
Stability Theory for Difference Approximations
of Mixed Initial Boundary Value Problems. I*

By Heinz-Otto Kreiss

0. Introduction. Consider a first-order hyperbolic system of partial differential

equations

(0.1) du/dt = Adu/dx

with constant coefficients in the quarter space, x ê 0, t 2: 0. Here uix,t)' =

(m(1)(:e, i), • • -, uln)ix, t))** is a vector function of the real variables ix, t), and

A is a constant matrix of order n. Without restriction we can assume that A has

diagonal form. Furthermore we make the

Assumption 1. A is nonsingular. The unknowns uMix, t) are ordered so that A

has the form

/ oi 0   • • ■   0   \ / al+1 0    • • •    0 \

co.2M-(f »„), a'- r.*0;;0  , ¿"= ?..!r.1'.".°.
\ 0 ••• 0     a, / \0      0   -0     a„/

with

(0.3) ax S a2 ^ • ■ • áa,<0< a¡+1 g • • • ^ a„ .

We will study difference methods for solving initial boundary value problems

for (0.1). Therefore we suppose that initial values uix, 0) = fix) and boundary

conditions

(0.4) u\0,t) = Suui0,t)

are given, u1 and u11 are defined according to the partition of A, i.e.

u1 = (wU), • • -, um)', ulL = (w<!+1), • • -, uM)', and *S is a given constant rec-

tangular matrix.

It is well known that the above problem is correctly posed in L2 (see for ex-

ample Thomée [4]). The present treatment of the case when A is a constant matrix

can be extended, as in [1], to the case when A depends on (x, t) in a sufficiently

smooth fashion.

In the earlier paper [1], we considered the case when the coefficient matrices

of the difference schemes were diagonal. The same class of problems has also been

treated in an interesting paper by Osher [2]. The assumption of diagonality would
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704 HEINZ-OTTO   KREISS

be adequate for practical purposes, if we were interested only in the one-dimen-

sional case. In a forthcoming paper we will consider approximations for hermitian

systems of partial differential equations

m

du/dt = Adu/dXx + '¿YlBjdu/dXj = Pid/dx)u

with constant coefficients in the quarter space xx ^ 0, — =° < x¡ < oo, j =

2, 3, • • ', m; t ¡i 0. Fourier transformation of the difference approximation with

respect to the "tangential-variables" x2, ■ ■ ■, xm will lead us to difference equa-

tions of the kind discussed in this paper, where the coefficient matrices depend on

m — 1 parameters £2, •••,&» and are nondiagonal matrices. We will establish the

stability of such difference schemes by making all our estimates uniform with

respect to £2, • • •, £m.

1. Statement of Results. We want to solve the initial boundary value problem

by using a difference approximation. We therefore introduce a time-step fc > 0

and a mesh-width h > 0 and divide the x-axis into intervals of length h. As usual

we assume that k/h = X = const. Using the notation x, = vh, t»,(i) = vix„ t),

we approximate the differential equation for x > 0 by a consistent difference

scheme

(1.1) vYt + k) = Qv,it) ,       v=1)2>...t

v,(0) = f,,

where

(1.2) Q= E Ai&,       Ev, = v,+x,

and the A¡ are constant matrices of order n.

For convenience only we make

Assumption 2. p Sï 1 and Av, Ar are nonsingular.

Let

(1.3) Ott) =  £ AjY*,       ¿real,
i— r

denote the symbol (or amplification matrix) of Q. We now require that Q(£) satis-

fies the following two assumptions :

Assumption 3. There exist a constant 8 > 0 and a natural number 2s > 0

such that for all £ with 0 ^ |f| ¿ w the eigenvalues ¿t(£) of Qtt) satisfy the estimate

(1.4) Utt)| ál-5|f|2-,

i.e. the approximation is dissipative.

Assumption 4. |<2tt)| á 1.

Assumption 4 guarantees that if the scheme (1.1) were used to solve the pure

initial-value problem (i.e. for —oo <y<-|-a>) then the scheme would be stable.

Stability for the pure initial value problem is obviously a necessary condition for

the stability of the mixed problem. Assumption 3 is introduced to make sure that

high frequencies (i.e. £ bounded away from zero) have no influence.
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From the nature of Q, defined by (1.2), we see that the solution of (1.1) can

be carried out only if we specify boundary conditions to eliminate the values of

vv at v = 0, — 1, • • -, — r + 1. These shall be of the type

(1.5) ^(0 = 1^,(0,       í» = 0, -1, •••,-r+l,

where the C3-„ are constant square matrices of order n.

Our aim is to derive algebraic stability conditions. Let us denote by H the

space of all grid-functions w„ defined for v > — r, which fulfill the boundary con-

ditions (1.5) and for which

00

Yl \w,\zh < » .
,=x

H is a Hubert space if norm and scalar product are defined by

oo

iu, v)h = X) u,*v,h ,        \\u\\Y = (w, u)h.

(Observe that u G H, \\u\\h = 0 implies that 0 = «_r+i = u-r+2 = • ■ ■ = u0 =

Mi • • ••) Stability is defined in the usual way:

Definition 1. The difference approximation is stable if there is a constant K,

independent of k, such that

||»(OII»á*ll»(o)||»
for all t = mk and all initial values vix, 0) in H.

We may write the difference approximation in operator form

(1.6) vit + k) = ®vit) ,       vit), vit+ k) EH,

where © is a bounded operator in H defined by (1.1) and (1.2). It is now easy to

derive a necessary stability condition :

Lemma 1. A necessary condition for stability is that © has no eigenvalues zo with

\zo\ > 1.

Proof. Assume that © has an eigenvalue z0 with \z0\ > 1, i.e. there is a g G H

with

(1.7) z0g = &g,       g EH.

Then zo"kg is a solution of (1.6) with initial values belonging to H and which in-

creases exponentially with the number of time-steps.

Our sufficient conditions for stability will be stated in terms of the eigenvalues

and (generalized) eigenvectors of @. We therefore have to understand how one

determines the eigenvalues and eigenfunctions of ©. We start with

Lemma 2. Consider the igeneralized) matrix eigenvalue problem

p
23 A Y4> = z$ ,

and let Assumption 3 be fulfilled. Then for every z with \z\ ^ 1, z ¿¿ 1 there are pre-

cisely rn eigenvalues k¡ with \k/\ < 1 and np eigenvalues with \k¡\ > 1, i.e. there are

no eigenvalues with \k,-\ = 1.
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706 HEINZ-OTTO   KREISS

Proof. The eigenvalues are the solutions of the characteristic equation

(1.8) Det E AY - zl = 0.

If k = e!{ 7e- 1 then E¿_r Ajkj = Q(£) and by Assumption 3 the eigenvalues /*(£)

of Qtt) cannot be equal to z, with \z\ 2: 1. By consistency / w__, 4 y = /, and

therefore k = 1 is ruled out for z ^ 1. Since the eigenvalues are continuous func-

tions of z, wre can determine the number of eigenvalues k¡ with |«y| < 1 by con-

sidering large values of \z\. For \z\ —> °o these eigenvalues converge to zero and

therefore the leading term of E Aj*' is A-ricr. By assumption, A-r is nonsingular

and the lemma follows without difficulties.

Let zo with |z0| =1, 2o ^ 1 be a fixed value. We want to determine whether

(1.7) has a corresponding eigensolution g G H- Equation (1.7) is equivalent to

(1.9) (Q - z0)gr = 0,       v = 1, 2, ■ ■ ■ ,

8

(1.10) 0M = E C-rfy,       M = 0, -1, ...,-r+l.
y=i

Equation (1.9) is an ordinary difference equation with constant coefficients and

its most general solution in H can be written in the form :

(1.11) g, = g,(z0) =  ,E   P&W -    Z   P,0-,*o)(«y(*o))'.
I«yl<l l«yl<l

Here k3- are the solution of (1.8) with |#cy| < 1 and Pjiv) are polynomials in v with

vector coefficients. The degree of Pjiv) is one less than the multiplicity of the cor-

responding kj. There are precisely nr such linearly independent solutions, thus (1.11)

depends on nr parameters try, j — 1, 2, • • -, nr. (This is obvious if all k¡ are differ-

ent. Then g„ = E cjPjKj" where P¡ are constant vectors. In the same way as in

the scalar case the general formula (1.11) can then be obtained by a continuity

argument.)

Inserting (1.11) into the boundary conditions (1.10) we get a system of nr

linear homogeneous equations in the nr parameters cry which we may write as

U.12) Eiz0)o- = 0 , o- = io-x, ■ • -, crnr)' ,

where Eiz0) is a matrix of order nr. This gives us

Lemma 3. zo with \zo\ 3» 1, z» ^ 1 is an eigenvalue of © if and only if

Det Eizo) = 0.

Now consider (1.11) for z0 —* 1. The general solution given by (1.11) converges

to a solution

(1.13) *(l)-2>iM)(«itt))'
which again depends on nr parameters a¡. However, in general, <7„(1) does not

belong to H because (as we shall show) there are precisely I indices j with

Ky(l) = 1. Inserting (1.13) into the boundary conditions (1.10) the parameters cry

are determined by a linear system of equations :

(1.12') Eil)<r = 0 .

This leads us to
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Definition 2. zo = 1 is a generalized eigenvalue of © if (1.12') has a nontrivial

solution, i.e. if Det i?(l) = 0. The corresponding solution (1.13) is called a gen-

eralized eigenfunction.

We can now formulate our

Main Theorem (Theorem 0). The approximation to the initial boundary value

problem is stable if

(1) the Assumptions 1-4 are fulfilled.

(2) Zo = 1 is not a generalized eigenvalue of ©.

(3) © has no eigenvalue z0 with |zo| ^ 1,  zo 7a 1.

A proof of this theorem is given in Section 3.

Remark. In [1] we have treated the case that the A¡ are diagonal matrices. In

that case the above conditions are equivalent with those assumed there. For ex-

amples, we refer to [1].

Conditions (1) and (2) of the Main Theorem are relatively easy to check by

analytic methods. To decide whether (3) is also satisfied requires further study.

We shall show that if z0 = 1 is not a generalized eigenvalue of ®, then there is a

constant p > 0 such that © has no eigenvalues z0 with |z0 — 1| ^ p and |z0[ è 1.

However it is often very difficult to find out by anatytic methods whether a value

of z, bounded away from 1, is an eigenvalue or not. To decide this matter, we con-

sider the following reduced problem:

(1.14) u,it + k) = Qu,it) ,       v= 1, 2, —,2V — 1,

with boundary conditions

(1.15) m„(í) = E CjtUjit) ,       ix = 0, -1, ••■, -r + 1,

(1.16) UN it)   =  UN+xit)   =   • • •   = UN+p-xit)   = 0 ,

with N some sufficiently large natural number.

We write this scheme as an operator equation :

uQ, + k) = ®Nuit)

where ©^ is a matrix of order niN — 1). We shall prove the following theorem:

Theorem 2. For every p > 0 there exist constants e > 0; K, > 0', j' = 1, 2; and

t with 0 < t < 1 all independent of h such that:

(1) // © has no eigenvalue with \z\ ^ 1, \z — 1| 2: p then ®n has no eigenvalue

for \z\ ^ 1 — e,   \z — 1[ è p provided N 2: Kx (log (1 — r)|.

(2) If © has an eigenvalue za of multiplicity p with |z0[ ^ 1 — e, |zo — 1| = p

then ®n has an eigenvalue Xn with \\n — zo\ á K2rNlp.

A proof of Theorem 2 is given in Section 4.

With the help of Theorem 2, one can detect eigenvalues of © by computing

the eigenvalues of ©^ for an increasing sequence of values of N. If any eigenvalue

Ajv of ©at converges to a value z0 with |z0| S: 1, z0 ^ 1 then z0 is an eigenvalue of ©.

2. The Resolvent of @. It is well known (see for example Kato [3]) that we

can write the solution of (1.6) in the form:

(2.1) vit) = - ^-.(t>zni® - zIY^zviO) ,        t = nk,
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where r is any contour (for example \z\ = |@| + 1) which includes the spectrum

of © in its interior. We are therefore going to study (© — zl)~\ the resolvent of

©. Let us explicitly compute

/ = (© - zI)-\

wThich is equivalent to finding the solution of

(2.2) iQ - zl)f, = vr,       v = 1, 2, • • • ,

(2.3) / G H ,

i.e. / fulfills the boundary conditions (1.5).

By using Assumption 2, we write (2.2) as

_i (P~x \

fv+p  = Ar       I    ¿_t   Ajfy+j Zfy V, J .

Upon introducing the vector

2/v  ==   \J'+P— l,f"+P— 2)   ' ' '   ,Ji—r)

we get a one-step formula

(2.4) yv+x = My, + gy,       v = 1,2, 3, • • • ,

where

/ vv

0
AY   Ap-x  ■ ■ ■ AY   iA0- zl)  ■■• AY1 A
-I   0       •      • -0

M =        |0        -/   0      •        • -0 \,q. = Ap

0     •     •    •     • o  -1 *       / \o

Furthermore the boundary conditions (2.3) can be written as nr linear relations

between the components of ylt • • •, ys+x and we write them formally as

(2.5) LjV = 0,      j = 1,2, ■■■,rn.

The eigenvalues k determined by the characteristic equation (1.8) are also the

eigenvalues of M and the eigenvectors of M have the form Íkj>+t~1(¡>, Kv+r~2<t>, • ■ ■ ,<j>)'

where <j> is a solution of

(2.6) E^;Ky4> = 2</>-

The eigenvalues k, = Ky(z) of M are functions of z. For |z| 2r 1, 2^ 1 they form

by Lemma 2 two separate sets: Sx, S2, where Sx contains the k¡ with \k¡\ < 1 and

S2 the kj with \k¡\ > 1. Therefore we may use the following well-known lemma

(see Kato [3, Chapter 2]).

Lemma 4. There exist a nonsingular matrix T = Tiz) which is analytic in z for

\z\ 2t 1,  z 7e 1 such that

(2.7) Tiz)MT~\z) = (*»       5j.

Here Mxx is of order nr and has eigenvalues |k3| < 1 and M22 is of order np and has

eigenvalues |*y| > 1.
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Introduce now in (2.4)

(2.8) w, = T(z)y,

as a new variable. Then we get

(2.9) w,+x = (¿f11       °Mi)w, + Tg,

and its general solution w„ with | \w\ \u < °° is given by

w/ = E MiY-YTg/)1 + MiYwx1,
(2.10) tel m j = 1, 2, 3, • • • .

wY = - Ë arà^r*)",
F—J

to1, in11 are defined according to the partition of TMT~\

By introducing (2.8) into the boundary conditions (1.5) and eliminating w3J,

j = 2,3, ■ ■ -, s, with help of (2.10) we get

(2.11) Cxiz)wx1 = E F,(z)v>jn + G,iz)g,-.

Here Ci(z), Fjiz), C7y(z) are analytic for |z| 2: 1, 2 ^ 1. By using the representa-

tion (2.8)-(2.11) of (© - zIY1 we will establish

Lemma 5. Let 3Î denote the set of complex numbers z with \z\ 2: 1, z 7e 1. If

zo G 9Î and z0 is not an eigenvalue of ©, then (© — z0/)_I exists in all of H and is

bounded.

Proof. If CxizoY1 exists, then w is uniquely determined by (2.10) and (2.11)

and by Lemma 4 the resolvent (© — zoIY1 exists in all of H and is bounded. If

Ci(zo)-1 does not exist then the set of equations Cxizo)wxI = 0 has a nontrivial

solution Mi/ and

Wj    = 0 ,       Wj  = M'xxWx ,

is a solution of (2.10) with Tg = 0. Therefore the homogeneous equation (2.9) has

a nontrivial solution which by Lemma 4 defines a solution of the homogeneous

equations (2.2), (2.3), and z0 is an eigenvalue of ©. From Lemma 5 we get im-

mediately

Lemma 6. Assume that © has no eigenvalue z G 9?; then for any constant p > 0

there exists an e > 0 such that |(@ — zl)~l\ is uniformly bounded for \z\ 2; 1 — e,

\z - 1| 2: p.
Proof. If (® — Zo/)-1 exists and is bounded then (@ — zl)~l exists and is

bounded in a whole neighborhood of z0.

3. Proof of the Main Theorem. We start with a variant of Lemma 4.

Lemma 7. There exist a p > 0 and a nonsingular matrix Tiz) which is analytic

for \z — 1| ^ p such that

(3.1) Tiz)MT-\z) = (jf¿       °m;)

where the M¡i have, for \z\ > 1, the properties of the Ma of Lemma 4.
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Proof. As we know, the eigenvalues k of M are the solutions of the eigenvalue

problem

p
(3.2) E AJ¿<t> = z<¡>.

y=_r

Consistency implies that this equation can be written in the form

(3.3) (KA (K - 1) + (k - 1)2DHk - l)))c6 = (z - 1)0 ,       X = k/h ,

where D is a rational function in (k — 1) with matrix coefficients. Therefore there are

precisely n eigenvalues k¡ with lim kj = 1 for z —> 1. Introduce a new variable p. =

(k - l)/(z - 1). Then (3.3) becomes

i\Aß + Yiz - 1)Z>(p(z - 1)))* = <t>

which implies that the eigenvalues of the last equation are

(3.4) w = (Xay)-1 + OHz- 1)1/B)

and therefore

(3.5) k, = 1 + iz - Dm/ = 1 + (2 - D(Xay)"1 + OÜZ- 1)1+1/") .

Observing that (Xay)-1 < 0 for j = 1, 2, • • -, I we get for z = 1 + 5, 5 > 0 and

sufficiently small, that

(3.6a) |(ty| < 1    forj = 1,2, ••-,/

and correspondingly

(3.6b) |/cy| > 1    for.;' = I + 1, • • -, n .

By Lemma 2 these inequalities hold for all z with |z| > 1.

Now, consider M in a neighborhood of z = 1. There is certainly an analytic

transformation l\iz) which transforms M into

(Mxx       0 0    \

Txiz)MTxizY1 = (0 MM       0      I,
V0 0 M33/

where the eigenvalues of Mxx (AÍ33) are strictly smaller (larger) than 1 in absolute

value; M22 is of order n and all its eigenvalues converge to 1 for z —> 1, i.e. they

are given by (3.5). Furthermore ^22(1) = / because for z = 1 and k = 1 the Eq.

(3.2) has n linearly independent eigenvectors. (Observe that consistency implies

that E Aj = /.) Therefore we can write the eigenvalue problem for M22 in the

form

(3.7)    M22-4> = rf, with m = (k - l)/(z - 1) ,       M22 = (Af2S - 7)/(z - 1)

and the eigenvalues of M22 are given by (3.4). These eigenvalues therefore split

into two separate groups : {/»ywithj = 1,2, • • -, 1} and jpy withj = I -\- 1, • ■ -, nj.

Hence there exists in a neighborhood of z = 1 an analytic transformation T2 which

transforms .M22 into block diagonal form and which separates these two sets.

Since Mxx is of order a = nr — I and M33 is of order b = np — n + I, we define
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h 0 0 \
Tz = I 0 T2       0   I ,

\o      0       /»/

where /„ is a unit matrix of order a. We now set T = TzTx and observe that the

proof is complete.

Assume that © has no eigenvalue for \z\ 2^ 1, z ^ 1 then by Lemma 6 we get

the solution of the difference equation in the form

vit) = ©ny(0) = - ~ f       zn(@ - zl)~\i0)dz

if we choose the contour as shown in the following figure :

«1=1-,

U\ =1

z- 1|   =P

FlGUEE 1

Again by Lemma 6 there exists a constant K (depending on p only), such that

~ f  zn(® - zIYxviO)dz
¿m J r,

^x(i-6)"IK0)||*.

Therefore we have only to estimate the integral over T2. Consider now initial

values which are different from zero only in a finite number of points near the

boundary, i.e. there is a natural number q such that

(3.8) |y„(0)| =0   îorv> q.

By Lemma 7 we can use the representation of (® — zl)~l derived in the preceding

section in a neighborhood of z = 1. We find

y-i

wY = - E MÍY-\Tgy)n   for i S q ,

w/ = E MÍY-'iTg,)1 + MÍYwx1 ,   3=1, 2,

(3.9)
ii

v=q

wf~ = 0    for j > q ,

where Wx1 is determined by the boundary conditions (2.11) when Ci(z) has an in-

verse. Assume now that z = 1 is not a generalized eigenvalue of ©. Then Ci(z)-1

exists in a neighborhood of z = 1. Therefore for every fixed j: ((© — z/)~1i'(0))y

is analytic in a neighborhood of z = 1. This is so because the representation (3.8)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



712 HEINZ-OTTO  KREISS

consists, for every fixed j, of only a finite number of terms and all functions and

transformations are analytic. Therefore we get (see Fig. 1)

/   z"((® - zIY'viOYjdzl =   f  z"((® - zIY\iO)jdz

9-1

= const (1 - e)n E k»(0)| .
r-=l

For initial values satisfying (3.8) we get the estimate

(3.10) MOI ̂  KYI - e)n E k(0)l ,        í = n* ,
r=i

i.e. the solution decreases exponentially near the boundary.

It should be pointed out that the estimate (3.10) does not depend on Assump-

tion 4. We have therefore proved

Theorem 1. // the Assumptions 1—3 are. fulfilled, then the estimate (3.10) holds

for all initial values of type (3.8).

In Theorem 3 of [1],* we have shown that a difference scheme, which

(a) has the property described in Theorem 1 (i.e. estimate (3.10) holds for

special initial value problems) and which

(b) also satisfies Assumption 4, must be stable for the initial boundary value

problem given in (1.1), (1.2) and (1.5).

This completes the proof of the Main Theorem.

In a later paper we shall generalize the above theorem of [1] by weakening As-

sumption 4. This enables us to get more general stability theorems for the initial

boundary value problem.

4. Proof of Theorem 2. We start with

Lemma 8. Consider the difference approximation (1.5) with boundary conditions

i>„(<)=0,       p = 0, -1, •••, -r+ 1,

and assume that the Assumptions 1-4 are fulfilled. Then for every p > 0 there exists

an e > 0 such that the corresponding operator @i has no eigenvalue z with \z\ 2: 1 — e,

\z - 1| > P-

Proof. Assume there is an eigenvalue z with \z\ 2: 1, z ¿¿ 1 and denote by g

the corresponding eigenfunction. Consider now the Cauchy problem for (1.1) with

initial values

^»(0) = ¡7,    forv > 0 ,

= 0     for v = 0 .

Let vo denote the smallest index for which g„ ?¿ 0, i.e.

g, = 0   for v < v0,        gy„ 9¿ 0 .

By remembering that Ap~~l exists, we find, vo á P- Compute now one step of the

Cauchy problem, then there is certainly a vvik) t± 0 for v ^ 0. Therefore, we get

from Assumption 4 and the observation that vvQx) = zgv for v = 1, 2, • • • the

inequality

* See also Osher's [2] abstract version of the theorem in [1].
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N2NI*2< E k(A)|2Ä^ E \vio)\2h = \\g\Y,

which is impossible. Therefore there is no eigenvalue z with \z\ 2: 1, z ¿¿ 1. By the

same argument as in Lemma 6 we get the above lemma.

Now we can prove the first part of Theorem 2: Assume that ©jv has an eigen-

value z with [z| 2r 1 — e,  \z — 1| _ p and let n be the corresponding eigenfunction :

©JVM = ZU .

This equation is equivalent with (see (2.4))

y,+x = My,,       v = 1, 2, ---,2V — 1,

where y has to fulfill boundary conditions corresponding to (1.15) and (1.16). Upon

introducing again the variable w = Ty, we get

(4.1) ^+1 = (o*n       jj* v=l,2,..;N-l,

with boundary conditions of the form

Ci^Wi1

(4.2)
C2iz)WlN-X

The general solution of (4.1) is

/.   o\ I TIT»—1        ! H Tl/T»—W+l     II
(4.3) tí,     =   Mu   M>1     , 10»        =   M22 «%-l  •

If e > 0 is sufficiently small, then the absolute value of the eigenvalues of Mxx are

strictly smaller than one and those of M22 are strictly larger than one. Further-

more, by assumption Ci_1(z) exists and from Lemma 8 it follows that C^iz) exists

as well. If we insert (4.3) into the boundary conditions (4.2) then we can derive

homogeneous systems of linear equations for Wx1, Wn-x which are nonsingular for

sufficiently large N. Therefore the first part of the theorem follows without diffi-

culties.

Let us now prove the second part: Assume that © has an eigenvalue z0 with

|zo| 2: 1 — e and let y be a corresponding eigenfunction: i.e. @y = z0v.

This equation is equivalent with y,+x = My, which after transformation can

be written as

w,1 = M'xYwx1,       w,11 = 0 ,        C1iz0)w1I = 0 ,       v = 1,2, ■■■ .

The eigenvalues k, of Mxx fulfill the inequality \k¡\ = r < 1. Therefore the

eigenfunction v, decreases exponentially with v and we can find a constant dx such

that

(4.4) (®* - z0I)vm = fm with \fm\ S dxTN\vw\ .

Here vw) is the function which we get from v by setting v, = 0 for v =

N, N + 1, ■ • •. Assume now that ®N — zl is nonsingular for \z — z0\ ^ 0- and that

® has no other eigenvalue than z0 in this neighborhood. Then ¡Ci_I(z)| 2= d2o-~p:

for \z — zo\  = <r. Here p is the multiplicity of the root z0 of Det Ci(z) = 0 which

= Ef>",

= C7wjv-i •
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is equal to the multiplicity of the eigenvalue. Furthermore, by Lemma 9, C?2_l(z)

exists and the eigenvalues of M22 are strictly larger than 1 in absolute value.

Therefore

I i®N - zl)-l\ ^ d3o--p   for |z - Zo| = <r .

This gives

[ i®N - zo/rxi J_(£ (®£
2wi JU-Z„U,       z

-ziy

and by (4.4)

z — Zo

r   ifi   x    ,   ,    -p      N    1   N\
\v I è dxdio-   -T  -\v I ,

dz Ú dzr~pl?,(T

i.e. a   S   idxdz)llp-TN'p   =   k2tNIp.  Therefore  ®jv has  an  eigenvalue  Xjv with

|Xjv — 2o| á K2TNlp. This proves the theorem.
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