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Stability Results for Stochastic Programming Problems
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Technizche Hochschule Tlmenau, Sektion Mathematik, Rechentechnik und
Okonomische Kybernetik

Summary: The paper deals with a statistical approach to stability analysis in nonlinear
stochastic programming. Firstly the distribution funetion of the underlying random
variable is estimated by the empirical distribution function, and secondly the problem of
estimated parameters is considered. In both the cases the probability that the solution set
of the approximate problem is not contained in an e-neighbourhood of the solution set to
the original problem is estimated, and under differentiability properties an asymptotic
expansion for the density of the (unique) zolution to the approximate problem iz derived.
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1. Introduction

The aim of this paper is to present stability results for stochastic programming
problems when either nothing is known about the probability measure and the
distribution function is estimated by the empirical distribution function or the
problem depends on an unknown parameter, for which a sequence of estimation
functions is available.

At first we shall deal with the problem

(P) T—ip Ef(x, Z) .

where /" may be given by deterministic inequality constraints, chance constraints,
restrictions depending on the mean value of certain functions, or restrictions that
have to be satisfied almost surely.

Let [Q, U, P] be the underlying probability space and Z a random variable with
values in the measurable space [ Rm, Bm], where 8™ denotes the o-field of BorEL
sets of Bm. P induces the probability measure Pz on [ R, 87]. E denotes the mean
value with respect to Pz and ¥z the distribution function of Z. I'+= @ is a compact
subset of R».f: Rpx Rm — R! is supposed to be continuous with respect to the
first variable and integrable with respect to the second one. Furthermore we
assume that there is a x>0 and an s=1 such that E|f(x, Z)[f<e Yacl'+xB.
(B={xec Rr ||z =1}, ||| denotes the Euclidean norm.)
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Pz being unknown, we shall consider the problems

(P,) min —Z’j x, Zi) .
xirg " i
where the Z; are independent, identically (like Z) distributed random variables
and I, is a closed-valued measurable multifunction, which is defined on [Q, 9, P]
and approximates I in a way that will be specified later on.
In the following we use the notations

Xo=arg min Ef(x, Z)
ZEr

and

1
Xylem)=arg min — 2)’ (2, Zs mj)

e Fplw) =

Under our assumptions X', is a measurable multifunetion ([16, Theorem 2K and
Proposition 2(7]). '

By @ we denote the elements of Xy and by 2, the measurable selection functions
for X,. In the same way we understand small letters in the following, when the
corresponding capital letters denote sets or multifunetions.

Wers and Sowvis [19], [21] dealt with an unconstrained minimum and derived
conditions that ensure asymptotic normality of Vn (@ —x9). KANkOVA [13] esti-
mated the rate of (-nnvergen{f.c of

P [m |

(X a compact convex set, f(-, z) Lipscurrz continuous with LipscHirz constant
not depending on z) and showed that it is at least exponential.

Rawviscn and Wakorsincer [17] were concerned with approximations of
probability measures in the framework of parametric programming. Applying
their results to approximations of stochastic linear programming problems with
complete fixed recourse via empirical measures, they obtained results on the con-
vergence rate for the mean deviation of the optimal values. Recently DuracovA

“\_L f(a, Zi(w)) —max Ef(x, Z)

e T 2K

and Wers [8] extended the results on asymptotic normality of ]/?: (xn —a9). They
allowed for constraints and imposed only weak differentiability assumptions.

We shall prove assertions on the convergence rate of P {w | J2¢ X ,(w) with
d(x, Xo)=¢}, where d denotes the Hausporrr distance (with d(@, Xg)=<).
Furthermore, for the case of differentiable f we shall derive an asymptotic expan-
sion for the density of ]/; (x4 —xp) and in this way contribute to the results on
asymptotic normality.

In the second part of our paper we shall consider the problem that the probabi-
lity measure is determined up to an unknown parameter 7. We are given the
problem

min f(z, ) with I'={xc Ry |gix, n)=0,i=1, .., 4},

zer
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where e Yc Rm, Y open, and f: Rex Y - R, g;: Rex Y - R, i=1 .., q, are
measurable with respect to the second variable.

We assume that a sequence of estimation functions (Y7), . y for 5, defined on
the probability space [Q, 9, P], is available. In such cases the necessity arises to
study the stability behaviour of the solution sets X(y) to the programs
(Py) min flz, y) with (y)={zxc Br | gi(lx, y)=0,i=1, ..., ¢} .

ZE(y) '

Dupracovi [6], [7] showed for twice differentiable functions f that asymptotic
normality of }/n (Y7 —g) carries over to the sequence }n (#(Y7) —i(n)) and esti-
mated — for a special case — the accuracy of the normal approximation by means of
the BErRrv-Essefx theorem.

In this paper we will estimate

P iy | Jxe .T(Y"(m}l) with ff{:!‘_. X {1;}) -EF}
and derive an asymptotic expansion for the density of }; (£ ¥ =) —E(n)).

There are several related papers concerned with stability in stochastic program-

ming but approaching the subject under another point of view (cf. [12], [15],

[18], [20]).

2. Estimated Distribution Funetion

We consider the problems (P) and (P,).

Theorem L: In addition to the presuppositions made in the inlroduction let the
following assumplions be satisfied:
(A 1.1) There is a neighbourhood U(Xy) of Xy such that

E| sup flz Z)s===.
FEU(X,)

(A 1.2) To every xc '+ »B there is a neighbourhood U (x) such that
E| inf f(z Z)|f=ec=.

FEU(7)
(A 1.3) For all 6=0
P{o | d(I'n(w), I')=0}=0(n-+1) (n—oo).
Then P {o | (32 X p(o) with d(z. Xo)=¢) or Xn(w)=2}=0(n-11) for all ¢=0.
Observe that the assumptions of Theorem 1 are not sufficient for

P{o | d(X,(w), Xo) =&} -0, as the following example shows:

Example 1: Let Z | [Q, 9, P]-[ R, B1] be uniformly distributed on [ —1, 1],
xc R, fla, z)=zx, I'y(w)=1I"=[ —1, 1] P-a.s. Then Ef(x Z)=0 v, hence Xo=
=[-1,1]
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On the other hand we have

P {(F) | Xp(ow)= {H_-)I}] =P wm

i
consequently P {o | d(X (o), Xo)=2}=1Yn.

Proof of Theorem 1. Parts of the following proof make use of ideas of
MicHEL/Pranzacr [14] and Creisov [3].
If X,(w)=a, a(e) is either empty or unbounded, hence

P{w| Xu(lw)=0}=0(n"51).
Let X, (w)=@, e=0 fixed and define
Xi(m):= {fon{m} | Ef(x, Z) = ”i'!lf{‘ ; Ef(z, Z)} .
TElple

Furthermore, for ge R, 5=0, we define

Cop:={xel | d(x, Xo)z= ,d}
Because of our assumptions Ef(-, Z) is continuous on I'+3:xB. Consequently, if
Cp+@, there is an oz=0 and a g, O{:-:,, =, such that

Ef(x, Z)=Ef(xo. Z)+a5 forall xeCs+xgB and xcXy.

Now, according to Lemma 3 in [14], to every a€ (s + 4B there is an open ball
[ () such that
mf fﬂ" ? }Ef(.’.]"n +a_—}q I:ﬂ','ﬂEXg}.

TEl g(T) b4
The-_ system Ug(x), x€Cp+%,B, is an open cover of OU+x3B, hence there
exists a finite cover {?3(3}?}. Je41, ... kg}. In particular these statements hold for
f=e.
Further, because of E | sup f(z, Z) =, Lemma 3 in [14] is applicable to —f,
2el(Xy) 5
consequently to every ¢ Xy there exists an open neighbourhood U (zg) such that

E sup f(x, Z) ~—Ef(:t'0,Z}-=:a:l—‘z :

wel(ay)
Xy being compact, we find xg1. ..., 23.€ Xo with
U fj(ng}:JXg.
i€(1,...,K)
Let be Uy(Xo):=cl( U  Ulxa)), d:=d(U.(Xp), Xo) and
icil, ... k)
Rri=3.

Now define

S:={w| dwvc Xp(w) with d(x, Xo)=¢}.

Sii={o | Xgo)UX,(o)cI'+2B} and S:={w | Xg(w)c Ui(Xo)} .
Obviously S=(SNS)U(S NSNSy U (S NS NSs).
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At first we consider €81 8,. We have
SNSic{o | d(I'y(w), I')=%}, hence P (SNSj)=0(n-s+1).

Secondly, we assume »£SMS; NS, and look at €. Let
2z

Ci:=C;+3B with i=min ‘%, za} .
In the case X{§j(w)dC1UU(X,) we have X{(w)EI'+AB, hence d(I'y(w), I')>J.
Let #e X{j(») with #€C,. Then Ef(2, Z)=>Ef(xo, Z) +2;, (xoc Xo).
Furthermore, there is a neichbourhood Us(X,) of Xnﬁ, that does not depend on &,
such that

2

2

lee)

Ef(z, Z)=Ef(x, Z) + Ve Us(Xo) .

Consequently, there is no ¢ 'y(ew with € Us(Xy). Therefore
A"y (), I')=d(Us(X), X) .

Finally we investigate the event S S, N8z For 818,82 we make use of
the fact that there is a finite cover U (xf), ..., Ue(ri_.z} of O,+#B. Hence
xn€Ce+%B implies x, € U4(2f) for a suitable j. Further,

%2 f(xﬂ, Z:{w}) 5‘1‘2 f(fr Zf(f’-?)) 't-’.fQX:j‘((u]. xn€ Xn(o) .

Because of X{(w)cUi(Xy) we find an g€ Xy such that X§ (m]qU(:rm} =,
Consequenth . '
- § uj(Zi(w) %ég Ta(Zi(e))
where
ui(z):= inf flo,2) and My(z):= sup flxs 2}«
xeﬁs(xj) zel(zgp)

This implies
1 T
;2 [ufZi(w)) —Eus(Z)] = —-—[EuJ(Z) —El(Z)]
i=1
or

= Z[h; () —Em(2)]= 5 (Ens(Z) —ERy(Z)]

Now, taking into consideration how U o(xj) and U(x0;) were introduced, we
obtain (with x: =)

.lhlm

Euj —Ehi(Z) =Ef(x0, Z) -I——~ —Eh;(Z] =

18 optimization 19 (1688) 2
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Consequently,

1 )_? [us(Zi(w)) —Euy(Z)] = —%}

n &

=
£ 7 3
2 P ‘m nl;: (A Zi(w)) —ERi(Z)] EE} .

It remains to apply Lemma 2 in {.ﬂ. [ ]
If we assume that the random variables are bounded, we can derive a sharper
result :

fig

P(SNS1NS:)=)] P
7

o

——

Theorem 2: Let the following assumptions be satisfied :
(A 2.1) There is an ac R and a be R such that

a=f(x,z)=b Pz—ae. Vzcl+xzB.
(A 2.2) There is a C=0 such that for all =0
P{o|d(I'nw(w). I')=0}=0(e=C5'n) (n—oo).
Then for every e=0 there is a A(e) =0 such that
P {o| (326 Xu(w) with d(z, Xo)=¢) or X ()=} =0( ™).

Proof. The proof follows that of Theorem 1, but in the last step we use Theo-
rem 2 in [10], from which we obtain

a2

P lo |+ 5 (o) ~Eu(2))= — § | =20 "0
and
P qu Z [hi(Zi(w)) —ERy(Z)] -“i“—&l“: Szw @ m
8f
Now we turn to the investigation of the assumptions (A.1.3) and (A.2.2). Often

the constraints of stochastic programming problems are given in the furm
I'=cl {xc@ | F(x)=¢&},

where F' denotes the distribution function of a certain random variable Z, G is a
compact subsget of B? and 0 <&<1. This case occurs, if we consider linear chance
constraints with random right hand sides only.
If we don’t know ¥, we can approximate I" by
Iy(w):=cl {xec@ | Fulz, o) =&}
with the empirical distribution function ¥,. For the accuracy of this approxima-
tion we have Theorem 3. To simplify matters, we claim that @ is a closed cuboid
the edges of which are parallel to the axises of our system of co-ordinates. Fur-

thermore, we assume that all cubes used in the following have this property. By
dia (I') we denote the diameter of the greatest ball that is contained in 1.

Theorem 3: Let dia(I"):=D=0. Assume further that F is absolutely continuous
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and that the distribution density & has the property #(x)=0=0 YxeG. Then
min{d, D} \2p

—2n02

P {w |d(Iu(w), I) =0} =0(e 2V2 " ) for all §=0.

The proof makes use of the following lemma:

Lemma 1: Let B, (1, 00):={o | there exists a (closed) cube M(l) with edge length 1
and @ constant oo such that I'F'u(:r w) —F(z)| =09 Ve M(1)}.

Then P(bn{g 00]) Oe 9”9"]

Proof. G being compact, it can be covered by a finite number of cubes My, ...,
M; with edge length /. We investigate the events {w | |F,(xi, ®) —F(xi)| =00},
where the x; denote the centres of M;. According to Theorem 2 in [10]

P {w | |Fa(@, o) —F(x:)| =00} =270 vic{l, .., k
holds.

Because of |F,(x, m)—F(x)| =0 vzc M(l), we find an ipe{l, .., &k} with
[Fu(z;,, @) —F(z; )| =00. Hence

i o @
P(E.,;(J, 90)) f_g P {m | |F u(@i, o) —F(xi)| = 00} = ke 0. m

Proof. of Theorem 3. Let 4, w and n be fixed and assume that d(1",(w), I =).
We abbreviate [y :=1"y(»w) and F(x):=F,(z, »). By “="" we denote the partial
ordering generated by RE?.

If int I'y= @, we have F,(x) <& Yx€G. Because of our assumptions on I" and §

D D
we find an x;€1" and a cube M1=M1(-—_) with edge length —— such that
2Vp 2)p

D
Micl xi=x Yxc My and d(x;, M;}?;E. Hence

Flx)—F(a1)=p ( 2

2o

):‘J and '_Fn(x)—F(r]}::-g( D_)p
2Vp

Yaxe M}_ ( )
2Yp
Now we turn to the case int [',+@. At first we assume that d(I, I')=

=sup inf d(x, y): =d =¢. Then there exists an z;€ 1", 2,6 ', and an a5 € bd Iy, such
TET YEry,

that |lxy —22]| =d. Furthermore, x; and x have the property that x; = 2. (Because of
the monotonicity of F,, for every 1€ I" the vector xs(21) € I', with minimal distance
to @y is greater than x;.)

Now, as F', is continuous on the left, F',,(x) =& ¥ x =x5. On the other hand, to as

we find a cube MgzM_z(

d
V_) c " and a point x3€ I"with 23=x =2, Yoc Myand
s & b
d(xs, M) =5 Consequently F(x) —F(x3)>p (2 V_)er and, because of F,(x) <= F(xs),
d b} P
(Fate) P =0 (=) vae e (3=).
2 ]/p 2 V;p

1g*
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If d(I"y, I')=sup infd(zx, y):=d, we find an x,€bdl",. x4 I', and an € bd [ such

TEFy yer
that @y =a» and ||, n-:c2||=<?. Obviously Fp(x)=& Va=a. (“>—" means ' =""1in
every component.)
Furthermore, tna’l“efmdacube Mg—Ma( V ) M3 1I'=@,anda pointxz e bdl’
p

withe =x=x3 Yaoc Mgand d(x3, M3)=— G . Consequently there i is a cube MZ;( v_)
P
with F(as) —F(x) =0 (~—6:) Yxe My, hence
2 Vp

o \p 4
Fulx)—F ¥ =0 |—— e Myl —=] .
() —F(x) = F(x3) — F(x) >0 (2 ]Kp) Vae 4(2 ](P)

It remains to apply Lemma 1. m
For discrete distributions we have a similar result:

Proposition 1: Let Z be such that
P{o | Z(w)=z}=py, Fe{1,2,..}; 2}3;:1 .

Asswme further that dia(I')= :D =0 and 0 <o:=min |F(x) —&|.
TERP

Then P {o | d(I'y(w), I') =0} =0(e ~200") for all 0=0.

Proof. We consider an o with d(I"y(w), I') =6 and abbreviate Iy, : = I'n(o) and
Fulx):=Fy(x. o). Ifint ", =7, we have F, () =& Yac. On the other hand F(x) =

D
=&+ Yael' consequently there is a cube My (

) such that
p

| B T = s D
If‘u(I)—f‘[xH--;g Yaoe M, (ﬁ)

Now we turn to case int I7, <+ @. Then there exists either a cube M» ( éf_) with
' \2)p
i)
Mscint ', Moy =@. or a cube M; (21—;_) with MscintI',, MsNI'=@. In the
/p :
first case we have F(x)= 5 hence F(x) =&+, but F,(x)<& vYxc M,: in the second
case Fy(r)=& and F(xr)=& —o Yo Ms.
Application of Lemma 1 yields the desired result. m
Now we consider constraints of the form

[:=cl {xc R? | g(x, 2) =0 for Pz-almost all z}
and

[y(w):=cl {re Rv | g(x, Zi(®)=0,1i=1, .., n}

8]
with a (possibly vector-valued) function g that is measurable with respect to the
second variable.

We restrict ourselves to discrete distributions, because in the case of absolutely
continuous distributions such an approximation would make sense only in special
cases.
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Proposition 2: Let '+ be a compact set and let Z be such that

Jo
Plo | Z(w)=z}=p;=0, j=1,..,jo; Zp;:l .
=
#:dn| max 1—-pj)]
Then P {o | d([u(w), ) =0} =0(  I611oddl ) for all $=0.
Proof. Let » be fixed and d(I",(w), I')=0. Then there exists a z; such that
Ziw)+2z Yie{l, ..., n}. Hence

Jq
Pi{om| d(r,,(w) =6} 1—2 P [w | Zi(w)=+2; Vi€ {l, ..., n}}

ft-lnf !;na: (l—pj)]

—Z’(I —p))"=jo[ max (1—p;)Ju=jo-e It} =
Pt Jell, et

If we are given chance constraints in a more general form than that considered
in Theorem 3, we can use the equation
P {w | gf(x! Z(f’))) =0}= EZ{zIéj(x,z}fo]{Z) s
f1,if 24,
| 0 otherwise,
and approximate the set

Di=cl {xe@ | P {o | §i(x, Z() =0} =&, j=1, ..., q)

where y4(z):=

by

=z 1 * :
Ip(w)=cl {-’C€G | ;g: Z{zwﬂx.z)-;:n}(zi(f'ﬂ)-1’-5}, =1, .., fi: :

In a more general setting, we are given

IM:=cl {xc@ | Egy(x, Z2)=0, j=1, ..., q}
and

wlw): --tll:rFG'l—Zgja',Z;u}) =0, j=1, c]ll

where the g;: RP X Rm -~ R! are supposed to be Pz-as continuous in every point
z€I'+xB and integrable with respect to the second variable. ¢ is compact, but
not necessarily a cuboid.

The application of Proposition 3 to chance constraints will be given elsewhere.

Proposition 3: Let the following assumptions be satisfied :
(P 3.1) int (B(x, ) )= for all balls B(x, 8) with centre xc I and radius o).
(P 3.2) Egy(+, Z) is continuous on int I" and l.s.c. on R?, j=1, ..., q;
(P 3.3) Egs(x, Z)<0 Vacint I, je{, ..., ¢},
(P 3.4) There exists an s=1 such that

E [sup gy(@ Z)|t <= je{l, ... g},

ger

(P 3.5) To every x4 I" there exists a neighbourhood U (x) such that

E| mf)w(r Z)p<e je{1, ..., q}.
Fel(x "

Then P {o | d(I"u(o), ), M) =0}=0nm-1) for all $=0.
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Proof. In the first step we show that P {w | 3xc Mu(w) with d(z, I =6} =

=0(n-+*1) holds. Define I';:=cl {xc@ | Egy(x, Z) =0}. Now,as [ (I3+6B)c
el .0}
< I'+ 0B for sufficiently small 4, to each §=0 there exists a § (depending on

and the form of I") such that d(a, I')=0 implies d(x, I‘}n]-'_:’ﬁ for at least one
j{IE {] T q}
Let =0 be fixed, choose §=4(d) and define
i = (e R | d(x, I) =8 NG .

Egs(-.Z) being ls.c., there exists an «>0 such that Egj(z, Z)=>o YaeC5y,
je{l, ..., q}. To every xcC5; we find a neighbourhood Uj(x) with

E 1E1f gilx, Z) g (slight modification of Lemma 3 in [14]) .
TE }{x]

‘The system Uj(x), x€C; is an open cover of ', hence there exists a finite
cover Uj(x}), ... Us(at,)-
Now, let-  be such that there is an #¢ /[, (w) with d(&, [")=6. To & we find a

J€{l, . such that #€Cj;; and an [e{l, ... k;} with f¢ an(:ri“} and
E inf g (2 Z)>—-
FelU A (Ij") -

. A - 1 A “ - ™

; I:: the following we investigate ;g 75.(Z, Zi(w)). Because of ¢ ',(m),
=Y 9;(% Zi(w)) =0; hence
L=

1 "

- 2 inf g, (z, Zi(m)) =0 .

= zeU, (o)
Summarizing,

P{m| 31’6 [Ma(w) with d(x, ') =6)

q

Z S_' lel —_izﬂ' lnf gi(&. Zi(w))+E inf gyx, Z)= }

| =1 ;L{,j( ;rtj(ri)

It remains to apply Lemma 2 in [3].
Now we turn to the investigation of

S={w | (Jxel with d(x, ') =0) \( sup d(z, [')<d)} .

FClplw)
Let =0 and define
Cly: —{xe[ | d(z, &) =p YEebdl™ .
I" being compact, O is compact. Consequently we find an «s with

sup Egix, Z)<=ap<0  Vie{l, ..., q}.
TeCly
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According to Lemma 3 in [14] to every xc (I, there exists a neighbourhood

U7 p(x) such that
E sup gylz, Z}<.Efirlr JE{L. g}
Tel g(x) 2

The system U 4(x), 2€ Clg, being an open cover of Clg, we can select a finite cover
Up(af), ..., Up(at,).

Let mES Then, dueto (P 3.1), there must bea gpand an £€ ", £4 [ (w) such that
d(&, x)=fo ¥ x€bdl". Consequently IEC’I .1:1(] a,.(:-{“‘r [:rs") for some o€ {1, ..., ky }.

Because of #¢ [",(ew) there exists a jo \nth Z 75,2, Zi()) =0, hence

- g 3 i.'upB gjn(j-_, Zilw)) =0.
xtf"ﬁu(xi:)
On the other hand

E sup g (@ 7)f—=:0

7€l ()
Thus
g Aﬂu n
P(S)=)) P{w |- sup gy, Zio))
=1 El Fcl (—’78“)
B\l
. i} %, |
= sup  gylx, Z)= —, f
. fullg -
FEl ﬂo(:r; )

and we can apply Lemma 2 in [3]. =
If the g(z, z) are bounded, Proposition 3 can be sharpened, making use of
Hoerrping's inequality (Theorem 2 in [10])

Now we shall assume that f is differentiable and I',=1"is given by equality
constraints. In this case we can make use of papers by Cipisov and derive an asym-
ptotic expansion for the density of Vn_ (xn —x0), (20 i8 supposed to be unique.) For
the deseription of necessary differentiability properties we shall use the following
notations:

Let o= (a1, .... ;) be a vector with nonnegative integer components. Then

It}

le| :=e1+ ... + 05,

ali=ey!- ooyl

Po=07 - .. 97 (P R).
For functions w : R/ ~ Rl we define u(®@=wu for |«|=0 and
o lal aul-.—.,.+a

u(it) =

w@(P): = =
( ) (ds\}g :1!91 aﬁjﬂj

u(f#) otherwise.

If % is a mapping into R!, by () we denote the Ve(;tm (u‘f}(t‘}) s u‘f){ﬁ))‘r.
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Now we assume that every program

(PQ) min — 2 flx, Zy) with I'={z|gix)=0,i=1,...,4q}

zer M1

(9 | R? - R, g<p)

has a (random) solution z,. Furthermore, we claim that there exist vectors of
LAGrRANGE multipliers 7, such that (x,, 7,) satify the optimality equations

L™y, na)=0, I=1,..,p+q, P-as.

where

:sl,._.
0=

s L

Li“)(x[w), alm))= Li(z(o), 7t(o), /t{w})

i

1 ap) . ()
=— 5 (2(), Zi(w)) +’=)_;' 7; " (x(w)) * ()

I=1,....,p (m=(011,....9p)), 0z 18 KRONECKER'S delta)
LM(z(w), a(m)) =gr-p(2(®)), Il=p+1, ..,p+q.

A corresponding assumption is to be fulfilled with respect to (P):

-
-
-

L?(a'.u. m)=0, I=1,...,p+q,
where

- q —
L:—l(ﬁ'u, ;To]:[Ef(I-u, Z)]( v +S g; ”(1’-0} " 7T0,j Z:l, ey P,
=1
LYo, 1) =g1-p(®0), l=p+1,....,p+q.

Finally, we introduce the notations 4= (4;)7{:= (2D, ..., @ 74, ..., nq]7=( ) ;

427

Oni= (In), n=0,1, ..., L{mw‘}iz(Lgm(ﬂ})f’:{? ’

q
{=v2,Ef(x, Z)+ 3 = 2.91(x0) * 0,5
j=1

A 7 g1(@0) .. 7 g(ao)
A ?’191(3'0} 0 e 0
< 1 q(o) 0 0

Theorem 4. Let in addition to the assumptions (A 1.1)—(A 1.3) of Theorem 1
. k+1 . . . T

(wtth 8= —T~— keN, k> !) the following assumptions be satisfied :
(A 4.1) Tﬁere exists a neighbourhood U (zo) of xy where the derivatives

] el
e, 2):=
alal

(=)
g7 (x):= o

for Pz-almost all z exist and are continuous.

(x,2) and

gila), i=1,..,¢q 1=|lajs=k+1, k=1,



VoceL, 8.: Stability Results 281

(A 4.2) sup E |fela, Z)¥ 1 <oo, |a|=k+1.
xEU(.ru)

(A 4.3) To every xc I there exists a neighbourhood U (x) such for all xy, x2¢ U (x) and
|| =k +1

[f @z z) —fle) 22, 2)| = Rylz, 2) - |jer —2| ,

g8 (1) —g7(@2)| = Ry(a) - |21 —24| Pz-ae., i=1,..,¢,
k41

and E(Rp(x, Z) 2 ) <o .
(A 4.4) The matrices A and A are non-singular.

(f‘“l’(:r Z)

[, Z)

i

(A 4.5) The a,ectorf(x Z):=
tation of the form

. (@, Z)
flz, Z)=0@) - | - 1),
pilx, Z)

where @ (x) and P(x) are given matrices, and the probability distribution P, of

) with G0 -—{f“’-‘} J=i allows a represen-

(q‘l(il‘o, Z))
satisfies the following condition (D):
yil(xo, Z)
Pu(d)=aWi(d)+ (1 —a) Wo(A), AcBL a=0. with probability measures
Wy and Wy such that for a certuin no=1 the (no-fold) convolution Wi™
has a density function py, () =c < oo.
(A 4.6) The covariance matriz ©y(x0) 2y (x0)" of F;‘){xo, Z) is non-singular.

Then V; (0 —x0) has the property that
k-1

P{o| }/n (xu(em) —x0) € M}_ f [1 +2 n —Qj ] ) dy +o(n _T),
. (n—~eo),
uniformly with respeet to the convexr BorREL subsets M — RBo. The Q; are computable
(@, Z
polynomials, the components of which depend on ®(xq) and the moments of | -
: (q}g o, Z
and @ is the density function of the wnormal distribution with parameters 0 and
A1 (29) XDy (o) (A7)

Proof. We make use of Theorem 1 (of this paper) and the Theorem in [3] and
obtain

— 1
R VR, LI, On -
b1 }n (F’" )A, 2 | (y ],1 t
Here the /;, j=1, ...k, are vectors, the components of which are homogeneous
polynomials of the order j of
1

I—Z[Liﬂg,m) —ELi(do, Z2)]® |a|=j—1, I=1,..,p+q,
n =1
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and (pu)yen is a sequence of random vectors such that for an arbitrary sequence
Un Un

i - W th ]-‘ 1y —=00, — -1, — 00
(lﬂ)ﬂti\‘ wl vﬂ€R Un (V"')k+1 0 (Iugn)f»‘+1

it
P {0 | oa(@)|=vi}=0(n *).

Now

,_Z [ Lo, Z;) —ELy(&, Z)] =

/n i=
72 [F*P(xy, Zi) —EfCDN (29, Z)]@, I=1, ..., p; (a)=1(012, - Opit) ,
1

hence the components of 4; are in particular polynomials of

o 37 [0z, Z0) —E[*@o, Z]@, [l {1, k1],

”i

and — because of (A 4.5) and the uniform integrability of f(@(x, z) with respect to
xe Ulxg) — ]mlynnmia]s ot

1? Z' 'i'?" Xo, Za]"Elj'w(TU ) =1 ;0

Now we can apply Theorem 2 in [2] by putting Sn:— Z y(o, Zi) —Ewp(x0, Z),
and obtain the assertion of our theorem. m Sl

Remarks: 1. Deterministic inequality constraints in the deseription of I' can
be allowed if the strict complementarity condition holds.

2. We use condition (A 4.5), because the probability distribution of f (70, Z) in
general does not satisfy condition (D). However, it is often possible to find a vector
y(xo, Z) that fulfils the sufficient conditions for (D), given in [2], part 8.

3. If the covariance matrix of ff‘-" (20, Z) is singular, we find a linear transforma-
tion T': R?» — R" (ly<p) such that |}/ nT (2, —ay) converges to a random variable
with non-singular normal distribution. Then we can derive an asymptotic expan-

sion for the density of ]f’f?:T(x,,-, —xg).

3. Estimated Parameters

We consider the problems
(P min f(x, y) with [(y)={xe R? | gi(a, y)=0,i=1, ..., q},
rer(y)
where y belongs to a neighbourhood U(s) of 5€ Y. To simplify notations, let Xy:=
= /Y’{?J}.
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Proposition 4: Let the following assumptions be satisfied :

(P 4.1) The multifunction X(-) is u.s.c. (according to HAUSDORFF) in 1.

(P 4.2) There exists a sequence of estimation functions (Y "),y for n) such that for
all =0 and an r=0

Plow || Y#(w)—gl=d}=0(n"T) (n-—o).
Then P {w | 33¢€ X(Y (o)) with d(&, Xo)=¢} =o0(n) for all £=0.

Proof. Let ¢ be fixed and y be such that there is an &< X(y) with d(i, X¢)=e.

Consequently, X(y)d X, +~;—B. Becauze of (P 4.1) we then find a o(g)=0 with
|l —7)|=0. That means

{y | 3d€ K(y) with d(&, Xo)=e}{y | |y —n =0} ,

and the proposition is proved. m

Sufficient conditions for (P 4.2) are given for instance in [2], [3] and [14]. As
for the upper semicontinuity of X(-) compare [1].

There are several stability results in deterministic programming for the case of
twice differentiable f and g; or at least Lipscurrz continuous v 5f (ef. [4], [9], [20]).
The authors mentioned obtain Lirscarrz continuity of Z(+) in a neighbourhood
of 7 and derive (in part) bounds for the LipscHirz constant. In view of our problem
this, however, would not yield much more than a result like Proposition 4, for
in general we don’t have exact bounds for the difference between Y and 4.

Now we turn to the derivation of an asymptotic expansion for the density of
]*’?:(;i:(Y“} —x9). As in part I, we assume that we have equality constraints only,
xy is unique, and for every y¢ ¥ the program (P,) has a solution #(y). Furthermore
we claim that there exists a vector of Lacraxce multipliers #(y) such that
(#(y), 7(y)) satisfies the optimality equations

Li(y, 2(y), #()=0 I=1,.. p+q
where
q
Ly, @i, ;) =Dz, y)+ 3 i@, 9) -5, I=1...,p
i=1
Li(y, x, 7) =g1-p(x, y). l=p+1,..p+q.

Finally we introduce the notations
—(oypra. [T () - -'E"-('*)})__ xo
L(y, #):= (Laly. 97

- & q 5
A:= v, n)+ 3] V29520, m) - 70,5
=1l
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4 V zg1(%0, 1) oV agfglo, 1)
%
A:= v sL(n, Ho) = ?xgl{xi]‘ 7) t:l 0
lgq{za, n 0 .. 0
B:= [ay o f(@o, 1 I]+ZW gil%o, 1 no.:]u ’
B

B:=v,Liy, 6o)= ‘:7;9’1(3-’0, 1)
V;g (20, 1) :

Notations that are not explained here are defined as in part 11. In the following
we shall distinguish between derivatives with respect to #, denoted by the sub-
seript (), and derivatives with respect to y, denoted by (8); («, g) we mean the
vector (o, ..., pig F1s -y Pm)-

Theorem 5: Let the following assumptions be satisfied
(A 5.1) There exists a neighbourhood Ul(xg) X U(n) of (xo, n)) where the derivatives

[« (z, y): (azly(u,(j:;;a fa, y), o B)l=k+1, 8=k,
and
B (2, y): ——QEN gz, y), =, p) =k, i=1,..,q, k=1
o (00)* (9y)B s ' s ’
exist and are LipscHITZ continuous.
(A } A and A are non-singular.
(A 5.3) The random vector ]/n (Yn —q) allows a respresentation

}n(}’ﬂ-—u}_Hn pfb +Z( )ff}{S} (}]_)k@ﬂ’

H

where S R—}_ E W and the Wy are independent identically distributed

" J 1
random wvectors, the distribution of which satisfies condition D) (c.p. 281);

W1 has finite moments of the order k+1, EW1=0, and the covariance
matriz X of Wy is nonsingular. Hy is a matria; the H;(S,) are vectors the
components of which are polynomials; (o )ye v 150 wguence oj random vectors

sueh that for an arbitrury sequence (vy), .y with v, € R', — —o (n=0)
A1
Pl |llon(®)|>va}=0(n ?)
holds.

(A 5.4) The matriz BHXHJBT is non-singular. Then Va (#(Yn) —ao) has the
property that
-1

P {m | ]“i n (E(Y™(w)) —x0) M} = f[l + }_’n ‘Qj(y] dy—i—o(n )
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uniformly with respeet to the convexr BoreL subsets M — Rp. The @; are computable
polynomials the coefficients of which depend on the coefficients of Hy and L8 (v, dy);
@ s the density function of the normal distribution with parameters 0 and
A-'BH XHJBTA™.

As pointed out by Cirisov [2],[3], condition (A 5.3) is fulfilled by a broad class
of estimation functions.

Before we prove the theorem we shall give a lemma.

Lemma 2: Let condition (A 5.3) be satisfied and let (wy,),.n be a sequence with
'?.én

Un€ R, — —co (u=0). Then

k-1

-

P{o| Vain'"[w) —|=up}=0(n =).

Proof. Because of (A 5.3) the assumptions of Theorem 2 in [2] are fulfilled.
Hence

k-1

P{w[V'n Yn( w]—‘q)EM}'—f[l «—En 2@; ] ydy+o(n )

uniformly with respect to all convex sets M ¢ Wm. Taking into consideration that

-1 _J
1 +J,Z'n EQ}(?I]] P(y) dy=o0(n-7)
=1

for arbitrary r& R1, the estimation immediately follows. m

W y—nl=un} [

Proofof Theorem 5. Because of Lemma 2 we can concentrate our investigation
on U(axg) X Ul(n). According to the implicit-function theorem there is a (bounded)
neighbourhood Uy (y) = U() such that for arbitrary y€ Uy(y}) the system L(y, &)=
has a unique solution (2(y), #(y)) and the components of (#(-), #(-)) are k-times
continuously differentiable functions of y. Consequently we have the TAvLOR'S
expansion

i) —zoa= 3] —#0n) (y—m)=+ 2 2 (y®) —2 ()] (v —n)®
1=|aj=k Ja|=
with [[y® —ql| =|ly —nll, I=1, ..., p.
Now let be Y"(w)eUi(n). Then, according to (A 5.3),

Y (& (Y (o) —20)

= M m—l‘“’(?nf" 1(2 - Hy(S w))+r‘0n(w}) +7R (Y (o), ),

l=ja|=k

where rzv—]_-, H(Y ™), 5)=)nk+ 2 = : [rfﬂ(Y“(m )) —&@(n)] (Y™(w)—n)* and
LU lal=k *
(Y W(w))
#@(¥n(w))stands for | ) | Y70 (m) —yi| = Y () —7) .
(Y@ (o)
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Now we rearrange the terms on the right hand side in the following way :

k-1

]’”‘( (YY) —xp) = Z TG (S 0) +T%En(Sus 0n) +T8(Y 7, 1) (=)
i

Here the components of the G; are polynomials again.
We shall show that the summands on the right hand side of (x) satisfy the
assumptions of Theorem 2 in [2]. In the first step we consider (Y ", ). We have

(With r’“y):[dbj ) 9) ]jk o .w)

[2w]., ,=—dw [’”(x( y)]“

dyr 7 Ji-1....,
k=1,..., " m
di; Lo Ajily) aL;
Hence 5 (y)_- ~& A o (#(), y), where the Au(y) denote the algebraic
adjuncts of A(y). Therefore r{")(y, la| =k, can ‘be written as &% (y)=
! #ij(y)

= et AWF T The »;;(y) are sums of products and the factors are partial
f=i (SO A4

derivatives of L up to the order k.
As det A(y) is a continuous function of the elements of A(y) and det A(y)+0,
we find a neighbourhood Us(n) c Uy(5) and a 4=0 such that

(det A(y))** =1 vyecUsly).
Hence, because of the LipscaiTz continuity of the partial derivatives of f and gy,
we find a constant ¢ such that

# y) —&P )| =c lly —nll  VyeUs(n) .

Now, for Yn(w)e Us(n), [|E(Y ™ (w), )| =a }/_r.':""'l [|¥7(ew) —nlt+1. Consequently,
1

fo | 1E(Y (), n)]|>n*}
1
,14(.1:+1,~]

Ciw | Yn(w)g Us(n) U {UJ | V; 1Y () —nl| =
Obviously B 3
{o | Y(@) Uz} {o | Va | Yn(@) —]|>cs Vn}

for a suitable ¢s, thus (Lemma 2)

k-1

P{w | Yr(w)§ Us(n)}=0(n *).

1

nAEFD) L ]

As P [r:) | Vn Y () —5| =— } o(n *? ) too, we have
PR
P {o | 2(YM(w), n)|=n"} =0 % ).
Now we shall show that
1 k-1

P o | [Ea(Sn(®), on(@))|>n*}=0(n ).
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&4(S,. 04) can be written in the following form:

k21
En(ism 015 2 /- "Gj{Sn + ZT“’ e “9?‘“
lvl=
wm—
+ )__,' Tk ) lZ:) Go(8n) 0} .
=y, 0=r
r+{k+1)lvl=4

where the G; and (7, are vectors the components of which are polynomials.
1

We have [o}| =los//"", hence for n=ny and 7,=n"

1 k-1
P {o | |7 Vg u(w)] =5} =P {o | lonlo) ||::-r‘”'}-o[n o
1
a1
Furthermore, P {o | ||t/ %G (Sy(0))| =74} =P {w | ffSn(fU]”>Z—“' 5
4
where 7 denotes the maximal degree of the polynomials G;.
S, can be regarded as a “‘special case” of Jn (¥ —p), thus we can apply Lemma 2
and obtain
, k-1

P {o | [[tF*Gy(Su(e))|>Fa} =0 2).

Finally, {o |||t/ %G (Sn(w)) - on(0)]|=7}{o | [[tF ™G (S ()| =8}
Udw | [ty (w)7| >5,}, hence
—1
P{w| g]t'f‘kGr(Sn(w}) conlw)|| =52l =0(n T}
and
k-1

1
P {w | [En(Sn(®), ou(@))|=n"}=0(n * ).

It remains to apply Theorem 2 in [2]. m
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