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Abstract. Lyapunov stability results are given for differential/algebraic 
models of power systems which include the effect of generator damping 
and nonlinear loads. The global dynamical structure of such a system is 
studied in terms of multivalued energy functions defined on so-called 
'voltage causal regions' where voltage behaviour is predicted from angle 
behaviour. These regions are separated by 'impasse surfaces' related to 
singularity in the load flow equations. 
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1. Introduction 

Direct methods of transient stability assessment for power systems rely on simplified 
nonlinear equation models. Older models assumed impedance loads and used network 
reduction to derive a model as a set of coupled (swing) differential equations (Pal 
1981). Bergen & Hill (1981) suggested using models where the loads and network 
structure were preserved. This approach leads naturally to models which are of 
differential/algebraic type. More recently such models have been used as a basis for 
voltage stability analysis (Kwatny et al 1986; Venkatasubramanian et al 1991). Thus 
the theoretical basis for direct methods using structure-preserving models is dependent 
on stability theory for differential/algebraic equations (Chiang & Fekih-Ahmed 1992). 
This paper provides further results in that direction. 

Hill & Marcels (1990) have given some basic results on Lyapunov stability of 
differential/algebraic systems and used these to justify use of an energy function for 
undamped power systems. Hiskens & Hill (1989) have explored more practical aspects 
of using this energy function; this work identifies several theoretical extensions which 
should be made. Of these, the two considered here are as follows. First, the theory 
is easily extended to allow for generator damping. Second, an improved decomposition 
of the state-space is presented; so-called voltage causal regions are defined as open 
sets which are separated by 'impasse surfaces' of algebraic singularity and within 
which ordinary differential equation theory can be used. This helps to formulate 
practical algorithms for finding the region of transient stability. Further, there are 
useful tools for analysis of short-term voltage collapse. 
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2. Differential/algebraic power system model 

2.1 Model development 

The classical machine model is used in the development of the system model. 'Therefore 
the synchronous machines are represented by a constant voltage IE, I in series with 

transient reactance. This assumption corresponds to ignoring flux decay and having 
an exciter which is too slow to act in the transient period. 

Consider now a network consisting of n o buses connected by transmission lines. 
At m of these buses there are generators. The buses which have load but no generation 
are labelled i =  1 , . . . ,n  o -  m. The network is augmented with m fictitious buses 
representing the generator internal buses, in accordance with the classical machine 

model. They are labelled i +  m where i is the bus number of the corresponding 
generator bus. The total number of buses in the augmented system is therefore 
n o + rn: = n .  

The network is assumed lossless, so all lines (including those corresponding to the 
machine transient reactances) are modelled as series reactances. The bus admit tance 

matrix Y is therefore purely imaginary, with elements Yti =JBw 
Let the complex voltage at the ith bus be the (time varying) phasor V~ = IVy[/__ ~ 

where 3 i is the bus phase angle with respect to a synchronously rotating reference 

frame. Define IV[ = [IVll,...,IV, ol]',.where t denotes matrix transpose. The bus 
frequency deviation is given by o;i = 3~. 

Using machine reference angles, we take the nth bus as the reference. We use the 
internodal angte.~ ~ :  = 3 i -  ~5,. Define ot = [cq,. . . ,0~_ 1] ~ and tog = [O~o+ 1, - . ' ,  c~ t' 

Let Pb~ and Qbt denote the total real and reactive power leaving the ith bus via 
transmission lines. Then 

n 

Pb,(et, IVl )  - I V~ll V~lBusin(ct/- :z~) (la) 
j = l  

n 

(2~,(ot, IVl) = - ~ I V~l151B~jcos(c~, - c~). ( lb )  
. /=1  

In these equations, we assume the substitution I Vil = [Ei_,ol, i = no + 1,. . . ,  n has been 
made. Also we take c~, : =  0. 

Now consider the modelling of loads. Denote the real and reactive power demand 
at the ith bus by Phi and Qai respectively. In general these powers are functions of 
voltage and frequency. For the stability theory to be developed, the loads must  be 
restricted to satisfy 

Pa~ = p0 ~, (2a) 

Qd~= Qn~(IVil), i =  1,...,no. (2b) 

There are unresolved difficulties in allowing voltage dependent real loads. However,  
this restriction will be relaxed when considering the state space decomposition. 

The last component of the model to be considered is the generator dynamics, given 
by the swing equations 

M./(dog2+,o/dt) + D.~coj+,o + Pbj+,o(ot, IVl) = poj; j = l . . . .  ,m, (3) 
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o the where M i are the inertia constants, Dj the generator damping constants, and Pmj 
mechanical input powers. We assume that D~ ~ 0 for at least one i =  l , . . . ,m.  The 
usual assumptions of constant mechanical power, and the network being in a sinu- 

soidal steady state are made. 
Combining the power balance and swing equations gives the total system 

representation 

Mi-,oc-b~+D~-,oCOi+Pbi(a, lVl) =P~ / = n o + l  . . . .  . n, (4a) 

Pb~(~, IVl)= - poa~, i = 1, . . . ,  n o , (4b) 

(2b~(a, IVl)= - Q~(I E I), i = l , . . . ,  n o. (4c) 

r p ' p '  1 where P~, Pg are no, ( m -  1) vectors referring Define P ' b = [ P b l ' ' " ' P b , . - 1 ] = ~ - I  o" 

to loads, generators respectively; ~o, = LF-- ~dP0t ]~0t'I~M-J where p~~O = [ p O  ,.. . , pOM.m_ 1 "-1", 
Qb [Qbl, Q~,,,]t; and Q = [ -  Qat , "  - Qa,o] t. Also set P,:  = pO 

" ' ' ~  "~ M r n "  

From (la) 

?I tl 

Z ( P h i - P ~  _ Z pO.= _ p r .  
i = 1  I = 1  

(5) 

It is convenient for this excess bus power to be distributed across generator powers 

in proportion to damping. Define 

PM i = P~ , ~t.j - (Pr/DT)Dj ,  (6) 

where Dr: = ~ Di ( # 0 by assumption). 
i - ~ l  

Define the modified real power vector ~ t =  [ _  o t -  Pd I~M]" Then from (4b), (5), (6) 

So 

n 

(Pbr - Pi) = O. 
/ = n O +  1 

Pb. -- P.  = - l '  _ 1 (Pg - PM), 

where I 
n - - 1  

In-1 is the ( n -  1) identity matrix. Then (4) can be rewritten 

M . O  o + Dor o + T'o(Po(ot, IVl) - PM) = o, 

PI(~, IVl) + Pa = 0, 

is the (n - 1) vector with unity entries. Define Tg = [ I _  1 " - I . _  i ]  where 

Qb(a, IVI) + Qa(IVI)= 0, 

(7a) 

(7b) 

(7c) 

where Mg, Dg are diagonal matrices of inertia, damping constants. Note that use of 
PM requires a reference shift for 6~g so that (4a) remains valid. Partition a as a' = r s  t 1 L l y.-J 

so the loads can be identified. 

Also define 

fg(%, ~ .  IVl): = P0(%, ~,, IVl) - PM, 

f i (%, al ,  IVI): = P z ( % , a l ,  IVl) + P~, 

g(%,a .  IVI): = [IVL3- ~(Qb(%, ~ .  IVl) + Qd(IVl)), 

(8a) 

(8b) 

(8c) 
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where [a] denotes [diag {al}] for vector a. Then (7) can be written 

6J. = - M~ ~ Doto o - M~ ~ T'gf~(%, e,, IVl), (%) 

~0 = Tgto~, (9b) 

0 = fl(%, al,  lVj), (10a) 

0 = g(aa, ~t.. [Vt). (10b) 

Equations (9), (10) describe the model on which all further results are based. We note 
it consists of a set of differential-algebraic (DA) equations. The system variables are 
clearly 

to0e~",%eR " - l , a i e ~  "~ and [ V l s ~ .  

It is easy to check that the bus power transformation (and associated frequency 
reference shift) implies the equilibrium points are given by to o = 0 and 

"fg(~o, az, IVl) = O, (1 la) 

f:(%,~t, IV[) = 0, (l lb) 

g ( %  ~,, Ivt) = o. (1 lc) 

2.2 Local ODE representation 

Here it is shown that the model is localIy equivalent to a set of ordinary differential 
equations (ODE) for almost all operating states. The load bus variables ate, iVl are 
related to the generator angles a 0 by the algebraic equations (10). In fact, (10) defines 
an (m - 1)-manifold on which % can flow. Define the Jacobian 

J u = I  OfJOa` 0fr/~lV' 1 (12) 
O g / ~  Og/~Nl " 

Then, by the implicit function theorem (Fleming 1977), if det Ju # 0, locally the load 
bus variables can be written explicitly in terms of the generator angles as 

at = * (ao ) ,  [VI = W(a,) .  (13) 

An equivalent differential equation form can therefore be obtained locally by sub- 
stituting (13) into (9a). Setting 

P*(a,):  = P,(%. ~(%).  ~'(~,/). 

gives the m o d e l  

r o = - M~-Z D oo, o - Ms-t  T' ~ (P* (as) - .PM) ,  

~o = Tgc%. 

(14a) 

(14b) 

Equations (14) define ordinary differential equations which are locally equivalent to 
the DA system. 

This idea of local solvability will be extended later to solvability over disjoint 
regions. 
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3. Stability theow of differential/algebraic systems 

This section develops a useful result on the stability of equilibria in general DA systems. 
The general topic of Lyapunov stability for such systems has been studied in Hill & 
Mareels (1990). The result required here is a LaSalle invariance version of an asymptotic 
stability criterion. This is easily developed using ideas given in Hill & Marcels (1990). 

We consider DA in the general form 

= f(x, y), (l 5a) 

0 = g(x, y), (15a) 

with some compatible initial 
f: N" x R" ~ R", g: N" x N" ~ ~m. 

We assume throughout: 

conditions, (Xo, Yo), i.e. 0=g(xo,Yo)  where 

A1. f and g are twice continuously differentiable in some open connected set, 
~ ) c  R n x R m, i.e. f, geC2(D). 

A2. The Jacobian of g with respect by y has constant full rank on r ,  i.e. 

rank(D2g(x,y))= m, V(x ,y )e~  

We use the following notations: 

x(t, Xo, Yo), y(t, x o, Yo) are solutions of (15) as functions of time and initial 
conditions 

B~= {(x,y)e~ n x am: [l(x,y)ll <e}, 

G = {ix, y)eR" x a" :g(x ,y)  = 0}, 

[2G= f~c~ G, 

= closure of [ in R" x N", 

K = {a:lR+ --. R+ continuous, strictly increasing, a(0) = 0}, 

l,}.l = derivative of the function V with respect to time along the solution 
of the system with equations (n). 

We now consider stability properties of equilibria of the general DA system (15). First, 
note that  a local ODE description - exemplified by (141 - can be given. 

It follows from the implicit function theorem and assumption A2 that given 
(x, Y ) ~ 6  there is some neighbourhood U c ~" of ~ and a unique twice differentiable 
function u:N~--. R m, ueC2(U) such that 

0 = g(x, u(x))VxeU and (U x u(U)) 6 ~ D6, 

with Jacobian 

Let 

(Du)(x) = - (D 2 g)- l(x, u(x))'(D1 g)(x, u(x)), Vx~ U. 

A:=  U x u(U) and A ~ : = ( U  x u(U))o--(U x u(U))~G.  

Lemma 1. In the neighbourhood A6(i)  c Do, the system (15) reduces to 

.t = f(x, u(x)). (16)  
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We assume that the system'(15) has a unique (isolated) equilibrium in f2, which we 
regard to be the origin, without loss of generality. 

A3. In r ,  f(x, y )=  0 and g(x, y )=  0, iff(x, y)=-(0, 0). 

Remark. In order to satisfy assumption A3 it may be necessary to shrink the set f~ 
of assumptions A1 and A2 to a smaller subset. 

When discussing stability in the DA system context we only consider stability with 
respect to perturbations which satisfy the algebraic constraints. (When using the 
reduced system representation (16), this feature has been accounted for.) However it 
should be noted that often the algebraic equations of the DA system are a model of 
some (perhaps unknown) underlying dynamic process. Stability in the DA sense does 
not imply stability of the system obtained by including the underlying dynamics. 

We now present the formal definitions of stability of the trivial solution (x(t, 0, 0), 
y(t,0,0)) = (0, 0) of the D.A system (15). 

DEFINITION 1 
The trivial solution of (25) is called stable if given e > 0, there exists a ~ > 0 such that 

for all (xo, yo)~fl~ ~ B~ then (x(t, x o, Yo), y(t, xo, yo))sflGc~B~, u 

DEFINITION 2 

The trivial solution of(15) is called asymptotically stable if it is stable and there exists 
r/> 0 such that for all (xo, yo)ef~ ~ B, then 

lira I] (x(t, xo, Yo), y(t, x o, Yo))I1 = (0, 0). 
t.-~ t]O 

It is straightforward to derive versions of the basic Lyapunov stability arguments for 
DA systems. Some basic results are given in Hill & Mareels (1990). In the latter power 
system analysis we need a LaSalle invariance type result. 

Theorem 1. 

definite and has negative semi-definite derivative on f2~, i.e. 

V(x, y) >i a([I (x, y)i[), 

on ~ for some a~K. Let 

S =  {(x,y)ef)~nA: ~'(ts) = 0} 

and M be the largest invariant set within S. Further define 

Suppose there exists a CX(~) function V:~--+ ~+ such that V is positive 

(17) 

= sup { y : B G c ~ A } ,  
y~IR+ 

V - l = { ( x , y ) s ~ o :  V(x,y)~<a(a)}. 

Then the trivial solution (0, O) of the DA system is stable, (x(t), y(t) ~ M c~ V -  x as t ~ oo 

and the domain of  attraction contains V-1.  
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Proof. Lemma 1 gives that there exists a neighbourhood A(0) of the origin in which 
DA system (15) is equivalent to the ODE (16). Let reR+ be such that B G c A c ~ o .  
Within B,, the corresponding arguments for ODE systems can be used (LaSalle 1976; 
Rouche et al 1977). 

Remarks. (a) lri L.~neral, solution of(15b) yields multiple values ofy for each x. For 
each branch, s~,:~tem (16) and V(x,u(x)) are well-defined. However, on D., we must 
regard these as multi-valued. For instance, V may be represented by multiple surfaces. 
(b) Clearly, the stability result follows easily from one for the reduced system. However, 
the reduced system is not usually known. So stability conditions which work directly 
on functions f,g in (15) are needed. 

4. Stability result 

In this and the following sections, we provide some basic methodology for determining 
large disturbance stability of the equilibria in the DA power system model. Emphasis 
will be given to new insights into the nature of energy surfaces in the presence of 
multiple equilibria and the statement of stability results for the differential-algebraic 
equation model. 

4.1 Energy function (Lyapunov function candidate) 

The development of energy functions for the DA model has been studied elsewhere 
(Narasimhamurthi & Musavi 1984; Hill & Chong 1989) using first integral and Lur'e 
problem analysis methods. Here we summarise from Hill & Chong (1989). A valid 
energy function is 

V ( % , z ) - '  ' f z  - ~o9P1(~)o, + (h(L),dL) 
Zs 

(18) 

where z = (%, 0tl, NIL h(z) = (~(z), f~(z), g(z)) and Zs denotes a stable equilibrium point. 
P1 is given by 

Pt(#) = qMa + #M,I,,=Mv (19) 

where/1 is a scalar and loq denotes a p x q matrix with all its elements equal to 1. 
(To simplify notation, the dimensions will be omitted.) The scalar /z is chosen to 

ensure P1 (#) > 0. Note that Pt (0) = qM v The energy function (18) can be evaluated as 

R 

V(%, a,,  az, IVl) - ~ ' ~ ~ 

Define the constraint manifold 

n 

~, n,j (IV, II~lcos% 
t = l j = l  

- I Y, Slt ~Slcos =~) 

f0t 
: ,o [IV, I 
13'da + [Q,,(o,)/o,]do,. 

(20) 

6 : - -  ~z:f,(z) = O,g(z) = o}. 
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Differentiating V on G gives 

Ik = �89 (21) 
where 

Zo(iz ) = - 2qDg -- ~(M 91Dg + D a IMg). (22) 

A further requirement on ~ is to make Z0(~)~< 0. Note that Zo(0)-<. 0. 
Clearly/~ = 0 gives the simple kinetic energy function ilorMg ...gt%.- This remains a 

valid energy function for any (non-negative) values of damping Dg. However, better 
estimates of stability regions can be obtained with a value of # which is more closely 
related to the damping. This is considered in much more detail by Hill & Chong 
(1989) following the results for impedance load systems by Willems (1970). In the 
special case of zero or uniform damping, the kinetic energy term becomes the familiar 

n - 1  n 

(1/2Mr) ~ Z ( w i - w i ) 2 M i M :  �9 
/ = n o +  1 j = i +  1 

4,2 Stability result 

In the development of large disturbance stability results, it is useful to establish the 
connection between small disturbance stability and asymptotic stability of equilibria. 

Small disturbance stability refers to the stability of the linear system obtained by 
linearizing (9), (10). Hiskens (1990) shows that this linearization yields, 

A~,_I - M ~ - ' ~ F  [ M]-TI)0 LA%_.I =A  A% ' (23) 
where 

F = Jgg - J c JS  1Jig (24) 

with J~g, Jal and J~9 defined in appendix A. 
It is interesting to compare the linearized system (23) with the reduced system (14). 

Notice that F is the Jacobian of P* (~t~). Nonsingularity of Jst ensured the existence 
of functions (13), and is also required for F to exist. 

The operating point is small disturbance stable iff all eigenvalues of A lie in the 
open left half of the complex plane. It was shown by Hiskens (1990) that the eigenvalues 
of A satisfied that condition ifF was positive definite. So we can say that an equilibrium 
point is small disturbance stable if Ju is nonsingular and F is positive definite. 

Theorem 2. / f  an equilibrium point z e is small disturbance stable, then it is asympto- 
tically stable in the sense of definition 2. 

The proof of this is given in appendix A. 

Similar results have been derived before (DeMarco & Bergen 1984), but have relied 
on singular perturbation results. In so doing they have placed conditions on the sign 
of J~z which are not required here. 

5. Global dynamical structure 

In this section, we move beyond the local ODE equivalence given by lemma 1 to 
study the DA system as globally decomposed into multiple ODE systems on regions 
bounded by surfaces of algebraic singularity. 
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The assumption of constant real power load made at (2a) was necessary to ensure 
path independence of the energy function integral in (18). However, such an assumption 

is not required when considering structural aspects of DA systems. It shall be relaxed 
for this discussion, i.e., we will allow real power loads to take the form Pa~ = P~ I V~I). 

It can be seen from (8) and (12) that real power loads influence Jzz. When real 
power loads are constant Jn is symmetric, so its eigenvalues are all real. However 
voltage dependence of real power loads causes Ju to be asymmetric. This can (and 
often does) cause J .  to have complex eigenvalues. 

5.1 ODE decomposition 

Our first result will establish the ODE decomposition. 
It is convenient to make the following assumption. 

A4. For all zeG, all negative real eigenvalues of J~z[,. are distinct. 

This assumption eliminates the possibility that as a path over the constraint manifold 
is traversed, negative real eigenvalues of J ,  could merge, then split from the real axis 
as a complex pair. Under this assumption, the only way that the number of negative 
real eigenvalues of Jt~ can change is by a real eigenvalue crossing the imaginary axis, 
i.e., Jtz going singular. The assumption is valid for most realistic power systems. 
However rare circumstances can be found where it is not true (Hiskens 1990). The 
consequences of such behaviour are explored later. 

Open sets C~ which lie within the constraint manifold can now be defined as 

Cl = {zeG:det Jztl~ =~ 0, J/~lz has I negative real eigenvalues). (25) 

These sets may not necessarily be connected. Partition each C, into its connected 
components C, i . . . .  Ctk~ i.e. 

k 

C l =  ~ C u a n d C  uc~Cl. 
i = 1  

=r i# j ,  i , j= 1...k. 

From (13), it can be seen that the functions ~ ,~ ,  which enable the establishment of 
the equivalent ODE representations, are functions of generator angles only. Therefore 
it is convenient to project the sets C ,  onto their generator angle components, as 

Au = {ao:(a., art, IVI) E C.  } (26) 

AS. Each C,  is simply connected. 

This assumption is difficult to check. However, in the context of power systems, 
extensive studies have not revealed a counter-example. 

Theorem 3. Assume each C u is simply connected. On each Cu, the set G is represented 
by unique continuous functions ~b,:Au~Rn~176 such that ott=~ti(~g), 
[V[ = ~zi(otg). The D A system (9), (10) is equivalent to the local ODE representation (14). 

The proof is given in appendix B. 

Remarks. (a) It is easy to generate examples of systems where the sets Ct are not 
connected (Hiskens 1990). 
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(b) The sizes of sets Cr~ depend greatly on the load model parameters. Conditions 
can be given for ensuring C~, 14:0 are empty (Hiskens & Hill 1989; Hiskens 1990). 
(c) This result sharpens tile one given earlier by Hiskens & Hill (1989). 

The boundaries of the sets C,  are referred to as "impasse surfaces" - a term borrowed 
from circuit theory (Hasler & Neirynck 1986). 

The regions C, are referred to as voltage causal regions. Within any C u, the load 
bus voltages and angles are continuously dependent on the generator angles. If 
trajectories meet an impasse surface, voltage behaviour can no longer be predicted 
from the DA model. 

The impasse surface I is given by 

Note that 
I = {zeG:det J.l ~ = 0} .  (27) 

Define augmented algebraic constraint function 

i(z) = (det dtt, fl, g). 

Fact. Suppose rank Di = 2no + 1 at a point p in I. Then in a neighbourhood of p, 
I is a differentiable (m -2)-manifold. 

From this fact we can build a picture of I as composed of intersecting differentiable 
(m - 2)-manifolds. On each of these manifolds, J ,  has exactly one zero eigenvalue. 
They intersect at lower dimensional manifolds where 2 or more eigenvalues are zero 
and rank Di < 2% + 1. It remains to determine whether Di has full rank at all 
non-intersection points, i.e. does some ( m -  2)-manifold segment have a boundary? 

Tile following example examines the constraint manifold structure in the context of 
power systems. 

Example 1. Consider the network shown in figure 1. For simplicity we will not 
augment this network by buses representing fictitious generator internal buses. The 
dynamic variables are therefore c~g~, ag2, coot, ~ ~ The algebraic variables are 

| Q 
V=I .OSpu 
a-o I _  j1.5 I V=l.0Spu 

GEN3 | 

BUS2 

20row . ~  
5;'rlvar 

3omw 
15 mvar 

~us~ I 

�9 

jo.6 

/ 

io.2 

jo.4 

| V=1.05pu 

-20row 

Q 
Figure  1. Power system network. 
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Figure 2. Constraint manifold projection, (eg~, I Vtl space). 

0~ll' ~12' ! V1 I, [ v2 I. The constraint mainfoldhas dimension 2. Note though that because 
the load bus network is connected between generator GEN1 and the reference bus 
GEN3, the load bus variables depend only on c~ol. They are independent of ~g2. 
Therefore the constraint manifold has a cylindrical form in the sense that the same 
shape is maintained at all values of c~g z. Projections of a slice through this 2-manifold 
are shown in figure 2. The impasse surface appears in these projections as four points 
I~, I 2,13, I,~, separating causal regions Co, C~ i, Cj 2, C2, The impasse surface segments 
do not intersect. [] 

The impasse surface, which divides the constraint manifold into causal regions, is 
defined at (27) as the set of points where J ,  is singular. It is .therefore composed of 
points at which at least one real eigenvalue of Ju is zero. Note then that complex 
eigenvalues have no influence on the structure of the impasse surface. Hence, the 
causal region decomposition is not influenced at all by complex eigenvalue behaviour. 
(Because of its non-zero imaginary part, a complex eigenvalue can have zero real 
part at a causal point.) 

However, it can be observed that along a path traversing the constraint manifold, 
the imaginary part of a complex pair may become zero, leaving a pair of repeated real 
eigenvalues. These real eigenvalues can then of course influence the decomposition 
in the usual way. Whilst not affecting the causal region structure, this behaviour does 
cause difficulties with the indexing scheme established for the regions in (25). As an 



742 D J Hill, I A Hiskens and I M Y Mareels 

example, if the imaginary part of a complex pair, which was in the left half plane, 
became zero, two negative real cigenvalues would be created. Points in the same 
causal region would have causal indices differing by two. However, because the 
indexing scheme is no more than a convenient way of identifying regions, this effect 
is not considered important. Certainly such eigenvalue behaviour in no way affects 
the analysis of DA systems. 

Thus the global structure of DA is established: the constraint set G consists of 
disjoint open sets C~ which are separated by the impasse surface and within which 
the dynamics are given by a local ODE description. 

5.2 Conditions for global voltage causality 

The above presents a complicated general picture for the dynamical structure of DA 

systems. For the power systems case, variations of the load indices cause significant 
structural changes to the causal region/impasse surface decomposition of the 
constraint manifold. It is possible to find load indices which ensure global voltage 
causality, i.e., det J ,  # 0 at all points on the constraint manifold. Then the DA model 
which employed those indices could be globally reduced to a unique set of differential 
equations, valid at all points on the constraint manifold. Results for special cases are 
available (Hiskens & Hill 1989; Hiskens 1990). 

6. Stability assessment 

In this section the implications of the global structure on the energy function picture 
are studied. 

6.1 Estimate of stability region 

In theorem 3, loca'l solvability of (10) was extended to solvability over voltage causal 
regions. The same concept can be used to extend the region of validity of the local 
representation of IV. An estimate for the region of attraction for a stable equilibrium 
point, Zs, of the DA model can then be determined. Let the number of negative 
eigenvalues of Jtt]zs be I. By theorem 3 there exist unique continuous functions 
0tl = ~,(r = ~{~tg) such that over a voltage causal region C,, V at (18) can be 
written 

v~i( %,  %) = v ( % ,  z)Ic,, 

1. , p  f= '  
= ~tug 1 (P) t~ + 

z ~  

Define the sets 

(28) 

k _ {(to~,c,g)l 5 , ( % ,  ~,).< k}, 

s .  - {(~g, c,~, I V l ) : ( , , , , , ~ l e R ~ , ,  =, = ,~,(=~), IVf = ~,,,(~,)}. 

Note that the elements of S~i are simply points in (ag,toz, lVF)-space 
correspond to elements of R k. (i.e., points in (tog,. atg)-space). 

An estimate of the stability region is obtained via the following theorem. 

which 
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Theorem 4. Let ~s = (0,Zs) be an asymptotically stable equilibrium point of  the DA 

model Then..~for all k > 0 such that R ku is bounded and $1 k _~ C, any trajectory s(t, x0) 
with initial conditions xo6R~ has the followin 9 properties: 

(i) s(t, xo)~R~i, for all t >>. 0 (i.e. R k. is invariant with respect to the DA model). 

(ii) s(t, Xo)~X, as t ~ o~. 

The proof of this theorem is given in appendix A. 

Remarks. (a) As k is increased, a value will be attained where one of the two 
R k ~k breaks down. Either conditions on u,mi 

(i) R~i becomes unbounded, i.e. I~; is no  longer locally positive definite; or 
(ii) k St; ~ C,,  i.e. there are points in St~ for which the local model is no longer valid. 

These phenomena are consistent with definitions of power system stability (Hiskens 
& Hill 1989). The limit placed on k by (i) ensures that all points in R~i are attracted 
to the stable equilibrium point, z,, i.e., if k was allowed to increase, then for some 
xoeR~ , s(r, Xo)--p x,, as t ~ ~ .  This is angle instability because the dynamic variables, 
i.e. generator frequencies and angles, do not tend towards the stable equilibrium 
point. (Note though that the impasse surface could be encountered as the system 
proceeded along this unstable trajectory. In that case voltage causality would be lost 
as a consequence of the initial angle instability.) The limit placed by (ii) ensures that 
the local model and energy function are valid for all points in Sz~. In this case, if k 
was to increase, then for some zo~S~., de tJ  u --0, i.e., lack of voltage causality. 

(b) Let the largest value of k satisfying theorem 4 be ko~,. This value could be used 
in the traditional way as the critical value of energy able to be attained by the 
disturbed system with stability still guaranteed. This of course is likely to be quite 
conservative. A practical algorithm will employ information on fault location (Pai 
1981). 

(c) A result similar to this, but requiring all eigenvalues of J ,  to be positive has been 
derived by DeMarco & Bergen (1984). Singular perturbation results were used in 
that ease. 

6.2 Multiple energy function sheets 

If the energy function (18) is treated in the usual way as the sum of kinetic and 
potential energy terms, then it is only the potential energy term which is dependent 
on the set C u. The local potential energy functions are functions of 0tg only, and so 
can be conceptualized as ( m -  l)-hypersurfaces (or sheets) in ag-space. (Recall the 
potential energy well concept in energy function methods, Pal 1981). 

For each region C u defined by theorem 3, a unique local potential energy function 
exists, each one a sheet in otg-space. It is not difficult to imagine therefore how it is 
possible to have a number of asymptotically stable equilibria. (Those sheets with a 
locally positive definite section must have an asymptotically stable equilibrium point 
at the lowest point of that section.) Note that not all sheets need contain equilibria 

however. 
All the PE sheets join on the impasse surface. The sheets can be thought of as 

approaching each other infinitesimally closely at the impasse surface. 
While not hard to illustrate by example (Hiskens & Hill 1989), a complete theoretical 
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discussion of these issues remains to be studied. Nevertheless it is already clear that 
DA models change the traditional view of large disturbance stability substantially. 
For instance, the phenomenon of short-term voltage collapse can perhaps be explained 
in terms of "jumps" between different energy levels (Hiskens & Hill 1989). 

Appendix A. Proofs of stability results 

Proof of theorem 2 

Define the Jacobian 

L Jl. J 

where h is defined after (18). Let ~=  (to0,z) = (x,y), where x = (tog,%) contains the 
dynamic states and y = (0tr, IV[) contains the algebraic states. 

If z~ is small disturbance stable, then det J,{2, # 0 and F[,., = Jgo-  J~tJ/~ ~ Jtgl,, is 
positive definite. 

Observe that fq(z~)=0. Hence (?~V/O{)Ir and a Taylor expansion of V(~) 
about ~,, yields, 

V({) = ({_ { j I P 1 g )  O ]  a,, ( ~ -  ~e) + 0( iI~-  ~elJ3)' (A1) 

where 0(-) represents higher order terms. 
Now note that 

So 

[ dfz] = Jiodae + Jtjrdal ] 
dgJ " LdlVtJ 

dlVl_] 

=0. 

By hypothesis Jul2, is nonsingular, so 

r:.,v., ;. 
d = - (JzT 1Jtg)l~, dag, 

J (~,,.IVl,) [VI ., 
i.e., 

LIvI~ 
(A2) 

From (A1), V(~) can be rewritten 

IVl IVleJ J'~ J'_J IVl-IVl~_J 

(A3) 
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where all partial derivatives are evaluated at z,. Combining (A2) and (A3) gives 

+ o(.) 

It is given that Pz.(~) > O. Also, the assumption of small disturbance stability implies 

(Jga - J.qtJ,7 ~ J,g )l~. > 0. 

Thus V(~,. + ~) is locally positive definite on some neighbourhood of ~ .  
Define 

Rk = component of {{: V({) ~< k} containing {~. 

Because det Ju :~ 0 by hypothesis, there exists a neighbourhood of ~ such that the 
algebraic equations (10) arc solvable. Thus in the whole state space, there is a neigh- 
bourhood A(x~) as defined for lemma 1. 

Now consider 

=0), 

where I;'nA is the derivative of V along trajectories of the DA model (9), (10). From (21 ): 

with Zo(/Z) given by (22). Therefore, it is easy to see that S consists of all equilibria 
(0,z~) where z, satisfies (11). 

Because V is locally positive definite, it is clear that for some k, sufficiently small 
Rk, is bounded and S~Rkl  = {~e}" 

The result then follows from theorem 1. 

Proof of theorem 4. Because sk u-- ~ Cu the local-energy function Vu(o~g,0tg ) is valid 
for all (o),, a ,)sR~. As in the proof of theorem 2, differentiating V u along trajectories 
of the reduced ODE system (14) gives 

= r z 

i.e., l;',(tog, ag) <~ 0. 
Due to the construction of R~ and because l;',(a~g, ag)~< 0, all trajectories {(t, {o) 

of the DA model with initial conditions xoeRk~, zosS~ must be such that x(t,{o) 
remains in Rl~ (property i). 

Property ii follows from theorem 1 and property i. 

Appendix  B. P r o o f  o f  theorem 3. 

Because C u is open, each point in C u has a neighbourhood contained in C u. Further, 
as C,i is simply connected, it is pathwise connected, i.e., between any two points in 
C,  there exists a path which is completely contained in C,.  

The definition of C u implies.that the implicit function theorem is valid at all points 
' ' "a' ' IVl') there (%,%, IVl')eC.. Therefore, within a neighbourhood of any point t ,, 0tl, 
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exist unique continuous functions ~'., 0'. which relate r I, [Vl to etg. (Continuity follows 
from the fact that ft, g are continuous.) 

Consider two arbitrary points zl,z2eC, sufficiently close that neighbourhoods of 
these points, UI, U2 ~ C,, overlap, i.e. U1 ~ U2 # 6. There exist on U1 unique con- 
tinuous functions ~ ,  ~ ,  whilst on U 2 there exist unique continuous functions ~b,~2 ,~a.2 
Now consider a point z 3 = (r a~, IVl3)~Ua r~ U2. Because this point belongs to both 
neighbourhoods, it must satisfy ~ ,  ~:~ and ~ ,  ~ ,  i.e. 

0t3 1. 3 _ d f l ( ~ t 3  ~ = d~t~(ag ) and IV] 3 - "rU, g ,, 
and 

0t~ -~- 2 3 2 3 6,,(a 9 ) and IVl 3 = O,,(a~ ), 

But ~ ~ 2 2 ~.,  qli are r  ~ .  and unique at all points within their respective neighbourhoods. 
So, 

- -  a n d  = 

Because points z~,z2 are arbitrary, the above argument applies for any sufficiently 
close points. In particular, along any path completely contained in C. every point 
has a neighbourhood which intersects neighbourhoods of other points on the path. 
A chain of points with overlapping neighbourhoods can be formed along the path. 
By applying the above argument at successive points along that chain and since Ct~ 
is simply connected, it can be concluded that functions ~bzi and # ,  must be unique 
along the whole path, including its end points. 

But any two points in C a can be joined by some path. Further, because C,  is 
simply connected, paths can be continuously transformed within C.. Therefore @, 
and ~a are unique over C.. 
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