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Stability Theory for Hybrid Dynamical Systems
Hui Ye, Anthony N. Michel, Fellow, IEEE, and Ling Hou

Abstract— Hybrid systems which are capable of exhibiting
simultaneously several kinds of dynamic behavior in different
parts of a system (e.g., continuous-time dynamics, discrete-time
dynamics, jump phenomena, switching and logic commands, and
the like) are of great current interest. In the present paper we
first formulate a model for hybrid dynamical systems which
covers a very large class of systems and which is suitable for
the qualitative analysis of such systems. Next, we introduce
the notion of an invariant set (e.g., equilibrium) for hybrid
dynamical systems and we define several types of (Lyapunov-like)
stability concepts for an invariant set. We then establish sufficient
conditions for uniform stability, uniform asymptotic stability,
exponential stability, and instability of an invariant set of hybrid
dynamical systems. Under some mild additional assumptions, we
also establish necessary conditions for some of the above stability
types (converse theorems). In addition to the above, we also
establish sufficient conditions for the uniform boundedness of
the motions of hybrid dynamical systems (Lagrange stability). To
demonstrate the applicability of the developed theory, we present
specific examples of hybrid dynamical systems and we conduct a
stability analysis of some of these examples (a class of sampled-
data feedback control systems with a nonlinear (continuous-time)
plant and a linear (discrete-time) controller, and a class of systems
with impulse effects).

Index Terms— Asymptotic stability, boundedness, dynamical
system, equilibrium, exponential stability, hybrid, hybrid dynam-
ical system, hybrid system, instability, invariant set, Lagrange
stability, Lyapunov stability, stability, ultimate boundedness.

I. INTRODUCTION

H
YBRID SYSTEMS which are capable of exhibiting

simultaneously several kinds of dynamic behavior in

different parts of the system (e.g., continuous-time dynamics,

discrete-time dynamics, jump phenomena, logic commands,

and the like) are of great current interest (see, e.g., [1]–[9]).

Typical examples of such systems of varying degrees of

complexity include computer disk drives [4], transmission and

stepper motors [3], constrained robotic systems [2], intelligent

vehicle/highway systems [8], sampled-data systems [10]–[12],

discrete event systems [13], switched systems [14], [15], and

many other types of systems (refer, e.g., to the papers included

in [5]). Although some efforts have been made to provide a

unified framework for describing such systems (see, e.g., [9]

and [29]), most of the investigations in the literature focus

on specific classes of hybrid systems. More to the point, at
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the present time, there does not appear to exist a satisfactory

general model for hybrid dynamical systems which is suitable

for the qualitative analysis of such systems. As a consequence,

a general qualitative theory of hybrid dynamical systems has

not been developed thus far. In the present paper we first

formulate a model for hybrid dynamical systems which covers

a very large class of systems. In our treatment, hybrid systems

are defined on an abstract time space which turns out to

be a special completely ordered metric space. When this

abstract time space is specialized to the real time space (e.g.,

, or ), then our definition of

a hybrid dynamical system reduces to the usual definition of

general dynamical system (see, e.g., [16, p. 31]).

For dynamical systems defined on abstract time space (i.e.,

for hybrid dynamical systems) we define various qualitative

properties (such as Lyapunov stability, asymptotic stability,

and so forth) in a natural way. Next, we embed the dynamical

system defined on abstract time space into a general dynamical

system defined on , with qualitative properties preserved,

using an embedding mapping from the abstract time space to

. The resulting dynamical system (defined now on )

consists in general of discontinuous motions.

The Lyapunov stability results for dynamical systems de-

fined on in the existing literature require generally conti-

nuity of the motions (see, e.g., [16]–[19]), and as such, these

results cannot be applied directly to the discontinuous dynami-

cal systems described above. We establish in the present paper

results for uniform stability, uniform asymptotic stability, ex-

ponential stability, and instability of an invariant set (such as,

e.g., an equilibrium) for such discontinuous dynamical systems

defined on and hence for the class of hybrid dynamical

systems considered herein. These results provide not only

sufficient conditions, but also some necessary conditions, since

converse theorems for some of these results are established

under some very minor additional assumptions. In addition

to the above, we also establish sufficient conditions for the

uniform boundedness and uniform ultimate boundedness of

the motions of hybrid dynamical systems (Lagrange stability).

Existing results on hybrid dynamical systems seem to have

been confined mostly to finite-dimensional models. We empha-

size that the present results are also applicable in the analysis

of infinite-dimensional systems.

We apply the preceding results in the stability analysis of

a class of sampled-data feedback control systems consisting

of an interconnection of a nonlinear plant (described by a

system of first order ordinary differential equations) and a

linear digital controller (described by a system of first-order

linear difference equations). The interface between the plant

and the controller is an A/D converter, and the interface
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between the controller and the plant is a D/A converter.

The qualitative behavior of sampled-data feedback control

systems has been under continual investigation for many years,

with an emphasis on linear systems (see [10]–[12]). For the

present example we show that under reasonable conditions the

qualitative behavior of the nonlinear sampled-data feedback

system can be deduced from the qualitative behavior of

the corresponding linearized sampled-data feedback system.

Although this result has been obtained by methods other

than the present approach [26], [32], we emphasize that our

objective here is to demonstrate an application of our theory

to a well-known class of problems.

In addition to sampled-data feedback control systems, we

apply the results developed herein in the stability analysis of a

class of systems with impulse effects. For this class of systems,

the results presented constitute improvements over existing

results. We have also analyzed a class of switched systems by

the present results. However, due to space limitations, these

were not included.

For precursors of our results reported herein, as well as

additional related materials not included here (due to space

limitations), please refer to [22]–[28] and [30].

II. NOTATION

Let denote the set of real numbers and let denote

real -space. If , then denotes the

transpose of . Let denote the set of real matrices.

If , then denotes the transpose of

. A matrix is said to be if all

eigenvalues of are within the unit circle of the complex

plane. For , let denote the Euclidean vector

norm, , and for , let denote

the norm of induced by the Euclidean vector norm, i.e.,

.

Let denote the set of nonnegative real numbers, i.e.,

, and let denote the set of nonnegative

integers, i.e., . For any , denotes

the greatest integer which is less than or equal to . Let be

a subset of and let be a subset of . We denote by

the set of all continuous functions from to , and

we denote by the set of all functions from to

which have continuous derivatives up to and including order .

A set is said to be completely ordered with the order

relation “ ” if for any and , either

or . We let be a metric space where represents

the set of elements of the metric space and denotes the

metric.

We denote a mapping of a set into a set by

, and we denote the set of all mappings from

into by .

We say that a function (respectively,

) belongs to class K (i.e., ), if and

if is strictly increasing on [respectively, ]. We

say that belongs to class KR if and if

. A continuous function

is said to belong to Class L if is strictly decreasing on

and if where .

III. HYBRID DYNAMICAL SYSTEMS

The present section consists of three parts.

A. Hybrid Systems

We require the following notion of time space.

Definition 3.1 (Time Space): A metric space is called

a time space if:

1) is completely ordered with order ‘‘ ;’’

2) has a minimal element , i.e., for any

and it is true that ;

3) for any such that , it is true

that ;

4) is unbounded from above, i.e., for any , there

exists a such that

When is clear from context, we will frequently write

in place of .

Definition 3.2 (Equivalent Time Spaces): For two time

spaces , , we say that and are equivalent (with

respect to ) if there exists a mapping such that

is an isometric mapping from to , and such that the

order relations in and are preserved under . Henceforth,

we use the notation to indicate that and are

equivalent. In addition, for , we use the

notation to indicate that and are

equivalent (with respect to ), and and are equivalent

(with respect to ), where is the restriction of to

.

We can now introduce the concept of motion defined on a

time space .

Definition 3.3 (Motion): Let be a metric space and

let . Let be a time space, and let . For

any fixed , , we call a mapping

a motion on if:

1) is the subset of a time space (in general

not equal to ) which is determined by , and

is equivalent to (i.e.,

) with respect to , where

is a subset of and

is finite or infinite, depending on ;

2) .

We are now in a position to define the hybrid dynamical

system.

Definition 3.4 (Hybrid Dynamical System): Let be a

family of motions on , defined as

where

and where is uniquely determined by the

specific motion (as explained in Definition 3.3).

Then the five-tuple is called a hybrid

dynamical system (HDS).

Remarks—i): In Definition 3.3, a mapping

is called a motion on , even though this mapping

is in fact defined on the subset of another time space .

This depends on the initial conditions and in general

varies if changes. However, any such is equivalent

to the prespecified time space . Due to this equivalence,

we may view any motion as another
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mapping which is defined on a subset

of . Accordingly, we can equivalently regard an HDS

as a collection of mappings defined only on

subsets of .

ii): The preceding way of characterizing motions as map-

pings that are defined on equivalent but possibly different time

spaces is not a redundant exercise and is in fact necessary.

This will be demonstrated in Example 2 (Subsection B of the

present section).

In the existing literature, several variants for dynamical sys-

tem definitions are considered (see, e.g., [16]–[19]). Typically,

in these definitions time is either or ,

but not both simultaneously, , and depending on

the particular definition, various continuity requirements are

imposed on the motions which comprise the dynamical system.

It is important to note that these system definitions are not

general enough to accommodate even the simplest types of

hybrid systems, such as, for example, sampled-data systems of

the type considered in the example below. In the vast literature

on sampled-data systems, the analysis and/or synthesis usually

proceeds by replacing the hybrid system by an equivalent

system description which is valid only at discrete points in

time. This may be followed by a separate investigation to

determine what happens to the plant to be controlled between

samples.

B. Examples of HDS’s

In the following, we elaborate further on the concepts

discussed above by considering two specific examples of

HDS’s.

Example 1 (Nonlinear Sampled-Data Feedback Control Sys-

tem): We consider systems described by equations of the

form

(1)

where , , , ,

, , , , and .

System (1) is an HDS. In the present case the time space

is given by

(2)

The space is equipped with a metric which has the property

that for any and ,

. The set is a completely ordered space

in such a way that if and only if . The set

is given by . The motion

determined by (1) is of the form

(3)

where in (3) . The state space for system (1) is

and .

System (1) may be viewed as an interconnection of two

subsystems: a plant which is described by a system of first

order ordinary differential equations, and as such, is defined

on “continuous-time,” , and a digital controller which

is described by a system of first-order ordinary difference

Fig. 1. Graphical representation of the time space T for Example 1.

equations, and as such, is defined on “discrete-time,” . The

entire system (1) is then defined on .

In our considerations of the above sampled-data system,

we did not include explicitly a description of the interface

between the plant and the digital controller (a sample element)

and between the digital controller and the plant (a sample and

hold element). In Fig. 1, we provide the “graph” for .

Example 2 (Motion Control System): Several different

classes of systems that arise in automation have recently

been considered in the literature (see, e.g., [3]). Such systems,

which are frequently encountered in the area of motion control,

are equipped with certain types of nonlinearities in the form

of trigger functions. We consider in the following a special

example of such systems which concerns an engine-drive train

system for an automobile with an automatic transmission. This

system is described by the equations

(4)

where denote vehicle ground speed and engine

rpm, respectively, denotes the external input as the

throttle position, the term describes the inability of the

vehicle to produce torque at high rpms, represents the

shift position of the transmission, where is some subset of

, and determines the shifting rule.

The variable represents a special “clock”

or “counter.” The notation denotes the most recent time

when passes an integer.

System (4) is an HDS with state space

, time space , and . For any

specific initial condition, (4) determines a specific solution

. If we define

, then is another time space with metric

and order relation , having the property that for any

, , , and

if and only if . The specific solution
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Fig. 2 Graphical representation of a time space T for Example 2.

can be regarded as a motion in the

form of , where .

Although is a mapping defined on , we still view it as a

motion in an HDS defined on , as defined in Definition 3.4,

since is equivalent to . In Fig. 3, we depict the graph of

the time space of a specific motion. (We use left brackets

to indicate that left end points are included.)

C. Some Qualitative Characterizations

In the present paper we will primarily focus our attention

on the stability properties of invariant sets of HDS’s.

Definition 3.5 (Invariant Set): Let be an

HDS. A set is said to be invariant with respect

to system if implies that for all

, all , and all . We will state the

above more compactly by saying that is an invariant set of

or is invariant.

Definition 3.6 (Equilibrium): We call an equilib-

rium of an HDS if the set is invariant

with respect to .

Definition 3.7—Uniform (Asymptotic) Stability: Let

be an HDS and let be an invariant set

of . We say that is stable if for every ,

and there exists a such that

for all and for all

, whenever . We say that is uniformly

stable if . Furthermore, if is stable and if

for any , there exists an such that

(i.e., for every , there

exits a such that whenever

and ) for all whenever ,

then is called asymptotically stable. We call

uniformly asymptotically stable if is uniformly stable

and if there exits a and for every there exists

a such that for all

, and all whenever

.

Fig. 3. Representation of the embedding mapping of motions.

Exponential Stability: We call exponentially stable

if there exists , and for every and , there

exists a such that

for all and for all , whenever

.

Uniform Boundedness: is said to be uniformly bounded

if for every and for every there exists a

(independent of ) such that if ,

then for all for all

where is an arbitrary point in . is uniformly

ultimately bounded if there exists and if corresponding

to any and , there exists a

(independent of ) such that for all ,

for all such that ,

whenever , where is an arbitrary point

in .

Instability: is said to be unstable if is not

stable.

Remark 3.1: The above definitions of stability, uniform

stability, asymptotic stability, uniform asymptotic stability,

exponential stability, uniform boundedness, uniform ultimate

boundedness, and instability constitute natural adaptations of

the corresponding concepts for the usual types of dynamical

systems encountered in the literature (refer, e.g., to [16,

Secs, 3.1 and 3.2]). In a similar manner as was done above,

we can define asymptotic stability in the large, exponential

stability in the large, complete instability, and the like, for

HDS’s of the type considered herein (refer to [22]–[28]

and [30]). Due to space limitations, we will not pursue

this.

IV. STABILITY OF INVARIANT SETS

We will accomplish the stability analysis of an invariant

set with respect to an HDS in two stages. First we

embed the HDS (which is defined on a time

space ) into an HDS (which is defined

on ). We then show that the stability properties of

can be deduced from corresponding stability properties of

. Finally, we establish stability results for the HDS

which is a system with discontinuities in

its motions.
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A. Embedding of HDS’s into Dynamical

Systems Defined on

Any time space (see Definition 3.1) can be embedded

into the real space by means of a mapping

having the following properties: 1) , where

denotes the minimum element in and 2)

for . Note that if we let , then is an

isometric mapping from to [i.e., is a bijection from

onto , and for any such that it is true

that ].

The above embedding mapping gives rise to the following

concepts.

Definition 4.1 (Embedding of a Motion ): Let

be an HDS, let be fixed, and let

be the embedding mapping defined above. Suppose that

is a motion defined on . Let

, where , be a

function having the following properties: 1) ;

2) if ; and

3) if . We call the embedding

of from to with respect to . The graphic

interpretation of this embedding is given in Fig. 3.

It turns out that is a motion for another dynam-

ical system which we define next.

Definition 4.2 (Embedding of an HDS ): Let

be an HDS and let . The HDS

is called the embedding of from T to

with respect to (w.r.t.) x, where and

is the embedding of

w.r.t. .

In general, different choices of will result in different

embeddings of an HDS. It is important to note, however, that

different embeddings corresponding to different elements

contained in the same invariant set will possess identical

stability properties.

In view of the above definitions and observations, any HDS

defined on an abstract time space can be embedded into

another HDS defined on real time space . The latter system

consists of motions which in general may be discontinuous and

has similar qualitative properties as the original hybrid system

defined on an abstract time space. This is summarized in the

next result.

Proposition 4.1: Suppose is an HDS. Let

be an invariant subset of , and let be any fixed

point in . Let be the embedding of

from to with respect to . Then is

also an invariant subset of system and and

possess identical stability properties.

Proof: By construction it is clear that is invariant with

respect to if and only if is invariant with respect to .

In the following, we show in detail that is uniformly

asymptotically stable if and only if is uniformly

asymptotically stable. The equivalence of the other qualitative

properties between and , such as stability, ex-

ponential stability, uniform boundedness, and uniform ultimate

boundedness, can be established in a similar manner (see

[22]–[28] and [30]) and will therefore not be presented here.

Our proof consists of two parts. First, we show that

is uniformly stable if and only if is uniformly stable.

Next, we show that is uniformly asymptotically stable

if and only if is uniformly asymptotically stable.

1): If is uniformly stable, we know that for every

there exists a such that for every ,

for all with , for all

and all . For any it

is true that

if

if

where , and . Hence, whenever

is satisfied, we have either for

or for

. This leads to the conclusion that is uniformly

stable.

Next, assume that is uniformly stable. Then for

every there exists a such that for every

, for all with

, for all and all . Therefore, for

any satisfying , it follows that

. We conclude

that is uniformly stable.

2): If is uniformly asymptotically stable, we

know that is uniformly stable, and there exists a

and for every there exists a such that

for all and all

whenever , where , and

. For any satisfying , it is true

that for or

if . Furthermore, since in

the latter case it is true that ,

it follows that as long as .

Therefore, by using the conclusions of part 1), we conclude

that is uniformly asymptotically stable.

If is uniformly asymptotically stable, we know that

is uniformly stable and there exists a and

for every there exists a such that

for all and all

whenever , where , and .

Therefore, for any satisfying ,

it is true that

for all since

. Therefore, we conclude that is also uniformly

asymptotically stable.

In view of Proposition 4.1 and other similar results

[22]–[28], [30], the qualitative properties (such as the stability

properties of an invariant set) of an HDS can be deduced

from the corresponding properties of the dynamical system

, defined on , into which system has been embedded.

Although dynamical systems which are defined on have

been studied extensively (refer, e.g., to [16]–[19]), it is usually

assumed in these works that the motions are continuous, and

as such the results in these works are not directly applicable

in the analysis of the dynamical system .
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B. Lyapunov Stability Results

In the following, we establish some stability results for

HDS’s , with discontinuous motions . To

simplify our notation, we will henceforth drop the tilde, ,

from and and simply write in place

of .

Theorem 4.1 (Lyapunov Stability): Let

be an HDS, and let . Assume that there exists a

and defined on such

that

for all .

1): Assume that for any ,

is continuous everywhere on

except on an unbounded closed discrete subset of

( depends on ). Also, assume that if we denote

, then is nonincreasing for

. Furthermore, assume that there exists

independent of such that and such that

for ,

Then is invariant and uniformly stable .

2): If in addition to the assumptions given in 1) there ex-

ists defined on , such that

where

then

is uniformly asymptotically stable.

Proof 1): We first prove that is invariant. If

, then since

and . Therefore,

we know that for all , and

furthermore for all since

. It is then implied

that for all . Therefore, is

invariant by definition.

Since is continuous and , then for any there

exists such that as long as

. We can assume that . Thus for any motion

, as long as the initial condition

is satisfied, then

and

for , since is nonincreas-

ing. Furthermore, for any we can conclude

that and

Therefore, by definition, is uniformly stable.

2): Letting , we obtain from

the assumptions of the theorem that

for . If we denote

, then and the above inequality becomes

Since is nonincreasing

and , it follows that

for all . We thus obtain that

for all . It follows

that

(5)

Now consider a fixed . For any given , we can

choose a such that

(6)

since and . For any with

and any , we are now able to show

that whenever The above

statement is true because for any , must belong to

some interval for some , i.e., .

Therefore, we know that . It follows from (5)

that which implies that

(7)

and

(8)

if . In the case when , it follows from

(7) that , noticing that (6) holds. In the

case when , we can conclude from (7) that

. This proves that is uniformly

asymptotically stable.

Remarks 1): In Theorem 4.1 (and in several subsequent re-

sults) we required that every motion be continuous everywhere

except on an unbounded closed discrete set .

With this requirement, we ensure that will converge to

without finite accumulation. The reason for requiring this is

because our main interest concerns the asymptotic behavior

(when goes to ) of the (discontinuous) motions of HDS’s.

2): In cases where the qualitative behavior of a dynamical

system is of interest when time approaches some finite instance

(point), say , no essential difficulties are encountered

in establishing qualitative results similar to those given above.

In this case we require that each motion be continuous

everywhere on , except on

with .

In the following we state additional Lyapunov stability

results for HDS’s. We omit the proofs of these results due to

space limitations. For some of these proofs, refer to [22]–[28]

and [30].

Theorem 4.2 (Exponential Stability): Let ,

be an HDS, and let . Assume that there

exists a function and four positive

constants and such that,

for all . Assume that

for any , is continuous

everywhere on except

on an unbounded closed discrete subset of . Let

with strictly increasing. Furthermore,

assume that there exists such that

for ,

, and that for some positive constant , satisfies

(i.e., ). Assume

that for all

. Then is exponentially stable in the large ( is

defined in Theorem 4.1).
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Theorem 4.3 (Boundedness): Let be an

HDS, and let where is bounded. Assume that there

exists a function and

such that for all

and .

1): Assume that for any ,

is continuous everywhere on

except on an unbounded closed discrete subset of

. Let with strictly increasing.

Assume that is nonincreasing for all

such that where is a constant.

Furthermore, assume that there exists

such that for

, , and that there exists such that

whenever .

Then is uniformly bounded.

2): In part 1), assume in addition that there exists

defined on such that

for all such that . Then is

uniformly ultimately bounded.

Theorem 4.4 (Instability): Let be an

HDS, and let . Assume that there exists a function

which satisfies the following conditions.

1): There exists a defined on such that

2): For any , is continuous

everywhere on except on an un-

bounded closed discrete subset of , and there exists

such that for

all .

3): In every neighborhood of there are points such

that . Then is unstable w.r.t. .

For further results which are in the spirit of the above

theorems, refer to [24] and [28].

C. Converse Theorems

In this subsection we establish a converse to Theorem 4.1

for the case of uniform stability and uniform asymptotic

stability under some additional mild assumptions. We will

be concerned with the special cases when

and . Accordingly, we will simplify our notation

by writing and in place of

and .

Assumption 4.1: Let be an HDS. Assume

that: 1) for any , there exists a

with , such that

for all and 2) for any two motions

, if , then there

exists a such that

for and for .

The above assumption is also utilized in the analysis of

continuous dynamical systems (see, e.g., [16, Assumption

4.5.1]). In this assumption, we may view in 1)

as a partial motion of the motion , and we may

view in 2) as a composition of and

. With this convention, Assumption 4.1 can be

restated in the following manner: 1) any partial motion is

a motion in and 2) any composition of two motions is a

motion in .

Theorem 4.5: Let be an HDS and let

be an invariant set, where is assumed to be a neighbor-

hood of . Suppose that satisfies Assumption 4.1 and that

is uniformly stable. Then there exist neighborhoods

such that , and a mapping

which satisfies the following conditions: 1)

there exists such that

for all and 2) for every

with is nonincreasing

for all .

The proof of Theorem 4.5 follows along the same lines as

the proof of an existing converse result for the uniform stability

of continuous dynamical systems. This proof, however, does

not make use of any continuity assumptions for the dynamical

system (refer to the proof of [16, Th. 4.5.2]). For the converse

theorem of uniform asymptotic stability, the results in the

literature cannot be adopted directly because of continuity

assumptions in the proofs of those results (see, e.g., [16]).

However, under some additional mild assumptions, we will

be able to establish a converse theorem for the uniform

asymptotic stability of invariant sets of the types of hybrid

systems considered herein.

Assumption 4.2: Let be an HDS defined

on and assume that every is continuous

everywhere on except possibly on

[where depends on ], and that: 1)

and 2)

.

Remark: Notice that in part 2) of Assumption 4.2, starts

from zero. However in part 1), we require only that starts

from one since in general there is no lower limit for .

We are now in a position to state and prove the following

converse result.

Theorem 4.6: Let be an HDS and let

be an invariant set. Assume that satisfies Assumptions

4.1 and 4.2, and furthermore assume that for every

, there exists a unique . Let

be uniformly asymptotically stable. Then, there exist neigh-

borhoods and of such that , and a

mapping which satisfies the following

conditions.

1) There exist such that

for all

2) There exists such that for all

, we have

where , ,

and where is defined in Theorem 4.1

3) There exists an , , such

that for all

and all .

In the proof of the above theorem, we will require the

following preliminary result.
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Lemma 4.1: Let be defined on . Then there exists

a function defined on such that for any closed

discrete subset satisfying

it is true that

Proof of Lemma 4.1: We define , where

, by

Clearly, is strictly decreasing for all ,

and for all .

Furthermore, is invertible, is strictly decreasing, and

for all .

We now define and for

. Then it is obvious that and

It follows that

If we denote , we know

that . Hence it is true that

(9)

We now proceed to the proof of Theorem 4.6.

Proof of Theorem 4.6: Since is uniformly asymp-

totically stable, we know by Theorem 4.5 that there exist some

neighborhoods and of such that and

a mapping which satisfies the following

conditions.

1) There exist such that

for all

2) For every with ,

is nonincreasing for all .

From 1) and 2) above, we conclude that for any

, it is true that

which implies that

(10)

for all , and .

By the result in [16, Problem 3.8.9], there exists a function

defined on , for some , and another

function such that

(11)

for all and all , where .

Define , and

if

otherwise.

We are now ready to define the Lyapunov function

for . Since for any ,

there exists a unique motion which is continuous

everywhere on except on , we define

(12)

where will be specified later in such a manner that

the above summation will converge. Obviously,

Hence, if we define

, then is true for all

.

Consider and the corresponding set

. If we denote , and

for some , we know there exists a unique motion

which is continuous everywhere on

except on . By the definition of given by

(12), we know that

However, by the uniqueness property, we know that

, and

Therefore, it is clear that

It follows that

for . Since by Assumption 4.2-2),

it follows that

where we defined .

We now show how to choose so that the infinite

summation (12) converges. It follows from (11) that for any

, we have

(13)

Let . Then . Hence, by Lemma 4.1,

there exists an defined on such that

If we define ,

then it follows that

(14)

Hence, we conclude from (12)–(14), and (9) that

.
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If we define by

then it follows that . Thus

we have proved parts 1) and 2) of Theorem 4.6.

To prove part 3) of the theorem, let . We have

already shown that

Furthermore, since , (10) is satisfied. Hence, we

know that

(15)

On the other hand, we have also shown that

which implies that

(16)

Combining (15) and (16), we obtain that

for all ,

, and all . If we now define

then , ,

and This concludes

the proof of the theorem.

Although converse theorems are in general not very use-

ful in constructing Lyapunov functions, their importance in

stability analysis cannot be overemphasized. In particular,

such results ensure the existence of Lyapunov functions with

appropriate properties under suitable conditions. Furthermore,

converse theorems tell us that under a given set of hypotheses,

a stability result is as good as you can possibly expect. For

additional converse theorems, refer to [22]–[28] and [30].

Before proceeding to applications, we wish to point to the

generality of all results presented above. These allow analysis

of finite-dimensional as well as infinite-dimensional systems.

V. APPLICATION TO NONLINEAR SAMPLED-DATA SYSTEMS

Our primary objective in this section is to present a detailed

application of the stability theory developed herein to the

most widely known class of HDS’s, sampled-data systems.

The qualitative analysis of sampled-data control systems has

been of great interest in the past, and because of significant

advances in digital controller technology it continues to be of

current interest (see, e.g., [10]–[12]). These investigations are

primarily concerned with linear models. In the present section

we apply the results of Section IV in the stability analysis

of sampled-data control systems of the type considered in

Example 1 (refer to Section III), given by equations of the

form

(17)

where all symbols in (17) are as defined in (1). We note that

since , is an equilibrium of

(17).

In this section we will show that the asymptotic stability

of the equilibrium of (17) can be

deduced from the asymptotic stability of the trivial solution of

the associated linear system given by

(18)

where denotes the Jacobian of evaluated at

, i.e.,

(19)

We note that in (17) the components of the state, are

directly accessible as subsystem outputs (of the plant and the

digital controller, respectively). When this is not the case,

transducers are used to measure the states indirectly, resulting

in linear output equations, as given for example in the system

description

(20)

where , , and and are real matrices of

appropriate dimensions. By using the methodology employed

herein, it is possible to establish a stability result of the type

described above for (17), using the linearization of (20) about

the equilibrium . We will not pursue

this.

For the linear sampled-data system (18), we have the

following result.

Lemma 5.1: The equilibrium of

the linear HDS determined by the system of equations (18) is

uniformly asymptotically stable if and only if the matrix

(21)

is Schur stable, where

(22)

The conclusion of Lemma 5.1 is well known (refer, e.g., to

[10] and [11]).

We are now in a position to prove the main result of the

present section.

Theorem 5.1: The equilibrium of

(17) is uniformly asymptotically stable if the equilibrium

of the linear dynamical system deter-

mined by the system of equations given in (18) is uniformly

asymptotically stable, or equivalently, if the matrix given

in (21) is Schur stable.

Proof: Since and , we can

represent as

(23)

where the matrix is given in (19) and

satisfies

(24)

It follows from (24) that there exits a such that

(25)
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whenever . If we let then we can

conclude that for any , it is true that for

all whenever and .

For otherwise, there must exist an such that

and for all . We will prove

that this is impossible. Since for any we have that

(26)

it is true that

for all . In particular, when

, we have that

(27)

where we have used in the last step of (27) the fact that

, since for all

by assumption. By Gronwall’s inequality (see, e.g., [20]), (27)

implies that

(28)

for all . Hence

(29)

since . Inequality (29) contradicts the assumption

that . Therefore, we have shown that for any

, it is true that for all

whenever and . In view of (25), we

can further conclude that

(30)

for all whenever and .

Equation (30) implies that (27) and (28) hold for all

, assuming that and

Therefore, it follows from (28) that

(31)

for all , assuming that and

.

Since , the first equation in (17) can be

written as

(32)

for . The solution of equation (32) must have

the form

(33)

for all . Specifically, when , we have that

(34)

where

(35)

Before proceeding further, we require the following inter-

mediate result.

Claim 1: For any given , there exists a ,

, such that for any it is true that

whenever and .

Proof: For the given , we choose such that

We know by (24) that there must

exist a such that

(36)

whenever . We choose

Then, whenever and , it is true by

(28) that

(37)

for all . Combining (37), (36), and (31), we

obtain that

(38)

for all whenever and .

Hence, for given by (35), we know that

(39)

whenever the conditions and are

satisfied, concluding the proof of Claim 1.

We are now in a position to apply the results of Sections III

and IV to prove the present theorem. As discussed in Example

1 of Section III-B, (17) [or, equivalently, (1)] can be regarded

as a HDS defined on the time space

. The state for this hybrid system, denoted by ,

is given by where .

This hybrid system can be embedded into a dynamical system

defined on by the embedding mapping such

that for any (as was explained in
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Section III-B). If we denote the state in the new embedded

dynamical system defined on by , then

(40)

where . We will show that is an asymptoti-

cally stable equilibrium of this dynamical system. Therefore,

is a uniformly asymptotically stable

equilibrium of the original hybrid system (17).

Since by assumption is Schur stable, where is given

in (21), we know that there exists a positive definite matrix

such that , where

denotes the identity matrix. We now define the Lyapunov

function

(41)

and we show that satisfies all the conditions of

Theorem 4.1 for any motion . Clearly, is a motion

which is continuous everywhere on except on , the set

of nonnegative integers. For any , it is known by (34)

and (17) that

(42)

where is given by (21), is given by

(43)

and is given by (35). It now follows that

(44)

By the definition of , we know that .

Furthermore, by Claim 1, if we choose an such that

(45)

then there exists a such that

whenever and .

Therefore, whenever (noticing that

), it is true that

(46)

must hold. Combining (44) and (46), we conclude that

(47)

whenever . Before concluding the proof, we

require another intermediate result.

Claim 2: For any , (47) holds for all

whenever

(48)

where and denote the minimum and maxi-

mum eigenvalues of , respectively.

Proof: Equation (48) implies that

Since

is satisfied, we know by (47) that

is less than because of (45). Therefore

(49)

must be satisfied as well. Furthermore, since (49) implies that

, it follows that is

less than , and is less than

. By induction, it follows that for all

. Hence (47) is satisfied for all as long as (48)

is true. This concludes the proof of Claim 2.

By Claim 2 we know that for any motion , condition

2) of Theorem 4.1 is satisfied for , as long as (48) is

true. Furthermore, it can be shown that (31) implies that

for all , and , by noticing that

whenever (48) is satisfied. Hence, if we define

as

then condition 1) of Theorem 4.1 will also be satisfied whenever

the initial condition for (47) holds. Noting that is

independent of , it follows from Theorem 4.1, that the

equilibrium of (17) is uniformly

asymptotically stable if the matrix [given by (21)] is Schur

stable. This concludes the proof of the theorem.

For further results which are in the spirit of Theorem 5.1,

refer to [26]. Other sources that address the present problem

in a different context, using methods that differ significantly

from the present approach, include, e.g., [32].

VI. SYSTEMS WITH IMPULSE EFFECTS

There are numerous examples of evolutionary systems

which at certain instants of time are subjected to rapid

changes. In the simulations of such processes it is frequently

convenient and valid to neglect the durations of the rapid

changes and to assume that the changes can be represented

by state jumps. Examples of such systems arise in mechanics

(e.g., the behavior of a buffer subjected to a shock effect, the

behavior of clock mechanisms, the change of velocity of a

rocket at the time of separation of a stage, and so forth),

in radio engineering and communication systems (where

the generation of impulses of various forms is common),

in biological systems (where, e.g., sudden population changes

due to external effects occur frequently), in control theory (e.g.,
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impulse control, robotics, etc.), and the like. For additional

specific examples, refer, e.g., to [21] and [31].

Appropriate mathematical models for processes of the type

described above are so-called systems with impulse effects. The

qualitative behavior of such systems has been investigated ex-

tensively in the literature (refer to [21] and the references cited

in [21]). In the present section we will establish qualitative

results for systems with impulse effects which in general are

less conservative than existing results [21], [31].

We will concern ourselves with finite-dimensional systems

described by ordinary differential equations with impulse

effects. For this reason we will let in the present

section, the metric will be assumed to be determined by

norm , and .

The class of systems with impulse effects under investiga-

tion can be described by equations of the form

(50)

where denotes the state,

satisfies a Lipschitz condition with respect to

which guarantees the existence and uniqueness of solutions

of (50) for given initial conditions,

is an unbounded closed discrete subset of

which denotes the set of times when jumps occur, and

denotes the incremental change of the state

at the time . It should be pointed out that in general

depends on a specific motion and that for different motions, the

corresponding sets

are in general different. The function is

said to be a solution of the system with impulse effects (50)

if 1) is left continuous on for some

2) is differentiable and everywhere

on except on an unbounded, closed, discrete subset

; and 3) for any

, , where denotes

the right limit of at , i.e., .

If for (50), we assume further that for all

, and for all , then it is clear that

is an equilibrium. For this equilibrium, the following

results have been established in [21, Th. 13.1 and 13.2].

Proposition 6.1: Assume that for (50) satisfying

and for all and , there

exists a and such that

for all .

1): If for any solution of (50), which is defined on

, it is true that is left continuous on

and is differentiable everywhere on except on an

unbounded closed discrete set , where is

the set of the times when jumps occur for , and if it is

also true that

for and
(51)

for all , then the equilibrium of (50) is uniformly

stable.

2): If in addition, we assume that there exists a

such that

(52)

then the equilibrium of (50) is uniformly asymptotically

stable.

The above proposition provides a sufficient condition for

the uniform stability and the uniform asymptotic stability of

the equilibrium of (50). It is shown in [21] that under

additional conditions, the above results also constitute neces-

sary conditions (see [21, Ch. 15]). One critical assumption in

these necessary conditions is that the impulse effects occur at

fixed instants of time, i.e., in (50) the set

is independent of the different solutions. This assumption

may be unrealistic, since in applications it is often the case

that the impulse effects occur when a given motion reaches

some threshold conditions. Accordingly, for different initial

conditions, the sets of time instants when jumps in the motions

will occur will, in general, vary.

It is easily shown that (50) is a special case of the HDS

defined in Section III-A. Applying Theorem 4.1 to (50), we

obtain the following result.

Theorem 6.1: Assume that for (50) and

for all and , that there exists an

such that and a

and such that for

all .

1): Assume that for any solution of (50) which is

defined on , is left continuous on

and is differentiable everywhere on except on an

unbounded closed discrete set where is

the set of times when jumps occur for and that

(which is actually ) is non-

increasing for where

Furthermore, assume that

is true for all , .

Then the equilibrium of (50) is uniformly stable.

2): If in addition to 1), we assume that there exists a

such that, is

true for all , where

then the equilibrium of (50) is uniformly asymptotically

stable.

In the interests of brevity, we omit the details of the proof of

Theorem 6.1. For details concerning this proof and additional

results on impulse systems, refer to [25].

Remarks 1): Theorem 6.1 is less conservative than Proposi-

tion 6.1. Specifically, in Proposition 6.1 the Lyapunov function

is required to be monotonically nonincreasing everywhere

except at the instants where impulses occur, and at every

such the function is only allowed to decrease (jump

downwards). On the other hand, in Theorem 6.1 we only
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require that the right limits of at times , when jumps

occur, be nonincreasing and that at all other times between

and the Lyapunov function be bounded by the

combination of a prespecified bounded function and the right

limit of at .

2): As pointed out earlier, a converse result for

Proposition 6.1 was established in [21, Ch. 15] under

the rather strong assumption that the impulse effects occur at

fixed instances of times. For Theorem 6.1, however, we can

establish a converse theorem, which involves considerably

milder hypotheses (which are very similar to Assumptions

4.1 and 4.2.), by applying Theorem 4.6 (refer to [25]).

To demonstrate a specific application of Theorem 6.1, we

consider the special case of (50) described by equations of

the form

(53)

where , where it is assumed that ,

where , and denotes the

discrete closed unbounded set of fixed instances (independent

of specific trajectories) when impulse effects occur. A special

class of (53) are systems described by

(54)

where and are the same as in system (53) and

is a constant matrix. Such systems have been investigated in

[21, Ch. 4.2]. In particular, the following result was established

in [21, Th. 4.3].

Proposition 6.2: The equilibrium of (54) is asymp-

totically stable if the condition 1)

is satisfied, together with either

the condition 2) , or the condition

3) , where it is assumed that the modulus

of each eigenvalue of is smaller than one and where

, .

By applying Theorem 6.1 to (53), we obtain the following

result.

Theorem 6.2: For (53), let denote the Jacobian of at

[i.e., ] and assume that the condition 1)

and either condition 2) or condition 3) of Proposition 6.2

are satisfied for (54). Then, the equilibrium of (53)

is asymptotically stable. .

Remarks 1): Theorem 6.2 implies that when the lineariza-

tion of (53) satisfies the sufficient conditions in Proposition

6.2, which assure the asymptotic stability of the linear system

(54) with impulse effects, then the equilibrium of the original

nonlinear system (53) is also asymptotically stable.

2): The proof of Theorem 6.2 (which we omit due to space

limitations) can be accomplished by using similar arguments

as in the proof of Theorem 5.1; refer to [25] for the details of

the proof of Theorem 6.2.

VII. CONCLUDING REMARKS

We have initiated a systematic study of the qualitative

properties of HDS’s. To accomplish this, we first formulated

a general model for such systems which is suitable for qual-

itative investigations. Next, we defined in a natural manner

various stability concepts of invariant sets and boundedness

of motions for such systems. We then established sufficient

conditions for uniform stability, uniform asymptotic stability,

exponential stability, and instability of invariant sets and

uniform boundedness and uniform ultimately boundedness of

solutions for such systems. In the interests of brevity, not all of

these results were proved. However, we provided references

where some of the omitted proofs can be found. Next, we

established converse theorems to some of the above results

(specifically, necessary conditions for the uniform stability

and uniform asymptotic stability of invariant sets), using some

additional mild assumptions. These converse theorems show

that under the given hypotheses, the sufficient conditions for

uniform stability and uniform asymptotic stability of invariant

sets established herein are as good as you can get.

The above results provide a basis for the qualitative analysis

of important general classes of HDS’s. To demonstrate this,

we considered two such classes: sampled data control systems

and systems with impulse effects.
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