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Stability Results for Stochastic Programming Problems 

SILVIA VOGEL 

Technische Hochschule Ilmenau, Sektion Mathematik, Rechentechnik und 
ökonomische Kybernetik 

Summary: The paper deals with a statistical approach to stability analysis in nonlinear 
stochastic programming. Firstly the distribution function of the underlying random 
variable is estimated by the empirical distribution function, and secondly the problem of 
estimated parameters is considered. In both the cases the probability that the solution set 
of the approximate problem is not contained in an -neighbourhood of the solution set to 
the original problem is estimated, and under differentiability properties an asymptotic 
expansion for the density of the (unique) solution to the approximate problem is derived. 
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1. Introduction 

The aim of this paper is to present stability results for stochastic programming 
problems when either nothing is known about the probability measure and the 
distribution function is estimated by the empirical distribution function or the 
problem depends on an unknown parameter, for which a sequence of estimation 
functions is available. 

At first we shall deal with the problem 

(P) 

where may be given by deterministic inequality constraints, chance constraints, 
restrictions depending on the mean value of certain functions, or restrictions that 
have to be satisfied almost surely. 

Let be the underlying probability space and Z a random variable with 
values in the measurable space where denotes the -field of BOREL 
sets of Rm. P induces the probability measure ?z on [Rm, ]. E denotes the mean 
value with respect to Pz and Fz the distribution function of Z. is a compact 
subset of is supposed to be continuous with respect to the 
first variable and integrable with respect to the second one. Furthermore we 
assume that there is a and an such that 

denotes the Euclidean norm.) 
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Pz being unknown, we shall consider the problems 

(P.) 

where the Zi are independent, identically (like Z) distributed random variables 
and is a closed-valued measurable multifunction, which is defined on 
and approximates in a way that will be specified later on. 

In the following we use the notations 

and 

Under our assumptions Xn is a measurable multifunction ([16, Theorem 2K and 
Proposition 2C]). 

By x0 we denote the elements of X0 and by xn the measurable selection functions 
for Xn. In the same way we understand small letters in the following, when the 
corresponding capital letters denote sets or multifunctions. 

W E T S and S o u s [19], [21] dealt with an unconstrained minimum and derived 
conditions that ensure asymptotic normality of (xn—xo). KANKOVA [13] esti-
mated the rate of convergence of 

(X a compact convex set, f ( • , z) LIPSCHITZ continuous with LIPSCHITZ constant 
not depending on z) and showed that it is at least exponential. 

RÖMISCH and WAKOLBINGER, [17] were concerned with approximations of 
probability measures in the framework of parametric programming. Applying 
their results to approximations of stochastic linear programming problems with 
complete fixed recourse via empirical measures, they obtained results on the con-
vergence rate for the mean deviation of the optimal values. Recently DUPACOVA 
and W E T S [8] extended the results on asymptotic normality of They 
allowed for constraints and imposed only weak differentiability assumptions. 

We shall prove assertions on the convergence rate of with 
where d denotes the HAUSDORFF distance (with ). 

Furthermore, for the case of differentiable / we shall derive an asymptotic expan-
sion for the density of and in this way contribute to the results on 
asymptotic normality. 

In the second part of our paper we shall consider the problem that the probabi-
lity measure is determined up to an unknown parameter . We are given the 
problem 
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where open, and are 
measurable with respect to the second variable. 

We assume that a sequence of estimation functions for defined on 
the probability space is available. In such cases the necessity arises to 
study the stability behaviour of the solution sets . to the programs 

(Py) 

DUPACOVA [6], [7] showed for twice differentiable functions / that asymptotic 
normality of carries over to the sequence and esti-
mated — for a special case — the accuracy of the normal approximation by means of 
the BERRY-ESSEÉN theorem. 

In this paper we will estimate 

and derive an asymptotic expansion for the density of 
There are several related papers concerned with stability in stochastic program-

ming but approaching the subject under another point of view (cf. [12], [15], 
[18], [20]). 

2. Estimated Distribution Function 

We consider the problems (P) and (Pn). 

Theorem 1: In addition to the presuppositions made in the introduction let the 
following assumptions be satisfied: 

(A 1.1) There is a neighbourhood U(X0) of X0 such that 

(A 1.2) To every there is a neighbourhood such that 

(A 1.3) For all 

Then for all 

Observe that the assumptions of Theorem 1 are not sufficient for 
as the following example shows: 

Example 1: Let be uniformly distributed on [—1,1], 
Then hence X0 = 

= [ - 1 , 1 ] . 
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On the other hand we have 

consequently 

P r o o f of T h e o r e m 1. Parts of the following proof make use of ideas of 
MICHEL/PFANZAGL [14] and CIBISOV [3]. 
If is either empty or unbounded, hence 

Let fixed and define 

Furthermore, for we define 

Because of our assumptions is continuous on Consequently, if 
there is an and a , such that 

for all and . ' 

Now, according to Lemma 3 in [14], to every ' there is an open ball 
such that 

The system is an open cover of hence there 
exists a finite cover . In particular these statements hold for 

Further, because of Lemma 3 in [14] is applicable to -f, 

consequently to every there exists an open neighbourhood such that 

X0 being compact, we find with 

Let be and 

Now define 

and 

Obviously 
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At first we consider We have 

hence 

Secondly, we assume and look at Let 

with 

In the case we have hence 
Let with Then 

Furthermore, there is a neighbourhood U2(X0) of X0, tha t does not depend on 
such that 

Consequently, there is no with Therefore 

Finally we investigate the event For we make use of 
the fact that there is a finite cover Hence 

implies for a suitable Further, 

Because of we find an such that 

Consequently, 

where 

This implies 

or 

Now, taking into consideration how and were introduced, we 
obtain 
18 optimization 19 (1988) 2 
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Consequently, 

I t remains to apply Lemma 2 in [3]. • 
If we assume that the random variables are bounded, we can derive a sharper 

result: 
Theorem 2 : Let the following assumptions be satisfied: 

(A 2.1) There is an and a such that 

(A 2.2) There is a C > 0 such that for all > 0 

Then for every > 0 there is a > 0 such that 

Proof . The proof follows that of Theorem 1, but in the last step we use Theo-
rem 2 in [10], from which we obtain 

and 

Now we turn to the investigation of the assumptions (A.1.3) and (A.2.2). Often 
the constraints of stochastic programming problems are given in the form 

where F denotes the distribution function of a certain random variable is a 
compact subset of and This case occurs, if we consider linear chance 
constraints with random right hand sides only. 

If we don't know F, we can approximate by 

with the empirical distribution function Fn. For the accuracy of this approxima-
tion we have Theorem 3. To simplify matters, we claim tha t G is a closed cuboid 
the edges of which are parallel to the axises of our system of co-ordinates. Fur-
thermore, we assume that all cubes used in the following have this property. By 
dia we denote the diameter of the greatest ball that is contained in 

Theorem 3 : Let dia Assume further that F is absolutely continuous 
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and that the distribution density has the property Then 

for all 

The proof makes use of the following lemma: 

Lemma 1: Let there exists a (closed) cube M(l) with edge length l 
and a constant such that 

Then 
Proof . G being compact, it can be covered by a finite number of cubes M\, • •., 

with edge length l. We investigate the events 
where the denote the centres of Mi. According to Theorem 2 in [10] 

holds. 
Because of we find an with 

Hence 

• 
P r o o f . of T h e o r e m 3 . Let and n be fixed and assume that 

We abbreviate and By we denote the partial 
ordering generated by 

If int we have Because of our assumptions on and 

we find an and a cube with edge length such that 

Hence 

Now we turn to the case int At first' we assume tha t 
Then there exists an and an such 

that Furthermore, x1 and x2 have the property that (Because of 
the monotonicity of Fn for every the vector with minimal distance 
to x1 is greater than x1.) 

Now, asFn is continuous on the left, On the other hand, to x2 

we find a cube and a point with and 

Consequently and, because of 

18* 
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If ve find an and an such 

that and Obviously . means in 
every component.) 

Furthermore, to x1 we find a cube M3 = M3 , anda point, 

with and Consequently there is a cube 

with hence 

It remains to apply Lemma 1. • 
For discrete distributions we have a similar result: 

Proposition 1: Let 2 be such that 

Assume further that dia and 

Then for all 

Proof . We consider an with and abbreviate and 
If int we have On the other hand 

consequently there is a cube such that 

Now we turn to case int Then there exists either a c u b e w i t h 

or a cube with In the 

first case we have hence but in the second 
case and 

Application of Lemma 1 yields the desired result. • 
Now we consider constraints of the form 

and 

with a (possibly vector-valued) function g that is measurable with respect to the 
second variable. 

We restrict ourselves to discrete distributions, because in the case of absolutely 
continuous distributions such an approximation would make sense only in special 
cases. 
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Proposition 2 : Let be a compact set and let Z be such that 

Then for all 

Proof . Let be fixed and Then there exists a such that 
Hence 

• 
If we are given chance constraints in a more general form than that considered 

in Theorem 3, we can use the equation 

where 

and approximate the set 

by 

In a more general setting, we are given 

and 

where the are supposed to be PZ-as continuous in every point 
and integrable with respect to the second variable. G is compact, but 

not necessarily a cuboid. 
The application of Proposition 3 to chance constraints will be given elsewhere. 
Proposition 3 : Let the following assumptions be satisfied: 
(P 3.1) for all balls with centre and radius 
(P 3.2) is continuous on int and l.s.c. on 
(P 3.3) 
(P 3.4) There exists an s > l such that 

(P 3.5) To every there exists a neighbourhood V(x) such that 

Then for all 
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Proof . In the first step we show that with 
holds. Define Now, as 

for sufficiently small to each there exists a (depending on 
and the form of such that implies for at least one 

Let be fixed, choose and define 

being 1.8.0., there exists an such that 
To every we find a neighbourhood Uj(x) with 

(slight modification of Lemma 3 in [14]) . 

The system is an open cover of hence there exists a finite 
cover 

Now, let be such that there is an with To we find a 
such that and an with and 

In the following we investigate Because of 
hence 

Summarizing, 

I t remains to apply Lemma 2 in [3]. 
Now we turn to the investigation of 

Let and define 

being compact, is compact. Consequently we find an with 
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According to Lemma 3 in [14] to every there exists a neighbourhood 
such that 

The system being an open cover of we can select a finite cover 

Let Then, due to (P 3.1), there must be a and an such that 
Consequently and for some 

Because of there exists a jo with hence 

On the other hand 

Thus 

and we can apply Lemma 2 in [3]. • 
If the gj(x, z) are bounded, Proposition 3 can be sharpened, making use of 

HOEFFDING'S inequality (Theorem 2 in [10]). 

Now we shall assume that f is differentiable and is given by equality 
constraints. In this case we can make use of papers by CIBISOV and derive an asym-
ptotic expansion for the density of (x0 is supposed to be unique.) For 
the description of necessary differentiability properties we shall use the following 
notations: 

Let be a vector with nonnegative integer components. Then 

For functions u : Rj R1 we define and 

otherwise. 

If u is a mapping into Rl, by we denote the vector 
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Now we assume that every program 

(Pn) 

has a (random) solution xn. Furthermore, we claim tha t there exist vectors of 
LAGRANGE multipliers such that satify the optimality equations 

where 

is KRONECKER'S delta) 

A corresponding assumption is to be fulfilled with respect to (P): 

where 

Finally, we introduce the notations 

Theorem 4. Let in addition to the assumptions (A 1.1)—(A 1.3) of Theorem 1 

[with the following assumptions be satisfied: 

(A 4.l) There exists a neighbourhood where the derivatives 

and 

for PZ-almost all z exist and are continuous. 
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(A 4.2) 

(A 4.3) To every ' there exists a neighbourhood such for all and 

and 
(A 4.4) The matrices A and A are non-singular. 

s 
(A 4.5) The vector w i t h a l l o w s a represen-

tation of the form 

where and are given matrices, and the probability distribution of 

satisfies the following condition (D): 

with probability measures 
W1 and W2 such that for a certain the (no-fold) convolution 
has a density function 

(A 4.6) The covariance matrix is non-singular. 
Then has the property that 

uniformly with respect to the convex BOREL subsets . The Qj are computable 

polynomials, the components of which depend on and the moments of 

and is the density function of the normal distribution with parameters 0 and 

Proof . We make use of Theorem 1 (of this paper) and the Theorem in [3] and 
obtain 

Here the are vectors, the components of which are homogeneous 
polynomials of the order j of 
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and is a sequence of random vectors such that for an arbitrary sequence 

Now 

hence the components of hj are in particular polynomials of 

and —because of (A 4.5) and the uniform integrability o f w i t h respect to 
— polynomials of 

Now we can apply Theorem 2 in [2] by putting 
and obtain the assertion of our theorem. • 

Remarks: 1. Deterministic inequality constraints in the description of can 
be allowed if the strict complementarity condition holds. 

2. We use condition (A 4. 5), because the probability distribution of in 
general does not satisfy condition (D). However, it is often possible to find a vector 

that fulfils the sufficient conditions for (D), given in [2], part 8. 
3.If the covariance matrix o f i s singular, we find a linear transforma-

tion such that converges to a random variable 
with non-singular normal distribution. Then we can derive an asymptotic expan-
sion for the density of 

3. Estimated Parameters 

We consider the problems 

(Py) with 

where y belongs to a neighbourhood of To simplify notations, let. 
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Proposition 4 : Let the following assumptions be satisfied: 
(P 4.1.) The multifunction is u.s.c. (according to HAUSDORFF) in 
(P 4.2) There exists a sequence of estimation functions for such that for 

all and an 

Then for all 

Proof . Let be fixed and y be such that there is an with 

Consequently, Because of (P 4.1) we then find a with 
That means 

with 

and the proposition is proved. • 
Sufficient conditions for (P 4.2) are given for instance in [2], [3] and [14]. As 

for the upper semicontinuity of compare [1]. 
There are several stability results in deterministic programming for the case of 

twice differentiable / and gi or at least LIPSCHITZ continuous (cf. [4], [9], [20]). 
The authors mentioned obtain LIPSCHITZ continuity of ; in a neighbourhood 
of and derive (in part) bounds for the LIPSCHITZ constant. In view of our problem 
this, however, would not yield much more than a result like Proposition 4, for 
in general we don't have exact bounds for the difference between Yn and 

Now we turn to the derivation of an asymptotic expansion for the density of 
As in part I, we assume that we have equality constraints only, 

x0 is unique, and for every the program (Py) has a solution Furthermore 
we claim that there exists a vector of LAGRANGE multipliers such that 

satisfies the optimality equations 

where 

Finally we introduce the notations 
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Notations that are not explained here are defined as in part I I . In the following 
we shall distinguish between derivatives with respect to denoted by the sub-
script and derivatives with respect to y, denoted by we mean the 
vector 

Theorem 5: Let the following assumptions be satisfied: 
(A 5.1) There exists a neighbourhood where the derivatives 

and 

exist and are LIPSCHITZ continuous. 
(A 5.2) A and A are non-singular. 
(A 5.3) The random vector allows a representation 

where and the Wi are independent identically distributed 

random vectors, the distribution of which satisfies condition D) (c.p. 281); 
W1 has finite moments of the order and the covariance 
matrix of W1 is nonsingular. H0 is a matrix; the Hj(Sn) are vectors the 
components of which are polynomials; is a sequence of random vectors 

such that for an arbitrary sequence with 

holds. 
(A 5.4) The matrix is non-singular. Then has the 

property that 
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uniformly with respect to the convex BOREL, subsets The Qj are computable 
polynomials the coefficients of which depend on the coefficients of Hl and 

is the density function of the normal distribution with parameters 0 and 

As pointed out by CIBISOV [2], [3], condition (A 5.3) is fulfilled by a broad class 
of estimation functions. 

Before we prove the theorem we shall give a lemma. 

Lemma 2 : Let condition (A 5.3) be satisfied and let be a sequence with 

Then 

Proof . Because of (A 5.3) the assumptions of Theorem 2 in [2] are fulfilled. 
Hence 

uniformly with respect to all convex sets ; Taking into consideration that 

for arbitrary the estimation immediately follows. • 

P r o o f of T h e o r e m 5. Because of Lemma 2 we can concentrate our investigation 
on According to the implicit-function theorem there is a (bounded) 
neighbourhood such tha t for arbitrary the system 
has a unique solution and the components of are k-times 
continuously differentiate functions of y. Consequently we have the TAYLOR'S 

expansion 

with 
Now let be . Then, according to (A 5.3), 

where and 

stands for 
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Now we rearrange the terms on the right hand side in the following way: 

(*) 

Here the components of the Gj are polynomials again. 
We shall show that the summands on the right hand side of (*) satisfy the 

assumptions of Theorem 2 in [2], In the first step we consider We have 

(with . ) 

/ 

Hence where the denote the algebraic 

adjuncts of . Therefore can be written as 

The xij(y) are sums of products and the factors are partial 

derivatives of L up to the order k. 
As det is a continuous function of the elements of and det 

we find a neighbourhood and a such that 

Hence, because of the LIPSCHITZ continuity of the partial derivatives of f and gi, 
we find a constant c such that 

Now, for Consequently, 

Obviously 

for a suitable c3, thus (Lemma 2) 

As too, we have 

Now we shall show that 
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can be written in the following form: 

where the Gj and Gr are vectors the components of which are polynomials. 

We have hence for n>n0 and 

Furthermore, 

where l denotes the maximal degree of the polynomials Gj. 

Sn can be regarded as a "special case" of thus we can apply Lemma 2 
and obtain 

Finally, 
hence 

and 

I t remains to apply Theorem 2 in [2]. • 
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