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By starting with a reaction-diffusion equation a mapping model for the continuous system is proposed. 
The transition from the uniform state to the non-uniform one occurs at the same value of the diffusion 
constant for the mapping model as for the original reaction-diffusion equation if the transition exists. The 
mapping model is further studied by adopting the logistic model in one-dimensional space with a periodic 
boundary condition. Equal time spectra in wave number space and power spectra for several values of 
wave numbers are numerically obtained. A comparison of the numerical results of the equal time spectra 
with a simple theory is made to give a satisfactory agreement for large wave numbers. 

§ 1. Introduction 

The theoretical studies of chaos based on the dynamical mapping have been developed 
since May's work1

) and are found to be useful even in the analysis of real experiments.2
) 

In a usual situation, however, the time evolution of dynamical system is governed by a set 
of differential equations. Several works3

) have been done to obtain the mapping models 
from the original differential equations in the cases of low dimensional mappings. It is 
known that the appearance of the mapping reflects the existence of low dimensional 
attractor. 

In a previous paper4
) of this series (hereafter referred to as II), we have developed a 

mapping theory of the coupled-oscillator system and obtained a dynamical mapping which 
describes the time evolution of the dynamical variables. The numerical calculations 
based on this mapping give similar results to those obtained from the original differential 
equations.4

) The advantages of the mapping theory are that (i) various results of the 
mapping theory can be used and (ii) the numerical. computation becomes considerably 
easier. 

One of physical significances of the coupled-oscillator system is in the introduction of 
the spatial degrees of freedom. Studies of the coupled-oscillator system by the mapping 
have been mainly carried out for the systems with a small number of oscillators.5

) 

Recently Deissler and Kaneko examined the system with a large number of oscillators.6) 
Various new phenomena can be expected for this system. The study of spatial non­
uniform system is interesting in connection with turbulence. In the present work we will 
extend the formulation in II to deal with the continuous system which can be considered 
to be an infinite number limit of the coupled-oscillator system. 

We consider the following reaction-diffusion equation: 

(1-1) 

where x and D are the state vector and the diffusion constant, respectively. As in II the 
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886 T. Yamada and H. Fujisaka 

flow f has the periodic time dependence with respect to the time variable t as follows: 

f(x; t+ T)= f(x; t), (1·2) 

where T is an integer multiple of the period of the external field. The same types of 
equations as (1·1) have been studied by several authors.7

) As in II we assume that (1.1) 
has the mapping, 

Xn+l = g(Xn), (1·3) 

in the absence of the diffusion term, where Xn is the state vector at time t = n T( n = 0, 1, 
2, ... ). 

The mapping function for the continuous system (1·1) is obtained in terms of (1· 3) in 
§2. The Lyapunov exponent in the uniform state is discussed in §3 by using the mapping 
function. In §4 numerical calculations are carried out on the mapping in one-dimensional 
space by adopting the logistic model. l

) Section 5 is devoted to the summary and some 
remarks. 

§ 2. Mapping function 

The continuos system (1·1) is studied by extending the formulation given in 11.4
) By 

introducing the new state vector Y as 

(2·1) 

Eq. (1.1) becomes 

(2·2) 

We define the following quantity 

(2·3) 

where the notation H denotes the spatial average, I is the diffusion characteristic length 
I=-'; D T and Ya denotes the a-th component of y. It measures the magnitude of II V Yal 
and assumed to be small. (See Appendix A for the details). As is shown in Appendix A, 
Eq. (2·2) can be written as 

(2·4) 

If we discard the second order terms with respect to loyl in (2·4), Eq. (2·4) has the same 
form as Eq. (1·1) without the diffusion term and, therefore from the assumption (1·3) we 
have 

Yn+l = g(Yn), (2·5) 

where Yn is the state vector at t~ tn=- nT. Since Yn=Xn, we get 

(2·6) 

with a=DT, where Xn is the state vector X at t= tn. 
For the derivation of (2·6) we have neglected the second order terms with respect to 

loyi. Therefore, other form instead of (2·6) may be also possible. However, we adopt 
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Eq. (2-6) as the mapping model, since it gives a correct transition point from the uniform 
state to the non-uniform one as is shown in the next section. 

§ 3_Stability of uniform state 

In this section we examine the stability of the uniform state lfI unif. Let us imagine 
that the reference system is contained in a d-dimensional cube with the length of side L. 
The periodic boundary condition is assumed and the state vector in the uniform state is 
denoted as xo(t). As was discussed in Ref. 8), hereafter referred to as I, the stability of 
the uniform state lfIunif is determined by the largest eigenvalue of the following matrix: 

(3-1) 

where F(t)= (Jf (xo(t); t)/(Jxo(t), k is the wave vector (k=lki), and i is the unit matrix. 
The largest eigenvalue of A k is 

(3-2) 

where AL is the largest Lyapunov exponent in lfIunif• 

Next we consider the same problem by starting with Eq. (2-6). The uniform oscilla­
tion Xon satisfies 

Xon+1 = g(Xon). (3-3) 

Then, expanding the state vector around Xon, we have up to the first order in ox: 

(3-4) 

where OXn=Xn-Xon and Gn=(Jg(Xon)/(JXon. Denoting the spatial Fourier component of 
O:£n as oXn(k) we obtain 

(3-5) 

where II+ denotes the ordered product. Therefore, if the largest ei~envalue of the matrix, 

- 1 n-1 -r k=lim-ln[exp( - nak2
) II +Gj ] 

n-oo n j=O 

_ - 2"" 
-rk=o-ak 1, (3-6) 

has a positive value for a certain region of the wave numbers, the uniform state becomes 
unstable. If the variable tin (3-1) is put equal to nT and the limitis taken as n-HlO, from 
the definition of the mapping it is obvious that Fo is equivalent to TAo since Xon, which is 
the solution of xo(t)=f(xo(t); t) at time t=tn, is assumed to be eventually described by 
Eq. (3-3). Therefore the largest eigenvalue of the matrix F k is given by 

Yk' = TAL - ak2 = TAk' . (3-7) 

As the smallest value of k2 is (27[/ L )2, the uniform state loses its stability for 
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(3·8) 

in both systems described by (1.1) and (2·6), if AL>O. It is clear from (3·8) that for the 
chaotic uniform state where AL >0 the non-uniform state appears for D< Dc and the modes 
with k< kc=./ ALI D grow from the initially uniform state. 

§ 4. Mapping model for the continuous system 

The mapping model (2·6) is obtained under the condition that the spatial variations 
of the state vectors are not large. This. condition may be satisfied if the Lyapunov 
exponent is sufficiently small or the system is near the instability point discussed in §3. 
Thus it depends on various system parameters whether the mapping model is useful or not 
in a realistic system. 

In order to examine the properties of the mapping model (2·6) we consider the simple 
case where the mapping function is further reduced to be one-dimensional. For this 
purpose we adopt the logistic modeP) as the mapping function and assume the space 
dimension to be one. We start with the following equation, 

n=O, 1, 2, ... , (4·1) 

where 

g(x)= a.x(I- x) (4·2) 

and x n (r ) denotes the n-th iterated value of the state variable (one component of the state 
vector at time t = n T) at the position r. We assume the following periodic boundary 
condition: 

xn(r+L)=Xn(r ), (4·3) 

where L is the system size. It is easily seen 
from (4·1) that the transformations, a -" as 2

, 

L-" sL with the scale facter s yield an equiv­
alent system to the original one". 

The numerical calculation is carried out 
for L = 2;r by dividing the space into M 
spatial mesh points with M = 1024. Thus the 
spatial Fourier transform can be written as 

xn(k)= 1L eikTXn(r )dr 

with Llr=L/M and rj= jLlr, The param­
eter a is fixed to be 10-4 and the initial 
condition is taken to be 

Xn=o(rj)=O.1 +0.8x {v'3j}, (4·5) 

where { ... } is the operator to take the 

X~7 

X~,6 

X~5 

X~,4 

X~~3 

x~2 

x~ 
X~,O 
o L/2 r L n 

Fig. 1. The spatial variation of x n ( r) for successive 
values of n. The parameter a is 4.0 and the 
origin of time n = 0 is set after a sufficiently large 
number of initial steps. The symbol x stands for 
x n ( r ) and the interval of the vertical axis is from 

o to 1. 
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Fig. 2. The iterated mappings, Xn(r)-->Xn+l(r), at 
(a) r=O, (b) r=L/4, (c) r=L/2, (d) r=3L/4. 

For simplicity, in these figures the argument r is 
not written .and 150 iterated points are plotted. 
The full line denotes the mapping function g(x) 
=ax(1-x). 

o 

~ 

(V) 
0'1 
o 

-5 

Fig. 3. The equal time spectrum for a=4.0. The 
full line denotes the numerical values and the 
dotted smooth curve is calculated from the theo­
retical equation (4'7). The function log means 
the common logarithm. 

decimal part. After a sufficiently large number of initial steps we have an aged system 
which shows a stationary time behavior. The iteration procedure is carried out by using 
the FFT method (the fast Fourier transform) twice at each step. 

In Fig. 1 the time evolution of the state variable Xn(r) is plotted for a=4. The 
spatial patterns apparently show chaotic behaviors. Since the Lyapunov exponent AL of 
the logistic model for a=4 is In2 =.: 0.6931, the characteristic wave number kc defined in §3 
is 1Ar]a=':83.3. In order to see the time evolution of Xn(r), {Xn(r)} (n=l, 2, "', 150) at 
r = 0, L/4, L/2, 3L/4 are shown in Fig. 2 in the forms of the mappings, x n (r )~ X n+I (r ). 
The points are scattered over a wide range and no periodic behavior is observed. The 
averaged value <Xn(O»/L is about 0.6596, where the brackets denote the time average. 

The spatial correlation is reflected in the equal time spectrum defined by 

(4·6) 

and is displayed in Fig. 3. In the actual calculation N is put to be a finite number, 
N = 1024 X 100. The spectrum forms a smooth curve and the large wave number behavior 
can be well explained by the following theoretical value derived in Appendix B: 

(4·7) 

A qualitative property of the temporal correlation maybe considered by calculating the 
power spectrum: 

S(k, w)=limx(k, w)x*(k, w)/ (LN) 
N~oo 

(4·8) 
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890 T. Yamada and H Fujisaka 

with 

(4·9) 

The actual numerical calculation is carried out by using the FFT method and putting N 
equal to be 1024. Each figure shown in Fig. 4 is obtained by averaging the power 
spectrum over 100 times. Figures 4(a), (b), (c) and (d) show the power spectra for the 
wave numbers k=O, 40,80 and 120, respectively. The peaks at W=7[ and 7[/2 suggest the 
existence of the 2 cycle- and the 4 cycle-like structures in the time evolution of xn(k). 
The small wave number behavior represented by Fig. 4(a) has a feature that the peak 
positions clearly deviate froni 7[ and 7[/ 2. 
This deviation becomes smaller as the value 
of a decreases and the strength of the chaotic 
behavior reduces. This feature may be one 
of characteristics of the chaos in the continu-
ous system. 

The same procedures as Figs. 1 ~ 4 are 
carried out for a=3.8 and the results are 
illustrated in Figs. 5~8. In Fig. 5 the space­
time behavior is shown. The mappings, 
Xn( r)~ Xn+1(r), at r=O, L/4, L/2, and 3L/4, 
are shown in Figs. 6(a)~ (d). The total 
number of points in each figure is 150. For 
this time interval these figures show the 
existence of periodic structure in the time 
evolution. However, this periodic structure 
cannot continue stationarily and is 
interrupted by the chaotic time sequence. 
After the chaotic time sequence the periodic 

X~17 

X~6 

X~5 X_4 
X~13 

X~2 

x~ 

x~o 
o L/2 r L n 

Fig. 5. The same as Fig. 1, but for a=3.S. 

(a) -1 IVl (b) -1 IVl 
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-5 
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-T( o w R -l( o v..J 7C 

Fig. 4. The power speCtra for a=4.0. The values of 
wave numbers are (a) k=O, (b) k=40, (c) k=SO 
and (d) k=120, respectively. The quantity S 
denotes the power spectrum S(k, (0). 

o'------'----=-'--....J 

Fig. 6. The same as Fig. 2, but for a=3.S. 
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Fig. 7. The same as Fig. 3, but for a=3.8. In the 
figure only the results of the numerical calcula· 
tion are shown. 
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(e). -1 1Jl 

~ 
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Fig. 8. The same as Fig. 4, but for a=3.8. 
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behavior is again recovered. The alternative appearance of the periodic and chaotic 
sequences is the characteristics of the intermittent chaos.9

) In Fig. 7 the equal time 
spectrum is shown. The spiky peaks correspond to the wavy patterns observed in Fig. 5. 
The power spectra for several k-values are shown in Fig. 8 and have the feature of 8-
periodic like structure. 

All the results in the present section do not depend on the choices of the mesh points 
and the system size. Theoretical understanding of the results may be possible by making 
use of the turbulence theories10

) and should be done separately. 

§ 5. Summary and some remarks 

In the· present work we have proposed a mapping model for the description of the 
continuous system. The mapping model is obtained from the reaction-diffusion equation 
when the spatial variation of the state vector is not large. 

As seen in §4, the present mapping model has the interesting properties of the chaotic 
continuous system. Intermittent behavior in the time evolution of the state variable 
reflects the intermittent spatial wavy pattern as is observed in Fig. 5. The intermittent 
behavior brings about the spiky peaks in the power spectra. The equal time spectra have 
also spiky peaks, which disappear as the strength of chaotic behavior becomes larger as 
a increases. The equal time spectrum for large wave numbers at a=4 is well described 
by the theoretical result obtained by a simple decoupling approximation. Since the 
renormalization effects are discarded in the theory, the agreement for small wave numbers 
is poor. 

In the present work we considered the small a system for L=271 which corresponds 
to the large size system with a = 1. As the a value is increased with a fixed L, the 
bifurcation scheme appears and it finally leads to the uniform state. We get the sequence 
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892 T. Yamada and H. Fujisaka 

of the chaotic and the periodic states in the bifurcation diagram. The bifurcation scheme 
is complicated because of the existence of the multi-basin structure.ll) 

It is necessary to give a brief comment on the uniform state discussed in §3. In the 
chaotic "uniform" state the largest Lyapunov exponent of Ilk' is equal to Ild =Ilo') and 
other Lyapunov exponents are all negative for k=f=.O. If a completely uniform state is 
realized, the attractor dimension of the continuous system is reduced to the one of the 
original mapping without diffusion. However the theories of fractal dimensionl2

) seem to 
suggest that the former dimension possibly deviates from the latter one. We will study 
this problem separately. The study of 2-dimensional mapping is interesting, associated 
with the problem of the attractor dimension. This problem will be also studied in future. 
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Appendix A 

In this appendix we prove Eq. (2·4). The right-hand side of Eq. (2·2) can be 
expanded as 

with t' = t - tn. The spatial derivative in (A·l) is calculated as 

(/7 2)mfa(x; 0=( /7 2)m-1 /7 2fa(x; t) 

=(/72)m-I[L: afa /72Xr+L: a
2
fa • aXr. aX8] 

r aXr r.P.8 aXraX8 arp arp 

(A·l) 

(A·2) 

where fa, Xr and rp are the a, /, {J components of f, x, and the position vector r, 
respectively. The quantity 18xI defined by 

18xl=/l/7xal (A·3) 

with 1="; DT is the representative value of 1/7 pXa, 12/7p/7rxa, 13/7p/7r/78Xa, and so on, (/7p 
=a/arp), and is assumed to be small, where the notation ( ... ) denotes the spatial 
average. Therefore, Eq. (A·1) (its a component) becomes 

(A·4) 

On the other hand, from the definition of y we have 

(A·S) 

Thu~ up to the first order in 18xI we get the expansion 
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(A·6) 

From the comparison of (A· 4) with (A· 6) we finally obtain the relation 

where we have used laxl ~ layl. 

Appendix B 

We start with the mapping (4·1). The quantity x n (r) is divided into two parts: 

(B·1) 

where x n is the spatial average of Xn( r) and ~n is the deviation from it. Correspondingly, 
Eq. (4·1) is written as 

where 

The equal time spectrum is now given by 

(B·2) 

(B·3) 

(B·4) 

(B·S) 

(B·6) 

where the brackets denote an ensemble average and the spatial homogeneity of system is 
assumed. 

By using (B·3) and applying a gaussian decoupling approximation a simple manipula­
tion yields 

(B·n 

For ak2~ 1 the first term of the right-hand side can be neglected and we get 

(B·8) 

where the summation over the wavenumber is replaced by the integral. This replace­
ment can be justified for a(2J[/L)2~1. Equation (B·8) can be solved by assuming the 
following form: 

(B·9) 

The constants A and r can be easily determined as 
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r=4a, 
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