r,z) = [e
shows that the hypotheses on the derivatives in (H2) cannot
be dropped. 1In this example f£f(x,x,z) = 0. However

(x-I); does not satisfy the derivative assump-

%%(x,r,z) = e
tion in (H2). Although the unperturbed equation (u(x) = ¢)

is uniformly stable on N3 it may be shown that the perturbed
equation is not stable on N3. Other aspects of this example

are discussed in [7].

Corollary 3.1. Suppose Equation (1.7) is uniformly

(and asymptotically) stable on Ny and f(x,r,z) satisfies
(H1) and (H2). Then Equation (1.8) is uniformly (and asymp-

totically) stable on N,.

Proof. From Theorems 3.1 and 3.2 we see that Equa-
tion (1.7) is uniformly stable on N,y iff Equation (1.7) is
uniformly stable on Nj. Thus it follows from Theorem 3.5
that Equation (1.8) is uniformly stable on N,. If in ad-
dition Equation (1.7) is asymptotically stable on N3, part
iii) of Theorem 3.2 implies Equation (1.7) is also asymp-
totically stable on N2' Hence, by Theorem 3.5, Equation
(1.8) is also asymptotically stable on N,. This completes
the proof.

We also have a corollary pertaining to stability of
Equation (1.8) on the space 'Nl. It follows directly from

Theorem 3.3 and Theorem 3.5,
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Corollary 3.2. Suppose Equation (1.7) is uniformly

stable on N and f satisfies the Hypotheses (H1l) and

3
(H2). Then
i) if A(x;E) satisfies the condition in part i) of

Theorem 3.3, Equation (1.8) is stable on N;.

ii) If A(x;t) satisfies the condition in part ii) of
Theorem 3.3, Equation (1.8) is uniformly stable on
Nl.

iii) If A(x;&) satisfies the hypothesis of part iii) of
Theorem 3.3, Equation (1.8) is asymptotically stable
on Nl.

3.3 Preservation of Stability for Little
o0 Type Nonlinear Perturbations

As in the case of ordinary differential equations
linearization of the multiple Volterra equation gives rise
to stability questions for Equation (1.8) where f£f(x,r,z)
is higher order in, z. For some perturbations of this type
the results of the previous section may be used to establish
various stabilities for Equation (1.8). However if the
perturbation f(x,r,z) 1is independent of x and r then
the results of Section 3.2 cannot be applied. We establish
results in this section which allow us to consider per-
turbations which are little o in 2z and are indepen-

dent of x and r.
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Let A(x;£) be the fundamental solution for Equatibn
(1.7). Consider the following hypothesis on f£f(x,r,z) and

A(x;E).

(H3) Suppose f(x,r,z) is continuous for a <r < x < e,

k¢ :
Ger 3% (x,w(x,r;ak),z) is
%k
continuous for a <a<x<», a <a,6 <r <x
— — ak ak Gk (!k

< », 2z € rR™. Suppose there exists continuous func-

z € Rm and for each

tions Y(x) > 0, ¢ (x,r. ) > 0 and a constant M(a)

having the following properties:

a) for each € > 0 there exists an n > 0 such that
lz3l, [2,] < n implies |[f(x,x,2)) - £(x,x,2,)]

< ev(x)|zy - z,|] for x>a>a and

k k

3 f )
Igg-—(X.W(x,r;ak),zl) - 3;2—(x,w(x,r;ak),zz)l
[ ]
k k
< ey (x,r_ )|z, - z,]|

for a<a<x, a,6 <a, <r, <X .,

% T % T % T %
X
b) I la(x,x)lly(r)dar < M(a) and
a
r
[ Mool n
A(x;x)lly, (r,s_ )ds_dr < M(a
ala % % %
k

for x > a > a.

Although (H3) is not just an assumption on the per-

turbation f(x,r,z), in cases when b) of hypothesis (H3)
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is satisfied with Y (r) = wa (x,xr., ) = 1 hypothesis (H3)
k - 7k
does define a class of perturbations. Perturbations of this

o

type have been studied for Volterra equations in one inde~
pendent variable in [27], [28], [29], [30], [31]. For our
study of preservation of stability the hypothesis as stated
above yields more general results.
To illustrate the connection between hypothesis (H3)
and the usual little o assumption we suppose the funda-
P

mental solution satisfies [ la(x,;r)llar < M(a) and consider
a

perturbations f(x,r,z) = £(r,z) which are independent of
x. Then £f(r,z) will satisfy hypothesis (H3) if for each
€ >0 there is an n > 0 such that [f(r,z,) - f(r,z,) |
< elzy - z,| wuniformly in r when |[z,], lz,] < n. We
point out that this condition is slightly stronger than the
little o assumption f(r,z) = o(|z]) uniformly in r,
which is often assumed in ordinary differential equations.
However, it may be shown that if the matrix %g(r,z) is con-
tinuous in 2z for some neighborhood of 2z = 0 uniformly in
r then the two conditions are equivalent.

The following theorem will be used to obtain preser-

vation of stability results.

Theorem 3.6. Suppose f(x,r,z) and the fundamental

solution A(x;§) satisfy (H3). Suppose ¢(x), ¢x (x)

%y
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are continuous for x > a and ¢(x;a) is given by Equation
(3.6). For each X € (0,1) there exists an €9 = eo(l) >0
such that if € satisfies 0< e < ey and if ”<I>(x;a)"0,a
< Ae then there exists a unique continuous solution u(x)

of Equation (1.8) such that “uuo a L €.
L4

Proof. Take any A € (0,1). Take p > 0 so that
M(a) < 1. By hypothesis (H3) there exists an n such that
|zl|, |22| < n implies If(x,x,zl) - f(x,x,zz)I

< ;'%lp(x)|z1 - z,| and

ks , o¥s .
l-g;‘-a—(x.w(x,r.ak) 12y) - W(x,w(x.r,ak) 12,) |
k k

L. -
< 2nwak(x,rak)lzl 22|

for each o Take u > 0 such that uM(a) < (1 - A). From
k
hypothesis (H3) and the fact that %;E—(x,w(x,r;ak),O) = 0,
k

o
there exists a & such that |z| < 6§ implies |f(x,x,2)]|

oK
axa

< Ly(x)|z| and | (x,wix,r;a.),z)| < Ly

(x,r. )|z|
o ey T Ty

k
for each a, . Let ¢4 = min{é,n} and take any € such

that 0 < € < ¢5. Consider the set S(e) = {g(x)|g:R" + rR",
g € cla,=),]lgll, , < &. The set S(e) is a closed subset
’

of a Banach space and is therefore complete.
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We define the map T on S(e) so that for each
g ¢ S(e) then

X

(Tg) (x) = ¢(x;a) + I A(x;r) [f(r,r,g(x))
a

o
k .k
+ ZJa %I%(IIW(I'S;G']() 'g(W(r'S;ak)))dsa Jdr.

Oy k k
It follows from Lemmas 2.2 and 2.5 that (Tg)(x) is con~

tinuous for x > a. Using the estimates above we have

X
| (Tg) (x)]| < ”°(x’a)"o,a + g%IJa”A(x;r)uw(r)dr

ol

X k.
. [ j Ia@xir) by, (r,s, )ds, ar]
) ala w°‘k I

< e + BE . o0, M(a) = Xe + euM(a) < Ae + €(1 - A) = €.

Therefore "Tg"o a < € and‘ T:S(e) + S(eg).
r
Take 9,0 9y € S(e). Then using the facts that
"gluo'a < €, "gJIO,a < €, and the estimates above we see

that

| (Tgq) (x) = (Tg,) (x) |

A

X
f—,;[[allA(x;r)uw(r)|gl(r) - g,(r)|dr
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r
Q

k
+ Xfaa IIA(xir)||wak(rlsak)lgl(W(r,s;ak))
k

- gz(w(r,s;ak))ldsakdr

i

p - . n . = -
?{” 9 gZ”O,a 2 M(a) pM (a) ” gl gz”o'a°

Thus Ingl - ng”o,a < eM(a) |l gy - gZ”O,a’ Since pM(a)
<1l, T 1is a contraction on S(e) and has a unique fixed
point u(x) € S(e). By Corollary 2.3, u(x) is a solution
of Equation (1.8) and the proof is complete.

Arguments similar to the one employed in Theorem 3.6
have been used in [27], [28], [31] to study perturbed non-
linear Volterra equations in one independent variable. Their
approach is based on a representation for the nonlinear
equation in terms of the resolvent for the associated linear
equation.

We will now introduce further conditions on the per-
turbation which will be needed for preservation of asymp-
totic stability. Let a > a and let X € R so that X >

max {ai}. Let X* ¢ R® and be given by X* = (X,X,...,X).
l<i<n

Certain problems arise in attempting to prove Theorem 3.7
below when the perturbation f(x,r,z) is not independent
of x. We therefore consider the following hypothesis on

the perturbation £f(x,r,z) and A(x;E£).
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(H4) Suppose f(x,r,z) = f(r,z). Suppose there exists a
continuous scalar function ¥y(r) > 0 such that for
each ¢ > 0 there exists an n such that |21|,
|22| < n implies |f(r,z;) - f(r,zz)l < eW(r)Izl - z,|

for a <a<r< e and there exists a constant M(a)
X

such that I |la(x;x) ||[¥(xr)dr < M(a) for all x > a.
a

Suppose for each X* >a and each a, we have
w(x,x*;ak)

1im A(x;r)||¥(r)dr = 0 for x > X* .,
x, | »=l® *x *k
k o

. . < x. < . .
uniformly in xj such that aj < XJ < X with 3j / e

If we assume f satisfies (H4) and demand more of
the solution of the linear equation we then have the fol-
lowing theorem concerning the solution u(x) of Equation

(1.8).

Theorem 3.7. Suppose f£f(x,r,z) satisfies (H4),

$(x), ¢x (x) are continuous for x > a, and ¢(x;a) 1is
%k
given by Equation (3.6). For each A€ (0,1) there exists
an €5 = g4(}) > 0 such that if ¢ satisfies 0 < e < €
and if ”@(x;a)”o’a < Ae then there exists a unique con-
tinuous solution u(x) of Equation (1.8) such that II“"o,a

< €. If, in addition, lim |®(x;a)| = O then

lim Ju(x)| = 0.

| x| +e
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Proof. Take X ¢ (0,1). Take any p > 0 such that
pM(a) < 1. By hypothesis (H4) there exists an n such that
lzyl+ |z,] < n implies |E(r,z;) - f(r,z,)|
< p¥(r)|z; - z,|. Take u > 0 such that uM(a) < (1 - ).
From Hypothesis (H4) it follows that there exists a 6 such
that |z| < & implies |E(r,z)| < u¥P(r)|z|. Let
€g = min{$,n} and take any € such that 0 < e < €q- Let
S(e) = {Q(X)|g=Rn > Rm;g € C[a,"f’),”g"o’a < €} and define T

on g € S(e) so that for g € S(ec) we have

x
(Tg) (x) = ¢(x;a) + I A(x;r)f(r,g(xr))adr.
a

Proceding as in Theorem 3.6 we see that T is a contraction
on the complete set S(e).

Now let S,(e) = {g(x)|g € S(e), lim lg(x)| = o0}.

lxl-m:
The set So(e) is a closed subset of the complete set S(g)
and is therefore complete. Take any o > 0 and any
g € Sple). Take X% > a such that |x|, > Xy implies
[o(x;a)] < -g— and |g(x) | i—o_—. By hypothesis (H4) there
3Mu
exists a 1 > X, such that [x|_ > v implies
® e
w(x,xo,ak)

lax;o)ll geryar < 32— for any a,, uniformly
a ue

in X5 such that aj < x5 <X, j £ ap. Take

x ='(xl,x2,...,xn) such that |x|, > T and let af be
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the special combination such that if |[x;[| > X, then

k
in regions of the set {x ¢ Rn||x|m > Xo}). Let R(x)

i ¢ af and if Ix4] < Xo then i ¢ af (af will be fixed

= {rllr'm > X3¢¥ < x}. We observe that [a,x] = R(x)

U [a,w(x,X}:af)] and R(x) N [a,w(x,xg;ai)l = ¢.

Thus we have

X
| (Tg) (x) ] < [¢(x;a)]| + uf lla(x;x) |y (x) |g(r) |ar
a
w(x,xa;ai)

N “J lax: o) ¥ (x) |g () |ar
a

<

wla

+ u] la(x; o) 9(x) |g(x) |ar
R(x)

w(x,X%;af)
o 0 — g -
<3+ ueJ la(x; ) I¥(r)ar + —:J la(x:r) |9 (r)ar
a 3M’R(x)
s ) °JxllA( MI¥ ()
< = + ue + -_ X;r)fiy(r)dr < ¢
-3 3ue 3M/a -
for x such that |[x|_ > t. Therefore l?m | (Tg) (x)]| = 0
x| oo

and T:Sy(e) + Sy(e). But T is a contraction on S(e)

and thus is also a contradiction on Sy(e) . Hence the
unique fixed point u(x) of T in S(e) is also in So(e).
Since u(x) 1is a solution of the Equation (1.8) the proof

is complete.
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We now have the following preservation results.

Theorem 3.8. Suppose f(x,r,z) and A(x;f) satisfy

(H3).

i) If Equation (1.7) is stable on any space N, then
Equation (1.8) is stable on N.

ii) If the constant M(a) in (H3) is independent of a
for a < a and if Equation (1.7) is uniformly stable
on any space N, then Equation (1.8) is uniformly
stable on N.

Suppose f(x,r,z) = f(r,z) and A(x;f) satisfy (H4).
iii) If Equation (1.7) is asymptotically stable on any
space N, then Equation (1.8) is asymptstically

stable on N.

Proof. i) Take € >0, a >a, and A € (0,1).
By Theorem 3.6 there exists an ¢, such that if 0 <y < ¢,
and if ”¢(x;a)”o’a < Ay then there is a unique solution
u(x) of Equation (1.8) such that ”u“o'a < y. Let
€ = min{eo,%} < €p- Since Equation (1.7) is stable on N
there exists a &6 = §(a) such that if ”¢”N < §(a) then
"<I>(x;a)"0'a < Ae. Thus there is a unique solution u(x)
of Equation (1.8) corresponding to ¢ such that "u"o'a <

€

IS <3 < €. Therefore Equation (1.8) is stable on N.
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ii) In the proof of Theorem 3.6, €q Was chosen so
that ¢4 = min{&,n}. In the proof 6§ and n depend on the
point a since p and u as defined there depend on the
constant M(a). But if M is independent of the point a,
then €, is also independent of a. Then for any a > a
there exists a fixed € with the property insured by
Theorem 3.6. Now take any € > 0, a >a, and A e (0,1).
Let € = min{eo,%}. From the uniform stability of Equation
(1.7) on N it follows that there exists a 6§ = §(e) such
that if ”¢"N < & then [[¢(x;a)]l < A€. Then the solution
u of Equation (1.8) satisfies "u“O,a < € < ¢ and Equation
(1.8) is uniformly stable on N.

iii) Choose any a > a. Stability of Equation (1.8)
follows directly from part i) of this theorem. Take any
A€ (0,1). Then there exists an €0 having the properties
given in Theorem 3.7. Since Equation (1.7) is asymptotically
stable on N there exists a 6 such that if llle <8
then ,l¢(x;a)"0’a < Aeo, and there exists a 60 < § such

that if H¢MN < 8§, then lim |¢(x;a)| = 0. Thus if

¢l eN and |/¢]j; < 8,, it follows from Theorem 3.7 that the
solution u of Equation (1.8) corresponding to ¢ satis-

fies l?m |u(x)| = 0. This completes the proof.
x|+

A rather detailed example discussed in [7] shows
that Theorem 3.8 is false if the conditions on the deriva-

tives in (H3) are dropped. We also mention that the
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hypotheses made here are related to those assumed in the
study of little o perturbations for ordinary differential
equations. It may be shown for ordinary differential equa-
tions that the assumption that the linear equation is uni-
formly asymptotically stable is equivalent to the assump-

tion that the fundamental solution satisfy the condition

X
f la(x;r)lldar <M for x > a >a [22, p. 290]. Using the
a

equivalence of these conditions we may obtain results in the
theory of ordinary differential equations from Theorem 3.8
[22], [23].

We now see that Theorem 3.8 may be used for perturba-
tions which are independent of x and r and are higher
order in 2z. As mentioned previously, perturbations of this
form cannot satisfy hypothesis (H2) of Section 3.2. This
important class of perturbations is not the only instance
in which Theorem 3.8 may yield results while Theorem 3.5
does not. Examples illustrating this are not difficult to
construct.

We point out another aspect of Theorem 3.8. Part i)
of Theorem 3.8 shows that ordinary stability of Equation
(1.7) may be preserved to Equation (1.8). For example, sup-
pose Equation (1.7) is stable on a space N such that
N, © N. Suppose the perturbation f£(x,r,z) = f(r,z)

3
satisfies the following: there is a continuous function
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Y(r) > 0 so that for each ¢ > 0 there is an n such

that |zl|, |22| < n implies If(r,zl) - f(r,22)|

(-]
< ew(r)lz1 - 2| and I Y(r)dr < M(a). It then follows
a

from Theorem 3.8 part i) that Equation (1.8) is stable on N.
This is interesting in light of examples from the theory of
ordinary differential equations [16] where stability is not
preserved for either little o type perturbations.or per-

turbations of the type considered in Section 3.2.



CHAPTER 4
SPECIAL EQUATIONS AND APPLICATIONS

In general the fundamental solution A(ng) is dif-
ficult to obtain. This is the case even for the differential
system g% = K(t)u (t € R), when K 1is not constant. 1In
this chapter we will study the fundamental solutions for some
special linear equations. The information obtained concerning
these fundamental solutions will then be used, along with the
results from previous chapters, to establish stability re-
sults for these special equations.

We will also study the relationship between the funda-
mental solution and the Riemann function for hyperbolic
partial differential equations and give stability results for
the characteristic value problem.

Most of the results in this chapter will be for inte-
gral equations in two independent variables. We therefore
drop the notation used in the previous chapters and, unless
stated otherwise, the variables x, y, r, s §, n, etc.
will be real. We will assume that a and b are fixed
throughout the discussion.

Since we will be concerned here with results for equa-
tions in two independent variables we give the hypotheses

on the perturbation introduced in the previous chapter for

105
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this special case. Let d be a positive constant. Then

hypotheses (H1l) and (H2) specialize to the following.

(H1)'

(H2)'

Suppose f(x,y,r,s,z) is continuous for a ac<fr
<x<w», B<b<s<y<w z¢R', |z] <d and
there exists a continuous function B(x,y,r,s) so that
|f(x,y,r,s,zl) - f(x,y,r,s,zz)l < B(x,y,r,s)lzl - 22|
for |z,], |22| < d.

Suppose there exists a continuous function Yo(x,y)

> 0 such that |f(x,y,x,y,z)]| < Yo(x,y)lzl for all

>a>a, y>b>b, ze¢R' |z|] <d and such that

X
00 ,C0
J_I_Yo(r,s)dsdr < =, Suppose the functions
a’b

32

axay(x,y,r +S,2) are

Eg(x,y,r,y,z), %g(x,y,x,s,z),
continuous for a <a <r <x <o, b<b<s<y<ao,
z € R, |z] < d. Suppose there are continuous non-
negative functions v, (x,¥,x), 7v,(x,y,8), Y3(x,y,r,s)
such that |3 (x,y,r,y,2)| < Yl(x,y,r)lzlp

| (x,y,x s,z)| < Yz(x,y,s)|z| (x,y,xr,8,2) |

ISxay

(S

73(x,y,r,s)|z| for a<a<r<x<e b<bc<s

IA

® po o
y <=, |z|] <d and L_I_I _Y, (r,s,p)dpdsdr < =,
b‘’a

®,0 ,8 ® ,00 T ¢S
_I_I_Yz(r,s,q)dqudr < ®, I_J_I_I_y3(r,s,p,q)dqdpdsdr
a’b’b a’b’a’b

< »,

As mentioned in Section 3.3, hypothesis (H3) is not

just an assumption on the perturbation. However in cases
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where the fundamental solution satisfies the integral con-
ditions in (H3) with ¢ = wak = 1, then (H3) describes a
class of perturbations. The fundamental solutions studied
here unfortunately do not satisfy all of these conditions.
We therefore assume the perturbation f is independent of
x and y and consider the following hypothesis which will

allow us to obtain preservation results based on the results

of Section 3.3.

h(r,s,z). Suppose h(r,s,z) is

(H3)' Let £f(x,y,r,s,z)
continuous for a<a<r, b<b<s, z¢€¢R" and
suppose for each € > 0 there exists an n such

that [z,], |zz|

In

n implies |h(r,s,z,)

- h(r,s,zz)l < elzy - z,].

b
4.1 The Equation u(x,y) = ¢(x,y) + J kl(r)u(r,y)dr
a

Xty

Y
+ I kz(s)u(x,s)ds + I f [k3(r,s)u(r,s)
b b

' a
+ f(x,y,r,s,u(r,s))ldsdr

In this and the next section we will be concerned with
special cases of the scalar equations (m = 1) in two in-
dependent variables of the form

X
u(x,y) = ¢(x,y) + I kl(x,y,r)u(r,y)dr
a

Y Xry
+ I kz(x,y,s)u(x,s)ds + I I k3(x,y,r,s)u(r,s)dsdr (4,1)
b b

a
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and

X Yy
u(x,y) = ¢(x,y) + I kl(x,y,r)u(r,y)dr + I kz(x,y,s)u(x,s)ds'
a b
Xy
+ J I [k3(x,y,r,s)u(r,s) + f(x,y,r,s,u(r,s))ldsdr. (4.2)
a’b

This section will be devoted primarily to the study of re-

sults for the linear equation

X Y
u(x,y) = ¢(x,y) + I kl(r)u(r,y)dr + I kz(s)u(x,s)ds
a b

Xry
+ [ I k3(r,s)u(r,s)dsdr (4.3)
a’b

and the perturbed equation

X Y
ul(x,y) = ¢(x,y) + I kl(r)u(r,y)dr + I kz(s)u(x,s)ds
a b
Xry
+ I f [kfr,s)u(r,s) + f(x,y,r,s,u(r,s))]dsdr (4.4)
a’‘b

where kl(r), kz(s), and k3(r,s) will be assumed
continuous.

The following lemma concerning the fundamental solu-
tion for Equation (4.3) together with the Gronwall inequality
will yield a stability result for the more general Equation.

(4.2).
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Lemma 4.1. Suppose k,(r) ¢ Ll[E,w), k,(s) ¢ ths,m),
k3(r,s) € Ll([E,w) x [b,»)) and each of these functions is'
nonnegative on its domain. Then there exists a constant M
(independent of (£,n)) such that the fundamental solution
A(x,y;&,n) for Equation (4.3) satisfies, 0 < A(x,y;&,n) <M

for a<E<x<w and b<n<yc<ew,

Proof. Take any £ > a, n > b and let v(x,y)

= A(x,¥:&,n). Then we have

X Y
vix,y) =1 + [ kl(r)v(r,y)dr + f kz(s)v(x,s)ds
13 n
Xy
+ I I k3(r,s)v(r,s)dsdr for x> &, y > n. (4.5)
E€n

The successive approximations for this equation converge uni-

formly for x > £, y > n. These approximations are defined

by
vo(x,y) =0

and

X

Y
Ekl(r)vk_l(r,y)dr + Inkz(s)vk_l(x,s)ds

vk(x,y) =1 + J

- Xy
+ IEJnk3(r,s)Vk_l(r,s)dsdr k=1, 2, ... .
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Let zk = vk+l - Vk, k = 0, 1' 2 see o Then Vn(x,Y)

n=-1
= 7 zj(x,y) and the solution v(x,y) of Equation (4.5) is
3=0 ®

vix,y) = 2 z.(x,y).
j=o0

X
Now zo(x,y) 1 and zp(x,y) =I kl(r)zk_l(r,y)dr

Xy
gInk3(r,s)zk_l(r,s)dsdr. Let

X y Xry
H(x,y) = thgkl(p)dp + f k,(q)dq + [J ky(p,q)dqdp] for
n n

x>&, ¥y 3‘ﬁ. Then since H(x,y) >0 for x> &, y 2>n

Y
+ j kz(s)zk_l(x,s)ds + I

we see that

X Y
lzl(x,y)l < [Ekl(r)exp[H(r,y)]dr + [ k, (s)exp[H(x,s]ds
n

Xy
+ I I k3(r,s)exp[H(r,s)]dsdr (4.6)
E'n

Y
But é%{exp[ﬂ(r,y)]} = 6[k, (x) + Ink3(r,q)dqlexptﬂ(rly)l

> 6k, (r)exp[H(r,y)] and hence
ky (£)explH(r,y] <+ 2f{explH(r,y)]1} (4.7)
1 '¥7 =~ 6 ar ! : *
In a similar way we have

2 {explH(x,s)]}. (4.8)

o=

k,(s)exp[H(x,s)] <
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Also Eggi{exp[H(r,s)]} = 6ky(r,s)exp[H(r,s)] + (6)2[kl(r)

S b o
+ I ky(r,q)dql [k, (s) + ng (p,s)dplexp[H(r,s)], thus
n

asar{exp[H(r s)1} > 6k, (r,s)explH(r,s)], and therefore

1 2

ky(r,s)exp[H(r,s)] < 3 5%3;{exp[ﬁ(r,s)]}. (4.9)

Using Equations (4.7)-(4.9) in Equation (4.6) we see that

X Y
Izl(x,y)l < %[Jgg%{explﬂ(r,y)]}dr + Ing%{exp[n(x,s)]}ds

Y ~2
+ J J sesplexp[H(r,s)1}dsdr] < Hexp(H(x,y)] - explH(E,y)]
£/n

+ expl[H(x,y)] - exp[H(x,n)] + exp[H(x,y)] - exp[H(x,n)]
- exp[H(E,y)] + exp[H(E,n)]}.

Therefore Izl(x,y)| < %exp[H(x,y)] for x > &, y > n.
Now assume |zn(x,y)| < J%exp[H(x,y)] for any n.
2

We then have

X y
Izn+1(x.y)| < ;%{jgkl(r)explﬂ(r,y)]dr + Inkz(s)exp[H(x,s)]ds

XrY
+ I I k3(r,s)exp[H(r,S)]dsdrl-
E'n
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Using Equations (4.7)-(4.9) and the calculations above we

obtain

|zn+l(x,y)| < ;ﬁ%iexp[H(x,y)] for x> &, y >n.

Therefore |zn(x,y)| < J%exp[ﬂ(x,y)] for n=290,1, 2, ...,
2

and x > £, Yy > n. Thus we have

[}

Ivix,y)| < ¥ |zi(x,y)| < exp[H(x,y)]
i=o

-lj- = 2exp[H(x,y)]
0 2

lie~1 8

J

o0

< 2exp[6[Lkl(r)dr + f_k?_(s)ds + I"I"k-?' (r,s)dsdr}]
a b a’b

for any &, n, and x > g, Yy > n. Using Corollary 2.5

we see that

0 < A(x,yi&,n) < 2exp[6{I_ﬁl(r)dr + I_kz(s)ds]
a b

+ J_I_k3(r,s)dsdr}]
a’b

for any a < £ <x<w b<n<y<w» This completes the

proof of Lemma 4.1.

We may now prove a stability theorem for Equation

(4.2).
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Theorem 4.1. Suppose there exists continuous func-

tions Yl(r), Yz(s), and 73(r,s) defined respectively on

o

<r, b<s, and a<r, b<s suchthat |k, (x,y,r)|

< vy (r) for a

IA

a<r<x<eo y

|v
o

’ Ikz(er15) l

Log
1A

< YZ(S) for

b<s<y<w® x

v

a, and |ky(x,y,1,8)|
< Y4(r,s) for <a<r<x<wo b<b<s<yc<» Sup-
pose yl(r), Yz(s) and Y3(r,s) are in L1 on their
respective domains, and f(x,y,r,s,z) satisfies (Hl); and
(H2)'. Then Equation (4.2) preserves stability and uniform

stability on any space N. In particular, Equation (4.2)

is uniformly stable on N,.

Proof. Let A(x,y:;&,n) be the fundamental solution

for Equation (4.1). We then have
x

|a(x,y;€,n) | <1 + I Yl(r)IA(r,y;E.n)ldr
€

Y Xy
+ J Y,(s) |A(x,s;€,n) [ds + I I Y3(r,s) [A(r,s;E,n) |dsdr
n E'n

for a < E<x<w, b<n<y<w Let A*(x,y;if,n) be

the fundamental solution for the equation

x Y
Yy (x)v(r,y)dr + I Y, (s)v(x,s)ds

vix,y) =1 + I
b

a

Xry
+ I I 73(r,s)v(r,s)dsdr.
a’b
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By Lemma 4.1 there exists constant M such that
0 < A*(x,y;&,n) <M for a<E<x<e® b<n<<yc<mw,
Using the Gronwall inequality (Theorem 2.4) we have
|A(x,y:E,n) | < A*(x,y;E,n) <M for a<E<x<e b<n
Ly < =, It then follows from Theorem 3.2 that Equation
(4.1) is uniformly stable on N2' The result now follows
directly from Theorem 3.5. This completes the proof.

We will now consider several lemmas leading to ex-
plicit solutions for the fundamental solution of Equation
(4.3) when k3(r,s) is of certain special forms. The fol~
lowing lemma is well known. We include the proof for com-

pleteness.

Lemma 4.2. Suppose f(r) is continuous for a < x.

Then for x > a we have the following identity.

r r
Ix r 1l n-2
f(r)([ f(r,)dr )(I f(r,)dr,) ... (I f(r__,)dr__,)dr
a a 1l 1 a 2 2 a n-1 n-1
X
= -l-(J £(r)ar)® for n > 2. (4.10)
nl a -

Proof. Take

=
]

r
2. Let u(r) = I f(rl)drl. Then
a

X r p < 1. (F 2.x
I f(r)(f f(ry)dr,)dr = I u(r)du = 5[([ f(ry)dr,) |a
a a a a

"
Nf

X 2
(Iaf(rl)drl) .
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Assume Equation (4.10) holds for any n > 2. Then using this

assumption we have

r
X r
I f(r) (I £(r,)dr;) (J
a a

a

1l n~-1
f(rz)drz) ces (J f(rn)d:n)dr
a

X r X
1 n 1 n
f(r)[——([ f(r,)dr,) '1dr = ——J u du
Ja n! a 1 1 n!j,

1 r n+l x _ 1 X n+l
W[(Iaf (rl)drl) a” W(Jaf (r)dr) .

Thus, by induction, the proof is complete.

Consider the integral equation
Xy
u(x,y) =1+ J I f(r)g(s)u(r,s)dsdr (4.11)
E'n

with x > £, y>n and £(r), g(s) continuous. The next
lemma establishes the solution for Equation (4.11). Results
for the scalar equation in several variables (x € Rn,

r = (rl,rz,...,rn)) of the form

X
u(x) =1 + fafl(rl)fz(rz) .o fn(rn)u(r)dr.

may be found in Walter [39, pp. 142-143].

Lemma 4.3. The solution of Equation (4.11) for

x>§& y2>2n is
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X Yy
u(x,y) = IO(Z\AIEf(r)dr)(I g(s)ds))
N

where Io(x) is the modified Bessel function of the first

kind of order zero [25], [44Q].

Proof. Consider the successive approximations for

Equation (4.11). They are uo(x,y) =1,

Xy
J f(r)g(s)uk_l(r,s)dsdr.

uk(er) =1 + I
E€'n

Then,

Xy X Y
ul(x,y) =1 + I I f(r)g(s)dsdr = 1 + (J f(r)dr)(J g(s)ds)
€'n € n

and an easy induction shows that

X Y
f(r)dr)([ g(s)ds) +

un(x,y) =1+ (J
g n

X r y s
1 2o ([ teparpantf g (| gtspasyras)
3 3 n n

X r rl
+ ... + [I f(r)([gf(rl)drl)(I f(rz)drz)

g g

r

n-2 s
(Ig f(rn-l)drn-l)dr][J

¥ %1

g(S)(I g(sl)dsl)(l g(s,)ds,)
n n n

S

n-2
(I g(s,_,)ds _,)ds].
n
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Using Lemma 4.2, we have

X Y 1 [ 2 (¥ 2
tman (g + L tman?[ s@as

u (x,y) =1+ (I
3 n 2 /g n

+ s =2 [Mewman® (g s)as)®
5 r)dr) " (| g(s)ds)
(n!) £ n

and thus

21Ut an (Yg(s)as)1/2)2x

n
u_ (x,y) = J
n k=0 22K (x1)2

~ These successive approximations converge to the solution

u({x,y) of Equation (4.11) for x > £, y > n. Hence

{2[(f"f(r)dr)(fﬁg(s)ds)]l/z}2k

. v £
u(x,y) = lim u_(x,y) =
. kzo 22k (11)2

0 x2k

) —sv——> ([25], p. 108), we have
k=0 22K (k1)?2 ’

Since Io(x) =

/ X Y
ulx,y) = 10(2 (I f(r)dr)(f g(s)ds)) and the proof is
g n

complete.
Lemma 4.3 cannot in general be extended to systems.

This is not surprising since in the case of the differential

system y' = A(x)y with variable coefficients, the solution
X

can no longer be expressed as exp[J A(s)ds] as in the
a

scalar case. We will consider systems with constant kernels

in Section 4.3.
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Remark 4.1. Using Lemma 4.3 we see that the solution
of the scalar equation
Xty

I cu(r,s)dsdr for x > &, y >n (4.12)

u(x,y) =1+I
€'n

where c¢ 1is a constant is u(x,y) = 10(2/C(x—£)(y-n))

(191, [37].

Lemma 4.4. Suppose vVv(x,y) is the solution of the

scalar integral equation
vix,y) =1 (4.13)

Xry

+ [ I (k, (x)k, (s) + ky(r,s)lv(r,s)dsdr for x > a, y > b.
a’b

Then the solution u(x,y) of Equation (4.3) for x > a,

y >b with ¢ =1 is

X

Y
u(x,y) = v(x,y)exp[[ kl(r)dr + Ibkz(s)ds]. (4.14)

a

Proof. The function u(x,y) is the solution of
Equation (4.3) with ¢ = 1 iff wu(x,y) is the solution of

the characteristic value problem
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uxy(le) = kl(x)uy(le) + k2 (Y)ux(XIY) + k3(xly)u(le)
(4.15)

Y
kz(s)ds]

X
u(x,b) = exp[I kl(r)dr], u(a,y) = expl[
a b

X Y
Now let u(x,y) = exp[[ kl(r)dr + I kz(s)ds]v(x,y).
a

b

Then

X y
ux(x,y) = [kl(X)v(x,y) + vx(x,y)]exp[J kl(r)dr + I k2(5)d51,

a b

. " v

u, (x,y) = [k (Y)vix,y) + vy(x,y)]expljakl(r)dr + Ibkz(s)dSI
and

uxy(x,y) = [kl(x)vy + vxy + kl(x)kz(y)v(x,y) + kz(y)v(x,y)]

X Y
kl(r)dr + I kz(s)ds].

y exp[[
€ n

The differential equation in terms of v then becomes
vxy(x,y) = [k) (x)k, {y) + ky(x,¥)]vix,y).
The characteristic data for v(x,y) is determined from

b4 Y
u(a,y) = exp[I kz(s)ds] = exp[[ kz(s)ds]v(a,y)
b b
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and

X b4
u(x,b) = exp[[ kl(r)dr] = exp[I kl(r)dr]v(x,b).
a a

Therefore v(x,y) satisfies the characteristic value problem

vxy(x,y) = [kl(X)kz(y) + k3(x,y)IV(x,y)
(4.16)

vi(a,y) l vi(x,b) =1 .

If v(x,y) is the solution of the problem (4.16) then u(x,y)

X Y
= exp[[ kl(r)dr + J kz(s)ds]v(x,y) is the solution of problem
a b

(4.15) and is therefore the solution of the integral Equation
(4.3) with ¢ = 1. But v(x,y) is the solution of problem

(4.16) iff v(x,y) satisfies the integral equation

vix,y) =1 + J:IZ[kl(r)kz(S) + k3(r,s)]v(r,s)dsdr.
This completes the proof.

We see that if k3(r,s) is such that kl(r)kz(s)
+ k3(r,s) can be written as the product of a function of «r
and a function of s, then Lemma 4.3 will give the solution
of Equation (4.13). Then, by Lemma 4.4, Equation (4.14)

yields the fundamental solution for Equation (4.3) for this
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particular k3(r,s). This discussion allows us to give the
following lemma in which we list the fundamental solution for
kernels k3(r,s) which may be expressed as the product of a

function of r and a function of s.

Lemma 4.5. Assume that the functions gl(r) and
g,(s) are continuous on a < r and b < s respectively.
Let A(x,y;£,n) be the fundamental solution for Equation

(4.3).

i) If kl’ k and k3 are constants then

2'

A(x,y:&,n) (4.17)

= 10(2/(k1k2+k3)(x-€)(y-n))exp[kl(x - E) + kz(y -nl.
ii) 1If k3(r,s) = 0 then

A(x,y;€,n) (4.18)

X y X Y
= Io(2V(I£kl(r)dr)(Inkz(s)dsl)exp[[gkl(r)dr + Inkz(s)ds]

iii) 1I1f k3(r,s) = gl(r)kl(r)kz(s), then

A(x,y;&,n)
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X Yy X
= 10(2\4I€k1(r){gl(r)+1}dr)(Jnkz(s)ds))exp[fgkl(r)dr
Y
+ [ kz(s)ds] (4.19)
n

and if k3(r,s) = gz(s)kl(r)kz(s) then

A(XIY7 Ern)

X Y ‘ x
= IO(Z\(ngl(r)dr)(Inkz(s){gz(s)+1}ds))exp[J€k1(r)dr

Y
+ J kz(s)ds]. (4.20)
n

iv) Suppose kl and k2 are constant. If k3(r,s)

= gl(r) then

A(X,YSE,Y]) (4.21)

-

X
= Io(zv4fglklk2+gl(r)]dr)(y-n))exp[kl(x -8 + kyly - ml]
and if k,(xr,s) = g,(s)

A(x,Y:E,n) (4.22)

Y
= IO(ZV(v-é)(In[klk2+92(5)ldS))exp[kl(x -8 +k(y-ml).
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v) If k3(r,s) = kl(r)gz(s) + kz(S)gl(r) + gl(r)gz(S)

then
A(x,Y;glﬂ)
X Y b
= Io(2\£I;[k1(r)+gl(r)]dr)(I[kz(s)+gz(s)]ds))exp[I k,y (r)dr
n £
y .
+ J kz(s)ds]. (4.23)

n

Results along these lines have been given in [35].
The solutions given in iii)-v) appear to be new.

We notice in Lemma 4.5 that the fundamental solution
in each case is a product of exponentials and the Bessel
function. The following lemmas give results concerning such
products and will be useful in establishing stability results;

they follow from a basic representation for Io(t).

Lemma 4.6. Let t be a real variable. Then

lim Iy(t)e ® =0 and 0 < Iy(t)e ® <1 for all t > O.

t>o

Proof. The Bessel function Iv(t) is given by

I (t) = ede ([40], p. 79).

(1/2¢) " I"et cos 6 . 2V
T T(vt1/2)T(1/2)

sin
0

Since T(1/2) = /1 we have
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I,(t)e " = lf

m m
1 et cos 6 ~t.o _ l[ et (1l-cos ?30.

ae
0 Tlo

e-—t (l-cos 9

Consider the function h(t,8) = on [0,x)

x [0,7]. Then 1lim h(t,0) =1, and for 6 € (0,m] we have

tro

lim h(t,8) = 0. We also see that 0 < h(t,8) < 1. By the

troo

dominated convergence theorem (see Section 2.1)

m
lim I, (t)e-t = .1]:[. lim[ e-t(l-cos O)de
tro trx/

Sl

™ ™
limJ h(t,0)do = %j (1im h(t,8))de = 0.
taodo . 0 tro

T T
Also, 0 < lj et (l-cos 68) 4 lf d0 = 1. Hence 0 < Io(t)e—
Tlo — Mo

< 1 and the proof is complete.

t

Lemma 4.7. Let ¢y and c¢ be real positive con-

2
stants. Then

. —c1t) “cxt,
lim 10(2/c1c2t1t2)e e = 0 and
I (tl'tz) |'>°°
—C 1ty Tcyts
0 < Iyj(2/c et t,)e e <1 for all t,, t, > 0.

Proof. Io(t) is a positive increasing function of ¢t

~C1t) "Gt .
with IO(O) = 1. Thus 10(2/c1c2tlt2)e e > 0. Since



125
1/72.2
ucltl)l/z- (cyt,) / 17 2 0 we have 2/cyc t 8, < cyty
+ c,t, for all t;, t; >0, and thus 10(2/clcztlt2)
< Igleyty + cyt,). Using Lemma 4.6 we see that

-(cltl+c2t2)
Io(2¢clc2tlt2)e

-(cltl+c2t2)

< Io(clt1 + c2t2)e < 1.

Now take any € > 0. By Lemma 4.6 there exists an M such

that if t > M then Ig(t)e = < e. Take |(t;,ty)],

M .
Z min CysCot° Then ¢)t, + Gty 2 mln{cl,cz}(|t1| + |t2|)
. M _
> m1n{cl,cz} Y S S, = M. Hence
-(c,t,+c,t,) -(c.t,+c,t,)
1°1" 7272 171 72"2
10(2/c1c2tlt2)e < Igleytyte,ty)e < €

and this completes the proof.

Remark 4.2. We introduce the Bessel function Jo(x)
and note some of the properties of this function [25]. We
have the following relation between I, and JO:

Io(z) = Jo(-iz) for z complex, - % < arg z < ™.

By taking z = ix, x real and x > 0, it then follows

that

Jo(x) = Io(ix). (4.24)
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We also have |Jo(x)| €1 for x real and x > 0. Then

since IO(O) =1 and I0 is increasing it follows that
[3g(x) | = [Igtix) | < .1 < Iy) (4.25)

for x, y real, x, y > 0.

Remark 4.3. Using Remarks 4.1 and 4.2 we see that,
in contrast to the behavior of the fundamental solution for
the scalar equation in one independent variable, the funda-
mental solution in two independent variables can be negative
for some values of the independent variables.

Due to the fact that several different assumptions
lead to the same stability conclusions we will now give a
list of hypotheses and then a theorem based on these
hypotheses.

(H5) Suppose there are positive constants Ml, M2 such

X 4 _
that J k,(r)dr < M; and I ky(s)ds <M, for a < §
g n B B

<X <o, b < n <y <« Suppose k3(r,s) € Ll(lsrm)

x [b,®)).
x

(H5.a) Suppose (H5) holds and I_kl(r)dr + - as
a

X > o, I kz(s)ds + -® 35 y > o,

(H6) Suppose k3(r,s) = gl(r)kl(r)kz(s) (or k3(r,s)
= gz(s)kl(r)kz(s)). Suppose k; (r) ¢ Ll([;rm))l



(H7)

(H8)

(HI)
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ky(s) € L, ([b,®)) and k,(r)g;(r) € L,([a,=)) (or
k,(s)g,(s) € L, ([b,=))).

Suppose k3(r,s) = gl(r)kl(r)kz(s) (or k3(r,s)
= g,(s)k;(r)k,(s)). Suppose k,(r), k,(s) >0 and
k() € Ll([E,m)) and k,(s) € Ll([E,w)). Suppose
gy(r) <0 for r >a>a (or g,(s) >0, s>b >bh).
Suppose k3(r,s) = gl(r)kl(r)kz(s) (or k3(r,s)
= g (s)k; (r)k,(s)). Suppose k;(r) <0 for r >a
and k,(s) < 0 for s > b. Suppose g,(r) <0 for
r>a (or g,(s) <0 for s> b).

X

(H8.a) Suppose (H8) holds. Suppose I_kl(r)dr + -,
a

Y
as x » o«, J_kz(s)ds + = as y > o,
b

(H8.b) Suppose (H8) holds. Suppose there exists an
ry > a and an s, > b and positive constants
@, B such that k,(r) < -a, k,(s) < -B
for r > rys S 2 s,. Suppose gl(r) < -1 for

r>a (or g,(s) < -1 for s > b).

Suppose k3(r,s) = gl(r) (or k3(r,s) gz(s)). Sup-
pose ky, k2 are nonpositive constants and gl(r) <0
for r >a (or g,(s) <0 for s > b).
(H9.a) Suppose (H9) holds and in addition k1 <0,

ko < 0.
(H9.b) Suppose (H9) and (H9.a) hold and gl(r)

< =kyk, for r >a (or g,(s) < -k;k, for

s > b).



(H10)

(H11)

( 12)
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Suppose k3(r,s) = kl(r)gz(S) + kz(S)gl(r)
+ gy (r)g,(s). Suppose k,(r), g;(r) ¢ L;([a,=))
and k,(s), g,(s) € Lj([b,=)).
Suppose k4(r,s) = k;(r)g,(s) + k,(s)g, (r)
+ gl(r)gz(s) where kl(r) <0, kz(s) < 0. Suppose
any one of the following hold for gl(r), gz(s):

(21) g, (r) > |k, (r)| and g,(s) < O.

(a2) g,(s) > |k,(s)| and gy(x) < 0.

(A3) g3(r) > 0, g,(s) >0 and g,(x)

< lky@) ], gy(s) iklkz(S)l.
(H1ll.a) Suppose (H1ll) holds and _kl(r)dr + - as
a

Y
X > ©, [_kz(s)ds + -© as y + =,
b

(H11.b) Suppose (H1ll) with (Al) or (A2) holds. Sup-
pose there exists an ry > a and an s, > b
and positive constants a, B8 such that

ky(r) < -a, k,(s) <-B for r > rq,

S > s4¢
Suppose kl’ kz and k3 are constants such that
kl, kz, k3 < 0.
(H12.a) Suppose (H12) holds with k1 < 0 and

kz < 0.

(H12.b) Suppose (H12) and (Hl2.a) hold and

kjk, + ky < 0.
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We now return to stability results for Equation

(4.4).
Theorem 4.2. Suppose f(x,y,r,s,z) satisfies (H1l)'
and (H2)'.

i) Suppose any one of the hypotheses (H5)-(H12) is satis-~
fied. Then Equation (4.4) preserves stability and
uniform stability on any space N and preserves asymp-
totic stability on any space N such that N; ©N.

In particular, Equation (4.4) is uniformly stable on
Nzo

ii) Suppose any one of the hypotheses (H5.a), (H8.a),
(H9.a), (Hll.a), or (Hl2.a) is satisfied. Then Equa-
tion (4.4) is asymptotically stable on N,.

iii) Suppose any one of the hypotheses (H8.b), (H9.b),

(H11l.b), or (H1l2.b) is satisfied. Then Equation (4.4)

is uniformly stable on N, -

Proof. We notice that some of the hypotheses above

contain alternate assumptions. Since in each case the

method of proof is the same for these alternate assumptions

we give the proof for only one set of assumptions. Through-

out this proof A(x,y:;&,n) will be the fundamental solu-

tion for Equation (4.3).
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i) Assume (H5) holds. Consider the equation

X

Yy
u(x,y) = ¢(x,y) + I kl(r)u(r,y)dr + kaz(s)u(x.S)ds (4.26)

a

for a<a<x<®, b<b<y<wo and let A(x,y;f,n) be

the fundamental solution for this equation. Suppose for some
X

x>E>a and y >n >b we have J k,(r)dr > 0 and
E .

y :
I k,(s)ds > 0. Then since I, is an increasing function we
n

see from Equation (4.18) that |A(x,y:&,n) |

0

< IO(Zﬁﬁle)exp[Ml + M,]. If for some x > & 2

y2n2b

X

3

Y
and f kz(s)ds < 0 then from Equation (4.18) and inequality
n

(4.25) we see that |A(x,y:E&,n)| < exp[M1 + M2]. If we have

a,
Yy
we have I k,(r)dr < 0 and I k,(s)ds > 0 or I k,(r)dar > 0
n

X Y
I kl(r)dr < 0 and I kz(s)ds < 0 it follows from Lemma
11 n

4.7 and Equation (4.18) that |£(x,y;£,n)| < 1. Thus in

each case we have Ig(x,y;g,n)l < IO(ZMEIﬁ;)exp[Ml + M,

for x > £ >a, y >n >Db. Thus from Theorem 3.2 it follows
that Equation (4.26) is uniformly stable on N,. We then
have by Theorem 3.5 and the assumption on the function
kl(r,s) that the Equation (4.3) is uniformly stable on N,.
It follows from Theorem 3.5 that Equation (4.4) preserves
stability, and uniform stability on any space N and pre-
serves asymptotic stability on any space N such that

N3 CN. Thus Equation (4.4) is uniformly stable on N,.
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In each of the remaining cases (H6)-(H12) the as-
sumption will lead to a uniform bound on the fundamental
solution A(x,y;&,n). The result then follows from Theorems
3.2 and 3.5. We indicate how the uniform bound is obtained
for the hypotheses (H6)- (H12).
Assume (H6) holds. Using Equation (4.19) and Remark

(4.2) we see that

[A(x,y;:E,n) |

2 Io(z\ﬁslkl(r)gl(r) lar) ([slkz(s) |as)

+ (J_Ikl- (r) |dr) (J__lk (s)ds))exp[I__lkl(r) jar + J_lkz(s) |ds]
a ' b 2 a b
for a<fE<x<w® b<n<yc<o,

Suppose hypothesis (H7) holds. It follows that

Yy X y
kz(s)ds) + ([ kl(r)dr)(f kz(s)ds)

X
(I k,(x)g (r)dr)(I
13 1 1 n 2 n

X Y
< (I kl(r)dr)(J kz(s)ds) (4.27)
g n

for a < f <x <®, b<n<y<= It then follows from

Equation (4.19) and Remark (4.2) that
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A (x,y:E,n) |

[ ]

< Io(é\ﬂj_lkl(r)ldr)(Islkz(s)lds))exp[f_lkl(r)ldr
a a

+ J_Ikz(s),ds] for a<E<x<w®, B<n<yc<m,
b

Assume (H8) holds. It follows that inequality (4.27)
holds. Thus from Equation (4.19), Remark (4.2), and Lemma
4.7 we have |A(x,y;€,n)| <1 for a fE<x<w® F<nq
2y <.

Suppose hypothesis (H9) holds. It follows that

X
kikylx = 8)(y = n) + (y - n)([ggl(r)dr) S kiky(x - E)(y - n)

for x > ¢, Yy2n. Thus by Remark 4.2 and Lemma 4.7 we
have |[A(x,y;E,n)| < 1.
Using hypothesis (H10), Equation (4.22), and Remark

4.2 we obtain

|[A(x,y:E,n) |

10(2V4j§|k1(r) + gl(r)ldr][jslkz(s) + gz(s)lds])

exp[[_[kl(r)ldr + lekz(s)lds]
a

for 5£§§x<m, s<nf_y<cn.
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Suppose (H1l) with the assumption (Al) holds. It

X y
E[kl(r) + gl(r)]dr)(fn[kz(s) + g,(s)lds) < 0

and hence from Remark 4.2 we see that |A(x,y:;&,n)|

follows that (I

X y
k, (r)dr + I k,(s)ds] < 1. The proof under the as-
3 n

sumption (A2) is similar. Now assume (H1ll) with (A3) holds.

< exp[[

X Y
It follows that (I [klir) + gl(r)]dr)([ [kz(s) + gz(s)]dS)
£ n

x b4
< (J kl(r)dr)(f k,(s)ds) and thus by Lemma 4.7 we have
3 n
[A(x,y:€,n)| <1 for a<E<x<w, b<n<yc<o
Assume (H12) holds. Then Kk;k, + k3 < k1k2 and we
have by Lemma 4.7 that |A(x,y;§,n)] <1 for a < < x < =,

b<nsy<e.

ii) Assume (H5.a) holds. Take any € > 0 and

x
£ >a, n>b, Since I_kl(r)dr + - as x + » it follows
X a b 4
that I kl(r)dr + -© as x + o, Likewise I k,(s)ds + ==
€ n 2

as y » o, From Lemma 4.7 there exists an M > 0 such that

X Y
if J kl(r)dr + J kz(s)ds < =M then
£ n -

V/ x y x
IO(Z (ngl(r)dr)(f kz(s)ds))exp[Ig

Y
i kl(r)dr + J kz(s)ds] < €.

n

There exists constants ﬁl’ ﬁz > 0 such that

b - Y
ngl(r)dr <-M-M, for x> M, and I k,(s)ds < -M - M,
for y > Hz. Take (x,y) such that |(x,y)]|_ > max{ﬁi,ﬁz}.
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X

g

X

-M - Ml + M = -M. In a similar way I kl(r)dr
13

Suppose | (x,y)]|_ = x > max{ﬁi,ﬁé}. Then I kq (r)ar

(L

A

Y - -
+ Jnkz(s)ds -M when |(x,¥)|_ =Y > max{M, ,M,}. Thus
using Equation (4.18), we see that the fundamental solution
A(x,y:&,n) for Equation (4.26) satisfies

lim |A(x,y:E,n)| = 0. Thus Equation (4.26) is asymp-
| (x,y) |+

totically stable on N,. Therefore by part i) of this
theorem Equation (4.3) is asymptotically stable on N,.
Using part i) again we see that Equation (4.4) is asymp-
totically stable on N,.

For the remaining hypotheses we show that

lim  |A(x,y;&,n)| =0 for a<E<x<» B<ngcyc<w
[ (x,y) |+
It then follows from Theorem 3.2 and part i) of this theorem

that Equation (4.4) is asymptotically stable on N,.
Assume (H8.a) holds. From inequality (4.27) and

Equation (4.19) we see that |A(x,y:&,n)|

X Y X Yy
< I0(2 (Jgkl(r)dr)(Inkz(s)ds))exp[[gkl(r)dr + Inkz(s)ds]

for x > &, y > n. An argument similar to that used above
to show A(x,y;&€,n) = 0 as |(x,y)] + » establishes here

that lim |A(x,y;E,n)| = 0.
| (x,y) |+

Assume (H9.a) holds. Since klkz(x - &)(y - n)

X
+ (y - n)(J g, (r)dr) < kik,(x - £)(y - n) it follows from
g
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Equation (4.21) that |A(x,y:;E,n)]| < IO(Z/klkz(x-E)(y-n))
exp[kl(x -£) + kz(y - n)]. Then, as above we have

lim  |A(x,y:&,n) | = O.
| (x,¥) |+
Suppose (Hll.a) is satisfied. Using the discussion

in part i) and Equation (4.23) we see that the assumptions

(Al) and (A2) both lead to the estimate |A(x,y:;&,n)|

x Y
< exp[jgkl(r)dr + I kz(s)ds]. The assumption (A3) implies
n

X Y X
|A(x,y:E,m) | < IO(ZV4I kl(r)dr)(I kz(s)ds))exp[f k, (r)ar
g n g

Yy
+ J kz(s)ds]. In either case we see that
n

lim la(x,y:&,m)| = o.
' (x{Y) I"‘”

It follows from (Hl2.a) and Equation (4.17) that

|Aa(x,y;E,m) | < Io(2/k k, (x=8) (y=n))explk, (x = ) + k,(y - n)].

Hence lim |a(x,y;E,n)| = 0.
| (x,y) |+

iii) We may treat (H9.b) and (Hl12.b) together. These
assumptions both lead, via Equations (4.21) and (4.17) re-
spectively, to the estimate |A(x,y:&,n)| < exp[kl(x - £)

+k2(y-n)]il for 5i€ix<m, Siniy(w. Thus

Ix kl(x-r) kz(y—b)

X
I |a(x,y;r,b)|dr< | e e dr
a a
_ek2(y-b)[ k, (x-a) 1 b
=€ 1 -e ] < for x > a, y 2> Db.
ky [k, 1
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Y 1
Similarly, I |A(x,y;a,s)|ds < and
Tk, 1

X
J f |A(x,y:x,s)|dsdr <
a

E%k_ for x > a, y >b. It then
172
follows from Theorem 3.3 that Equation (4.3) is uniformly
stable on N,. Thus part i) of this theorem implies Equa-
tion (4.4) is uniformly stable on N, .
We may also treat hypotheses (H8.b) and (Hl1ll.b)

together. These hypotheses imply that |A(x,y;&,n)|
X

g

<y < . Thus

Y . - =
k,(r)dr + I ky(s)ds] <1 for a<gE<x<w® b<n
n

ia

exp[f

X X X
J |A(x,yix,b) |dr < J exp[[ kl(p)dp]dr for x >a, y >b.
a r

a

Suppose a < r,. Take any x such that a < x < r,. Then

X (X X : ‘ _
J exp [ kl(p)dp]dr < I dr < (r0 - a). Take any x such
a r a

such that x > r;. Since k;(r) < -a for > r, we see

r
rx

that kl(p)dp < =a(x - r) and hence exp I (p)dp]
‘r

< exp[-a(x - r)] for r > r,. Thus for x > r, we have

rO X

exp[[ kl(p)dp]dr

X X
I exp[I kl(p)dp]dr = I
r

a r a

X X _
+ I exp[f kl(p)dp]dr < (ro - a)
r, r
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x
+ I expl-a(x - r)ldr < (r0 - a) + %.
r
0
x
Thus for a >r, and x > a we see that [ |Aa(x,y;x,b)|
a

< (rn - a) + l. For a > r and any x > a a calculation
- 0 o -0 -

x
similar to that given above shows that I |A(x,y;x,b) |dr
a

1 - -
X g Hence for a<a<x<w» b<b<y<® wehave

IA

X
I |a(x,y;x,b) |dr < (rg - @) + é. Similar arguments show

a

y —
that I |a(x,y:;a,s)|ds < (s, - b) + L ana
b - 70 B

xry - .1 = ., 1
[ JbIA(x,y;r,s)ldsdr 2 [{ryg - a) + Z1l(sg - b) + gl for

a<a<x<w b<b<y<® Thus by Theorem 3.3 Equation
(4.3) is uniformly stable on N,. It then follows from
part i) of this theorem that Equation (4.4) is uniformly

stable on N,. This completes the proof of Theorem (4.2).

Remark 4.4. We notice that the conditions in (H3)

of Section 3.3 will be satisfied (with ¢ =1 and wa
k

0)

if (H3)' holds and A(x,y;&,n) satisfies
Xy
J I |a(x,yir,s)|dsdr < M(a,b) for x >a, y > b. (4.28)
a’b

Also, the conditions in (H4) will hold if in addition we have

for each fixed t > max{a,b}



138

trt
lim J I |A(x,y;r,s)|dsdr = 0

for x>t, y>2>¢,

try
lim J I |A(x,y;r,s) |dsdr = 0
x+» ‘a’b

(4.29)

uniformly in y for b <y < t

Xt
lim J I |A(x,yix,s) |dsdr = 0
y+» ‘a’b

uniformly in x for a <x <t

We now turn our attention to a stability theorem for

the class of perturbations satisfying hypothesis (H3)'.

Theorem 4.3. Suppose f£f(x,y,r,s,z) satisfies (H3)'.

Suppose any one of the hypotheses (H8.b), (H9.b), (Hl1ll.b),

or (H12.b) hold.

i) Then Equation (4.4) preserves stability and uniform
stability on any space N. In particular, Equation
(4.4) is uniformly stable on N, and Nz.

ii) If either (H8.b) or (H1ll.b) hold, assume in addition
that the functions kl(r), kz(s) are negative con=-

stants. Then Equation (4.4) preserves asymptotic



139
stability on any space N. In particular, Equation

(4.4) is asymptotically stable on N,.

Proof. Throughout this proof A(x,y:;&,n) will de-
note the fundamental solution for Equation (4.3).

i) Both hypothesis (H9.b) and (H12.b) lead to the
ky (x=E) k, (y-n)

estimate |A(x,y;E,n)]| < e e . Thus

Xy 1 k, (x-a) k, (y-b)
I I |A(x,y;r,s) |dsdr < [l - e J[1 - e |
a’b 172

< 33— for a >3, b>B. The hypotheses (H8.b) and (Hll.b)

172

X
each yield the inequality IA(x,y;E,n)I < exp[[ kl(r)dr
£
Y
+ j kz(s)ds]. Thus, as in the proof of Theorem 4.2, we have
n

xy — wl — l
IaIbIA(x,y,r,s)ldsdr < [rg - a) + J1l(sq - b) + 3] for

a <a, b<b. We see that these bounds are independent of
a and b. Therefore by Remark 4.4 and Theorem 3.8 it fol-
lows that Equation (4.4) preserves stability and uniform
stability on any space N. Hence by Theofem 4.2 Equation
(4.4) is uniformly stable on N1 and NZ'

ii) Take any (a,b) and fix t > max{a,b}. Under
each of the hypotheses we have |A(x,y;&,n)| < exp[kl(x - £)
+ kz(y - n))]. Thus

trt
I I |A(x,y;r,s) |dsdr
a’b
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< Ei%;{exp[kl(x - t)] - explk(x - a)]}{exp[kz(y - t)]

- explk,(y - )1} < kl#kzexp[kl(x - t) + kyly - )]

for x > t, y 2 t. Take any ¢ > 0 and let k = max{k,,k,}.
There exists an R such that if (x - t) + (y = t) >R
then exp{k[(x - t) + (y - t)]}<<klkze. Now take (x,y)
such that x >t, y >t and |(x,¥y)|_ > R+ |t]. Then
max{|x - t|,]y - t|} = | (x,y) = (t,&)]|_ > | x.¥) |, = | (t,t)]
>R. Thus for x >t, y >t such that |[(x,y)|_ > R + |¢t]

we have (x - t) + (y - t) > R and hence

t(t
|A(x,y;r,s) |dsdr < -—L—exp[k (x - t) + k,(y - t)]
- k.k l 2
a’b 172
< Elk—exp{k[(x -t) + (y - )1} < €.
172
trt
Therefore lim I I |A(x,y;r,s)|dsdr = 0. We also see
| (x,9) | > ‘a’b
that

try
IaIbIA(x,y;r,s)ldsdr < k;iz{exp[kl(x -t)] - exp[kl(x - a)l}

{1 - explk,(y - D)1} < -k—l]j;z-{exp[kl(x -t)1 - explk, (x - a)1}

for all y such that b <y < t. From this estimate it
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try
follows easily that 1lim I I |A(x,y:ixr,s)|dsdr = 0 uniformly
a’b

X+

in y such that b <y < t. Similarly we have

Xt
lim I I |A(x,y:;xr,s)|dsdr = 0 uniformly in x such that
y+*e ‘a b

a < x < t. The result now follows directly from Remark 4.4

Theorem 3.8, and Theorem 4.2. This completes the proof.

4.2 The Equation u(x,y) = ¢(x,y)

X Y
+ J kl(r,y)u(r,y)dr + I k2(x,s)u(x,s)ds
a b

Xy
- Iafb[kl(r,s)kz(rls) + kls(r,s)]u(r,s)dsdr

Xy
+ I J f(x,y,r,s,u(r,s))dsdr
a’b

In this section we will give some results for the

equations
X Y
u(x,y) = ¢(x,y) + I kl(r,y)u(r,y)dr + I k, (x,s)u(x,s)ds
a b
Xry
- I I k3(r,s)u(r,s)dsdr, (4.30)
a’b
X b4
u(x,y) = ¢(x,y) + J ki (r,y)u(r,y)dr + I kz(x,s)u(x,s)ds
a b

(4.31)

Xy Xy
- I I k3(r,s)u(r,s)dsdr + I J f(x,y,r,s,u(r,s))dsdr
a’b a’b
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where k3(r,s) = kl(r,s)kz(r,s) + kls(r,s) or k3(r,s)

ok
= k) (r,s)k,(r,s) + k, .(r,s) (here we use k, = —E} and
ok,
K, =-3;r)- We assume that the functions k, (r,s), k,(r,s),

kls(r,s), and k2r(r,s) are continuous.

We consider Equation (4.30) because this equation,
with ¢(x,y) = 1, is equivalent to a characteristic value
problem which may be solved explicitly: hence we may obtain
the fundamental solution for Equation (4.30). The method
used to obtain the following lemma is called Laplace's
cascade method and is discussed in [26], [35). We use the
following lemma for stability purposes and include the proof

for completeness.

Lemma 4.8. The fundamental solution for Equation
(4.30) with k3(r,s) = kl(r,s)kz(r,s) + kls(r,s) is
X Y
A(x,¥Y;&E/n) = exP[I kl(r,n)dr + I k, (x,s)ds] (4.32)
13 n
for a < g <% b <n<y. For ky(r,s) = kp(r,s)k,(r,s)
+ k2r(r,s) we have
X
A(x,¥:&n = exp[] kl(r,y)dr + fykz(g,s)ds]. (4.33)
€ n
Proof. We will give the proof that A given by

(4.32) is the fundamental solution for Equation (4.30) with
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k3(r,s) = kl(r,s)kz(r,s) + kls(r,s). The proof for k3(r,s)
= k) (r,s)k, (r,s) + k,_(r,s) is similar. Take £ > a,

n>b. If u(x,y) satisfies the characteristic value problem
Uy (Xr¥) = kg (xe¥)ug + ky (x,¥)uy (x,y)

+ [kzx(x,Y) - kl(xIY)kz(XIY)]u(XIY) (4.34)

X Y
u(x,n) = exp[Jgkl(r,n)dr], u(g,y) = exp[[ kz(E.S)dSI
n )

for x > &, y > n, then u satisfies Equation (4.30) with

$ =1, k, =kk, +k

3 172 1s
have the following identity:

and hence u(x,y) = A(x,y:;&€,n). We

(uy - k2u)x - kl(uy - kzu) = uxy - kluy - k2ux + (klk2 - kzx)g.

Thus u satisfies (4.34) if and only if u satisfies

(uy - kzu)x - kl(uy - kzu) =0

(4.35)

X b4
u(x,n) = exp[J ky(r,n)dr], u(g,y) = exp[[ k,(g,s)ds]|.
13 1 n 2 )
Let h(x,y) = uy(x,y) - kz(x,y)u(x,y). From problem (4.35)
it follows that the function h(x,y) satisfies hx(x,y)

- kl(x,y)h(x,y) = 0. Then integrating with respect to x we
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X
see that h(x,y)exP[-I kl(r,y)dr] = gl(y). To determine
£

gy(y) we set x = ¢ and use (4.35) to obtain gl(y)
= h(§,y) = uy(E,y) - kz(E,y)u(E,y) = 0. Therefore we must
have h(x,y) = uy(x,y) - kz(x,y)u(x,y) = 0., Integrating with

Y
respect to y we obtain u(x,y)exp[-[ kz(x,s)ds] = gz(x).

n
X
Setting y = n we have gz(x) = u(x,n) = exp[J kl(r,n)dr].
X y 3
Thus u(x,y) = exp[f kl(r,n)dr + J kz(x,s)ds] is the solu-
€ n

tion of (4.35) and the proof is complete.
We point out that when kl(r,s) is independent
of s and kz(r,s) is independent of r then Equation
(4.19) with gl(r) = -1 and Equation (4.32) are identical.
We consider the following hypotheses on the functions

kl(x,y) and kz(x,y).
(H13) Suppose there exists a constant M such that

X 4 _
J k, (r,m)dr + I k,(x,s)ds <M for a <§ < x <=,

X b4
kl(r,y)dr + I kz(E,s)ds <M
n

for 5_<_£ix<°°, Ef_nf_y(w).
(H13.a) Suppose (H13) holds and in addition for
X

£ >a, n>b we have I k, (r,n)dr
g

b4
+ I k,(x,s)ds » -» as | (x,y)| + » (or
n

X Y
J kl(r,y)dr + I kz(E,s)ds + - asg
£ n

[ (x,9)| » =).
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(H14) Suppose there exists constants Oy a, > 0 such that

kl(x,y) < =g, kz(x,y) < -a, for x >a, y>b.

We have the following stability theorem for Equation

(4.31).

Theorem 4.4. a) Suppose f£f(x,y,r,s,z) satisfies

(H1)' and (H2)'.

i) Suppose we have (H13). Then Equation (4.31) with k3

= klk2 + kls (or k3 = klk2 + k2r) preserves sta-

bility and uniform stability on any space N; it pre-
serves asymptotic stability on any space N such that

N < Nj. Equation (4.31) is uniformly stable on N,-

ii) Suppose (Hl3.a) holds. Equation (4.31) with

k3 = klk2 + kls

cally stable on N2'

(or k., = k.k, + k is asymptoti-

3 2 2r)

iii) Suppose (H14). Then Equation (4.31) with k3 = k1k2

+ k (or kg = klk + k is uniformly stable on

1s 2 2r)

Nl.

b) Suppose f(x,y,r,s,z) satisfies (H3)'. Suppose
(H14) is satisfied. Then Equation (4.31) with k3 = klk2
+ kls (or k3 = klk2 + k2r) preserves stability, uniform
stability and asymptotic stability on any space N. Equa-
tion (4.31) is uniformly stable on N, and N, and

asymptotically stable on N,.
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Proof. We give the proof only for the case
ky = kyk

+ k Throughout the proof A(x,y;&,n) is the

3 2 1s°®
fundamental solution for Equation (4.30).

a) 1) From Equation (4.32) and hypothesis (H13) it
follows that |A(x,y;E,n)| <e¥ for a<Ef<x<w®, B<n
<y < ». Thus, by Theorem 3.2, Equation (4.31) is uniformly
stable on N,. The result now follows from Theorem 3.5.

ii) It follows immediately from (Hl13.a) and Equa-

tion (4.32) that lim |A(x,y;E,n)| = 0. Hence by part
| (x,y) |+

i) and Theorem 3.2 we see that Equation (4.31) is asymp-
totically stable on N2.

iii) From (H14) and Equation (4.32) we see that
|A(x,y:E,n) | < expl-a; (x = £) = a,(y - n)]. An easy calcula-

tion similar to the one made in Theorem 4.2 shows that

X Y
|a(x,y:;a,b) | + I |A(x,y;r,b) |dr + JblA(x,y;a,s)lds
a

Xy
+ [ I |A(x,yix,s)|dsdr < 1 + g; P SR |

alb 1 (12 alaz

for a<a<x<w® b<b<y< e Thus by Theorem 3.3 and
part i) it follows that Equation (4.31) is uniformly stable
on N;.

b) As in part iii) above we have |A(x,y;&,n)|

< expl-a)(x = &) - a,(y - m]. This result now follows from
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calculations obtained in the proof of Theorem 4.3, Theorem

3.8, and part a) of this theorem. This completes the proof.

4.3 Results for Systems with Constant Kernels

In this section we will consider the linear equation

X Y
u(x,y) = ¢(x,y) + I Kju(r,y)dr + I K u(x,s)ds
a b
XY
+ J J K3u(r,s)dsdr (4.36)
a’b

and the nonlinear equation

X

Y
wtey) = ooy + [ Ku@yar + [Kux,s)as
b

a

¥ Ixfy[K3u(r,s) + £(x,y,r,s,u(r,s))ldsdr (4.37)
alb
where u, ¢ map R2 to R%, Kl' Kys Ky are constant
real m *m matrices, and f has values in R™ with domain
a<r<x<w b<s<y<wo z¢kRK.
In constructing the solution of the differential

system y' = By (where B is an m xm constant matrix),
we define the matrix eR for each constant matrix R and

B as a fundamental matrix for y' = By.

then establish e
This is a generalization of the fundamental solution for the

scalar version of y' = By. We will see that it is possible,
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under certain commutivity conditions on the matrices Ky

Kz, K3, to carry out a similar generalization here.

Remark 4.5. Let B be any m X m complex matrix
© k

It follows easily that the series I + 5 converges.

k=1 (k!)
Our motive for considering this series is that the funda-

mental solution for Equation (4.36) when m =1 is given by

o k
Equation (4.17) and that I, (2/x) = J % [25].
0 k=0 (k1)2

We may therefore make the following definition.

Definition 4.1. For each complex matrix B let

@ Bk
10(2/5) =I+ ) 5

k=1 (k!)

The following lemma gives a useful property of the

matrix IO(Z/E).

Lemma 4.9. Suppose B is an m x m complex matrix

which is similar to a diagonal matrix A and T is such

lBT. Then

that A =T
10(2/3) = T10(2/K)T'1.

Also, if A = diag (Ai) then Io(z/K) = diag (10(2/X_i)).
l<i<m 1<i<m
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Proof. We have

o0 k ad -1,k
I,(2/B) = I + B oapply j (IAT)
k=1 (k!) k=1 (k!)
oo k oo k
-1 A -1 A -1
=TT~ + T( ] ——)T = = T(I + )T
k=1 (k!) k=1 (k1)2

TIo(z/K)T'l.

If A =diag (A;) it follows that AX = aiag (\¥). There-
1<i<m l<i<m

fore, we have

o Ak

k=1 (k!)

10(2/I) =1 + > = diag (10(2/X;)).

1<i<m
This completes the proof.
We now use our definition of IO(2/§) to obtain the

following lemma.

Lemma 4.10. Let B be a real m x m matrix. Then

the solution of the equation

X

u(x,y) =1 + I
13

Y R
J Bu(r,s)dsdr for x > &, y >n (4.38)
n

is

u(x,y) = I(2/B(x-€) (y-n)).
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tion converge to the unique continuous solution.

and
u2(XIY) =1+ [

Assume that

150

The successive approximations for this equa-~

We have

ul(x,y) = I

Y
I BIdsdr = I + B(x - £)(y - n).
n

n-1 k
u (x,y) = I+ ] [B(x-E)(g-n)]
k=1 (k!)
Then
Xy n=l (g (r-g) (s-n)1¥
u L (x,y) =1+ I J BII + D)! 1dsdr
n+l £'n k=1 (k)2
n-1 Yy gk+1, ..k, __ .k
=I+B(x-E)(y-n)+ ] [Ij. B (x 5)2(5 n) ldsdr
k=1 ‘€'n (k1)
n-1 _k+1 k+1 k+1
=I+Bx-E)(y-n)+ | B _(xE) _lym)
k=1 [ (k+1) 1)
S1a | oIBeeE)gen®

k=1 (k1) 2
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Bl g (x-£) (y-n) 1K

Thus u_(x,y) = I +
n | k=1 (k1) 2

for each n =1, 2,

eee « Therefore the solution u(x,y) of Equation (4.38) is

given by

u(x,y) = iiz u (x,¥) = I5(2/B(x-€) (y=-n)).
This completes the proof.
The following lemma gives the fundamental solution
for Equation (4.36) under the specified conditions on the
kernels. This result is a generalization of the fundamental
solution given by Equation (4.17) for the scalar equation with

constant kernels.

Lemma 4.11. Suppose the matrices Kqyv K2, K3

satisfy KKy, = K Ky, KiKy = KjK;, and K2K3 = K3K2. Then

the fundamental solution for Equation (4.36) is

Kl (X-E) Kz (Y‘n)
Ax,yi&,n) = I5(2/(K1Ky+K,) (=€) (y-n))e e . (4.39)

Proof. For any &, n let u(x,y) = A(x,y:;E.n).
Thus u(x,y) must satisfy Equation (4.36) with ¢ = I, a = §,
b =n. But u(x,y) is the solution of Equation (4.36) with
6

1Y)

I, a=¢§, b=n if and only if u(x,y) satisfies the

characteristic value problem
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U,y (XY = Kjuy (x,y) + kyu, (x,y) + Kju(x,y)

(4. 40)
u(x,8) = explKy(x = &)1, u(f,y) = exp[K,(y = n)]
Let
Kl(x-E) Kz(y-n)
u({x,y) = e e vi(x,y). (4.41)
Since K1 and K2 commute we have,
K, (x-E)+K, (y-n) K, (y=£) +K; (x-n)
u(x,y) = e vix,y) = e vix,y)
K, (y-£&) K, (x-n)
= e 2 e 1 vix,y).
We then have,
K, (x-£) K, (y—-n) K, (x-€) K, (y-n)
ux(x,y) = Kle 1 e 2 v +e 1 e 2 Vo
and
K, (x-E) K, (y-n) K, (x-£) K, (y-n)
uy(x,Y) = K,e 1 e 2 v+e 1 e 2 vy

Therefore
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uxy(x,y) = KyK,e e v + K,e e vy

K. (x=£) K., (y-n) K, (x~£) K, (y-n)
+ Kze i e 2 vx + e 1 e 2 ny;

Putting u u

<’ and uxy in terms of v into the equa-

Y’
tion in (4.40), we obtain

Kl (X‘E) Kz (Y"n) Kl (X‘E) K2 (Y-n)
e e vxy = (K1K2 + K3)e e V. (4.42)

Using the fact that if B and C are m x m matrices such

that BC = CB then Bec = ecB, we see that Equation (4.42)

becomes

K, (x-£) K, (y-n) K, (x=£) K, (y-n)

e e vxy = e e (KlK2 + K3)v. (4.43)
Since eB is nonsingular for each m x m matrix B, Equa-

tion (4.43) takes the form
vxy(x,y) = (Kle + K3)v. (4.44)

Using the characteristic data for u(x,y) in problem (4.40),
we obtain the following conditions on v(x,y):

[

vix,n) = I, vi§,y) = 1I. (4.45)
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Now if v(x,y) satisfies (4.44) and (4.45) and if wu(x,y)

is given by (4.41), then u(x,y) is the solution of Equation

(4.36) with ¢ = I, a=E&, b=n. The integral equation

for vi(x,y) is

Xry

vix,y) = I + I I (K1K2 + K3)v(r,s)dsdr.
E'n

Thus, by Lemma 4.10, v(x,y) is given by

vix,y) I, (2/(K K, +Kq) (x=8) (y=n))

and hence

K; (x-£) Kz(y-n) :
e e 10(2¢(K1K2+K9(X-E)(Y‘ﬁT)

A(x,y;&,n) = u(x,y)

10(2/(K1K2+K3)(x-&)(y-n))e e .

This completes the proof.

We will make use of the following hypotheses.

(H15) Suppose the matrix K,K, + K, is similar to the

diagonal matrix A, and the eigenvalues K;K, + K

2 3
are real and nonpositive. Suppose the eigenvalues of
K, and K, have nonpositive real parts and those

eigenvalues with zero real parts are simple.



(H16) Suppose KlK + K3 is similar to the diagonal matrix

1

2

A, and the eigenvalues of KlK2 + K3 are real and

55

nonpositive. Suppose the eigenvalues of K,; and K,

have negative real parts.
We now give a stability theorem for Equation (4.37

Theorem 4.5. Suppose K1K2 = K2Kl, K1K3 = K3K1,

and K2K3 = K Kz.

a)

b)

3

Suppose f(x,y,r,s,z) satisfies (Hl1l)' and (H2)'.

).

i) Suppose (H15) holds. Then Equation (4.37) preserves

stability and uniform stability on any space N;

it

preserves asymptotic stability on any space N such

that N3 € N. In particular, Equation (4.37) is
uniformly stable on N,.

ii) Suppose (H16) holds. Then Equation (4.37) is uni
formly stable on N; and N,; it is asymptotica
stable on N2.

Suppose f(x,y,r,s,z) satisfies (H3)' and (H16) holds

Then Equation (4.37) preserves stability, uniform

stability, and asymptotic stability on any space N.

particular, Equation (4.37) is uniformly stable on N1

and N,; it is asymptotically stable on N,.

lly

In
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Proof. a) i) Take any £ > a, n > b. By Lemma
4.11 the fundamental solution A(x,y;&,n) for Equation
(4.36) is given by (4.39). In this proof we will use a
special matrix norm; if B is an m X m matrix with ele-

ments b.. we will use |[Bll = max [ 2 |b | . Since
1]
1<i<m j=1

K;K, + K3 is similar to A, there exists a nonsingular
matrix T such that A = T_l(Kle + K3)T. Then using Lemma

4.9, we have

1, (2/ TR K, #K,) (x=8) (7-1)) = TI,(2/A(x=E) (-7 L.

Suppose A = diag (A;). By assumption we have Ai < 0 for
l<i<m

=131, 2, ..., m. Using this, Remark 4.2, and Lemma 4.9

again we see that

IO(Z/A(x-E)(y-n)) diag (IO(ZJA‘TX-E)(Y n))

1<1<m

diag (JO(ZJ]A [ (x=&) (y-n))).
1<i<m

Therefore "IO(ZJA(x-E)(y-n))" <1 for x >¢&, y >n. Since
all the eigenvalues of K, and K, have negative or zero
real parts and those with a zero real part are simple, there

are constants M; and M2 independent of £, n so that
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"eKl(x-E)" <M, and "eKz(y—n)" <M, for x>§& y2n
(see [9], p. 8l1l). Therefore

Iax,yie.ml

< lelilz, /AErm=m e e * 5 e 2™y

< Nl imm,.

Thus it follows from Theorem 3.2 that Equation (4.36) is uni-
formly stable on NZ' Theorem 3.5 then implies the preser-
vation results.

ii) Since (H16) implies (H15), it follows by part i)
of this theorem that Equation (4.37) is uniformly stable on

N,. Also, as in the proof of part i), we have

(x- K, (y-n)

£)
flie .

Iace,yie,mll < el e

However, the additional assumptions now insure existence of

positive constants L MZ' P1r  Pa such that

-ol(x-n) K, (y-n) —pz(y-n)

K, (x-§)
e ! and |l I < mpe :

" L Mle

Therefore, we have
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=0, (x=8) -p, (y-n)

Iac,yiemil < lzlliT ™ ingmpe e :
From this it follows that lim "A(x,y;E,n)H =0 for
| (x,y) I'*m

each £ > a, n > b. Thus Equation (4.36) is asymptotically
stable on Nyi hence, by part i), Equation (4.37) is also
asymptotically stable on N,. Using the inequality above and
proceeding as in Theorem 4.2, part iii), we see that Equa-
tion (4.37) is uniformly stable on N; .

b) Using the estimate in part ii) above, we obtain
this result by the same argument that was employed in the
proof of Theorem 4.3.

4.4 Results for Equations With a’
Pincherle-Goursat Kernel

In this section we will return to the notation used

in the earlier chapters. We shall consider the equations

X

u({x) = ¢(x) + J [ ? Bi(x)ci(r)]u(r)dr (4.46)
a i=1

and

X

u(x) = ¢(x) + I { § Bi(x)Ci(r)]u(r)dr
a i=1

X
+ I f(x,r,u(r))dr, (4.47)

a
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n - m
where a, r, x€R, u, ¢ map x >a to R, Bi(x),
C;(r) are continuous m X m matrices, and £ maps a <r

m

<x, z 6&€R to R™. Kernels of this type, namely

K, = § B; (x)C; (r), are known as Pincherle-Goursat kernels,
n i=l

or PG-kernels [38). Equations with kernels of this form ap-

pear in the literature for a variety of reasons. We will

obtain stability resﬁlts for Equations (4.46) and (4.47).
The fundamental solution A(x;Z) for Equation (4.46)

satisfies

X
A(x;g) = I + I [ § Bi(x)ci(r)]A(r;E)dr x> & >a. (4.48)

g i=1
' We may obtain A(x;£) in this case in terms of the solution
of a related problem. Consider the pm x pm matrix M(x)
given by
Cl(x)Bl(x) Cl(x)Bz(x) cee Cl(x)Bp(xﬂ
M(x) = C2(x)Bl(x) Cz(x)Bz(x) o re Cz(x)Bp(xz . (4.49)

[

EP(X)B]-(X) Cp(x)Bz(x) Cp(x)Bp(x)__

We now suppose that A*(x;f) is the solution of the integral

equation
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X
A* (x;€) =1 +'I M(r)A*(r;£)dr. (4.50)
g

Suppose A*(x;£) is blocked off into m x m submatrices.

th

Let A;j(x;g) be the m x m submatrix in the i row and

jth column of the resulting p x p matrix of submatrices.
The following lemma gives A(x;£) in terms of
A*(x;t). Results related t§ this lemma have been discussed
in [6], [13], [20]. The author has obtained a similar re-
sult for a special case of the more general Equation (1.7)

with PG-kernels and hopes to obtain further results along

these lines.

Lemma 4.12. Let A*(x;f) be the solution of Equation
(4.50) for x > & > a. Then the fundamental solution for
Equation (4.46) is given by

A(x;£) Bi(x)A;j(x;r)cj(r)dr (4.51)

[}
[ ]
+
~~3'0
oY
S———
»

for a < £ < x € =,

Proof. Putting Equation (4.51) into Equation (4.48)

we obtain

X b o
I+ [ [ B, (x)C; (r)][I + IB (r)A% (r;s)C_(s)ds)dr
£ igl 1 1 g,gﬂ £ ¢ Lq q
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X
=1 + I [ § Bi(X)Ci(r)]dr

£ i=1
§ fx[r (x)Ci (r)B, (r)A* (r;s)C_(s)dsd
+ B. {(x)C3; (r)B r r:s C s sdr.
i,e,qtlglg 2T T 4

From Fubini's theorem, (see Appendix A), it follows that the

above becomes

1 [ f B, (x)C; (r)]dr
g i=1

X X
+ % j J B, (x)C, (r)B,(r)A% (r;s)C_(s)drds
illlq=l E’s 1 1 £ tq q

I I ? B; (x)C; (r)ldr
& i=1

X
+ ? I Bi(x)[f § C;(r)B, (r)A‘ (r; s)dr]C (s)ds. (4.52)
i,q=1’¢ s £=1

Since A*(x;£) is the solution of Equation (4.50) it fol-

lows that

A{j(x;g’) = GijI + IE kE C; (r)By (r)A* (r;g)ldr.

Now using this in Equation (4.52) we see that the right hand

fo that equation becomes
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x
I+ j [ § Bi(x)ci(r)]dr
£ i=1

X
+ i'qglngi(x)[Aiq(x;s) - quI]cq(s)ds

1+ [ (§ s 00 mna I [Te; a1 isic (a1
= + . (x)C. (r r + B. (x)A* (x;s s)ds
: [i=1 i i i,g=1lg 1 iq q

iglI:Bi(x)Ci(s)ds = I + i’§=lIxBi(x)A;q(x;s)Cq(s)ds.
This completes the proof.

We point out that Equation (4.50) is equivalent to a
characteristic value problem for a system of hyperbolic
partial differential equations. Thus Lemma 4.12 gives the
fundamental solution for Equation (4.46) in terms of an as-
sociated characteristic value problem. This generalizes a
result obtained in [s6].

We may now establish the following stability theorem
which also generalizes a result given in [¢]. The space ﬁb,
introduced in Theorem 3.4 and used in the next theorem is
given by ﬁb =Ny N {6|¢:R™ » R™,¢(x) is continuous for

x > a and for each ar, ¢, (x) is continuous on x > al.

%k
Theorem 4.6. Suppose A(x;£) has continuous pure

mixed partials of all orders less than or equal to n in
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£ for a <& < x <= Suppose the equation
X

u(x) = ¢(x) + J M(r)u(r)dr (4.53)
a

is uniformly stable on N, and there exists a constant L(a)

X
such that i B, (x)uJ lc.(x)|ldr < L(a) for x > a > a.
i, =1 1t a 3 - - =

a) Then Equation (4.46) is stable on ﬁb; if L is inde-
pendent of a, Equation (4.46) is uniformly stable on
N,. If for each a > a

. E_ ”Bi(x)“Ix"Cj(r)"dr +0 as |x]| + o

i,)=1 a
then Equation (4.46) is asymptotically stable on
EO N {¢(x)]|$:R™ > R, |¢(x)| + 0 as |x| + =}.

b) If f satisfies (Hl) and (H2) of Chapter 3 and L in
the hypotheses above is independent of a, then Equa-
tion (4.47) preserves stability and uniform stability on
any space N; 1t preserves asymptotic stability on any
space N such that N DO N3. In particular, Equation
(4.47) is uniformly stable on ﬁb.

Proof. a) From Lemma 4.12, the fundamental solu-

tion A(x;£) for Equation (4.46) is given by Equation (4.51)

where A*(x;§) 1is the solution of Equation (4.50). Since
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Equation (4.53) is uniformly stable on N3, there is a posi-
tive constant M such that [A*(x;&)]l <M for x > £ > a.

For k < n, we have

AE (x; &)

%k

P k
= (-l)k. Z ljg Bi(X)Agj(x;w(r,E;ak))Cj(w(r,E;ak))dra,k,

and for k=n

p
A (x;8) = (1)

: PR ACDINUE

Therefore, for k < n we obtain Ar (x;w(x,r;ak)) = 0. Thus
o
k

k X
1l twterigliar, = [l G llar

X
j e-1" 5 B; (x)A% (x;1)Cj (x) [lar
a i, =1

I~

X
5 i colitag o ley @ las

[

X
M § HBi(x)HJ licytryllar < ML(a).
1,J)=1 a
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Therefore, by Theorem 3.4, Equation (4.46) is stable on ﬁb,

and uniformly stable on ﬁo when L is independent of a.

X
If ﬁ ”Bi(X)"I “Cj(r)”dr +0 as |x] + » it follows
i,j=l a

from the estimate above that

X
a

IIa (x;wix,ria,))lldar, +~ 0 as x| + o.
fa r, ! k oy

ak k

Thus by Theorem 3.4 Equation (4.46) is asymptotically stable
on ﬁo N {¢(x)]o:R" > R™, |o(x)]| » 0 as |x| + =}.

b) By part a) above, Equation (4.46) is uniformly

stable on N, when L is independent of a. Since Ny € Ny»

0
Equation (4.46) is uniformly stable on Nj. The result now
follows directly from Theorem 3.5. This completes the proof.

4.5 Connection Between the Fundamental
Solution and the Classical Riemann Function

In the theory of hyperbolic partial differential equa-
tions, the Riemann function may be used to give integral repre-
sentations for the Cauchy problem and the characteristic value
problem. In Chapter 2, we introduced the idea of a funda-
mental solution for an integral equation and gave an integral
representation for the solution of this integral equation.
Special cases of the integral equation are equivalent to a
characteristic value problem and thus a natural question

arises as to the connection between the fundamental solution
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and the Riemann function. The purpose of this section is to
give this connection. We begin by briefly describing
Riemann's method of solution for the characteristic value
problem for a hyperbolic scalar equation in two independent
variables. We will follow closely the presentation given by
Garabedian [19].

Consider the characteristic wvalue problem

Lu = Uy ~ k, (x,y)u, - kl(x.y)uy - kj(x,y)u = g(x,y)

(4.54)

u({x,b) = ¢l(x)l u(a,y) = ¢2(Y)l ¢1(a) = ¢2(b)

where (a,b) is fixed, ¢1(x), ¢2(y) are continuously

1y’ k2x are continuous, and g(x,y) 1is

continuous. The adjoint operator M associated with the

differentiable, k

operator L is given by Mv = vxy + (kzv)x + (klv)y - k3v.
We have the following identity for any two functions u and

v:
vilu - uMv = (—kzuv - vuy)x + (-kluv + vux)y. (4.55)
Let (x4y,Y,) be any point such that a < x5, b <y, and

let D= {(x,y)|]a < x < xg/b < ¥ < yg}. Using identity

(4.55), Green's theorem, and integration by parts we have
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IJ [vLu - uMv]dsdr I (-kzuv - vu _)ds - (-kluv + vu_)dr
D D S r

X
0
= ulxg/¥y)V(x,,yy) - via,bu(a,b) - I [~kj (r,b)u(r,b)
a
X 0 :
+ u_(r,b)]v(r,b)dr - Ia [kl(r,yo)v(r,yo) + vr(r,yo)]u(r,yo)dr
Yo
- I [-kz(a,s)u(a,s) + us(a,s)]v(a,s)ds
b
Yo .
- Ja [kz(xo,s)v(xo,s) + vs(xo,s)]u(xo,s)ds. {(4.56)

Let R(x,y;xo,yo) be the solution of the following special

characteristic value problemn.
MR(X,yiXqr¥y) = 0

X
R(x,y5ixgsYq) = exp[-f k) (r,yq4)dr], (4.57)
X
0

Y
R(xo.y;xo.yo) = exp[-fy kz(xo,S)dSI .
0

J

The function R(x,y;xo,yo) is known as the Riemann function
associated with the operator L. We now suppose u is the
solution of problem (4.54) and take v(r,s) = R(r,s;xo,yo).
Then using the characteristic data and replacing Xgr Yo by

X, Y We see that Equation (4.56) becomes
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u(x,y) R(a,b;x,y)¢l(a)

X
¢ [k b4y (0 + 6 @R, bix,y)ar
a

Y
+ [1kytarm005() + 3 (8) IR M, 8ix,y)ds
b

+

IXIYR(r,s;x,y)g(r,s)dsdr. (4.58)
a’b
Thus u(x,y) given by Equation (4.58) is the solution of
problem (4.54).

Suppose we introduce the Riemann function R(x,y;r,s)
for the adjoint operator M. It is easy to see that the

adjoint of M is L and therefore R(x,y;r,s) satisfies

LR(x,y;xr,s) = 0

X
expl[ Ky (s,8)d01, (4.59)
r

R(x,s;r,s)

Y
exp[[ kz(r,o)do] .
s

R(r,y;xr,s)

s

If we assume g(x,y) = 0, then R(x,y:;r,s) must satisfy
Equation (4.58) with a =r, b = s. Therefore, since the

integrals vanish, we obtain

R(x,y;r,s) = R(xr,s;x,y). (4.60)
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Equation (4.60) may be used to write the Equation (4.58) in
terms of the Riemann function R(x,y;r,s). Equation (4.58)

becomes
u(x,y) = R(x,y;a,b)¢, (a)

X
b [ ok 00, () + 0] (001K, yir DA
a

Y —
+ Jb[-kz(a.s)¢2(s) + 03(s)1R(x,ysa,8)ds

+ IJ g(r,s)R(x,y:;r,s)dsdr. (4.61)
D

When the operator L is self-adjoint, that is
kl = k2 = 0, then the operators L and M are identical.
It then follows from problems (4.57) and (4.59) that

R(x,y;r,s) = R(x,y;r,s). Thus using Equation (4.60) we have
R(x,y;r,s) = R(r,s;x,y) = R(x,y;r,s) = R(r,s;x,y). (4.62)

Remark 4.6. If k2x(x,y) and kly(x,y) are con-
tinuous it follows easily that u(x,y) is a solution of
problem (4.54) if and only if u(x,y) satisfies the inte-

gral equation
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X
aGey) = 0y () + 6,(0) = oy (@) - [ Ky (r,b)ey (r)ar
a

X Y
kl(r,y)u(r,y)dr + J kz(x,s)u(x,s)ds

b

Y
- k,(a,s)¢,(s)ds + J
[ katarsre, )

Xy
+ I Jb[k3(r,5) - k2r(r’s) - kls(r,s)]u(r,s)dsdr

Xy
+ J I g(r,s)dsdr (4.63)
a’b
We see by Equations (4.58) and (4.61) that the solu-
tion of problem (4.54) may be expressed in terms of the func-
tion R(x,y:;r,s) or the function R(x,y;r,s). By Remark 4.6
we see that the characteristic value problem (4.54) is
equivalent to an integral equation of the form considered
earlier and for which a fundamental solution has been de-
fined. Thus we may also express the solution of problem
(4.54) in terms of the fundamental solution A(x,y:&,n).
for Equation (4.63). The following lemma gives the con-
nection between these three functions. This lemma along
with Equation (4.62) are the results used in our discussion

of the Gronwall inequality in Section 2.3.

Lemma 4.13. Suppose the functions k2x(x,y) and

kly(x,y) are continuous. Then,

A(x,y:;&,n) = R(x,y:&,n) = R(E,n;x,Y).
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Proof. We have already seen (Equation (4.60) that
R(x,y;&,n) = R(E,n;x,y). Since R(x,y:;£,n) is the solution
of the characteristic value problem (4.59) we see by Remark

4.6 that R(x,y;£,n) satisfies the following:

X

Yy
kl(o,n)dc] + exP[I kz(E,o)dol -1
£

R(x,y:&,n) = exp[[
: n

r

kl(o,n)do]dr - J
€

X
- J kl(r,n)exp[f

Yy s
kl(g,s)exp[I kl(E,o)do]ds
£ n

n

X _ b4 -
+ [ kz(r,y)R(r,y;E,n)dr + J kl(x,s)R(x,s;E.n)ds
13 n

X Y _
+ [E[n[k3(r,s) - k,_(r,s) - ky_(r,8)1K(r,s:,n)dsdr.

X X r
exp[J k, (o,n)do] =1 + I kl(r,n)exp[I k, (g,n)dolar
g £ E

and

y s
1l + I kz(g,s)exp[f kz(g,o)dc]ds.
n n

Y
exp ([ k,(€,0)dc)
n

Therefore, R(x,y;f,n) satisfies



172

X
R(x,y:E,m) = 1 + ngl(r,y)'ﬁ(r,y;ﬁm)dr

Y _ Xy
+ I kz(x,S)R(x.S:E,n)ds + I I [k3(r.S)
n E'n

ky (£,8) - kls(r,S)lﬁ(r.S:E,n)dsdr.

But this is the equation satisfied by the fundamental solu-
tion for Equation (4.63). Therefore A(x,y:;&,n) = R(x,y:;&.,n).
This completes the proof.

We see that the fundamental solution defined for
integral equations may be thought of as a generalization of
the Riemann function for the adjoint operator M. The Reimann
function and integral representations for the solution of the
Cauchy problem and the characteristic value problem associ-
ated with a hyperbolic partial differential equation in n
variables have been studied by Sternberg [35]. He also con-~
siders the Riemann function for an adjoint operator and re-
fers to this solution as the principle solution (he in turn
attributes this terminology to duBois Reymond) for the original
operator. The author conjectures that the result given in
Lemma 4.13 may be generalized for the case of n independent
variables to a relation between the fundamental solution for
an equivalent integral equation and the functions considered

by Sternberq.
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Remark 4.7. From Lemma 4.13, it is now easy to see

that the integral representations for the solution of the
characteristic value problem (4.54) in terms of R(x,y:&,n)
(or R(x,y;&,n)) 1is identical with the integral representa-
tion for the solution of the equivalent integral Equation
(4.63) in terms of the fundamental solution. We note that
there is a distinction when applying these representations.
To give the representation in terms of R(x,y;&,n) we need
only characteristic data while the representation in terms
of the fundamental solution requires the initial function.
We see from Equation (4.63) that these are not in general

the same.

4.6 Stability for a Characteristic Value Problem

In this section we will consider stability for the

following characteristic value problem,

Lu = £(x,y,u)
(4.64)

u(xrs) = ¢1(x)l U(EIY) = ¢2(Y)l ¢1(5) = ¢2(S)

where L 1is defined in Section 4.5, ¢1(x), ¢2(y) are
continuously differentiable, kly' k2x are continuous, and
a, b are fixed. Under these assumptions this problem is

equivalent to the Volterra integral equation
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X
BOY) = 0 (0) + 6,9 - 6@ - [ Ky (x,Bey (rhar
a

Y - X Y
- Ji?z(a,s)¢2(s)ds + [skl(r,y)u(r,y)dr + Iskz(x,s)u(x,s)ds

X,y :
+ J;Is[k3(rrs) -k, (r,s) - k; (r,s)]u(r,s)dsdr

Xy
+ I_I_f(r,s,u(r,s))dsdr. (4.65)

We define stability for problem (4.64) in terms of the
characteristic data ¢l(x) and ¢2(y) and then study spaces
of characteristic data for which the initial function

X
O 0x,¥) = 0100 + o) = 6@ - [k (r,B)oy (r)ar
a

y
- J_kz(a,s)¢2(s)ds (4.66)
b

for the equivalent integral Equation (4.65) remains in one
of the spaces considered previously. Thus, the results
obtained earlier for integral equations will yield stability
results for the characteristic value problem (4.64).

Let G = {¢)[¢,:(a,=) » R x {¢,]d,:[b,=) + R}
where G is normed in some appropriate way. We now make a

stability definition for problem (4.64).
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Definition 4.2. Suppose (¢1,¢2)‘€ G and u(x,y)
is a solution of problem (4.64) for x >a, y>b with
the characteristic data ¢l(x) and ¢2(y). The solution
u(x,y) 1is stable on G if given € > 0 there exists a
6(c) such that if (;1,82)‘6 G and M($1,$2) - (¢l$¢2)" < §
then any solution u(x,y) of nroblem (4.64) with data

9,(x), ¢,(y) exists for x >a, y > b and satisfies

"& - u" — = < €. We say that u(x,y) 1is asymptotically
0, (a,b)
stable if it is stable and if there is a 61 so that when
"(; ,; ) = (¢1,0)1l < 8, we have lim !a(x,y) - u(x,y) |
1’72 1772 1l |(x,y)|->°°
= 0.

As before, we assume that £f(x,y,0) = 0 and say that
problem (4.64) is stable or asymptotically on G if u = 0
is a stable or asymptotically stable solution on G. We
will be interested in the following spaces.

[+ ]

6y = (yloyiEm +, [lojm)jar <

[+ ]

< (ylog:tBm R, [Lloj(s)las < o).

Gl will be normed by

coyro )0l = lloglly 5+ loylly 5 + I;|¢i‘r’|dr + IEI¢5(s)Ids-
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I_|¢1(r)|dr < w,[_l¢i(r)|dr < °°}

a a

x {¢2|¢2=[B,w) + R ,I_|¢2(S)|ds < “rf_|¢é(s)|ds < w}.
b ) .

G, will be normed by

oyl = Hoyllg, 5 + Nogllg 5 + [-le, ) lax

-}

+ j |¢,(s)|as + f ¢ (x) |ar + J_Id)'(S)Ids
5 2 a L 5 2

Gy = {¢1|¢l=[5.w) + R, by ¢i are bounded,

I3|¢l(r),dr < w} X {¢2l¢2:[5'w) + R ’ ¢2r ¢i are bounded,

®©

[l (1 1as < =1
b

The norm on G3 will be

ool = Hoyllg,z + Noylly 5+ Mojlly 3+ Nlezlly 5

-}

+ [ ¢, (r)ldr + I ¢, (s) |ds.
. 512

We observe that Gl > G2.
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We have the following stability theorem for problem

(4.64).

Theorem 4.7. Assume kl(x,y) = kl(X) and kz(x,Y)

= k2(y). Suppose f(x,y,z) in problem (4.64) satisfies
(H1)' and (H2)'. |

i) Suppose any one of the hypotheses (H6), (H7) or (H1l0)
hold. Then problem (4.64) is stable on G;.

ii) Suppose any one of the hypotheses (H5.a), (H8.a),
(H9.a), (Hll.a) or (Hl2.a) hold. Suppose in the
hypotheses (H5.a), (H8.a), and (Hll.a) the functions
kl(r), kz(s) are bounded. Then problem (4.64) is
asymptotically stable on G,.

iii) Suppose any one of the hypotheses (H8.b), (H9.b),
(H11l.b) or (H12.b) hold. Suppose in (H8.b) and (H1ll.b)
the functions k,(r), kz(s) are bounded. Then

problem (4.64) is stable on G3.
Proof. i) By Theorem 4.2 we see that Equation

(4.65) is uniformly stable on N,. We need only show that

if (¢1,¢2) € Gl then the function

X
¢(x,y) = ¢,(x) + ¢,(y) - ¢, (@) - I_kl(r)cbl(r)dr
a

Y
- Iskz(s)¢2(s)ds (4.67)
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is in N2 and that if the norm of (¢1,¢2) in G1 is small

then so is the N2 norm of ¢(x,y). For any (¢1,¢2) € G,

we have
¢ (X,y) = ¢i(X) - kp (x) ¢, (x)
¢y(x,y) = ¢65(¥) = kX, (¥) ¢, (y) (4.68)
¢xy(x.y) =0 .
Take any (¢1,¢2);€ Gl’ Each of the hypotheses im-
plies I_Ikl(r)[dr< © and I_Ikz(s)lds < », Thus we have
a b

loay) | < liogllg g+ llollg 5+ lloylly 3+ leglly ;J_Ikl(r)ldr
’ ’ a
+ "¢2"O'stlk2(s)|ds

and ¢ is bounded for x > a, y > b. Using Equations (4.68)

we see that

A

sup |¢_(r,y)|dr < [_|¢'(r)|dr + 1o, —[_lk (r) |dr
IE by<e r | a t 170.aj3 1

and

-

A

_ _sup |¢_(x,s)|ds < I_I¢'(S)|ds + llo —I_|k (s) |ds.
Ib as<x<w ° b 2 270,bjg" 2

Tﬁus ¢(x,y) given by Equation (4.67) is in N,.
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Let M = maX{l;ﬁ_lkl(rﬂ dr,[_lkz(s)lds}. Take any
a b

§ and any (¢;,¢,) € G, so that "(¢l,¢2)" < g%. Then

from the estimates above we have

[+ -3

lo x, ) I < %gr I_ _sup |¢r(rrY)|dr < 28 and

a b<y<e 9

® 26
I_ _sup |¢_(x,s)|ds < S~
b a<x<e
These calculations show that [|¢ll < § and stability on G,
follows.

ii) Theorem 4.2 shows that Equation (4.65) is
asymptotically stable on N,. Take (¢1,¢2){< Gy. In each
case there are positive constants Ml’ M2 such that

lkj(x)| < M; and |k,(s)| < M,. Thus

le oy | < logllg 5+ loyllg 5+ Hoglly 3

© [+ -]

+ le_|¢l(r)|dr + MZI_|¢2(S)|ds.
a b

Also

I _sup |¢x(x,y)|dx < I_|¢i(r)|dr + le_|¢1(r)|dr.
a a

a b<y<e

and
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Ii _sup |o_(x,y)|dy < J_|¢‘(s)|ds + M I_|¢ (s) |ds.
b a<x<e Y b 2 2 b 2
Therefore ¢ given by Equation (4.67) is in Nz. For any
(¢1,¢2) € G, so that "(¢l,¢2)n < é%' with M= max{l,Ml,Mz}
an argument similar to that used in part i) shows that
loll < 6 and the result follows.
iii) By Theorem 4.2 Equation (4.65) is stable on
N;. The result then follows from an argument similar to
that used in parts i) and ii). This completes the proof.
With regards to part ii) of the previous theorem we
point out that asymptotic stability of problem (4.64) im-
plies that ¢1(x), ¢2(y) must go to zero as x + o,
Y * «. Although this is not explicit in the assumption that
(¢l,¢2),c G, it may be shown that this assumption is suf-

ficient for 1lim ¢l(x) =0 and 1lim ¢2(y) = 0.

X+ y+o

We now give a theorem for problem (4.64) where the
function f£f(x,y,z) satisfies (H3)'. The proof follows
from Theorem 4.3 and arguments similar to those given in

Theorem 4.7.

Theorem 4.8. Suppose kl(x,y) = kl(x) and kz(x,y)

= kz(y). Suppose f(x,y,z) in problem (4.64) satisfies
(H3)'. Let any one of the hypotheses (H8.b), (H9.b),
(H11.b), or (H12.b) hold.
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i) Suppose the functions kl(r), k, (s) in (H8.b) and
H(1ll.b) are also bounded. Then problem (4.64) is

stable on G and G,.

2 3
ii) Suppose the functions kl(r), kz(s) in (H8.b) and
(H1l.b) are negative constants. Then problem (4.64)

is asymptotically stable on Gz.

We now give a theorem for problem (4.64) under the

assumptions k k, = 0).

2x 2 ly 2~ "3
Under these assumptions the problem (4.64) is equivalent to

the Volterra equation

X Y
u(x,y) = ¢(x,y) + I_kl(r.y)u(r.y)dr + J_kz(x.s)u(x,s)ds
a b
X(Y_ Xy
- J_j_k3(r,s)u(r,s)dsdr + I_I_f(r,s,u(r,s))dsdr (4.69)
a’b a’b

where ¢(x,y) 1is given by (4.66) and E3(r,s) = ky (r,s)k, (r,s)
+ kls(r,s) (or F3(r,s) = k) (r,s)k,(r,s) + k, (r,s)). Then
using Theorem 4.4 and arguments similar those used in Theorem

4.7 we have the following.

Theorem 4.9. Suppose k2x - klk2 - k3 =0 (or

k - klk

2

a) Let f(x,y,z) satisfy (Hl)' and (H2)'.

i) Suppose (H13) holds. If kl' k2 are also bounded

then problem (4.64) is stable on Gz.
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ii) Suppose (H13.a) holds and kl' k2 are bounded.
Then problem (4.64) is asymptotically stable on
GZ’
iii) Suppose (H14) holds and kl' k2 are bounded.
Then problem (4.64) is stable on G3.
b) Let f(x,y,z) satisfy (H3)'. Suppose (H14) holds and

kl’ k2 are bounded. Then problem (4.64) is stable on

G; and asymptotically stable on G,

As an example we will now discuss briefly a physical
problem whose mathematical formulation canbe put in the form
of a characteristic value problem. We will apply the results
of this section and then give physical interpretations for
our stability conclusions. We will give the equations de-
scribing the process and indicate how we obtain a character-
istic value problem. For a more complete discussion the
reader is referred to {37, pp. 176-179].

We consider a semi-infinite tube filled with an ab-
sorbant. ILet the axis of the tube be the x-axis. Suppose
a gas and air mixture is passed through the tube with a con-
stant velocity v. We assume that the amount of gas u(t)
in the gas-air mixture at the open end of the tube (x = 0)
is given. Let a(x,t) be the amount of gas absorbed per
unit volume of absorbant and let u(x,t) be the concentra-

tion of gas in the pores of the absorbent in the layer x.
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The conservation of mass law yields the equation

Ju _ da au

—V—— -

ax ot  at°
We must also satisfy the equation of kinetics of absorption

%ﬁ-=8(u-y)

where B 1is the kinetic coefficient (8 is a positive con-
stant) and y is the concentration of the gas in equilibrium
with the quantity a of gas absorbed. The quantities a

and y are related by the equation
a = £f(y)

which is determined by the absorbent under consideration. We
will assume that a = %)r (v is a positive constant) which
is valid for small concentrations. We will also assume that

a(x,0) = 0. The problem now is to find a an u satisfying

-V 2‘—1. = ..a_a- + .9-1.‘1.' ‘

ox ot ot
%3 - g(u - va) (4.70)
at *
u(0,t) = u(t) a(x,0) = 0J.
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The function a(x,t) may be eliminated from this
system and the new condition for u(x,t) is a hyperbolic
equation whose characteristics are x = cyr t - % = C,.
(It is also possible to eliminate u(x,t) to get a hyper-
bolic equation.) It may then be shown that the solution for
x>0, t-~- % <0 is u = 0 and that along the character-
istic t = %, u is discontinuous. Writing the hyperbolic
equation for u in terms of the characteristic variables

(E,7), with £ =%x, 1=+t - %, we obtain the following

equation:

= - By -
Bgr = 7 3o BYU

£t £E>0, 1t>0. (4.71)

g

It may also be shown that u along the characteristic & =

T = 0 must be given by:

u(g,0) = T(0)exp(- 2¢)
(4.72)

u(0,t) = u(7) .

From Theorem 4.7, part ii) it follows that the
characteristic value problem given by (4.71]) and (4.72) is
asymptotically stable on GZ‘ We see that (u(0)exp(- %E),

u(t)) will be in G, if u(t) is continuous,
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I |a(t)|dt < ©», and if u'(T) is continuous with
0

[+ -]
I lu' (1) ]dt < ». We also note that the norm of
0

(u(0)exp (- g&),E(T)) will be small if the quantities

©

|acoy |, I |[a(T) |at, jmlﬁ'(r)ldr (4.73)
0 0
are small.

Stability of the characteristic value problem means
that if the gas supplied at x = 0, that is u(t), is small
in the sense that the quantities in (4.73) are sufficiently
small then u(g,t) will be small for § =x >0, 0< ¢t
- % = 1. Asymptotic stability implies, in addition, that for
each € > 0 there is a T so that if |[(£,7)|_ > T then
[u(g,1)| < €. To give further physical interpretation to
asymptotic stability we note that each characteristic line
T=t - % = ¢ may be though of as the wave front of the gas-
air mixture entering the tube at time t = c. Our solution
u(g,t) will be less than ¢ independent of the manner in
which (£,t) becomes large. We may fix a position Xq = Eo
in the tube and allow the number of wave fronts passing this
position to become large. This means l(Eo,t)I°° will be
large by moving along the curve C; shown in Figure lA.

Once the number of wave fronts is large enough so |(EO’T)|m

>T (C, crosses the parallelogram |[(£,T)], = T),
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€1
t
—-""'—'_
0=1=t=x/v
x =8 (1a)
£o
t
TO/ C2
— | 0=1t=¢t - x/v
///’:= £ (1B)
t [
__—/////// 0=t=t=-x/v
/’//’x_= £ (1C)

Figure 1. Illustrations Associated With Asymptotic Stability
of Problem (4.71), (4.72). (The parallelogram
in each figure is the set of (£,T) such that
I(E,T)l°° < T.)
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then Iu(go,r)l < ¢ for all future waves passing Egr We
may fix a wave To and follow it until £ is large enough
so that |(£,'ro)|°° > T. We are then passing out of the
parallelogram I(E,T)I°° < T along the curve C2 as shown
in Fiqgure 1B. Once § 1is sufficiently large the concentra-
tion on the wave To will be less than ¢. We may aiso
move through the tube at a variable velocity less than v.
We are then at a different position and on a differen£ wave
front at each time and following a typical path C3 as shown
in Figure 1C. Again once the (£,1) associated with our

movement is such that |[(£,7)|_ > T, then any reading of

the concentration as we move will be less than €.



APPENDIX A
VERIFICATION OF INTERCHANGING THE ORDER OF INTEGRATION

In the body of the dissertation we have used (without
verification) the fact that the order of integration in a
multiple integral may be interchanged. The proposition given
below is sufficiently general to verify all cases of inter-
changing the order of integration occurring in the disserta-
tion. We will make use of Fubini's Theorem in the following

two forms [32].

1) Suppose a, b € R, c, d € R" and £:[a,b] x [c,d]

+ R such that f is integrable in the Lebesque sense.

b.d d b
Then J I f(r,s)dsdr = I J £f(r,s)dsdr.
a’‘ec c’a

2) Suppose a, b € R and g(x,y) is real valued and in-

tegrable on a < x <y < b. Then

b x b /b
I f g(x,y)dydx J J g(x,y)dxdy.
a’a aly

We return to the notation introduced in Chapter 1 and have

the following.

Proposition. Let ap, Yq be any two combinations

of the integers {1,2,...,n}. Suppose for each x > a the

188
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function h(X,r 'Sy ), having values in R™, satisfies
P q

the following:

i) for each fixed r, with a <r <x_ , h(x,ra ,sY )

a —"a_ —"a
P p P P 'q
is continuous in s for a, <s, <w, (x,r;a)).
Yq Yq Yq Yq P
ii) For each fixed s with a, <s_  <x_,
Yq a7 Yq 7 Tq
h(x,ra 'SY ) is continuous in r, for
P g p
L (a,s;yv_) < r, < Xy

P d P P
iii) Suppose there exists a constant M(x) such that

|h(x,ra /S, )| < M(x) for a, 2T, <X,

P 'q p p P
a, < sy < w (x,r;ap) <% .

Yqg 7 Yq T Yq Yq

Y

Then for each x we have

X w (T30
(x,r p)

I pf 4 h )ds. d
X,Xr +S s r
a_ la % Yqg Yq %

|
= I h(x,r_ ,s. )dr_ ds_ .
a w (a,s;Yq) 0‘P Yq aP Yq

Proof. Let h(x,r, ,s ) = (hy(x,r  ,s ).
®p Yq % Yq

cees hm(x,rap,sYq)). Take any i such that 1 < i <m and

consider the function hi(x,ra ,sY ). Let
p q
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=a, Ny = {kl,kz,...,kt} (we assume B8, is ordered)

B¢ q

d let a* = - * = - .
and let af =a, Byr Yq = Yq Be
plication of 1) above and Lemma 2.2 we have

Then by repeated ap-

x w_ (x,r;a)

[“"[ T as. 4
 \ X, ' S S r

a Jla g Yg Yq %

I tI t
e h.(x,r ,s_)ds, dr
a, ‘a 1 ' Yq  Ke K

.. ds, dr, ds, dr dr_ , ds_, .
k2 kl kl o p Y q
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Using the fact (see [10], p. 644) that if a function
f(xl,xz, ceer Xp) is continuous in each variable Xy holding

the others fixed then f is measurable and 2) we obtain

X, wY (x,r;ap)

j p] d h, ( yds d
: \X,r ¢S S r
a Ja % Yg Yg %

/s_ )dr,  ds
Y k, 'k
k, ' °k P 'a "t ¢t

«+«. dr, ds, dr, ds, dr , ds_, .
kK, "k Tk TRy e p Yq

Again through repeated use of 1) and Lemma 2.2 we see that

x w (x,r;a)
[ T as. a
. (X,r ' S S ) of
a, Ja % Yg Yg %
% TYq

AN ;
= h:,(x,r ,s_)dr, ds, dr , ds
a a a ap Yq 8t Bt & P Y*q
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Hence it follows that
X, W (X.r;ap)

I pf 4 h( )as, a
X,r_ ,S s, dr,
a, ‘a % Yq9 Yg %

I q[ ® h( )dr 4
= X, x. , S r s
a_ ‘w (a,s;vq) “p Yq O‘P Yq

and the proof is complete.
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