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Stability Theory of Difference Approximations for
Mixed Initial Boundary Value Problems. II

By Bertil Gustafsson, Heinz-Otto Kreiss and Arne Sundström

Abstract. A stability theory is developed for general difference approximations to mixed
initial boundary value problems.

The results are applied to certain commonly used difference approximations which
are stable for the Cauchy problem, and different ways of defining boundary conditions
are analyzed.

(1.2) with A1 < 0, A2 > 0.

1. Introduction. Consider a first order system of partial differential equations

(1.1) du(x, t)/dt = Adu(x, t)/dx + Bu(x, t) + f(x, t)

in the quarter-plane 0 ^ x < <»,/>0. Here, A and B are constant square matrices
and

u(X, t) = (uw(x, t), ■ ■ ■ , uin)(x, tyy, , f(x, o = (fn\x, !),-■■ , fm(x, tyy

are vector functions. Furthermore, A is Hermitian and of the form:

Ay 0

i 0 Ax

The solution of (1.1) is uniquely determined if we prescribe initial values for t = 0:

(1.3) u(x, 0) = /(*),      0 g x <

and boundary conditions for x = 0:

(1.4) «'(0, 0 = Suu(0, t) + g(0,      t St 0,

where
I /   (1) (IK/ J        II /   U+l) (n)wu  = (u )    and   u   = (u      , • • • u )

correspond to the partition of A, and S is a rectangular matrix.
We want to solve the above problem by difference approximation. For that

reason, we introduce a time-step k > 0, a mesh width h = l/N where TV is a natural
number, and divide the x-axis into intervals of length h. As usual, we assume that
k/h = X = const. Let p, q, r, and s be natural numbers and use the notation

d„(0 = v(x„, t),      xv = vh,      v = — r + 1,      + 2,-, 0, 1, • • • .

We approximate (1.1) for v = 1, 2, • • • and t = tr = rk, r = s, s + 1, • • • by a
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consistent multistep method
8

(1.5) ß_,i7,(f + k) = £ Qji.it - ck) + kF.it).
a-0

Here,
V

Q, = £ Aj,(h)E',      Ev. = v.+1 ,

are difference operators with matrix coefficients which depend smoothly on h. For
the solution of (1.5) to be uniquely determined, it is necessary to specify initial values

(1.6) v.iak) = /,(o7c),      a = 0, 1, 2, • • • ,s;v= -r + I, -r + 2, • • ■ ,

and, for / = tT St sk, boundary conditions
s

(1.7) v,it + k) = £ - ak) + <?„(;), -r + 1, ••• , 0,

where

(1.8) si*0 = i: c^£;
i-o

are onesided difference operators, i.e. (1.7) expresses the solution at the boundary
point xß ^ 0 in terms of the solution at interior points.

The aim of this paper is to generalize the stability theory of [1] to the non-
dissipative case. Furthermore, we shall also treat the case with two boundaries, i.e.
consider the differential equations (1.1) for 0 ^ x ^ 1, t St 0. Then, we also have to
specify boundary conditions for x = 1. In this paper we will treat only the case with
constant coefficients. However, the generalization to equations with variable coeffi-
cients poses no new difficulties because stability is always proved by the energy
method.

We shall use the same notations as in [1] and assume that the reader is familiar
with that paper.

2. Estimates for the Differential Equations. As a preliminary, we shall derive
some estimates for the solutions of the differential equations. The reason why we
derive these inequalities is that the same type of technique is later used to give
estimates for the solutions of the difference approximations.

Let us introduce the L2-scalar products

(k, v)x =  I   u*(x, t)v(x, t) dx,      (u,ü)t = I   u*(x, t)v(x, t)dt,
Jo Jo

(u,u)Xit =  /    /   u*(x, t)ü(x, t) dx dt,
Jo Jo

and define the corresponding L2-norms in the usual way by ||w||2 = (w, u). We denote
the corresponding L2-spaces by L2(x), L2(t) and L2(x, i), respectively.

The following estimate is well known:
Theorem 2.1. Let F = g = 0. For every f £ L2(x), the problem (1.1)-(1.4) has a
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unique solution which belongs to L2(x) for every fixed t. Furthermore, there are real
constants a0, K0 such that for all / and all a > a0 an estimate

(2.1) \\e-*'u(x, r)||. S K0\\j(x)\l

holds.
We can also prove
Theorem 2.2. Let j = F = 0. There is a constant ao^0 such that (1.1)-(1.4) has,

for every g(t) £ L2(t), a unique solution u(x, t) with e~atu(x, t) £ L2(x, t) for a > a0.
Furthermore, there is a constant K0 such that, for all g,

(2.2) ||e"a'n(0, Oll, S K0\\e-"git)\\„

and

(2.3) (a - a.) \\e-atu(x, OH*., S Kl\\e~at g(t)\\2t ■

Proof. Here, we shall only prove the estimates. Let u(x, t) be a solution with
e~atu(x, 0 £ L2(x, 0 for all sufficiently large a. Introduce into (1.1)-(1.4) a new
variable w = e~aiu. Then,

dw/df = /4övv/6bc + Z?w — aw,

w(x, 0) = 0,      w\0, 0 = Sw"(0, o + i(0,
with g = e~°"g.

Defining now w = 0 (and g(0 = 0) for ; g 0, we can remove the initial line
t = 0 and consider (2.4) as a boundary value problem for — °° < / < °°. Fourier
transforming (2.4) with respect to / then gives us the system of ordinary differential
equations

(2.5) sw = A dw/dx + Bw,      s = i'£ + a, h> = w(x, 5),

with boundary conditions

(2.6) w(0, s) = S*"(0, s) +

Here,

w =        5) = (2tt)"1/2 J    e~il'w{.x, 0 rff - (2tt)"1/2 J    e~"a{pe, t) dt.

We can write (2.5) in the form

(2.5a) dw/dx = Mw,       M = sA~\l - s_15).

From (1.2), it follows that there is an a0 > 0 and a nonsingular transformation

T = / + s-'T, + s~2T2 + ■■■

such that, for Re s > a0,

TMT- = fMl °
. 0 M2J

Introducing the transformed variable y = Tiv into (2.5a), we obtain

with Mi + Mf < 0, M2 + M2* > 0.
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(2.7) dy/dx = Ml 0

0 M,
v,

with the solution

fix, s) = eM>*?\0, s),      f\x, s) = eM"^n(0, s).

The boundary conditions (2.6) get the form

(T-'y)1 = SiT-'y)11 + f

which can also be written as

(2.8) y\0, s) = Syll(0, s) + O^KO, s) + f.

In addition, we have by assumption

/    \\Kx,s)\\lal = f    \\Tw\\ldk S const \\w\\l,, = const ||<T "'«(*, Oil',, < °°

for all sufficiently large a. Because eM'x is exponentially increasing, we get yu(0, s) = 0
and (2.8) thus implies, for sufficiently large aQ,

\w(0,s)\ = \T^y(0, 5)| g const \ f\.

Therefore, (2.2) follows from Parseval's relation.
Assume now that also \B\ g a0 and multiply (2.5) by h>*. Then

a\\w\\l = Re(w, A dw/dx)x + Re(w, Bw)x

= -iw*(0, s)Aw(0, s) + Re(w, Bw)x ä const |g~|2 + a0 ||w||2,

i.e.,

(a — a0) \ \w\\l S const |g |2,

and (2.3) follows again from Parseval's relation.
Finally, we shall prove
Theorem 2.3. Let f = 0. There is a constant a0 such that (1.1)-(1.4) has, for every

F £ L2(x, f) and g(t) £ L2(f), a unique solution u(x, t) with e~a'u(x, t) £ L2(x, t),
e~a'u(0, t) £ L2(t) for a > a0. Furthermore, there is a constant Kn such that, for all
F and g,

(2 9)    <« - «o) lk"a,«(o, Oil2 + (« - «o)2 lk"a'«(^, Olli.
^ Kl((a - «„) ||c-a,g(r)||f + |K"a,F(x, Olli..)-

Proof. Again, we shall only prove the estimate. Let u(x, t) be a solution for which
e~°"u(x, 0 £ L2(x, 0, e_£*'w(0, /) £ L2(0 for all sufficiently large a. Then, we can
again introduce a new variable

w = e~°"u   for ( ?: 0,       w = 0   for t < 0,

and get, instead of (2.5), (2.6),

(2.10) sw = A dw/dx + Bw + p",       s = i£ + a,

(2.11) w(0,s) = Swl\0,s) + f.
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p = const > 0 ,

Here, w(x,s) £ L2(x) for sufficiently large a. Now let

H =  \PI   ° ,. 0 /.

be a matrix. From (2.10), we get, by partial integration,

a(w, Hw)x = ReO, HA dw/dx)x + Re(>, HBiv)x + Re(*, HP )x

£ R+\B\ \\w\\2x + Hw\ + fa"1 \\P\\l,

where

R = -K*r(0, sWpArflO, s) - i(*n(0, 5))* A2wT1(0, s).

Using the boundary conditions, we can choose p so small that

R £ - |« |w(0,5)|2 + i5_1 |/|2.

Here, 5 > 0 is a constant. Therefore, we get

a((pa - 2\B\) ||w||2 + S|w(0, s)|2) S \\P~\\2X + S^ff,

and (2.9) follows from Parseval's relation with a0 = 2\B\/p.

3. The Stability Definition. While, for the differential equations, all estimates
(2.1)—{2.3), (2.9) hold at the same time, this is not true of the corresponding estimates
for the difference approximations. As a consequence, there are several ways to define
stability of difference approximations. We shall discuss some possible definitions.
(Questions of convergence will be treated in a coming paper.) Let l2(x) denote the
space of all gridfunctions d„ = v(xv), xr = vh, v = — r + 1, — r + 2, • • • , 0, 1, • • •
with Er=-r + i \v,\2h < °° and define the scalar product and norm by

(3.1) (u,v)x =   X)   «*>»*.      Mix - («. «).-

We define 12(t) and l2(x, t) in the corresponding way and denote by

(3.2) (k,d)( = £ «*(fr)i;(fr)A:,      ||«||2 = («, «),,      fT = rk,
T-0

(3.3) («,Dk, = E   E   «%TK(fT)AA:,      ||«[|2,, = («, u)x,t
T=0 c=-r+l

the corresponding norms and scalar products.
Remark. We use the same notation as in the continuous case. There is no risk

for confusion because from now on (u, v)„ (u, v), and (u, v)x,, are always defined by
(3.1H3.3), respectively.

Assumption 3.1. The Eqs. (1.5)—(1.7) can be solved boundedly for v(t + k), i.e.,
there is a constant Kx > 0 such that, for every G £ h(x), there is a unique solution
w £ /2(*) of

Q-xW, = Gv,      v = 1, 2, • • • ,

w„ — S^h-! = £„,      m = — r + 1, • • • , — 1, 0,
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with

\H\l s kI\\g\\1 + h £ \sA2)-

(Osher [5] has given conditions such that this assumption is fulfilled.) The first
possibility is to use the same definition as for the Cauchy problem (see also Theorem
2.1).

Definition 3.1. Consider the difference approximation (1.5)-(1.7) with g„ = F, = 0,
p = — r -\- 1, ••• , 0, v = 1,2, ••• . The approximation is stable if there are constants
K0 > 0, a0 St 0 such that, for all t = f, = rk, all a > a0, all h and all /, an estimate

(3.4) lle—Dli: ̂ A'o E I|/(<r*)112
ir-0

holds.
In the same way as for the Cauchy problem, the analogue of Duhamel's principle

gives us
Lemma 3.1. If the difference approximation is stable in the sense of (3.4), then the

estimate

(3.5) \\e-"v{ty\\3. ̂  Kltz \\K<rk)\\l + (a - a.)"* £ | \e-°^1)k F(rk)\\l k)

is valid for the inhomogeneous problem with g„ = 0, p = — r +1, • • • , Q.
The trouble with Definition 3.1 is that it is very difficult to develop a general

stability theory. The following definition is more useful:
Definition 3.2. Assume that jv(ak) = 0, v = —r + 1, • ■ • , 0, 1, • • • ; tr = 0,

• • • , s. The approximation is stable if, instead of (3.4), an estimate

(3.6) (^=p^J ll*-'«HI,.< ̂ Kl(\\e-^+k)F\\l,, + h-1   £ i IK^'^fUl2)
holds. (We set Fu = 0 for p ^ 0 and t < sk, a convention we shall always use.) If
the approximation is stable according to Definition 3.1, then it is also stable with
respect to Definition 3.2. This follows from Lemma 3.1. We conjecture that the two
definitions are equivalent.

A stability definition should preferably be such that one can use it "pointwise"
for equations with variable coefficients and that one can check the stability as easily
as possible. The last definition fulfills the first condition. However, necessary and
sufficient stability conditions are not simple. To demonstrate this, we shall derive
such conditions for dissipative approximations. In general, we use rather the stronger.

Definition 3.3. Assume that 1(<rk) = 0, a = 1,2, • • • , s. The approximation is
stable if, instead of (3.6),

holds.
Definition 3.3 is obviously stronger than Definition 3.2 and is suggested by

Theorem 2.3. In this case, necessary and sufficient stability conditions are as simple
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as possible. Most difference approximations in use are stable in this sense, although
there are some which are only stable in the sense of Definition 3.2. In practice, it is
not too important in which sense the approximation is stable, once an estimate of
type (3.6) or (3.7) has been found.

The assumption f(ak) = 0, <r = 1, • • ♦ , s, is unimportant. As an example, consider
the case g = F = 0 for which we get

Theorem 3.1. Let g = F = 0 and assume that the approximation is stable with
respect to Definition 3.2 or 3.3. Then, there is a constant Ki such that

(3-8) (oS^)2 II«""'"!!'-' = h~lK> £ m°ml

and, therefore,

(3-9) (a^l)2 lle~a>vl{l = m~lKl S ll/(<r*)l!*-

Proof. Let w be the function satisfying (1.7) and with

w,(t) = 0   for v ä 0, t ^ sk,      w,(t) = f,(<rk)   for v ^ —r ■+• 1, t = a*.

Then, j = u — w is the solution of (1.5)—(1.7) with homogeneous initial values and
boundary conditions and a function F for which ||F||*i( ^ const A"1 Z*_0 ||/(<rfc)||*.
Therefore, (3.8) follows easily from (3.6) or (3.7).

In the same manner, it is easy to show that it is sufficient to study the case g„ = 0,
p = — r + 1, • • • , 0, in Definition 3.2.

Theorem 3.2. If an estimate (3.6) holds for the case g„ = 0, the approximation is
stable according to Definition 3.2.

Proof. Let w be the function defined by wj(t + k) = gjf) for t sk, p =
—r + 1, • • • , 0; w„(f) = 0 otherwise. Then, y = d — w is the solution of (1.5)—(1.7)
with homogeneous initial and boundary conditions, and (3.6) follows directly.

The generalization of the above definitions to problems with two boundaries is
obvious.

In certain applications, it is interesting to know whether there are any exponentially
growing solutions or not. We may then use

Theorem 3.3. If a„ = 0 in (3.6) or (3.7), then there are no exponentially growing
solutions.

Proof. Choose a = T'1 for every fixed time T > 0.

4. The Resolvent Condition. In this section, we want to show how the question
of stability can be reduced to an estimate of the solution to a resolvent equation.
Connected with the Definitions 3.2, 3.3, there is the following resolvent equation:

(4.1) [Q-, - Y<z-'-lQAwv = fv,      v = 1,2, ••• ,

with the boundary conditions

(4.2) - Z z-'-'sl"'*! = f„,      m-r + 1, • • • , 0.
(7-1

Here, z is a complex number and w £ l2(x).
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We start with the Ryabenkii-Godunov condition:
Lemma 4.1. Let the approximation be stable in any sense. Then the homogeneous

equations (4.1), (4.2) have for |z| > e°"k only the trivial solution w = 0.
Proof. Assume that w £ l2(x) is a nontrivial solution. Then v(x„ i) = zi/kwv is a

solution of the difference approximation with F = g = 0 and jX°~k) = z'w,. This
solution grows faster than e""1, which is impossible by Theorem 3.1.

We now have two theorems, relating the estimates (3.6) and (3.7) to estimates
of the resolvent.

Theorem 4.1. The difference approximation is stable with respect to Definition 3.2
if and only if there are constants a0 ?r 0, KY > 0 such that (4.1), (4.2) have, for every
z with \z\ > e"°k and every F £ l2(x), a unique solution with

(4.3) ('Z| "'"7 \\w\\l S + h t+i
Proof. Consider (1.5)-(1.7) with f(<rk) = 0 and assume that the approximation is

stable in the sense of Definition 3.2. Introduce w = e~atv as a new variable. Then, w
is the solution of

(4.4) Q-rW.O + k) = £ e-ai'+""Qtw,(t - *k) + kF,(t),
tr-0

(4.5) w„(t + k) - £ e-e"+1)kSl'')w1{t - ok) = Ut)

with

(4.6) w(<rk) = 0,      or = 0, 1, • • • , S,

and

F, = e F,,      g„ = e g„.

The stability assumption means that there is an estimate (3.6) so that

(4-7)    (ofti1)2 iwi-' =      + h~i £+l ii^ii')-

The starting time r = 0 is completely arbitrary. We can choose any time t = t0 = t0/c'
i.e., replace (4.6) by w(t0 + <rk) = 0 and study the difference approximation for
t 2t t0 instead. Defining F = w = 0 for t i£ t0, we consider the Eqs. (4.4), (4.5) for
all t — rk,r ~ 0, sfcl, ±2, • • • .By assumption, there is for every Fand g with com-
pact support a solution for which (4.7) holds, provided we replace ||F||x,(, by
the corresponding sums over all t = rk, t = 0, ±1, ±2, ■ ■ • . Therefore, we can
Fourier transform (4.4), (4.5) with respect to t. With « denoting the (real) variable
dual to t and using the notation z = e<"+*"":) we get the resolvent Eqs. (4.1), (4.2),
where w, F , and g„ are the Fourier transforms of w, kF and g„ respectively. (The
choice of notation F~ rather than kF to denote the transform of kF may seem strange
but simplifies the presentation.)

By Parseval's relation, the estimate (4.7) goes over into
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where, as usual, X = k/h = const, and (4.3) follows easily. Now, it is well known
that the functions F with compact support are dense in l2(x, t), and the corresponding
g„ are dense in /2(r). Therefore, (4.1), (4.2) have, for every F £ k(x), a solution for
which (4.3) holds. This solution is unique by Lemma 4.1.

We have thus proved that if an estimate of type (3.6) holds then the resolvent
condition (4.3) must be fulfilled. We shall now prove the converse: Consider the
Eqs. (1.5)—(1.7) with /(<r/c) = 0. Let F and g„ have compact support and k be fixed.
By Assumption 3.1, these equations have a solution with

Ze-2ßT \Hrk)\\l < ».

Here, ß > 0 is some constant. Replacing a by ß/k, we can Fourier transform the
Eqs. (4.4), (4.5) with respect to / and get the Eqs. (4.1) and (4.2) with z = eß+i"hand

K = *(27r)-1/2 f   e-sU+h,Fu(t) dt,

gM = (2t)-W2        e-Hl+k)gß(t) dt,      s = iu + ß/k.

Solving these equations, the inverse Fourier transform gives us

D(t) = elß/h),w(t) = (27r)"1/2 J    e"w(z) dw,      s = fw + ß/k, z = e .

The resolvent condition (4.3) implies that w(z) = \v(e') is an analytic function of s
for Re s > a0. Therefore, we can choose for ß any positive constant ß = ak > a0k
and (3.6) follows from Parseval's relation

\\e-a'v\\l,t = fl WmVl**
and (4.3). This proves the theorem.

In the same way, we can prove
Theorem 4.2. The difference approximation is stable with respect to Definition

3.3 if and only if there are constants a0 St 0, Ki > 0 such that (4.1), (4.2) have, for
every z with |z| > ea°k and all F, g, a unique solution with

We shall now show that the stability definitions are invariant with respect to
perturbations of order k. (This is well known for Definition 3.1.)

Theorem 4.3. Assume that the difference approximation (1.5)—(1.7) is stable in
any of the above senses. Perturb the approximation by adding to the difference operators
Q, and S(/) terms of order k. Then, the resulting difference approximation is also
stable in the same sense.

Proof. Let the grid function G be defined by G„ = for v St 1, Gß = g* for p ^ 0.
Then, we can consider the resolvent Eqs. (4.1) and (4.2) and its perturbation as a
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mapping from l2(x) into itself and write them in the form

&(z)w = G   and   (®(z) + ft®,(z))w = G,   *,C£ /2(*).

Let the approximation be stable in the sense of Definition 3.2 and let at be a constant
with

|z| — e ZAi

Then, we get for these z values

IK® + k^r'U: s n@-liu-iia + *®i©_1)"1iu
<-ll®l1lu—  < 2 n@-i||
=   1   - *  ||®,||,  ||®_1||x  " "

and for Definition 3.2 the theorem is proved. If we replace the norm

ii*ii, by ii*n = ( i: ki2 + ii*ii2)1/2,

the theorem follows for Definition 3.3 in the same way as above. By the same kind
of perturbation argument, we get, from Assumption 3.1:

Theorem 4.4. There is a constant z„ such that the estimates (4.3) and (4.8) hold
for |z| St \zj[.

Proof. For |z| —> =°, the resolvent Eqs. (4.1), (4.2) and the estimates (4.3) and
(4.8) converge to the equation of Assumption 3.1 and its estimate.

5. The Main Results. In this section, we want to formulate the main results
of this paper. By Theorem 4.3, we can neglect B and assume that the coefficients are
independent of h. Thus, the resolvent Eqs. (4.1), (4.2) can be written as

(5.1) £ AME1*, = K,      Ai(z) = -Iz-"1/(j,+ An-D,
jm—r a=0

q

* £ k(x),       *M = S (C,(z)w;) + g„,
(5.2)

s

C,(z) = £ z-'-lCit,      p. = r+ 1,..... ,0.
cr.-X

We shall start with stating the assumptions.
Assumption 5.1. The approximation is stable for the Cauchy problem, i.e., if we

consider (1.5) for all v = 0, ±1, ±2, • • • , then we have, for a > a„,

\\e-a'v(t)\\2 ^ Kl £ ||/0rA:)||2,   with||/||2=  £  |/„|2 h.

Consider the Eqs. (1.5) with constant and of h independent coefficients for the Cauchy
problem and Fourier transform them with respect to x. If F = 0, we get

0-i($0G + ft) = £ QMMt - crft),      <L =  £ A,,eui.
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Then, Assumption 5.1 implies:
(1) The von Neumann condition is fulfilled, i.e., the eigenvalue problem

(5.3) (q-M) ~ £ qm)z-°-l)y = 0,

which may also be written

£ AXzY^y = 0,       A{(z) = -Sz"'"1^ + An-»,
i = -r <r-0

has no solution z with |z| > 1.
(2) If z = z0 is an eigenvalue with multiplicity q and |z0| = 1, then there are

precisely q corresponding linearly independent eigenvectors.
We always make either
Assumption 5.2. Let zt, j = 1,2, ■ • • , (s + \)n, be the eigenvalues of (5.3). If

z, = z, for some £ = £0 and |z, | = 1, then z4, z, are continuously differentiable and

(5.4) dz,Go)/dt 9*0,      v = i,j;

or
Assumption 5.3. The matrices Aja can be transformed to diagonal form by the

same transformation.
Furthermore, we assume
Assumption 5.4. The approximation is either (strictly) dissipative or nondissi-

pative, i.e., for the eigenvalues z, of (5.3), we have either |z,| < 1 for all j and
0 < |£| ^ t or |Zj| = 1 for all j and all £. We do not know of any used difference
approximation for which neither Assumption 5.2 nor Assumption 5.3 is fulfilled.

For convenience only, we make also
Assumption 5.5. Av(z) and A_r(z) are nonsingular for |z| Si 1.
To derive stability conditions for the Definition 3.3, we need only consider (5.1),

(5.2) with F   = 0, i.e. we replace (5.1) by

(5.1a) £ AiizWw, = 0.

(5.1a) is an ordinary difference equation with constant coefficients. Therefore, its
general solution belonging to l2(x) can be written in the form

(5.5) w, =   £  P,(xK =   E P^.zX^z)/.

Here, k, are the solutions of

(5.6) det E ^(*y = o,

and Pj(v) are polynomials in v with vector coefficients. The degree of Pj(v) is one
less than the multiplicity of the corresponding k,. We shall now show that for |zj > 1,
(5.5) consists of nr linearly independent solutions. We start with

Lemma 5.1. Let |z| > 1. Then the Eq. (5.6) has no solution k with \k\ = 1.
Proof. Assume that (5.5) had a solution k = e,(, £ real; Then there is a vector

y 9* 0 such that
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£ A&y'iy = 0.
J-T

This is the same equation as (5.3). The von Neumann condition implies that
\z\ > 1, a contradiction to the assumption.

The solutions of (5.6) thus split for \z\ > 1 into two groups: Mi containing those
eigenvalues k with |k| < 1, and M2 containing those with \k\ > 1. Furthermore, the
number of eigenvalues belonging to Mx or M2, counted according to their multi-
plicity, is independent of z for \z\ > 1. Therefore, these numbers can be determined
by considering (5.1), (5.2) for z —* oo. In the limit z —> °°, we get the equations

p
£ /!,<_!,£"w„ = Q-Xw, = 0

J = — T

with the nr linearly independent boundary conditions
Q

>-i

By Assumption 3.1, these equations have, for every set of values g, a unique solution
belonging to l2(x). Therefore, we have proved

Lemma 5.2. The number of linearly independent solutions in (5.5) is equal to nr.
Thus, the general solution (5.5) depends on nr free parameters c = (cu • • ■ , cnr)'.

Inserting (5.5) into the boundary conditions (5.2) gives us a linear system of equations

(5.7) E(z)c = £,     £ = (£, • ■ • , £r + 1y,

and (5.1a), (5.2) have a unique solution if and only if det|£(z)| ^ 0.
We can now formulate our main result.
Theorem 5.1. The difference approximation is stable in the sense of Definition 3.3

if and only if the Eqs. (5.1a), (5.2) have a unique solution in l2(x) for all |z| > 1 and there
is a constant K2, independent of z and g, such that

(5.8) £   |w„|2 ^ Kl   £   |g„|2,       |z| > 1.
= —r + 1 p.= — r + l

In Lemma 10.3 we shall formulate (5.8) also as a determinant condition. In [1],
this was expressed in the following way: There are no eigenvalues or generalized
eigenvalues for |z] St 1.

For the stability Definition 3.2, we do not get such a simple result and we formulate
the conditions first in Section 10.

Theorem 5.2. If the approximation is dissipative, then it is stable in the sense of
Definition 3.2 if and only if the conditions of Theorem 10.3 are fulfilled.

It should, be pointed out that the above conditions need only hold in a neighbour-
hood of |z| = 1.

Theorem 5.3. Let r\ > 0 be any constant and assume that det|£(z)| ^ 0 for
|z| > 1 + rj and that the above conditions hold for 1 < |z| < 1 + r). Then the
approximation is stable.

There is no difficulty to generalize the above theorems to the case with two
boundaries. The following theorem is valid for any of the stability definitions.

Theorem 5.4. Consider the difference approximation for t St 0 and 0 s= x ^ 1 and
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assume that the corresponding left and right quarter-plane problems (which we get by
removing one boundary to infinity) are stable. Then the original problem is also stable.

6. Applications. Difference Approximations on a Quarter Space. In this sec-
tion, we will investigate various boundary conditions for some commonly used
approximations.

I. Lax-Wendroff (L-W) Type Dissipative Schemes. Consider the system (1.1),
(1.2), (1.3), (1.4) with F(x, t) = 0, g(t) = 0 and the difference approximation

(6.1) v(t + k) = v(t) + kBv(t) + kAD0v(t) + \k2CD+D.v(t)

where C > 0 is a matrix that can be transformed to diagonal form together with A.
The condition

(6.2) v\ = Sv\x

will always be used, and the following possibilities for specifying t>" will be studied:

(6.3a) (hD+yvl1 = 0,     j natural number,

(6.3b) vl\t + k) = uV(t) + kAuD+vl\t),
- ,      vV(t + k) + v\\t + k) - kAuD+vl\t + k)(6.3c)

= vl\t) +vl\t) + kAuD+vlJ(t).

The resolvent equation for (6.1) is in scalar form

\a Ac
(6.4) zh>„ = w, + — (*,+a — #,_,) + — (*,+i — 2wy + #,_,).   v = 1, 2, • • • ,

where, by Theorem 4.3, we have neglected the term kBwy.
The characteristic equation takes the form

(6.5) zk = k + ^Oc2 - 1) + y(« - l)2.

The following lemma is proved in [3].
Lemma 6.1. There exists a 8 > 0, such that for the roots ku k2:
\.Ifa< 0, then

M < 1 for \z\ ^ l,z1,

Ki = 1 forz = 1,

\k2\ ^ 1 + 5 /or |i[ 2 1-

II. Ifa>0, then

M ^1-5 /or |*| ?I 1,

|«2| > 1 lor |*| S: l,z ^ 1,

k2 =   1 /oc z =   1 .

With help of this lemma, we can prove
Theorem 6.1. The approximation (6.1) is stable in the sense of Definition 3.3 with
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the boundary condition (6.2) in combination with any one of the conditions (6.3a),
(6.3b), (6.3c).

Proof With this form of boundary conditions, it is clearly sufficient to show (5.8)
for each scalar equation with a > 0. The general solution of (6.4) belonging to l2(x)
has the form

w, = k[w0, kl ^ i
We insert this solution into the condition (hD+Ywl1 = 0, corresponding to (6.3a),
and obtain

(6.6a) w0(ki - I)' = 0.

Since |ki — 1| St 5 for |z| St 1, the determinant condition of (10.3) mentioned in
Theorem 5.1 is satisfied and stability follows. (This was already shown in [3].)

(6.3b) gives the condition

(6.6b) -*.z_Ja+ J = 0
and for Xa < 1 (stability condition for the Cauchy-problem), we have

1 - Ki
z - 1 + Xa

stability. (6.3c) implies

1 + Xa — KtXal
z - 1 + Xal St S   for |z| St 1;

(6.6c)

However,

. /, , z - 1 - Xa(z + 1)\ „
H1+Klz-l+Xa(z+l)J = °

1  + k,
1 - Xa(z + 1)
1 + Xa(z + 1) ^ i - kl 1 - Xa(z + 1)

z - 1 + Xa(z + 1) > 5,

since Re (z + l)/(z — 1) St 0 for |z| St 1; stability, and the proof of the theorem is
completed.

II. Nondissipative Schemes: Leap-Frog (L-F) and Crank-Nicolson (C-N). Con-
sider the leap-frog approximation

(6.7) v(t + k) = 2kAD0v(t) + v(t - k) + kB(v(t + k) + v(t - k))

with resolvent equations, for B = 0,

(6.8) zw, = z\a(wv+l — W.-i) + vv„,      v = 1, 2, • • • ,

and characteristic equation

(6.9)
1

Xaz
1 0.

For z = (1 + r))eie, (6.9) has the roots

i sin 8 + 1,(1 + inV'     /   _ (sin 6 - iv(l + hy'fY'*
± X1 (Xa(l + V)f )Xa(l + r,)

For z = e'\ we thus get
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Xa ±    1 - (Xa)'
Xa ± ((Xa)2 - sin2 0)1/2 + i sin 0
Xa ± ((Xa)2 - sin2 6)1/2 - i sin 0

where the sign is to be chosen opposite to that of cos 0.
Lemma 6.2. The roots of (6.9) have the following properties:
If\z\ > 1, then |k,| < 1, |«2| > 1 and Re Kl ̂  0 for Re z > 0, Re k, ^ 0 for

Re z < 0.

(6.10)

then

kl < i,
W = i.

Kl = — 1,

K,  = 1,

«1   =   «2 = ±1

|k2| > 1      for |sin 0| > X«,

\k2\ = 1       /or |sin 0| S Xa,

k2 = 1       /or 0 = 0,

k2 = — 1   /or 0 = it,

for sin 0 = ±Xa.

Let us now again investigate the boundary conditions (6.3), and also

(6.11)
with ~A+ defined by

(~A+)V0l = 0

~A+w„(0 = w„ + 1(r - k) - u,(t).

Theorem 6.2. The approximation (6.7) is stable in the sense of Definition 3.3 with
any of the boundary conditions (6.3b), (6.3c), (6.11) in combination with (6.2), but not
with (6.3a).

Proof. For |z| > 1, the general solution of (6.8) belonging to l2(x) is h>„ = w0k[,
j /cj I < 1. It follows immediately that there is no nontrivial solution for \z\ > 1. Since
Ki( — 1)= 1 satisfies (6.6a), the determinant condition cannot be satisfied and that ap-
proximation is not stable in the sense of Definition 3.3. Condition (6.6b) gives w„ = 0
for |z| > 1. For z = e'9, |Im(z - 1 - \a(Kl - 1))| = jsin 6 - Xa Im Kl\ > 0 when
|sin 6\ > Xa, and for |sin 0| ^ Xa, |Re(z - 1 - Xa(Kl - 1))| > (1 - X2a2)1/2 - 1 +
Xa > 0 for Xa < 1. Also, |z — 1 + Xa| < 2 — Xa, and we have stability.

Condition (6.6c), for z = ± 1, is 2w0 = 0 and, for z = eie, 0 ^ 0, w,

1  + K,
1 - Xa(z + 1)
1 + Xa(z + 1)

± (X2a

=   1 +K i sin 0 — Xa(l + cos 0)

_ /Xa
\\a

i sin 0 + Xa(l + cos 0)|

sin2 0)'/2 + i sin d\(\a(\ + cos 0)
± (X2a2

i sin
sin 6) '  - i sin 0/\Xa(l + cos 0) + i sin 0

2/ sin 0(±(XV - sin2 0)1/2 - Xa cos 0)
(Xa ± (X a  — sin 0)

proving the stability.
Condition (6.11) gives

(6.12) h-0(l

( sin 0)(Xa(l + cos 0) +   sin 0)

z V,)1 = 0,

> 0,

but from Lemma 6.2, |1 — z 1k1 | > 0 follows; stability, and the theorem is proved.
We now consider the Crank-Nicolson scheme
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(6.13) v(t + k) - \kAD0v(t + k) = v(t) + %kAD0u't),

with resolvent equation

(6.14) 4(z - l)w„ = X(z + l)a(wv+l - *,_,), v = 1, 2, •

and characteristic equation

4 z - 1
(6.15) Xa z + 1

For z = e's, (6.15) has the roots

K        1   — 0, z ^ 1.

2i e
Kl2 = X^tan2±l1

4 tan2 0/2\1/2 = Xa ± (X2a2 - 4 tan2 0/2)V2 + 2i tan 0/2
(Xa)2    /        Xa ± (XV - 4 tan2 0/2)172 - 2i tan 0/2'

By studying the roots for z = (1 + r/)e*9, 17 —* 0, we obtain, for a > 0,
Lemma 6.3. 77ze roots of (6.15) /zare fAe following properties:
If\z\ > 1, then      < 1, |k2| > 1 w/rA Re kt < 0.
Ifz = e'9, ?Aen

< 1, |«fa| > 1 /or tan
0

> X«

(6.16)
2i

Kl = Xatan2
/.     4 tan2 0/2\v
V    (x«)2 ;

2/       0 , ,K2 = X^tan2 + 11 4 tan2 0/2V7
(Xa)2 y

/or tan
Xa
2 '

We can now prove
Theorem 6.3. The approximation (6.13) is stable in the sense of Definition 3.3 with

the boundary conditions (6.6a), (6.6b), (6.6c), and (6.11).
Proof. For |z| > 1, the general solution to (6.14) is vt\ = w0k\, \k,\ < 1, and again

it is clear that the conditions (6.6) imply w0 = 0 for |z| > 1. It is also obvious that we
have stability with condition (6.3a) since «, 7* 1 always.

For (6.6b), (6.16) gives, for z = eiS,

1 - Ki
Xa
1 Xa > |1 - I«! I I > 0   for I tan 0/21 > Xa/2.

Also, |Im(z - 1 - Xa(Kl - 1))| Si |sin 0 - Xa Im k, | > 0 for |tan 0/21 g Xa/2,
0^0, and for 0 = 0, z - 1 - Xa(rd - 1) = 2Xa > 0. We thus have stability.
For (6.6c), (6.16) gives

1   + Ky
z - 1 - Xa(z + 1)
z - 1 + Xa(z + 1)

Xa -1 + (X a - 4 tan2 0/2)1/2 + 2i tan 0/2 i tan 0/2 - Xa
Xa - (X2a2 - 4 tan2 0/2)1/2 - 2i tan 0/2 i tan 0/2 + Xa

-2i tan 0/2(Xa + (X2a2 - 4 tan2 0/2)1/2)
|(Xa - (X2a2 - 4 tan2 0/2)1/2 - 2i tan 0/2)(i tan 0/2 + Xa)

for z = eie with |tan 0/2| ^ Xa/2, 0^0.

> 0
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Furthermore, |1 + Kl(z - 1 - Xa(z + l))/(z - 1 + Xa(z + 1))| = 2 for 0 = 0
and is larger than |1 — j > 0 for |tan 0/2| > Xa/2, proving stability. For con-
dition (6.11), |(1 — z^/cO'l > 0 follows easily from (6.16), since Re kt ^ 0 for
|tan 0/2| ^ Xa/2 and | #cx| < 1 for |tan 0/2| > Xa/2.

III. Schemes for Systems with Characteristics in Pairs. For systems of the
symmetric type (e.g., the wave equation)

SL ̂u = cf ^ + Fw(x,t),
(6.17) dt 9X

I ^ = c, |_ ^ + F«>(JC> f)>
at ox

the use of staggered grids often reduces the computation time (for a given accuracy)
by a factor of two. The term 'staggered' means that the vector is defined at points
x„ = vh, but the vector ^(t2) at intermediate points xv+U2 = (v + \)h. With an error
of 0(h2), we may then approximate the space derivatives by differences over a single
step-length h: (d^/dx)It PS = (l/h%^(x,+U2) - ¥(x,_I/s)). The time-differ-
encing may be chosen as the leap-frog or Crank-Nicolson type.

We shall here investigate the stability of such difference schemes for a pair of
scalar equations

(6.18) d+m/dt = cd+™/Bx'

dt(2)/dt = cd+n)/dx,

and boundary conditions of type

(6.19) *(1)(0, 0 = ^(2,(0, 0 + g(l)
I  — S 1—5

with -1 ^ s g 1.
The leap-frog approximation to (6.18) is

+ *) = - *) + 2Xc(*ilW0 - *"W*»
(.6.20)

¥^1/2« + k) = ¥2\t - k) + 2\c(*l\\(t) - *,a>(0).

To guarantee stability of the Cauchy problem, we assume 2Xc ^ 1.
If we now temporarily regard \fr<2) as defined also at points xv = vh

and ^(1> at points x,+1/2 = (y + |)A, we obtain the resolvent equations

(6.21)      (z2 - l)(*u> ± *<2))„ = ±2zXc[(^(1) ± ^<2,X+1/2 - (*(I) ± ^<2)),-i/2]

for v = 0, \, 1, • • ■ with the solution, in l2(x),

+ *<2>>„ = + ^<2»)0;   (*<» _ ^<2>)„ = (-Klr(*m - ^(2,)0

or
»T,C)          ,T,(1)   2r ,T,(2) ,T,<1)   2* + l _   fl    1 T
V„      = *o   «1  I *» + l/2 =   *0   Ki       , J<  =  0,  1, 2,  • ■ •

at the original grid-points. «i is here the root of

k2 — 1 = (z — z_1)<c/2Xc
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which satisfies \k\ < 1 for \z\ > 1, cf. (6.9), (6.10) with a = 2c. We must now formulate
a boundary condition corresponding to (6.19) in terms of the staggered-grid variables.

For many physical problems, s = —1 so that ^'"(O, t) = \g(t), and for the
resolvent equation, Theorem 5.1 immediately gives stability in the sense of Definition
3.3; no additional condition is required. For — 1 < 5 < 1, we propose the following
equation to compute Sf'"', the accuracy of which is one order lower than (6.20):

*o\t + *) = - k)

(6.22) ( m 1- sV^O + k) + 9<0l>(t - k)       g(t) \

For the resolvent equation, it gives

(6.23) (z - z"1 + 2Xc YTTS (z + z"1))^"' = 4\c¥,%.

Inserting       = k$(01) and using z — z"1 = 2Xc(rd + <c2), we obtain

(6.24) *oU(f^ (z + z-1) - m + k2) = 0.

Since Re^ — k2) has the opposite sign of Re(z + z_1) for |z| St 1 and
(1 - s)/(l + s) ä O for -1 < s < 1, |(1 - s)/(l + s)(z + z"1) - Kl + *2| > 0
except maybe for purely imaginary kt — k2. In that case, however, z is also purely
imaginary, and Im^ — k2) has the opposite sign of Im(z + z"1), so that we again
have stability according to Definition 3.3. For s = 1, the boundary condition (6.22)
does not give stability in the sense of Definition 3.3, since *i — k2 = 0 for

z = z0 = ±2Xci ± (1 - 4X2c2)1/2.

With the energy method, it is, however, easy to show that the approximation is still
stable in the sense of Definition 3.2. To obtain the same order of accuracy, we should
then change g(t) into g(r) + 2(h/Acfg" (J).

The Crank-Nicolson scheme

*l"(f + k) = *J"(f)

+ y (*r+W< + k) + *«W0 - *l-,At + k)- <tlV1/2(t)),
(6.25)

+ ft) = *"Wo

+ y     + ft) + »iViw -    + *> - ¥"'(0)

gives the resolvent equations

(6.26) (z - l)^'1' ±*<2>), = ±y (z + DK*'" ± *(2,)„+I/2 - (*U) ± *(2')„-1/2]

with »> = 0, i, 1, • • • . As above, the solution in l2(x) is
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where «i is now given by (6.15), (6.16) with a = 2c, or

V„     = T0  Hi ,        *»+l/2 = *o  «i     ,        V = 0, 1, 2, • • • .

If s = —1 in the boundary condition (6.19), we have directly t^' = 0; stability.
For — 1 < s < 1, we propose the formula

*"'(/ + k) - *0n(0

+ Xe[»gk. + ft) + O0 - f+"J 0*o"(* + *) + *"}W)
+ (frO + ft) + fKO)] •

For the resolvent equation, we then get

(z - 1 + Xc |-=-J (z + l))^1' = Xc(z + iy&[%.

Inserting the !2(x) expressions for M^1' ar>d *i*J, this is simplified into

- *)/(! + *) - («i - «»)/2) = 0,
but since (6.15), (6.16) imply Re k, ^ 0, Re *2 2t 0, |(1 - s)/(l + s) - (<c, - k2)/2| > 0;
stability.

If s = 1, = k2 = =fci gives |(1 — s)/(l + s) — (kj — k2)/2| = 0. As for the
leap-frog scheme, this leads to stability of type Definition 3.2 but not of type
Definition 3.3. Also in this case, we use the conventional energy method [with the
norm ||*|| = (h/2)\9™\' +        h |*«f +£.., h \^AT2l

Finally, we study a "semi-implicit" scheme for a system with characteristics
"nearly in pairs":

,s dt dx dx .(6.28) e, c real,

67 dx dx

where e| < |c| and the boundary condition is v(1)(0, r) = ^<2)(0, 0 + g(t). An
example of equations of this type are the linearized shallow-water equations, where
often |e| « |c|. For such cases, the following approximation has been suggested:

¥"(* + ft) = *(1)(0 - ktD0*m(t + fj + ? D0(*m(t + ft) + *(2)(0;
(6.29)

*<2)(r + ft) = *<2,(0 - fteD„*<2>(r + I) + f ©b(*(*!0 + ft) + *(l>(0).

We may then use a staggered grid, in which va> is defined at the points x, = vh and
*<2) at the points xt+U2 = (v + J)A for the integer time levels and the opposite is
true for the fractional time levels.

Using the notation ¥*(I,(0 for ym(t + k/2) and **(2)(r) for <Sr(2\t + k/2), we
may write (6.29) as a system of four equations in v'1', *<2), w*U) and w*<2) at times
f and t -\- k. The corresponding resolvent equations are
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(z - l)(vm ± *<2)),

=  -X6[(**(1' ± **(2>), + i/2 - (**<n ± **<2'),_1/2]

± | (z + DK*"' ± *<2,W - (^<I> ± *<2)),-,/2],

(z - 1)(t*(i> ± w*<2,)„
(6.30)

= -\ezWm ± *(2))„+1/2 - (*n) ± ^(2,)^1/2]

± y (z + l)[(**(,) ± **<2>),+]/2 - (**(U ± £*<2V]/2L

where we have temporarily assumed all variables exist at all points.
The solution in l2(x) is

(*<» + 4,^)r = ClKr + c2k\\

($<» _    = c3(-ko2' + ci(-k3r,

(**<» _ = z"2(-c3(-«,f + c4(-K3)2"),

where

, _        2(z - 1)
K1.2 •   —   /      I     1 \\ -!\     1/2 Kl,2>(z + l)Xc - 2Xez

(6.31)
_ 2(z - 1)

K3A     1 ~ (z+ l)Xc+ 2X4z1/5K3'4'

and |k,|, |k3| < 1 when |z| > 1. It is easy to show that the Cauchy problem is always
stable, since |e| < |c|.

The physical boundary condition ^'"(O, t) = ^2)(0, t) + g(i) is not used in its
original form. Instead, we propose the boundary formula

*JW0 + *) = - 2Xe[t*/(21)(0 - J(4,o1>(< + ft) + *on(0)l

+ xc[^%o + ft) + <oo - *f'(< + ft)
« - *S"(0 + *(* + ft) + g«)];
(6.32)

*„*<2)(f + ft) = *„*l2)(0 - 2Xe[Vl(22(r + ft) - H*o*(2)(r + ft) + *o*(2,(0)]

+ XctSfrV'G + ft) + *?/au(0 - t„*(2)(r + ft)
- *0*(2)(/) - 2g« + ft)].

For the resolvent equation, they give

«z - 1) + X(c - e)(z + = -2XeT*/(21) + Xc(z +

((z - 1) + X(c - e)(z + I))*?'2' = -IXezM2/, + Xc(z + D^f/"'-

Inserting the l2(x) solution of the resolvent equation, we get
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(c — e)(z + 1)       x3 — fc4V    , .
-J72-2-ft2 + Ci) = °-\c(z + 1) + 2ez '

From (6.31) follows that Re(kx — k2) ̂  0, Re((c3 — k4) ̂  0 for |z| St 1, if the condition
|e|Xg 1 is satisfied and I e| < |c|. Furthermore, Re((c - e)(z + l)/(c(z + 1) ± 2ez1/2))
> 0 if z 9* — 1 and «! ?^ k2, «3 ^ k4, for z = — 1 so that we must have cx + c3 =
0, c2 + c4 = 0. Then

*,v =     = *?+% - *?<2) = o,
proving the stability of the scheme in the sense of Definition 3.3.

7. Further Applications. Difference Approximations on a Half-Strip. In this
section, we will consider (1.1), (1.2), (1.3) on the strip 0 ^ x ^ 1, t S: 0, with boundary
conditions

(7.1a) u(0, t) = S0uu(0, t) + g0(0,

(7.1b) h"(1, 0 = sVd, 0 + gl(t).
The corresponding conditions for the difference approximation are

jtg
(7.2a)   u,(t + k) = £ SoJV* - <rfc) + g0,(0, p = -r + 1, • • • , 0,

o- = -l

(7.2b)   e„« + k) =  £ S^W-i« - <rft) + ft„(0,      M=Ar. ■■■ , N + p - l.

It is clear from Theorem 5.4 that if the approximation is stable with (7.2a) on x St 0,
and with (7.2b) on x S 1, then it is stable with (7.2a), (7.2b) on 0 iS x g 1. However,
there can be an exponential growth of the solution of type ea,k, since we have the
term 5h in the resolvent estimate. We shall now investigate with which boundary
conditions we do, and with which we do not, get such an exponential growth for
Eq. (1.1) with F(x, 0=0 and

A = -a 0

0 a

As boundary conditions, we take

(7.3a) «'(0, 0 = ""(0, 0.
(7.3b) u\\, 0 = «"(1, 0-
The approximation (6.1) with C = A2 and boundary conditions,

(7.4a) vl(t) = vl\t),      vtiO = vkt),
(7.4b) (AZ)+)'o"(0 = 0,      <hD.)VN(t) = 0,
analogous to (6.3a) can be shown to have exponentially growing solutions for j = 2, 3.
However, when using the boundary conditions (7.4b) combined with

(7 4c) (1 - h2D2+)v\(t) = v\\t),

(1 - h2Di)vuN(t) = vl(t),

we avoid the exponential growth.
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Theorem 7.1. The approximation (6.1) with C = A2 and boundary conditions
(7.4b) and (7.4c) is stable, and has no exponentially growing solutions.

Proof. The stability of both quarter-space problems follows immediately from
Lemma 6.1 and the proof of Theorem 6.1. The general solution to (6.4) can be written

^ 5^ w, = Cn*!     + C12K2 ,

wv    =  C2\k\ -(- C22k2,

where ^ with < 1 and k2 with |k2| St 1 are the roots of Eq. (6.5). When inserting
the representation (7.5) into the boundary conditions, we obtain

Cut«, - iy+ c12(k2 - iy = o,

CSi(k, - iy + C22(k2 - iy = o,

CuDcf — Ki~\kx — l)2] + C12[k2 — k2~2(k2 — if] = C2l + C22,

C21[k" — Ki'Xk-! — l)2] + C22[k2 — k2~2(k2 — if] = C„ + C12,

or

(Cn ± C21)(k! - 1)' + (C12 ± C22)(k2 - If = 0,

(Cn ± CMX«f - ^"'fri - l)2 ± 1) + (C12 ± C22)(k2 - k2~2(k2 - If ± 1) = 0.

A nontrivial solution may exist if one of the conditions

(7.6) (Kl - - kn2~\k2 - If ± 1] - (k2 - l)'[Kf - Kf-2(Kl - l)2 ± 1] = 0

is fulfilled.
Since k,k2 = —(1 — Xa)/(1 + Xa), |#cx| ̂  |(1 — Xa)/(1 + Xa)| and we may neglect

terms of order k[. Since also |k2 — («2 — 1)2| St 1, it is sufficient to show that (7.6)
cannot be satisfied for k2 = ee+'(, e > 0; e, £ small. Then

(Kl - i)'[4(i - (i - k2-')2) ± l] -   - D'uTa - (i - «r1)2) ± i]

(k, — 1) (1 — (I — k2 ) )|^(1 + eN)e     ± -1 _ (t _ K~if-J'

But

|l -      - 1)'/(«, - 1)'| _ |l - (ig + e - g2/2)'/(-l)'(l + J8)
I 1   -  (1   - k"1)2 I ~  I 1   -  (€ + itf

^ 1 + €   for j = 1, 2, 3, • • • ,

with 5 = (1 — Xa)/(1 + Xa), so that (7.6) can never be satisfied.
We notice also, that, with boundary conditions (7.4a), we would have 1 instead

of 1 — (1 — k2 ')2 in the denominator of the last term in (7.7), and, for j = 3, (7.6)
is satisfied when e = 3£4/(2jV). Equation (6.5) then implies

|k2| & 1 + 3£77V - «£*,

and, hence, the criterion for nongrowing solutions in this case is

(7.8) N > 6/(1 - a).

For nondissipative approximations, the investigation analogous to the one above
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becomes more difficult, since we have a neighbourhood of the whole unit circle to
take into consideration.

The following table shows those approximations for which there are no exponen-
tially growing eigensolutions. *means that the eigenvalues of ®(z) (defined in Section
4) were obtained by a computer program for different X-values.

Boundary Approximations with no exponentially
condition growing eigensolutions

(6.3a), j = 1 L-W; C-N for N even
(6. 3a), ;'=2 C-N for N even
(6.3a), y=3 L-W for N > 6/(1 - a); C-N for N even
(6.3b) L-W; L-F*; C-N*
(6. 3c) L-W for N odd*; L-F*; C-N*
(6.11) L-F for N even; C-N for N even

For the wave equation (6.18), the leap-frog scheme (6.20) and the Crank-Nicolson
scheme (6.25) have no exponentially growing solutions for the half-strip problem with

¥">(0, 0 = f^M><2,(0, 0 + ^1 — s 1 — s

*«>(!, 0 = -ri^*(2,(i,0 + 8l(°
1  — S 1  — 5

if we use the Eq. (6.22) and (6.27) to compute t"' and corresponding formula for
Sf^1', Nh = 1. The condition for such an eigensolution to exist is for the leap-frog
scheme

(Z + Z-')(l  - S)/(1  + j) + «,  - K2
-(" , -ivi—„wm -; (cf- (6-24))

(Z + Z    )(1  — S)/(l  + i) + K2 — Ki

and for the Crank-Nicholson scheme

2(1 - 5)/(l + s) + k. - k2er- (cf. (6.28))
2(1  — S)/(1  + S) + K2 — K,

but in both cases, the magnitude of the right-hand side never exceeds 1 while |«2| is,
by definition, never smaller than |k,|. For the modified system (6.28), the analysis is a
little more complicated but leads to a condition similar to that for (6.25). No eigen-
solutions with exponential increase can exist.

8. A Special Form of the Resolvent Equation. In this section, we shall write
the resolvent equation (5.1) in a more convenient form. By assumption, Av(z) is
nonsingular for |z| Si 1. Then, we can write (5.1) in the same way as in [1] as a one-step
formula:

(8.1) wr+1 = Mw, + G„,      v = 1, 2, • • • ,

with w, = (#„+„-!, • • • , #,_,)' and
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(8.2)     M = -
-I 0

0

a;1a.

0

0

G„ = apl

F,

0

Oj

Using (8.1), we can write the boundary condition (5.2) as nr linear relations for wv
only. These we formally write as

(8.3)   Sw, = R(G) + g,       \R(G)\2 g const £ IG. 8 = (go,

The following lemma is well known.
Lemma 8.1. The eigenvalues k of M are the solutions of (5.6).
Let us denote by I2(h) the space of all vector functions w„ v — 1, 2, • • • , with

= XXi K|2/2 < °°. We shall consider (8.1), (8.3) for any G G l2(h), i.e. not
only for the particular G given in (8.2). This introduces no new difficulties because of:

Lemma 8.2. Consider (8.1), (8.3) for any G £ l2(h). The estimate (4.8) holds (with
a0 = 0) if and only if there is a constant Kx such that for all z with 1 < |z| ^ \zj\ (for
the definition of z„ see Theorem 4.4):

The estimate (4.3) is valid if and only if

(8.5) (^Vp)2 ~ K3illG]l1 + h |g|2)-

Proof Observing that k/h = X = const, it is obvious that (8.4) and (8.5) imply
(4.8) and (4.3), respectively.

Assume now that (4.8) or (4.3) holds. Observing that the coefficients of (5.1) and
(5.2) are independent of k, it follows that also the solutions are independent of k
and therefore (4.8) or (4.3) holds with a0 = 0. Write now (8.1) and (8.3) in the form

\g\2 + \G\\l

(8.6)    y,+1 = My,

Using the relations

(8.7)

Sy, = LG + g,

vli + l) = A" + G

y = (/ ,(p+<-)\/

(i)
V t

we can eliminate yt2), ■ ■ ■ , y^*^ and get the Eqs. (5.1), (5.2) for yU). Thus, we can
estimate and therefore, by (8.7), also ||i'<')||*. This proves the lemma.

9. A Normal Form for the Matrix M. The aim of this section is to derive a
normal form for the matrix M of the one-step formula (8.1). Let us first state the
results.

Theorem 9.1. There exists a transformation T(z) with the following properties:
(1) T(z), T~\z) are uniformly bounded for 1 ^ \z\ S[ \zj\.
(2) T(z) can be chosen to be analytic in the neighbourhood of every point z0 with

W ̂  i.
(3) In a neighbourhood of every point z0 with \z0\ > 1, there is a constant 5 > 0
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L*L g (1 - 5)/, N*N Si (1 + 8)1.

such that

(9.1)   mM(z)Tl(z) =   L °
0 NJ

(4) 7h a neighbourhood of every point z = z0 with \za\ = 1,

M,       0 • • • 0

(9.2)

Here,

with

(9.3)

HzW^r-Kz) = o M2 0 0

0 Mi

Mj = M'^ + (z - z0)Mln + (z - z0)2M;2) +

A/, = iUi g (1 - 5)7, A^*AT Si (1 + 5)7.Lt 0

0 7VJ

For 7 = 2, • • • , /, rAe submatrices M, are o/ order r, X r, and M-0) Aas the form

(9.4)        MS0' = e'£'

ana"

1   1 0

0 110

0   1 1

0 1

for j = 2, • • ■ , I*, I* = some integer,

(9.5) Mj   = e

1 0

0   1   0 • • • 0

0 0 1

for j = I* + \, ■■■ ,1,

with & ^ £,yor i * y, 2 g i, 7 g /.
It should be pointed out that we could replace the Assumptions 5.2 or 5.3 by the

assumption that there is a transformation F(z) as described in Theorem 9.1.
The following two theorems contain more information about the blocks Mj.
Theorem 9.2. Assume that Mf has the form (9.4) and let

M<1! =

"in    • ■ • mlri

[mril   ■ ■ ■ mrjri

Then, Re(r?^,.l.1z0c^)1/'', 9* 0 for all complex a with Re a > 0 and all definitions of
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(wr(1Zo(r)1/ri. Therefore, the eigenvalues of M, are given by

iUKiT = 1 + (mrfl(z - z0))1/ri + 0(z - z0f/Ti,(9.6a)

and, if lj denotes the number of kjt with |k!t| < 1 for \z\ > 1, then

(9.6b)        h = \ri   jorrf = 0(2)   or   /, = |(r, ± 1)   /or r, = 1(2).

Theorem 9.3. Assume that Af'0' Acs /orra (9.5). Then there is a transformation
Tj, analytic in a neighbourhood of z = z0 such that

«! 0

0    a2 0

(9.7)

(z — z0)

+
0 02 ->2r(

(z — z0)2 +

lo      ■ • •      0  ßn J
//ere, Re(2 /3, — a,)2z0 5^ 0, a,z0 is real with

(9.8) a^o ^ a,z0 g • • • g adz0 < 0 < a^+iZo ^

ana1

(9.9) 2a,z0c + a2z2 - 2 Re (3 9* 0 /or a/fc > —\, r

Therefore, we can even assume that M, has the form

L; 0

S arjza

= 1.2,     • ,r,-.

(9.10)

with

(9.11)

,£iM,. =

0 JV,

|z| (L*Lj - I) S -S2(\z\ - 1)1,

\z\ (N*Nj - I) ^ S2(\z\ - 1)1,      82 > 0.

Let us now prove these theorems. We start with the following essential lemma.
Lemma 9.1. There exists a constant K > 0 such that

(9.12) sup \(M(z) - e'T'l ^ K

Therefore, if k is an eigenvalue of M(z), then

(9.13) inf |0c - e'r)\ Sr K~l

z| - 1 <p real.

\z\ - 1

Proof. Let us consider the Cauchy problem. By assumption, it is stable and
therefore, by Theorem 4.1 and Lemma 8.2, the resolvent condition (8.5) is fulfilled,
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i.e. for the solutions of (8.1) considered for all v = 0, ±1, ±2, • • • without boundary
conditions, there is an estimate

«|z| - l)/|z|)2 |Hi: ^ K3\\G\\l

The inequality (9.12) then follows if we Fourier transform (8.1) with respect to v.
Proof of Theorem 9.1. If|z0| > 1, the existence of an analytic transformation 7Tz),

such that (9.3) holds, follows directly from Lemma 5.1 and Lemma 9.1, because the
eigenvalues of M are precisely the solutions of (5.6) which split up into the groups
Mi and M2.

If |z0| = 1, then it is well known that there is a constant matrix T(z0) such that

T(z0)M(z0)T-\z0) =
0 M<0) 0

M[0))

Now let Assumption 5.2 be fulfilled. If we can show that for the submatrices (9.4)
and (9.5) always ei(' ^ ei{", then (9.2) follows without difficulties. Assume that
gi(p — ea, _      for some z = z0. Then the equation

(M(z0) - exi°I)y = 0, y = (/

i.e.

Av(zoyuyw + £ A^izo)/" = 0,

0,

which can be written as

(9.14) U-iOto) - E GMo)*-'-1)/" = 0,

y - = ei('yu),      j = 2, 3, ••• ,p + r,

has at least two linearly independent solutions. Therefore, z0 must be a solution of

(9.15) det Ö-i(«o) - E Q,(^o)zö"1 0

with multiplicity two at least. Consider now the equation

det 0

in a neighborhood of £ = £0- By Assumption 5.2 for every solution z„(£) with z„(£0) =
z0, the relation (5.4) holds. Therefore, we can also consider « = e,{ as a function of z
and get, for every eigenvalue «„(z) of M with k»(z0) = e,f°, an expansion

(9.16) k„(z) =       + (z - z0)dKv(z0)/dz + 0(z - z„)1 + 1A,

where drc„(z0)/dz = (3z„(£0)/f3e*£)_1. Furthermore, the number of linearly independent
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eigenvectors is equal to the multiplicity of k„(z0). This follows from the stability of
the Cauchy problem as explained in the beginning of Section 5. But then we could
transform the matrix

'mm 0

0 m„.
to diagonal form which is a contradiction. This proves Theorem 9.1 if the Assumption
5.2 is fulfilled.

If Assumption 5.3 holds, then we can assume that the At, have diagonal form and
get a scalar equation for every component. If the Af „'s in (8.2) are scalars, then it is
well known that the Jordan form of M has only one submatrix of type (9.4) associated
with each distinct eigenvalue, and the theorem is proved.

Proof of Theorem 9.2. Without restriction, we may assume that %, = 0 and zQ = 1.
Let (Mj — 0 < /, k ;£ r = rt, denote the elements of (M, — Tf1. By Cramer's
rule,

(9.17)     sup \(M - rr<l\ =
i.h

and therefore, by Lemma 9.1,

1 + Q(z - 1)
det(M, - /)

1 + Q(z - 1)
(z - \)(mri + 0(z - 1))

^ K, > 0.

An easy calculation then shows that the eigenvalues of M,- are given by (9.6a). Let
now z = 1 + a and denote by {mTla)\'T the different values of (mrla)Ur. Let
? = lm(mrl<r)Yr, then, by (9.17),

jr,(l + 0(\z\ - l))(|z| - 1) S |det(M, - eiv)\ =   f[ (*,r - eiv)
I  T = l

r

=   II arnrl<j)Y' - i lm(mTla)\/r + 0(<r2A)) •
r-l i

Therefore, Re(mTl(T)Yr 9* 0 for all a with Re c > 0 and (9.6b) follows by an easy
calculation.

Proof of Theorem 9.3. Without restriction, we can assume that £„ = 1, z„ = 1,
that the eigenvalues of Mj1' are all equal and that Af;n) has upper triangular form, i.e.

(9.18)
with

M, = (1 + «(z - 1)7 + (z - \)D + (z - ifE + ■■■)

D

0 rfia

0    0 d2,

du

d2r

0    0 j

We want to show that a is real and different from zero. The eigenvalues of M,„ have
the form
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KjT = 1 + a(z - 1) + 0(z - +

Let z = 1 + x + iy, a = at + z'y and ^ = a,j> + yx; x, y, alt y real. Then

\Kir -e'*\= \alX -yy\+0((\x\ + \y\)1 + ,/r),

and Lemma 9.1 implies that a is real and different from zero. Now let x = y1+l/r,
y > 0 and tp = ay. We then get, from (9.18),

\(M, -e*"/)"1! =
(9.19)

/ + ^-vr1 d)u + o(y-,/rx

But Lemma 9.1 implies

|(M, -e'Vr'l      A-.dzl - I)"1 ^ «-2j--(1+,/",

and, therefore, (9.19) is possible only if d = 0. We have thus proved that (9.7) and
(9.8) hold. Therefore, we get for the eigenvalues

KiT = 1 + «r(z - 1) + ft(z - l)2 + 0(z - l)2

Let

z = 1 + x + />, = t*r.y + 2xy Re /3T + (x2 — y2) Im ft,

then Lemma 9.1 gives us, for all sufficiently small x, y,

kKTl(\x\ + \y\2) S \a,x + x2 Re ft + y2(a2T/2 - Re ft)

- 2xy ImßT + 0(\x\ + \y\)2+'/r\,

and therefore Re(a2 - 2 Re ft) ^ 0.
For x = cy2, c > —§, we have |z[ > 1,

|k,-t|2 « 1 + 2W + (a2 - 2 Re ft)/.

Assume now that (9.9) is not valid, i.e. there is a c0 such that 2arc0 + a2 — 2 Re ßT = 0.
Then, for ar < 0, — \ < c < c0, we would have |k,,| > 1, contradiction.

Without restriction, we may now assume that e~'{'M, has the form (9.10) with

Li = I +

<*! 0
0    a2 0

0

0

0 ad.

(z — Zo)

+

^ ft
10 ft (z — z0) +

0 ft
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N, = I +

otd+i 0

0     a,l+2 0
(z — z0)

+

0 ar,J

ßd+1 ßd+l,d+2

0 ßd + 2

0

ßü-l.r,

ßd + 2,r,-

0 ßr

(z - z„)2 +

where \ßH\ are as small as we like. Then (9.11) follows by an easy calculation from
(9.8) and (9.9).

10. Necessary Stability Conditions. We again consider equations with constant
coefficients and want to show that the conditions of Theorem 5.1 are necessary for
stability.

Lemma 10.1 (Ryabenkii-Godunov). A necessary condition for stability (in any
sense) is that the homogeneous Eqs. (8.1), (8.3) have no nontrivial solution for |z| > 1.

Proof. Follows directly from (8.4) or (8.5).
For later purposes, we shall derive an explicit algebraic criterion: Let z with

|z| > 1 be fixed and consider the Eqs. (8.1), (8.3). Let T(z) be the transformation in
Theorem 9.1 and introduce y = T(z)w as a new variable. Then, (8.1) gets the form

(10.1) V„4
L 0

0 N
+ TGy,

and the boundary conditions (8.3) can be written as

(10.2) D\z)y\ + Dn(z)yV = g + R(G).

If g = G = 0, then the general solution of (10.1) which belongs to l2(h) is given by
y] = L'~xy\, yl1 = 0 and we get at once

Lemma 10.2. The homogeneous Eqs. (8.1), (8.3) have no nontrivial solution if
and only if

(10.3) detlLAz)! 9* 0.
Let z = z0 with |z0| = 1 be fixed and consider the homogeneous Eq. (8.1) with

inhomogeneous boundary conditions (8.3). Let T(z) be the transformation of Theorem
9.1 and introduce again y = Tw as a new variable. Then, (8.1) gets the form

(10.4) y»+i

Mi

0

0

M2

0

0

Mi

y,,

which, in partitioned form, can be written as
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(10.5) d)        w (i)
y,+1 = M^, , (Sri   > , yvrj)

By (9.1) and (9.10), we can assume that M, for 7=1 and j = I* + 1, • • • , /, have
the form

Mi = e'u Li 0

0 Ni
Lj, Ni having the properties defined in (9.3) and (9.11). Therefore, we can write
(10.5) as
(10.6) /«] = ei(iL,yln\ = e*£'A^i2),      /" = (/'", y"")'.
The other Mt, J = 2, • • • , /*, have, by (9.6a), (9.6b), /, eigenvalues k,t with |k,t| < 1.
Correspondingly, we partition the vectors yw, j = 2, •••,/*, in the following way:

(10.7) - (vU) ■ ■ ■   vU)v      vU2) — (vU)

and introduce the following notation:

(10.8) / = Cvm), • ,ya>,Y,     y11 = (/,2), ■•■ >/wY.

Then, we can write the boundary conditions again in the form (10.2) and the following
theorem holds.

Lemma 10.3. // the approximation is stable according to Definition 3.3, then the
determinant condition (10.3) holds for all \z\ 1.

In Sections 12 and 13, we shall prove that this condition is also sufficient for
stability.

Proof. For j = 2, • • • , /*, it follows, from (9.6a), (9.6b), that there is a non-
singular matrix

(10.9)
such that

[/, = / + (z - z0y/ri uy +

UiMfUJ1 =

0

withkn| ^ |k,.2| S S < 1 < |*,vl,+1| S
instead of y,

k„ 1 0 • • • 0

0   k,2   1   0 • • • 0

0 Kir,

■ ■ S |k,>,| for |z| > 1. Introducing,

/ 0

0    U2 0

0 • • • 0 Uf 0 0
0     • • •       0     7 0

y m (I + 0((z - z0)1/rl))y.

0 0 I
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as a new variable, then the boundary conditions (10.2) get the form

(D\z) + 0(z - z0)1/T)v\ + (Du(z) + 0(z - z0)1/r)v\l = g + R(G),      r = max r,-.

If G = 0, then u" = 0 and v\ is given by
v\ = (D\z) + 0(z - z0),/Ty'g.

If det Dl(z0) = 0, we can choose g with \g\ = 1 in such a way that lim v] = °° for
z —> z0. This is not possible if the approximation is stable because (8.4) implies
\v]\ 5; const

We shall now consider Definition 3.2. For that purpose, we shall discuss a special
class R of approximations which is defined by

Definition 10.1. R is the class of approximations for which the normal form of M
does not contain any block of type (9.4).

There is no difficulty to characterize this class algebraically.
Theorem 10.1. Let z, denote the eigenvalues of (5.3). The approximation belongs

to R if and only if |z, | = 1 for some £ = £0 implies dz,(£0)/d£ 9* 0.
Proof. If dz,(£0)/3£ 9* 0, then we can consider k = eil in a neighbourhood of £0

as a function of z and get for the corresponding eigenvalue k = k(z) of Man expansion

k(z) = el° + (z - ZoXdz&O/de'5)-1 + • • • .

This is impossible if k(z) is an eigenvalue of a block M, with M'0) of type (9.4).
Theorem 10.2.   // the approximation is dissipative, then it belongs to R.
Proof. We need only to consider a neighbourhood of £ = 0, because, by assump-

tion, |z,(£)| < 1 for 0 < |£| ^ it. Consistency implies that there are precisely n eigen-
values z, of (5.3) with z,(0) = 1 and for these eigenvalues we have

z, = 1 + i(k/h)ai$ + 0(|2).

The other eigenvalues are smaller than one in absolute value. This proves the theorem.
Let z = z0, |z0| = 1, be fixed and assume that the approximation belongs to R.

Introducing again y = Tw as a new variable, we can write the Eq. (8.1) in the form

(10.10)

.IV
Li

0

0

0

0

L2

0

0

0

0

Ni
0

0

0

0

N2

+ TG,

where Lu TV, have the properties defined in (9.3), and L2, N2 consist of blocks as
described in Theorem 9.3.

The boundary conditions can again be written in the form (10.2) with y1 =
(yn\ y<2))'» yu = (yi3\ yu>)' and we may, without restriction, assume that they
have the form

(10.11)
0

0

D22

yl1}
v,

£u En

[E2i E2-

y\3) = 8 + R(G).

Theorem 10.3. If an approximation of class R is stable according to Definition 3.2,
then there is a constant K. such that
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(10.12)
(10.13) D

\D~22\ S K„

u^ul ^ Kt\z — z0 —l

(10.14)
Proof. Let G = 0. Then >>;3> = y^ = 0 and, therefore, y™ = U2-lD~22gw.

If (10.12) does not hold, then D~22 grows at least like (z — z0)_1 and the inequality
(8.5) cannot be fulfilled. In the same way, we can prove that \D\\\ g const|z — z0|_1.
Therefore, also (10.13) holds. Choose now TG = (0 0 0 (A-"*2)"g4)'. Then gj4) =
(7V2 7V*2 - /)_1g4 ~ (|z| - l)_1g4 and (8.5) cannot be fulfilled if (10.14) does not hold.

11. The Generalized Energy Method. We consider now the Eqs. (5.1) and
(5.2) and write them again in the form (8.1), (8.3):

(11.1) w,+i = Mw, + G„      Swl = g + R(G).

Theorem 11.1. Assume that there is a matrix H(z) which for all z with \z\ > 1
has the following properties:

(1) H(z) is Hermitian and uniformly bounded.
(2) There is a constant 8i > 0, such that, for all z with \z\ > 1,

(11.2) \z\'M*HM - H) St 5,(|z| - 1).

(3) There are constants S, > 0, j = 2, 3, such that, for all Wi which fulfill the bound-
ary conditions Swi = g + R(G),

Then, the approximation is stable in the sense of Definition 3.3.
Proof. Let N > 0 be any natural number. Then, we get, from (11.1),

(11.3) w*HWl St 52|Wl|2 - S3(\g\2 + \R(G)\2).

N-i /jr-i

Re( £ w*+!HMw,h j — £ w*+lHwy+1h
/N-l \ N-l

Adding the last two equations gives us
N-l

£ w*(M*HM - H)wvh + hw^Hw! - hwNHw,N
(H.4)

Therefore, for TV —> oo, we get, from (11.2) and (11.3),

8i(\z\ - 1) ||w||2 + hS2 \z\ \wi\2

S h83 \z\ \g\2 + hS3 \z\ \R(G)\2 + \z\ const | |G| \h-11 w\|„,
i.e.

(11.5)
iSi(\z\ - 1) \\w\\2h + h82 \z\ \Wl\2

S h53 \z\ \g\2 + h83 \z\ \R(G)\2 + const S^-^-Qz] - l)"1 \\G\\l

and the inequality (8.4) follows without difficulties.
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There is no difficulty in constructing //for |z| > 1 + 17.
Theorem 11.2. Let 17 > 0 be a constant. If the Ryabenkii-Godunov condition is

fulfilled, then we can construct Hfor 1 + tj ^ \z\ ^ |z„|.
Proof. It follows from Theorem 9.1 that there is a transformation T(z), such that

L*L g (1 - 8)1, N*N > (1 + 8)1,T(z)M(z)T(zTl =

for 1 + ij ^ \z\ S \za\.
We choose now

' ~cl 0

0 /.

where c with 0 < c ^ 1 is a constant to be chosen later. Then

|c(/ - L*L) 0

H = T*

\z\(M*HM - H) 2 r*
0 N*N - I

T St \z\ c8

and, therefore, (11.2) is fulfilled. We also have

-cl 0]
w*Hwi = y*

0
yi = —c \yi

and, by (10.2) and Lemma 10.2, we can easily choose c in such a way that (11.3)
is fulfilled. This proves the theorem and, in addition, also Theorem 5.3.

We shall now prove Theorem 5.4. For that purpose, we assume that A-1 = N,
TV natural number, and consider (8.1) for v = 1, 2, ■'• • , N, with boundary conditions

(11.6) S(0)Wl = g(0) + R0(G),      S'l)wN = g(l) + Rl(G).

Let <p £ C" denote a monotone function with

<p = <p(x, e) = 0   for x ^ Je,

= 1   for x \t

and let \p = 1 — <p. Then, we can write the Eqs. (8.1), (11.6) in the form

(11.7) (<pw)r+l = M(<pw\ + (fp.+l -

(11.7a) S(l)(<pw)N = g(l) + Ri(G),

(11.8) (*w),+i = A/(^w), +

(11.8a) ^(OX^tvX = g(0) + fl0(G).

¥>,)w„+i + <p„G„,

If we neglect the terms (<p„+1 — <p„)w„+1, (i^^+i — >/'.)w^+1, then we can consider (11.7)
and (11.8) as the resolvent equation for the left and right quarter-plane problem,
respectively. These are, by assumption, stable and, therefore, the estimate (8.4) or
(8.5) holds for the system

\\lf   w/r+1 \tf/   wlv     \\b wl.
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Now, the terms (<p, + 1 — <p,)w„ (\Lv+i — ^„)w„ can be considered as perturbations of
order k and, therefore, Theorem 5.4 follows from Theorem 4.3.

12. Dissipative Approximations. We assume "that the approximation belongs
to the class R and that the Ryabenkii-Godunov condition is fulfilled. By Theorem
11.2, we need to construct H only for 1 £ \z\ I + Theorem 10.2 implies that
there is a transformation T = T(z) such that

TMT

U
0

0

0

0

u
0

0

0

0

0

0

0

0

N2

Here Lu Nt are of type (9.3) and L2, N2 consist of blocks as described in Theorem 9.3.
Let y, = Twy. Then, we can write the boundary conditions Swl = g + R(G) in the
form (10.11). If for all |z| with 1 ̂  |z| g 1 + v the determinants det|A< I ̂  0, i = 1, 2,
then there exists a constant K such that

(12.1)
Choose now

\yl"\ + \yl2)\ ̂  K(\y\3)\ + \yl4)\ + 1*1 + «(G)).

H = T*

-cl

0

0

0

0 0 0

-cl 0 0

0 7 0

0 0 1}

T.

Then there is no difficulty in showing that the inequalities (11.2) and (11.3) are
fulfilled if we choose the constant c > 0 sufficiently small. Therefore, the approxima-
tion is stable according to Definition 3.3. This proves Theorem 5.1 for dissipative
approximations.

If there are some z0, with |z0, | = 1 for which only the inequalities (10.12)—(10.14)
hold, then we have, instead of (12.1),

(12.2)
\y\2)\ S K(\y[s + \y?

- Zoi\\yll)\ ^ k^\z
i

In this case, we choose

+ \g\ + \R(G)\),

(bf'l + 1*1 + R(G)) + K \yi*

H = T*

o

/ o

I
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and, by introducing yv = Tw, into (11.4), a simple calculation shows that we can
fulfill the inequality (8.5) for sufficiently small c. Therefore, the approximation is
stable in the sense of Definition 3.2. This proves Theorem 5.2.

13. Nondissipative Approximations. In this section, we want to prove Theorem
5.1 for nondissipative approximations. Let z0 with |z„| = 1 be fixed. By Theorems
9.1-9.3, there is, in a neighbourhood of z0, an analytic transformation T = T(z) such
that

' Mx   0 0

TMT 0    AT, 0 0

0   • • •   0 Mo
where the matrices Af, have the same properties as described in Theorems 9.1-9.3.
We now choose H in the form

fj?i   0 •••0
0   R2   0   • ■ • 0H = T*

0 0
and get, from Lemma 10.3,

Lemma 13.1. Let the determinant condition (10.3) be fulfilled for \z\ Sr 1. An H
which fulfills the conditions of Theorem 11.1 and thus proves stability in the sense of
Definition 3.3 can be constructed in a neighbourhood of z = z0 if, for every constant
c > 0, there is a constant &i > 0 and a Hermitian J?,(z) such that

|z| (M*RjMj - /?,-) ^ «,(|z| - 1),(13.1)
\yin)\2 +(13.2)

Here yli) = (yui\ yU2)) is defined by (10.5) and (10.8).
We shall now show how Ä, satisfying these conditions can be constructed. In the

same way as earlier, we can prove that for j = 1, and j = I* + 1, • • • , /,

Ri = -cl

0
fulfills the conditions (13.1), (13.2).

For j = 2, •••,/*, we can write the corresponding Af, as exponential functions

(13.3)
with

(13.4)

M,(z) = e

A?,(z„) = m, + i -i
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Furthermore, if RiT, ntT denote the eigenvalues of A?,-, Af,-, respectively, then
e"iT = kjt. From Lemma 9.1 and Cramer's rule, it follows that there are constants
Cj > 0 such that

K(\z\ - I)"1 St sup |(M, - eirIYl\ St c, sup \U (k,t - e^y1
<p Ip        i T

= d sup |IX (e",r — e^)-1   St c2 sup  H (Z)T —
ip i     T ip        i T

St c3 sup I (A?,- — upiy1].

We have thus proved that, in a neighbourhood of z0,

(13.5) sup I (A?,- - iW)-1| ^ const ||z| - 1|~\      |z| > 1.

By assumption, the approximation is nondissipative. Therefore it is stable for the
Cauchy problem, not only for / —> + <» but also for t —> — =°. Thus, the resolvent
condition (9.12) and (13.5) hold also for |z| < 1. Now let z = e" and z0 = e"\ Then
we have proved

Lemma 13.2. The matrices A/,- are m a neighbourhood of s0 analytic functions of s0
and the double-sided resolvent condition

(13.6) sup |(Af, - W>I)~1\ ̂  const |Res|_1

holds.
In a similar way as in [4], Ralston [6] has shown that (13.4) and (13.6) imply that

for every constant c > 0 there is a constant 8X > 0 and Hermitian Ä,(z) such that

(13.7) KjMj + M*R~j St Sjdzl - 1) » 5i Res,      z = e\
(13.8) O-i")**^" ^ -c \yim\* + b:j'2T-
We shall now show that we can choose 7?, = Rj. Consider the differential equation

dy/dx = Af>,      0 ^ x ^ 1,
then

^*(0)(e1,fi*ÄJeMi - Ä,M0) = 2 Re(^ y*Ri dy/dx dx^j

= 2 Re(|o y*RiMiy dx^j St 25,(|z| - 1) \y(0)\2.

Observing that y(0) is arbitrary, we see that (13.1) is fulfilled. The inequality (13.2)
is also fulfilled by (13.8), and we have thus been able to construct Rs for j = 1, • • • , /,
satisfying the conditions of Lemma 13.1. This proves Theorem 5.1 also for the
nondissipative case.
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