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STABILITY THEORY FOR FUNCTIONAL
DIFFERENTIAL EQUATIONS

BY
T. A. BURTON

Abstract. We consider a system of functional differential equations x'{t) =
W(t,x(-)), together with a Liapunov functional ^(t, x(-)) with T < 0.
Most classical results require that 9 be bounded for x(-) bounded and that
9 depend on x(s) only for t — a(t) < s < t where a is a bounded function
in order to obtain stability properties. We show that if there is a function
H(t, x) whose derivative along x'(t) = 9(t, *(■)) >s bounded above, then
those requirements can be eliminated. The derivative of H may take both
positive and negative values. This extends the classical theorem on uniform
asymptotic stability, gives new results on asymptotic stability for unbounded
delays and unbounded 9, and it improves the standard results on the
location of limit sets for ordinary differential equations.

1. Introduction. In this section we describe our results and their relation to
results of previous investigators. Definitions and background may be found in
the next section. Throughout the paper, functionals will be denoted by script
letters and functions by italic and Greek letters.

We consider a system of functional differential equations

x'(t) = <S(t, x(s); a <s < t),       0 < t < oo, (1)

where 'S is a continuous functional defined and taking values in R " whenever
/ G [0, oo) and x is a continuous function with x: [a, oo) -» 7?". Our notation
follows that of Driver [4, pp. 403-426]. If a = — oo, then it is understood that
x: (-oo, t]^R".

The results concern behavior of solutions of (1) when there is a Liapunov
functional T(r, x(t)) whose derivative along solutions of (1) is nonpositive.
Most of the classical results on asymptotic stability require that *S(t, x(-)) be
bounded for x bounded and that S depend on x(s) only for t — a(t) < s < t
with a(t) bounded.

In this paper we show that if there is a function (not a functional) 77(f, x)
which is only mildly dependent on / with H'(X)(t, x) bounded above for x(-)
bounded, then the bounds on 'S and a(t) can be eliminated. As we allow 77'

Received by the editors December 15, 1977 and, in revised form, September 11, 1978.
AMS (MOS) subject classifications (1970). Primary 34K20, 34D20.
Key words and phrases. Stability, Liapunov functions, ordinary differential equations, delay

equations.
© 1979 American Mathematical Society
0002-9947/79/0000-0511/S04.25

263

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



264 T. A. BURTON

to be both positive and negative, we do not ask for two Liapunov functions in
the sense that previous authors have.

Theorem 1 yields the classical asymptotic stability result of Marachkov for
ordinary differential equations as a corollary.

Theorem 2 deals with (1) in its general form; however, when restricted to
an ODE it generalizes that class of results typified by Theorem 1 of La Salle
[10, p. 60], and Theorem 14.1 of Yoshizawa [12, p. 60] (or Theorem 5 of [13, p.
382]) which we paraphrase as follows:

Theorem 0. Let V(t, x) be a differentiable scalar function which is nonnega-
tive and which satisfies V'(t, x) < - W(x) < 0 along solutions of x' = P(t, x).
If \P(t, x)\ is bounded for \x\ bounded, then each bounded solution approaches
E= [x\W(x) = 0}.

Theorem 3 is a generalization of the classical result of Yoshizawa on
uniform asymptotic stability of a system of functional differential equations
x'(t)=§(t,x,).

In order to conserve space and simplify notation, Theorems 1 and 2 are
stated in terms of the whole space. There is no difficulty in restricting the
hypotheses to a subset G and concluding that solutions remaining in G have
the specified properties. Likewise, we ask 'V > 0; however, one may ask °V
bounded from below for x(-) bounded. The results and hypotheses are
identical for bounded solutions.

2. Definitions, assumptions, and setting. Following the convention and
notation of Driver [4, p. 403], a functional

%(r, x(s); a <s < t),       0 < t < oo,

will be called:
(a) continuous in t and x if %(r, x(-)) is a continuous function of t for

0 < t < oo whenever x: [a, oo) —» 7?" is continuous,
(b) locally Lipschitz in x if for every T > 0 and every compact set D c R"

there exists a constant LTD with

\%(t,x(-)) - %(/,y(-))\ < LT¡D\\x - y\\[a'']

whenever t G [0, T] and x,y: [a, T] -> D.
Here, if u G R", then |«j = max,|«,| and if \p: [a, b] -» R", then

\\nla-b] = suP \a,)\.
a<,s<b

When 'S is continuous and locally Lipschitz, if t0 > 0 and if </>: [a, t0] -» R"
is continuous, then there is a solution x(t, tQ, <b) of (1) on an interval [t0, ß)
with x(t, t0, <b) = <b(t) for a < t < t0. (<j> is called the initial function.) This
solution can be continued to an interval [a, T) with T = oo or
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STABILITY THEORY FOR DIFFERENTIAL EQUATIONS 265

lim \x(t, íq, 4>)\ = oo

(cf. Driver [4, p. 408]).
Assumption A. Throughout this paper we assume 'S smooth enough that a

solution exists for each continuous initial condition and that if it remains
bounded it can be continued to oo.

Equation (1) includes delay equations

x'(t) = F(t,x(t),x(t-r(t))) (2)
with 0 < r(t) < / and r(t) continuous; it includes functional differential
equations

x'(t) = @(t, xt) (3)
where x, is the segment of x(s) foTt — h<s<t shifted back to [ — h, 0] as
developed by Yoshizawa [12, pp. 183-213]; and it includes ordinary differen-
tial equations

x'(t) = P(t, x(t)). (4)
Assumption A holds for (2) and (4) if F and P are continuous. It holds for

(3) if @ takes bounded sets into bounded sets and § is continuous.
Our work is based on the assumption that there exists a continuous scalar

functional
T(r, x(s); a <s <t),       0 < t < oo, (5)

which is defined and continuous for 0 < t < oo whenever x is a continuous
function with x: [a, t) -* R" and which is locally Lipschitz in x.

The derivative of T along a solution ip(t) of (1) is defined by Driver [4, p.
414] as

V(i)(i,»rT)) =  hm -t--
A/->0 a'

where

w.) _(*<*) fora<s<t,
rw      \tf/(i) + S(t, xp(-))(s - t)    fort<s<t+At.

For more details regarding existence, uniqueness, and implications of this
limit see Driver [4, pp. 414-415], Hale [7, p. 105], and Yoshizawa [12, pp.
186-187]. In many concrete problems ^'^ is a simple application of the chain
rule.

We suppose that

%} (t, x(-)) < 0   and    ^(t, x(-)) > 0. (6)

If CV satisfies these conditions it is called a Liapunov functional.
Summaries of results on existence and stability are found in [4], [5], [7, pp.

105-140], and [12, pp. 183-213]. The reader is especially referred to [4, p. 415,
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266 T. A. BURTON

Theorem 4] for one of the few existing asymptotic stability results for
unbounded delays.

When S(t, 0) = 0, then x(t) = 0 is a solution of (1). The following terms
are then used with some frequency.

The solution x(t) = 0 of (1) is:
(a) stable if for each t0 > 0 and each e > 0 there exists 8 = 8(e, t0) > 0

such that if <j> is a continuous initial function with [|<í>||[a''0, < 8, then
\x(t, t0, <j>)\ < e for t > t0,

(b) uniformly stable if 8 = 8(e),
(c) asymptotically stable if it is stable and if there exists S, = 8x(t0) > 0 such

that if \\<b\\[a''o] < 8X, then x(t, t0, <b) -h> 0 as t -h> oo.
(d) uniformly asymptotically stable (UAS) if it is uniformly stable, if 5, is

independent of t0, and if for every tj > 0 there exists T(-n) > 0 such that for
t0 > 0 and ||^||la>'01 < 5„ then |x(r, t0, <b)\ < 17 when t > t0 + T(i)).

Throughout the remainder of the paper we use continuous functions, called
wedges,

Wr. [0, 00) ->[0, 00) (7)

with W¡(0) = 0, W¡(s) > 0 if s > 0, and W¡ strictly increasing.
A function U: [0, 00) X G -* [0, 00), with G c R", is called
(a) positive definite if U(t, 0) = 0 and if there is a wedge Wx with U(t, x) >

Wx(\x\).
(b) decrescent if there is a wedge W2 with U(t, x) < Jf^fl*!)-
(c) negative definite if — U(t, x) is positive definite.
The literature is not uniform concerning definite properties of functionals,

particularly when the delay is unbounded. The conflict mainly concerns the
requirement on ^f(X)(t, x(-)). Driver defines ^'^(r, x(-)) to be negative definite
if there is a wedge W3 with ^{^(t, x(-)) < — W3(|x(/)|). Such a condition is
frequently satisfied in examples, but then much additional work and addi-
tional assumptions are normally needed to conclude stability properties.
Other authors ask a variant of ^(t, x(-)) < - W4(\\x\\['~h',x) for some
h > 0. Such a requirement is often satisfied in converse theorems, and it does
easily imply stability properties. However, it is seldom realized in concrete
problems.

3. Limit sets and stability. In our first result we suppose that there is a
differentiable function

H:R"-+(-00, 00) (8)

and a continuous function K: [0, 00) —* [0, 00) with

grad/7(x(r)) • &(t, x(s); a < s < t) < K(M ) (9)
for a < s < / whenever x is a continuous function satisfying |x(j)| < M.
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STABILITY THEORY FOR DIFFERENTIAL EQUATIONS 267

Theorem 1. Let T be a functional satisfying (6) with %)(i, x) <
— W4(|x(f)|) and suppose there is a function H satisfying (8) and (9). Then each
solution x(t) of (I) bounded on [t0, oo) satisfies H(x(t)) —» 77(0) as t —» oo.

Proof. Notice first that the new function 77(x) - 77(0) also satisfies (8)
and (9). Thus, we suppose 77(0) = 0. If the theorem is false, then there is a
solution x(t) of (1) on [i0, oo) with \x(t)\ < M for some M > 0, an e > 0, and
a sequence {Tn} tending to infinity with |77(x(r„)) — 77(0)| > e. As we have
supposed 77(0) = 0, we have \H(x(Tn))\ > e. Suppose first that there is a
subsequence, say { Tn) again, with H(x(Tn)) > e.

Now <Y > 0 and %,(?, x) < - W4(\x(t)\) so

0 < T(i, x) < T(i0, <b) - f'lV4(\x(s)\) ds.
J'o

Thus, x(t) is not bounded strictly away from zero. There is a sequence {/„}
tending to infinity such that x(tn) —> 0. Hence, H(x(tn)) -» 0. As 77 is continu-
ous, there exists 8 > 0 with |77(x)| < e/2 if |x| < 8.

We can find sequences {sn} and {S„} increasing to infinity with 77(x(i„))
= e/2, H(x(S„)) = 3e/4, and \x(t)\ > 8 if sn < t < Sn. That is, 77(x(/)) is
continuous and, if tk < Tj, then H(x(t)) moves from near zero to near e as t
goes from tk to 7] when k is large.

As H'(X)(x) < K(M) on each interval [sn, Sn] (as seen from (9) and the chain
rule), we obtain

e/4 = H(x(Sn)) - H(x(sn)) < K(M)(S„ - s„)

or

def
S„-sn>e/4K(M)=T.

If H(x(T„)) < - e, then choose (S„) and {sn} with 77(x(j„)) = - 3e/4,
H(x(Sn)) = - e/2, and sn < Sn. Proceed as before to Sn - s„ > T.

As %)(?, x) < - ^4(|x(0|) < - W4(8) for s„ < t < Sn, if we integrate
from t0 to t > Sn we obtain

T(/,x)< T(/^)-/V4(|x(ï)|)A
'o

< ^('o, *) - S  fSiWx(8 ) ds < .T(i0, *) - nTW4(8 )
i = 1 Jf¡

which tends to — oo as « —> oo. This contradiction completes the proof.
Example 0. In the scalar delay equation

x'(t) = - (¿2 + 4)^,) + x(, _ t/2)
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268 T. A. BURTON

we take

^(t, x) = x2(t) + f ' x2(s) ds
Jt/2

and obtain

T(/, x) = -2(t2 + 4)x2(t) + 2x(t)x(t/2) + x2(t) -\x2(t/2)

< -5x2(t)=- W4(\x(t)\).

The last inequality was obtained by completing the square. Then take
77(x) = x2 and obtain 77' < + 2x(t)x(t/2) which is bounded above for x(-)
bounded. As °V* > x2 and T' < 0, all solutions are bounded. Thus, all tend to
zero.

The example is elementary and the conclusion is certainly expected; yet,
known results on Liapunov functional do not seem to yield it because of
i2 + 4 and / — t/2 being unbounded. In any case, it is a simple illustration of
the theorem.

Example 1. Consider the differential equation (4) and suppose that J is a
Liapunov function for (4):

J: [0, oo) X R" ^[0, oo),       J'(4) (t, x) < - ^4(|x(f)|),

J(t, 0) = 0,       J(t, x) > Wx(\x\).

Let P(t, x) = (7*,, . . ., 7^) and suppose that some P¡ is bounded for x
bounded. Now x = 0 is Liapunov stable. Let x(f) be a bounded solution of
(4) and suppose x(t) = (x,, . . . , x„). Then x,(0 ~* 0.

To see this, take 77(x) = x,2 so that H'(4)(x) = 2x¡P¡(t, x) which is bounded
for x bounded. Hence, xf(t) -» 0 as t —> oo.

Corollary (Marachkov (cf. [1,Theorem 7, p. 149]}). If J(t, x) is positive
definite, if J[4y(t, x) is negative definite, and if P(t, x) is bounded for \x\
bounded, then x = 0 is asymptotically stable.

Proof. Take 77(x) = x2 + • • • + x2 and obtain 77('4)(x) bounded for x
bounded. Thus, H(x(t)) —» 77(0) = 0 and so bounded solutions approach
zero. As J is positive definite and /(4) < 0, x = 0 is Liapunov stable. This
completes the proof.

The effect of this corollary is that if the conditions of Marachkov's result
hold, then the conditions of Theorem 1 hold. The reverse is, of course, false.

Marachkov's result yielded asymptotic stability when J was not decrescent.
Results of the class of Theorem 0 were direct extensions of Marachkov's
result. These extensions introduced the set E in place of {0} as the location
where J' could tend to zero. They also replaced J positive definite by the
(tacit) assumption that some solutions were bounded. Except in cases where
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STABILITY THEORY FOR DIFFERENTIAL EQUATIONS 269

J' was related to \P\ (cf. Haddock [6]), these extensions demanded P
bounded for x(t) bounded. (A recent paper by La Salle [11, p. 84] gives a
condition requiring the integral of P bounded over certain functions to effect
the same conclusion.)

Our result is an extension of Marachkov's in an entirely different direction.
It replaces S (or 7*) bounded with the requirement (8) and (9); the conclusion
still involves zero instead of a general set E. Our next result generalizes
Marachkov's result by again allowing S (or P) to be unbounded, but also
allowing £ to be a general closed set in R". However, we now need
restrictions on 77.

We pattern our formulation after that given by Yoshizawa [12, pp.
116-167] for stability of a compact set E.

In the following, N(a, E) denotes the a-neighborhood of a set E, Nc(a, E)
denotes its complement, and d(x, E) is the distance from x to E.

Definition. Let E c R" be a closed set, U an open neighborhood of E,
and let 77 : [0, oo) X U —> [0, oo) be a differentiable function. 77 is a pseudo-
Liapunov function for (1) and E if for each compact subset K of U:

(i) for any e > 0, there exists X > 0 such that H(t, x) > X for x G K n
Nc(e, E),

(ii) for any X > 0, there exists rj > 0 such that 77(r, x) < A/2 for x G K n
N(r¡, E), and

(iii) if x(t) is a bounded solution of (1) on [i0, oo) then for x(t) G K we
have grad H • S + 977/3/ bounded above.

If 77 is only locally Lipschitz, then in (iii) we ask H'm bounded above
instead of grad H ■ 'S + dH/at bounded above.

Example 2. In the system

x¡ = x2,   x2 = -t(t, xx(t), x2(t))x2(t) - g(xx(t - r(t))),        (10)

let >// > 0, \p, g, and r be continuous, and / > r(t) > 0. If E = {(x,, x2)\x2 =
0} and H(t, x„ x2) = x\, then (i) and (ii) hold, while

77(',o)  = -2<K-)*2 - 2x2g(x,(i - r(t)))

< -2x2g(xx(t - r(t)))

so that if x(i) is bounded on [t0, oo), then 77' is bounded above. Thus, 77 is a
pseudo-Liapunov function for (10).

Definition. A function L: 7?"-»[0, oo) is positive definite relative to a
closed set E c 7?" if for any compact set K c R" and any e > 0, there exists
L0 > 0 such that L(x) > L0 for x G K n Nc(e, E).

Theorem 2. Let "¥ be a functional satisfying (5) and (6) with ^'i/r, x) <
— L(x(t)) where L is positive definite relative to a closed set E G R". If U is
an open neighborhood of E and H: [0, oo) X U —* [0, oo) is a pseudo-Liapunov
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270 T. A. BURTON

function for (1) and E, then each bounded solution of (I) approaches E as
/->oo.

Proof. If the theorem is false, then there is a bounded solution x(/) of (1)
which does not approach E. Then there is a compact set K G R" with
x(t) G 7? for t0 < t < oo. Also, there is an e > 0 with N(2e, E) n 7? c U
and a sequence {/„} tending to infinity with d(x(tn), E) = e. (That is, we first
say that d(x(tn), E) > e; but as T< - L(x(/)) we argue that x(/) ap-
proaches E along a sequence. Thus, we can select /„ so that equality holds.)
Let K = K n A^e, E) where N is the closure of N. For this compact subset K
of Í/ and this e > 0, find X and tj of parts (i) and (ii) of the definition of a
pseudo-Liapunov function with 0 < 2tj < e.

As ^f{i)(t, x) < — L(x(t)), there is a sequence {Tn} tending to infinity with
d(x(Tn), E) —» 0 as « —» oo. It is then possible to find sequences {/„} and ( Tn}
tending to infinity with d(x(tn), E) = e, d(x(Tn), E) = tj/2, and t//2 <
¿(x(r), 7i) < e if r„ < / < tn.

If we compute the derivative of 77(/, x) along solutions of (1) we find (using
(iii) in the definition of the pseudo-Liapunov function)

77('d (t, x) = grad 77 • <S + 977/9/.

In particular, if Tn < t < tn, then H'm(t, x) < P. Integrating H'(Xy{t, x) from T„
to /„ we obtain

77(/„, x(/„)) - H(T„, x(Tn)) < P(t„ - Tn).

As 77(/„, x(/J) > X and H(T„, x(T„)) < A/2 we have

X - X/2 < H(tn, x(/J) - 77(7;, x(Tn)) < P(tn - Tn)
or

tn-Tn> \/2P - r.
As %)(', x(-)) < - L(x(/)), for / > /„ we have

T^xOXTí/c^-J'líx^))*
'o

< ̂ Co, <» - S P¿(*W) *
i = l JT¡

< ^('o, *) - S  /"''¿o * < ^('o. <í>) - «¿o^/ = i •'r,

for some Lq > 0 by definition of L being positive definite relative to E. Here,
<¡> is the initial function for x. As n —» oo, we contradict 'V > 0. This
completes the proof.
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Example 3. In Example 2, we can take r(t) = 0, V(t, xx, x2) = x\ + 2G(xx)
where

G(xx) = fXlg(s)ds,    K(',0)   = -2xp(t, x„x2)xf,
•'o

77(/, x) = xf, and 77('10)(/, x) = - 2\p(t, x„ x2)xj - 2x2g(x,). If for each M
> 0, there exists a > 0 with \p(t, x,, x2) > a when |x2| < M then the condi-
tions of the theorem are satisfied and all bounded solutions approach the
x,-axis. If G(xx) -> oo as |x,| —» oo, then all solutions are bounded. If xxg(xx)
> 0 for x, t¿= 0, then an argument as in [2] yields all solutions bounded.

Example 4. In Example 2, let r(t) > 0, /•'(/) < a < b/2, | g'(x)\ < L, and
(x„ x2) = (x, v).  Suppose 2i|/(/, x,y)/r(t) > b + a/r(t) for some positive
constants a and b with 4L2 < b2 — 2ab.

Write the system as

/(/) = -*(/, x(/), v(/))v(/) - g(x(/)) +    f°    g'(x(/ + s))y(t + s) ds
J-r(t)

and take <»>

T(/, x(-), v(-)) = 2G(x(/)) + v2(/) + |/_°r < (j[V(< + «)^) *

with G(x) = Jog(s) ds. We obtain

T(ii) = -2^(t, x,y)y2 + 2v f°    g'(x(t + s))y(t + s) ds
J-r(t)

b+ 2 f°     {y2(t)-y2(t + s)}ds+r'(t)[°    y2(t + s)ds
J-r(t) J-r(t)

If we use the assumption on $ we find cV7n) < — ay2(t).
Then L(x, v) = — ay2 is negative definite relative to E = {(x, v)| v = 0).

Here, U = R X R.
Example 2 showed that 77 = v2 is a pseudo-Liapunov function. By our

result we conclude that all bounded solutions approach the x-axis. If G(x) -»
oo as |x| —» oo, all solutions are bounded.

Theorem 2 is related to a result of Hale (cf. [7, pp. 118-126]) for autono-
mous functional differential equations x'(/) = *3l(x,). In that reference, Hale
and Somolinos apply the result to our system (11) when r(t) is constant,
\p(t, x,y) = a/r and g(x) = (b/r)sin x. They conclude that bounded solu-
tions approach invariant sets located on the x-axis. Hale's result was the
natural generalization of the autonomous form of Theorem 0 to autonomous
functional differential equations with finite lag.
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Corollary. Let T be a functional with %>(/, x) < - W4(|x(/)|). Suppose
there is a differentiable function H: [0, oo) X 7?" —> [0, oo) with

W2(\x\)<H(t,x)<W3(\x\)
and grad 77 • S + 377/at bounded above for any continuous function x(t) which
is defined and bounded on [0, oo). Then every bounded solution of (1) tends to
zero as t -> oo. If, in addition, Wx(\x(t)\) < °V(/, x) and ^(t, 0) = 0, //ie«
x = 0 is asymptotically stable.

Proof. H is a pseudo-Liapunov function when E = {0} and U = R".
Thus, by Theorem 2, all bounded solutions approach zero. With the addi-
tional hypotheses, the zero solution is Liapunov stable (Driver [4, p. 415]). As
bounded solutions tend to zero we have asymptotic stability.

Example 0 is also an example of this corollary. The corollary complements
Theorem 1 by allowing 77 = H(t, x), but restricts the sign of 77.

Remark. If the conditions of Theorem 0 hold for (4), then the conditions of
Theorem 2 also hold. To see this, let the conditions of Theorem 0 hold and let
p be the distance function from a point x G 7?" to 7s. In [9] Langenhop points
out that |p(x) - p(v)| < |x — y\, a global Lipschitz condition, while if E is
convex, then p2 is actually differentiable. Let 77(/, x) = p(x) and compute
p'(4). We have

ImT Up(x + hP(t, x)) - p(x)}
h-*0+  "

<  lim | |x + hP(t, x) - x| = \P(t, x)|
h^O*  h

which is bounded for x bounded. Thus, we easily see that p is a pseudo-
Liapunov function for E and (4).

We turn now to the system
x'=S(/,x,) (3)

and obtain a generalization of the classical result of Yoshizawa [12, p. 191].
For completeness we supply details of the notation of Yoshizawa [12, pp.
181-191].

For a given h > 0, C denotes the space of continuous functions mapping
the interval [-h, 0] into 7?". If </> G C, then ||<p|| = sup_,,<il<o|</>(0)|. CM
denotes the set of <¡> G C with ||<p|| < M. If x is a continuous function, x:
[ — h, A) -> 7?" for A > 0, and if / is a fixed number in [0, A), then x, is the
(shifted) restriction of x(u) to the interval [/ - h, /]; thus x,(0) = x(t + 9) for
- h < 9 < 0, shifted back to the interval [ - h, 0].

We ask that § : [0, oo) X CM -> R" be continuous and take bounded sets
into bounded sets.

It has become standard to ask that "%)(*, x). < — IT4(|x(/)|). It should be
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clear in the following proof that a similar result and proof hold if cVp)(r, x) <
- ^(IWIcW where

Nl(*„*¿"     sup    lx'(0)l
-/>,<«< -h2

and — h < — hx < — h2 < 0. The latter was Yoshizawa's form.

Theorem 3. Let CV: [0, oo) X CM -» [0, oo) be continuous, satisfy a Lipschitz
condition in the second argument, and let

Wx(\x(t)\) < T(/, x,) < W2(\\xt\\)
with %)(/, x,) < - W4(|x(/)|). Let E = {0}, U be a neighborhood of E in R",
H: [0, oo) X i/-*[0, oo) with W5(\x\) < 77(/, x) < W6(\x\). If H[3p, x) is
bounded above for x G U and x, G CM, then x = 0 is uniformly asymptotically
stable for (3).

Remark. When § (/, x,) is bounded for x, G CM, then Yoshizawa's hy-
potheses for UAS are identical to those in our first sentence. Our result
replaces % bounded by the existence of 77 with 77' bounded above. To see
that Yoshizawa's result is a corollary of ours, if § is bounded for x, G CM,
take H(t, x) = x, + • • • + x2 and obtain

H^(t,x)<\§(t,x,)\(2nM)
for |x| < M and x, G CM.

Proof of Theorem 3. Let e > 0 be given with e < M. There exists 8 > 0
with W2(8) < Wx(e). If / > t0 and if ||<f>|| < 8, then for x(/) = x(t, /„, *) we
have

Wx(\x(t)\) < T(/,x,) < T(/0,<i>) < W2(||*||)
< W2(8) < Wx(e) so |x(/)| < e.

This shows uniform stability.
By the uniform stability, tj > 0 may be chosen so that t0 > 0, t > tç, and

11*11 < T, implies |x(/, t0, <i,)| < M/2.
Now let e > 0 be given. To complete the proof we must find T > 0 such

that /0 > 0, ||<)|| < t/, and t > t0 + T imply |x(/, /0, </>)| < e. For this e > 0,
find 8 > 0 by uniform stability so that t0 > 0, ||<f>|| < 5, and / > /„ imply
|x(/, to, *)| < e.

Let t0 > 0 be arbitrary and consider intervals

h =['o, >o + A],       h-[ta + h,t0 + 2h], ...,
Ik+i=[t0 + kh,t0 + (k + l)h],....

If ||*|| < tj and x(t) = x(t, t0, *), then for each /' either |x(/)| < 5 on 7, (and
hence |x(/)| < e for / > t0 + ih) or there exists /, G I¡ with |x(/,)| > 8.

Now there exists y > 0 such that W6(y) < Ws(8). Also, there exists T > 0
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such that if |x(/,)| > 8 then |x(/)| > y for /,. - f < t < /,. To see this, if for
some /, < /, we have \x(t¡)\ = y, |x(/,)| > 8, and y < |x(/)| for /, < / < /„ then
we have 77('3)(/, x(/)) < P for some P > 0 and so

Ws{\x{t,)\) < 77(/„ x(/,)) < 77(/; x(/:)) + P(t¡ - t])

< ̂ (KOI) + Kh - $
or

W5(8) < W6(y) + P(/,.-/¡.)
so that

fá¿[W5(8)-W6(y)]/P </,-/;
Let Q = minff, A], pick TV > W2(tO/ÍT4(y)o, and choose T = 2A7t. We

now show that |x(/)| < 8 for some / in [t0, t0 + T] so that |x(/)| < e for
t > t0 + T. If such a / does not exist, then in each 7, there is a /, with
|x(/,)| > 5 and, hence, |x(/)| > y for /, - Q < / < /,.. Thus, %)(/, x,) <
- W4(y) for t¡ - Q < t < /,. Let / > /2^ so that

T(/,x/)<cv-(/0,*)- i f'2'  w¿i)dt
i-l Jh¡-Q

= T(/0, *) - 7Vß^4(r) < W2(r?) - AW4(y) < 0,

a contradiction. In our integration it was necessary to skip the intervals
[/, - Q, /,] with i odd to avoid possible overlap.

Example 5. Consider the scalar equation x'(/) = — a(t)x(t) + b(t)x(t —
/•(/)) with a(t) > a0 > 0, /•(/) > 0, r'(t) < a < 1, /•(/) < A for some h > 0, and
|Z>(/)| < a,Vl - a < a0Vl - a for some a, > 0.

Take

T(/,x(-)) = x2(/) + a0f     x2(y)<fc

so that
T = -2a(/)x2(/) + 2b(t)x(t)x(t - r(t))

+ a0[x2(t) - x2(t - r(t))(\ - /(/))]

< [ -2a(t) + a0]x2(t) + 2\b(t)\ \x(t)x(t - r(t))\

+ a0(a - l)x2(t - r(t))

< -a0x2(t) + 2\b(t)\ |x(/)x(/ - r(t))\+ a0(a - l)x2(/ - r(t))

< -a0[l-{A2(/)/a2(l-a)}]x2(/),

as may be seen by completing the square. This yields "i'(t, x) < — yx2 for
some y > 0. We take H = x2 and have H' < 2a,Vl - a |x(/)x(/ - r(t))\.
The conditions of Theorem 3 are satisfied and x = 0 is UAS.
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Remark. In [3] we showed that § need not be bounded in Yoshizawa's
result provided that

T(/, x) < W7(\x(t)\) + W8(\\\x,\\\)
where |||x(||| is the L2-norm. If, for example,

T(/, x) =     sup    |x(/ + 0)|,
-A<9<0

then an L2 norm could not be used. Converse theorems yield the existence of
Liapunov functionals requiring the sup-norm (cf. [8, p. 56]).

Remark. In arguments of the type given above it is well known that the
requirement that the W¡ be strictly increasing is entirely unnecessary. How-
ever, without that condition the arguments do become rather protracted.
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