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A coupled·chaos system consisting of two subsystems, which is also derived by the three mode 
truncation in a spatially continuous system, is studied immediately after the instability point of the 
synchronized chaos. The system turns out to exhibit two types of intermittency, one is similar to the 
tangential type and the other in a new one, depending on the fluctuation characteristics of local expansion 
rates of adjacent trajectories in the synchronized chaos. In the new intermittency, the temporal evolution 
of the difference between state variables is characterized by quiescent regions abruptly inserted by bursts 
which are temporally highly localized. Its probability density is found to obey approximately an inverse 
power law, and its power spectrum is observed to exhibit the (V-I law in a certain low frequency region. 

§ 1. Introduction 

In a series of papers,I)-3) we have studied the stability of the synchronized motion in 
coupled-oscillator systems, especially of the diffusion type coupling. Particularly, when 
the uncoupled oscillator is chaotic, the coupled system undergoes the transition as the 
coupling strength is decreased (see I and II). Furthermore, as was reported in II and III, 
when the uncoupled system has a one dimensional map, the coupled-oscillator system can 
be described by the coupled-map system. 

Consider one oscillator system under the external periodic excitation with the period 
T e , 

x(t)=F(x; t), (I-I) 

where x(t) is the state vector at the time t and satisfies F(x; t+ Te) =F(x; t). We 
assume that by ignoring a fractal structure (I-I) has one dimensional stroboscopic map, 
for a certain component x (t) of x( t), 

Xn+l = f(xn) , (1- 2) 

where Xn=X(tn), tn=nT,(n=O, 1, 2, ---), T being a certain integer multiple of Te_ 2
) 

Suppose that oscillators each of which is described by (I-I) are contained in a d
dimensional space and are coupled to each other as follows, 

x(~, t) =F(x(~, t); t) + C(x(~, t); {x(~', t)}) , (1- 3) 

where x(t t) is the state vector at the position ~ at the time t. C denotes the coupling 
term, being assumed to be autonomous, and is chosen in such a way that (1- 3) has a 
spatially uniform oscillation xO=F(xO; t), XO being independent of~. This state will be 
called the synchronized state 1Jfunif_ Let us assume that if C is suitably chosen, then (1-3) 
is reduced to the following coupled-map system 
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1088 H. Fujisaka and T. Yamada 

(1·4) 

or equivalently, 

(1· 5) 

where Xn(~) =x(~, tn) and /(x) is the same as in (1·2). The kernel ¢(I~I) depends only 
on I ~I and measures the interaction strength among oscillators at different positions. The 
if; k has been introduced by 

(1'6) 

Since the system (1·3) has the synchronized state, (1·4) should also have the synchronized 
state obeying X~+I=/(XnO). This requirement leads to 

(1· 7) 

Furthermore, in order that Xn(~) is always bounded, we impose the condition 

(1'8)*) 

Hereafter if; k is assumed to go to zero as Ikl iSiincreased (Appendix A). 
Particularly, consider a system with3

) 

(C>O) (1·9) 

Since (1'3) and (1·4) should have the same stability exponent Ak (Eq. (A'4)) for the 
wavenumberk, if; k should have the Gaussian 

(1'10) 

with a= CT. Accordingly we obtain3
) 

(1·11) 

This is the same result as that derived in III. Turningto (1'4), we find that the interac
tion kernel is given'by the Gaussian 

(1'12) 

for an infinitely large system. So the oscillator at the position ~ is affected by oscillators 
being in the range I~' - ~I::s 2ra. If the coupling strength a is small, oscillators behave 
rather independently, and if a is large, oscillators in a wide range affect to each other. 

Next we consider the two'oscillator system1
),2) 

(j=1,2) (1'13) 

where C( >0) is the coupling strength. The mapping system corresponding to (1'13) is 

*) Suppose that Xn obeying (1'2) is bounded, Xmin::;;;Xn::;;;Xmax, and so Xmin::;;;/(Xn)::;;;Xmax. If (1'S) holds, then 
Min xn+l(~)=fd~'qS(I~-~'I)XMin /(Xn(~'»~Xmin and Max xn+1W=fd~'qS(I~-~'[)Max /(Xn(f)::;;;Xmax, where 

',we have used (1'7). Therefore Xn(~) obeying (1'4) is always in the region Xmin::;;;Xn(~)::;;;Xmax. 
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rewritten as2 ),4) 

(j=1,2) (1,14)*) 

where Xn(j)==X(j)(tn). The oscillator symmetry enables us to pue) 

(1·15) 

which satisfies ~7=1¢jl=l, corresponding to (1,7). Furthermore, (1·13) and (1·14) with 
(1,15) should give the same stability condition on 'lJfunif • This leads to the replacemene) 

¢=(I-e-a)/2, (0<¢<1/2) (1·16) 

where a = CT. This is the same as in II. We note thatthe systems (1·13) and (1·14) have 
the synchronized state, independently of the coupling strength C. As was shown previ
ously/) (1·14) with (1,15) and (1·16) reproduces the statistical characteristics of the 
original system (1,13) surprizingly well both qualitatively and quantitatively for any C. 

Hereafter we assume that (1'1) exhibits chaos, so (1·2) has a positive Lyapunov 
exponent. Accordingly, 'lJfunif of (1· 3) and (1'13) should also be chaotic. As will be 
discussed in Appendix A, when the uniform chaos is suitably weak so that the statistical 
behaviors of the coupled system can be described by the three mode truncation, the 
extended map (1·4) or (1'5) can be approximated by (1·14). 

The main aims of the present paper are to develop a stability theory on 'lJfunif of (1'14), 
and to study statistical properties of the system slightly below the instability point of 
'lJfunif. In carrying out numerical calculations, it is convenient to rewrite (1·14) as follows. 
By introducing 

Xn=(Xn(I)+Xn(2»)/2, 

Vn=(Xn(1)-Xn(2»)/2, 

(1·14) becomes 

where 

g(x, v) = {j(x+ v) + f(X-v) -2f(X)}/ 2, 

S(x, v)={j(x+v)-j(x-v)}/2v. 

(1·17a) 

(1·17b) 

(1·18) 

(1·19) 

(1· 20a) 

(1·20b) 

Equations (1·18) and (1·19) describe the temporal evolutions of the average motion and 
the difference between Xn(l) and Xn(2), respectively. 

The remaining part of the present paper is constructed as follows. In § 2 we will 
develop a fluctuation theory on the stability of the synchronized chaos. In §§ 3 and 4, 
utilizing the logistic parabolla j(x) = ax (1- x), we shall numerically integrate (1,18) and 
(1·19) for a slightly below ac, the instability point of 'lJfunif , and will find two types of 
intermittency. Several statistical characteristics associating with them will be discussed 

*) A similar system has been studied in Ref. 5). 
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1090 H. Fujisaka and T. Yamada 

in connection with the fluctuation effect of local expansion rates in the synchronized 
chaos. Summary and remarks are given in § 5. 

§ 2. Fluctuation theory on the stability of synchronized chaos 

When the system is close to 7[funif, (1·18) and (1'19) can be expanded around Xn(1) 
=Xn(2)=XnO. If we retain O(Vn) terms, they become 

(f'(x) = d/(x) /dx) 

(2·1) 

(2'2) 

Equation (2'1) describes the evolution of Xno in 7[funif, and is not concerned with the 
stability of 7[funif. Equation (2'2) is, on the other hand, the perturbation equation 
determining the stability of 7[f unif, and is rewritten as 

(2'3) 

Here 

(2'4) 

is the local expansion rate for adjacent trajectories6
) in (2'1). rn estimates the difference 

between x n (1) and x n (2), (Eq. (1'17b)), when they are close to X n O
• 

Let Ao be the Lyapunov exponent of X~+l = /(Xn 0), 

(2· 5) 

where < ... > is the ensemble average over the invariant density p(x) satisfying p(x) 
= J 0 (f(y) - x ) p (y) dy. Furthermore, let D be the diffusion coefficient in the In r space, 
defined by6),7) 

D = lim < {In(rn/ro) - xonp>/ 2n 
n-= 

= 
= Go/2+ ~ Gn, 

n~l 

(2·6) 

where Gn=<oAnoAo> (oAn=An-Ao), is the correlation function of the local expansion 
rate, and 

xo=Ao-a. (2'7) 

With the assumption that D=finite=t=O, which is equivalent to that Gn decays faster than 
cxn-\ the central limit theorem tells us that the probability density P(z, n) for Zn 

=In( rn/ro), (P(z, 0) =o(z)) ,asymptotically has the Gaussian 

P(Z, n) e:::: ~exp{ (z-xon)2} 
4Dn 

(2· 8) 

for n~OO. Equivalently the probability density Q(r, n) for rn itself is given by the 
lognormal one, 

Q() ro [{In(r/ro)-xonP] 
r, n ~ /47CDnr exp - 4Dn (2· 9) 
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for n-HYO • 

By noting that almost all probability of Zn is contained in the Gaussian region (2·8), 
if its peak position tends to -co as n-4CO, i.e., if xo<O, then the system eventually 
approaches the uniform (synchronized) chaos. On the other hand, for xo>O, lJfunif is 
unstable. Therefore the system undergoes the transition from the uniform chaos to a 
non-uniform state at 

(2·10) 

as the coupling strength a is decreased from a value large enough.1)-4) This transition 
occurs as a result of the counterbalancing between the trajectory instability specified by 
the positive Lyapunov exponent and the coupling effect.1),2) 

As far as a is close to ac, the non-uniformity of the coupled system is small provided 
that the transition is continuous. Therefore we can expect that for a;:S ac the statistical 
characteristics reflect certain aspects of the uniform chaos. By noting that the transition 
point is determined by the average of local expansion rates (Eq. (2 ·10)), it is natural to 
study the fluctuation effect of local expansion rates. This is equivalent to studying the 
fluctuation dynamics of rn itself in (2·3). If we define 

(-co<q<co) (2·11) 

it measures the fluctuation of the characteristic difference between Xn(1) and Xn(2), specified 
by the power q. lo(n) (=exp( (lnrn») = roexp(xGn) is the difference when we neglect the 
fluctuation of An from 1\0. M n) is the usual average difference, 12( n) is the root mean 
square difference and M n) is the root mean cube difference and so on. 

In order to discuss the long time dynamics of rn, it is convenient to rewrite (2·11) as 

lq( n) = roAq( n)exp(xqn) . (2·12) 

Here Kq is given by 

(2·13) 

n-l 

I\q= q-1limn-1ln(exp(q ~ AJ> , 
n-co j=O 

(2·14) 

is the q-order similarity exponene)'*) for fluctuations of local expansion rates of X~+l 
= /(Xn

O
), and is completely determined by the statistical property in lJfunif• Particularly, 

for q=O (2·14) is identical to the Lyapunov exponent defined in (2·5), and (2·13) reduces 
to (2·7). Ag{n) is independent of ro and satisfies limn_",n-llnAg{n) =0. So the most 
dominant contribution to 19{ n) in a long time is determined by Xq. 

First consider a special case where I\'q has no dispersion,**) i.e., 

I\q = 1\0 (2·15) 

for any q. In this case there exists only one characteristic difference 

*) The similarity exponent for fluctuations of local expansion rates is invariant under a one-to-one transforma
tion :in = h(Xn).71 For q-->O, .itq can be expanded as .itq=Ao+ Dq+ O(q2), where D is the diffusion coefficient defined 
by (2'6). If Xno is periodic, Aq has no dispersion (.itq=Ao<O). 

**) If the local expansion rate An is everywhere ..10, we immediately get (2'15). In addition, even when An 
fluctuates, .itq can be independent of q (see § 3). 
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1092 H. Fujisaka and T. Yamada 

rn~exp(xon) ro. (2·16) 

Accordingly near a = ac there are two time scales 1/,10 and 1/ Ixol.4) The former character
izes the trajectory instability in the Xn(1)=Xn(2) space (x~+l=f(xnO)), and the latter 
estimates either the decay time of non-uniformity for a> ac or the time corresponding to 
the growing of non-uniformity for a ~ ac. In the linear range with respect to rn, there
fore, the dynamics of rn can be described by only one time scale 1/lxol. Furthermore, 
since D=O, we cannot apply the central limit theorem and P(z,n) does not obey (2·8). 
Nevertheless, it may still have a peak at z=xon, but its width is smaller than O(rn) as 
n--+ OO • 

The local expansion rate An, however, does usually strongly depend on the state 
position Xno. This leads to a dispersion of ,1q with a sigmoidal shape.n *) Accordingly, 
the trajectory instability of the uniform chaos can be characterized by an infinite number 
of time scales continuously lying in the region 1/,1=< r < 1/ ,1~= with the assumption ,1~=>O, 
and the power q turns out to be a parameter to single out the time scale 1/ ,1q. The 
Lyapunov exponent ,10 is just one of them. As a result, we expect that near a = a c the 
temporal evolution of the difference r n (Eq. (l·17b)) has an infinitely many time-scales 
(Eq. (2·14)), as far as rn is sufficiently small so that O( rn2) can be neglected. This is the 
crucial difference from the case where ,1q has no dispersion. 

In the following sections, utilizing the logistic parabolla 

f(x)=ax(l-x) , (2 ·17) 

we will study (1·18) and (1·19) for a slightly below ac in connection with the fluctuation 
effect of local expansion rates on the statistical characteristics of the temporal evolution 
of the difference Vn or rn. Typically, we consider two cases, (i)a=4 (Case A), where ,1q 
has no dispersion, and (ij) a=3.8 (Case B), where ,1q has a sufficient dispersion. 

§ 3. Intermittency in Case A 

The uniform chaos is governed by X~+l =4xnO(I- XnO). Clearly the local expansion 
rate depends on Xno as An=lnI4(1-2xnO)I. However, since this system can be transform
ed into the tent map .i~+l=2.ino for O~.ino<I/2 and 2-2.ino for 1/2~.ino<l, ,1q has no 
dispersion, **) 

(3 ·1) 

The similarity exponent numerically calculated is shown in Fig. 1(a), which ensures the 
validity of (3·1). 

Near a=ac we calculated the largest Lyapunov exponent ,1(l) and the second 
Lyapunov exponent ,1(2) of (1·18) and (1·19),(Fig. 2). One clearly observes that the 

*) If (2'8) holds for [z[;O;oo, we obtain ,.1q=,.1o+ Dq. This is equivalent to that An is purely the Gaussian.7) 
However An is far from the Gaussian, and so ,.1q is usually bounded, (-oo<,.1_oo<,.1q<,.1oo< (0). This means that 
the asymptotic form (2'8) breaks down in its tail regions.71 More precisely speaking, the expression (2'8) is valid 

only for [z-xon[:SO(jDlt). Particularly, near z"""x±oon, P(z, n) have intensities of the order exp(-n/r±),7) 

where r+ and r- are the characteristic times specifying the dynamics of ~.7':-JAj. 
**) The ,.1q for the above tent map is In2, independently of q. Recall that ,.1q is invariant under a one-to-one 

transformation of the dynamics Xn+l = j(Xn). 
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transition occurs at ae. The system has no hysteresis at a = ae. For a> ae, we find A(l) 
~Ao and A(2)~ae-a«O). On the other hand, for a<ae 

(3, 2) 

where k1~1.0 and k2~3.5. 
The typical temporal evolution of r n for a;;S a e is shown in Fig. 3. Its temporal 

evolution turns out to consist of two typical processes: 4
) (i) The exponential growing 

region where the envelope of rn obeys 

(B>O) (3 ,3) 

with a certain constant Band (ii) a sudden diminishment of rn. Such behaviors can be 
understood as follows. Assume that ro is sufficiently small. As far as the O(rn 2

) term 
is neglected, rn is given by rn~exp(zn)ro with zn=~J':-J{lnl/'(xj)l:-a}, where Xn obeys 
Xn+1=/(x n)+O(rn2

). For an appropriately large n for which O(rn 2
) is neglected, Zn 

can be replaced byxon+o(n), because the fluctuation of Inl/'(xJI does not accumulate so 
as to give the dispersion in Aq. Therefore we obtain rn~exp(xon)ro. This explains the 
exponential growing (3, 3) under the replacement 

I I 

'";1 
I I 

-4 -2 0 2 q 4 

I 1 i I 

(b) 

I 

-4 -2 0 2 q 4 

.49 

.48 ~q 
(el 

.47 -. 46 --... .......... . 

.45 
0 .5 q-l 

Fig. 1. Similarity exponents numerically obtained 
for Xn+l = axn(1- Xn), where a=4(a) and 3.S(b). 
Numerically Aq has been calculated by Aq 
=q-ln-lln<exp(q~J~JAj», where < ... > is the 

average over different initial conditions, and we 
put n= 1000. Neglecting numerical error, we 
find Aq=ln2=0.693147···for a=4. For a=3.S, Aq 
shows a dispersion (,10=0.4323"'). Figure Hc) is 
the q-l_ Aq plot for a=3.S. Extrapolating it to 
q-l =0, one can determine ,1=( ""0.466). 

1.0 
~(j) 

~o 
(01 

0.5 

0.0 • ...",. 
. 0.5 

-0.5 

-1.0 

Fig. 2. Numemical results for the largest Lyapunov 
exponent ,1(1)( . ) and the second Lyapunov 
exponent ,1(2)( +) for the coupled-map system 
(1,14) with/(x) =4x(1-x). Each value was cal
culated by averaging over 105 iterations. Two 
straight lines a and bare ,10)=,10 and A(2)=ac-a, 

respectively, which are valid only for a ~ ac • 
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5000 

Fig. 3. Typical temporal evolution of r" in Case A 
after sufficiently long initial steps. The paramo 
eter is a=O.69. 

/3=Xo. (3·4)*) 

As n increases, however, the nonlinear 
term with respect to rn becomes crucial, 
leading to a sudden reduction of r n. Re
peating this process, rn shows the tempo
ral evolution as in Fig. 3, being steady. 

Although the above characteristic 
evolution makes us recall the similarity to 
the tangential instability,S),9) the crucial 
difference is as follows. Near the tan
gential intermittency point x *, the devia
tion from it may obey drn/dn~c+brn', 
where b>O and c(O<c~l), is the control 
parameter, s being the order of the map 
near x *. For s =2, this can be solved as 
rn~jdbtan(/b€n),S),9) if ro=O and n<7f 

/2/b€. This does not exhibit an 
exponential growing.**) Hereafter the 
present intermittency will be called Type 
A intermittency.***) 

In order to study the statistical prop
erties of rn, we have calculated the proba
bility density PL(r) for rn, which is nor
malized in the range 0 ~ r ~ L, where L is a 
certain scale (Fig. 4). For a sufficiently 
small L, PL(r) seems to obey the power 

(3· 5) 

where we numerically obtain 7] ~0.8~ C. Such behavior seems also to be different from 
the tangential intermittency. The power law behavior (3·5) seems to suggest the exist
ence of a certain kind of a similarity law (Appendix B). 

Since rn has only one characteristic time l/xo, the power spectrum of rn can be 
approximated for xo->O and (V->O by the Lorentzian 

1 
L(y) = 1 +y2 

(3·6) 

(3· 7) 

(see Appendix C). As is shown in Fig. 5, the theoretical curve (3·6) explains the 

*) In fact the value xo~O.003 for a=O.69 coincides with the growth rate /3 estimated from Fig. 3. 
**) If s = 1, then r" exhibits the exponential growing, 1'" ex b" because b> l. 

***) As will be shown later, the power spectrum of the present rn exhibits the Lorentzian form rather than a 

11m form.") 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/75/5/1087/1849732 by guest on 21 August 2022



Stability Theory of Synchronized Motion 1095 

r~{r) 

/ .... ...... 
• • ;.+ ... . . , . 

103~-------.--------,--------, 
10-3 10-2 10-1 t 100 

Fig. 4. The probability density PL(r) for rn in Case 
A, where a=0.691 and L is chosen as L=2 
XlO-'(') and 2XlO- 5 (+). 

Fig. 5. The comparison of the numerical power 
spectrum (.) for rn with the theoretical one 
(solid line) given by (3'6), where we have used 
the value Co = 1.20 X 10-1 numerically obtained. 
The parameters are a=4 lmd a=0.692. The 
numerical power spectrum was obtained by aver
aging 500 power spectra each of which was cal
culated by FFT for the sampling length 2" (Llw 

= 271:/214). 

numerical results fairly in a good manner. It is worthwhile to note that the approxima
tion (3· 6) is consistent with the fact that there is only one characteristic time scale for r n 

near a=ac(§ 2), at least as far as the long time dynamics is concerned. 

§ 4. Intermittency in Case B 

Second, we will adopt the logistic parabolla f(x) = 3_8x (1 - x ) _ We numerically find 
,10=004323···. The similarity exponent is shown in Fig. 1(b). In contrast to Case A, the 
present Aq exhibits a sufficient dispersion. This means that the trajectory instability of 
(1'2) is characterized by an infinite number of growth rates lying between A-ooC:",Oo4) and 
Aoo( ~0047) (see § 2). Furthermore, for a large q, Aq can be expanded as Aq~Aoo- r + -1 q-l ,7) 

where r+~150 (Fig. 1(c)). 
N ear a = ac, we have calculated the Lyapunov exponents (Fig. 6). The transition 

does not follow a hysteresis. For a>ac, we obtain A(l)~Ao and A(2)~ac-a( <0). On the 
other hand, for a< ac 

(4·1) 

where kl ~ 1.8 and k2 ~ 1.5. The critical behavior of present ,1(2) for a;S ac is different from 
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1096 H. Fujisaka and T. Yamada 

that in Case A (Eq. (3·2)). 
The temporal evolution of Vn after sufficiently long initial steps is drawn in Figs. 7(a) 

~ (e). Clearly Vn exhibits a highly intermittent characteristics. The present intermitten
cy differs from the tangential intermittency and also from Type A intermittency, but is 
characterized by alternative generation of quiescent regions (rn~O) and bursts having 
considerably large values of rn and being located in very narrow time domains.4

) This 
new type intermittency will be called Type B intermittency. 

Let us turn to the reason why such highly intermittent behaviors as in Figs. 7(a) ~(e) 
are observed. Assume that rn starts 
initially with a sufficiently small ro. In 
the region where O(rn 2

) can be neglected, 
we get rn~exp(zn) ro with zn=~J,;:l{Inlf' 
(f j) 1- a}. In contrast to Case A, the pres
ent Zn strongly fluctuates from x-oon to xoon 
by ignoring terms of o(n). Namely, Zn 

widely spreads asymptotically with the 
normal form. If we put zn=yn+o(n), Y 

is a stochastic variable lying X-oo< y< Xoo. 

Since a~ac, one obtains x-oo<O<xo. 
Namely, y can be either positive or nega
tive. If y remains negative in a certain 

1.0 

0.5 (a) 

~o 

0.5 

-0.5 

++++.++++ 

-1.0 

Fig. 6. Numerical result for the largest Lyapunov 
exponent ,10)(.) and the second Lyapu~ov 

exponent ,1(2)( +) for the coupled-map system 
(1'14) with j(x) = 3.8x (1 - x). Each value was 
obtained by averaging over 105 iterations. Two 
straight lines are ,10)=,10 and ,1(2)=ac-a, re
spectively,which are valid only for a;;;;ac. 

·e:]+--_____ CQ_) 

n 1000 
-.05 

] .... + 
( b) 

2000 

3000 

] 
cd) 

4000 

(e) 

5000 ] 
<tf) , , .. 

_]-+----j~+ .... -_-(-d-/)-+1 _. _ 

Fig. 7. Typical temporal evolution of Vn in Case B 
after sufficiently long initial steps (a) ~ (e). The 
parameter is a=0.43. (b') ((d')) is the enlarge· 
ment of Fig. 7(b) ((d)). They exhibit the self
similarity of the temporal evolution. 
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temporal region,rn shrinks, and one observes quiescent regions. If y happens to be 
positive, rn starts to grow, leading to the ignition of a burst. 

Furthermore, we add the following remark. In Figs. 7(b), (d) and (e), there are small 
oscillations (bursts) temporally localized. Figure 7(b') (7(d')) is the enlargement of Fig. 
7(b) (7(d)). Apparently they have similar structures as in Fig. 7(c). Thus we might say 
that Type B intermittency is characterized by the self-similar temporal evolution of Vn 

in this sense. 
We have calculated the probability density PL(r) (Fig.8). F<?r a sufficiently small L, 

PL(.r) seems to obey the power law 

(4·2) 

for rl L > h( = II 200). The exponent r; is extremely small and we cannot give a precise 
value. PL( r) has a remarkable deviation from the law (4·2) for an extremely small r( r 
I L < h). The origin of this deviation may be understood as follows. Since (4' 2) is not 
integrable if we put r; =0, for any tiny subunit ilM( = L/ M, M being the number of sub
spaces) the probability integrated from zero to ilM diverges. In numerical calculations, 
however, it always remains finite but is outstandingly large. It seems that the' deviation 
for rlL<h suggests the law PL(r)cxr- 1

• 

The power spectrum for rn numerically obtained is shown in Fig. 9. As was reported 

rFt(r) . . .... ,.,.,.'" .t .,. 

Fig, 8, The probability density PL(r) for rn in Case 
B for a=0.431, where L is chosen as L=2 
xlO-6

(.) and 2XlO- 7 (+). Except the first 
datum, PL (r) is close to the inverse power law 
(ocr-I). 

S(W) 

10-2 

". 
10-3 

102 
W/AW 

Fig. 9. The comparison of the numerical power 

spectrum (.) of rn for a=0.431 with the theo
retical curve (solid line) given by (4'3). Here we 
used the value Co = 4.20 X 10- 5 numericalIy 
obtained. The numerical power spectrum was 
obtained by averaging 500 power spectra each of 
which was calculated by FFT for the sampling 
length 214 (L1w=21f/214). The numerical power 

spectrum is close to a w- I form for w:J>xo. 
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1098 H. Fujisaka and T. Yamada 

previously,4) the present power spectrum is far from the single Lorentzian (3'6), and is 
rather close to the w- I form in a certain frequency region. This means that the rn 
dynamics cannot be characterized by the single time 1/ Xo, which is consistent with the 
multi time-scales situation, as was discussed in the earlier part of this section (see also 
§ 2). Noting that there exist an infinite number of damping rates continuously spread, we 
propose a power spectrum 

5(w) ~ 2Co T(~) 
xoln(2/xo) Xo 

(4· 3) 

for xo->O and w->O, where 

T(y) = ; {; -arctan(;)} (4,4) 

(see Appendix D). Equation (4·3) seems to be fairly in a good agreement with the 
numerical result except w/L1w;:::;4. By making use of the asymptotic behaviors of T(y), 
(4'3) becomes 

(4·5a) 

(4'5b) 

For w'Pxo the power spectrum exhibits the w- I law. This is a crucial difference from that 
in Case A (5(w) cx(xo/W)2 for w'Pxo). 

§ 5. Summary and remarks 

We have developed a fluctuation theory on the stability of the synchronized chaos of 
the coupled system (1·l4). It was shown that the system undergoes the transition from 
the uniform chaos to the non-uniform chaos as the coupling strength a is gradually 
decreased. The transition occurs when the second Lyapunov exponent in 1Jfunif crosses 
zero from negative to positive, i.e., the transition point ac is determined by the largest 
Lyapunov exponent in 1Jfunif . 

For a slightly below ac, the system exhibits an intermittent behavior, whose charac
teristics is closely related with the statistical properties of local expansion rates of the 
isolated system Xn+I = /(Xn). Namely, when the similarity exponent /lq has no dispersion, 
the intermittency is characterized by alternative generation of the exponential growing of 
r n and its sudden diminishment (Type A intermittency) . On the other hand, when /l q has 
a sufficient dispersion, the intermittency is different from the above and consists of 
quiescent regions abruptly inserted by temporally highly localized bursts (Type B inter
mittency). In both cases, the probability density for rn exhibits the power law behavior 

(5·1) 

for sufficiently small r, and the power spectrum satisfies the scaling law 

(5·2) 
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for xo--->O and (V--->O, if we neglect the factor of order lnxo-I. When Aq has no dispersion, 
the exponent 7J is 0(1) and the scaling function Q(y) is well approximated by the 
Lorentzian (3' 7). On the other hand, when Aq has a sufficient dispersion, 7J is 'very close 
to zero, and Q(y) is far from the Lorentzian (Eq. (4,4)), having the y-I form for y~l, 
which corresponds to the (V-I law of the power spectrum for (v~xo. 

Since Aq for an arbitrary system Xn+I = /(Xn) generally more and less has a dispersion 
if x n is chaotic, the intermittency observed for a;S ac is expected to exhibit characteristics 
the same as Type B intermittency even if the dispersion of Aq is weak. We have calculat
ed another coupled logistic parabolla system with a=3.65 (,.10:::::0.255"'). The quantity L1 
=,.100- ,.1-00 measures the strength of the dispersion of Aq. For a=3.8, L1 :::::0.07. However, 
for a = 3.65, L1 is smaller than 0.07 (::::: 0.04). For the Xo value of the same order as in 
§§ 3 and 4, the temporal evolution of rn seems to exhibit a mixed characteristics of Type A 
and Type B intermittencies. The exponent 7J is between 0 and 0.8. We numerically 
found that as a is approached to ai;, 7J tends to vanish as 

(5'3)*) 

Since Type B intermittency is characterized by an extremely small value of 7J, we might 
say that even when the dispersion of Aq is weak, we can observe Type B intermittency 
as the system approaches ac. This suggests the existence of the crossover point a* from 
Type A intermittency to Type B intermittency as a approaches ac from below. 

The essential point to explain the (V-I-like power spectrum in Type B intermittency 
was based on the existence of an infinite number of time-scales for rn. It should be noted 
that this situation has a close connection with the introduction of the distribution function 
for durations among bursts near the onset of tangential intermittency. 10)_12) 

Recently the intermittent characteristics similar to Type B intermittency has been 
found by Tomita and SakaguchP3) for the temporal evolution of Xn in the coupled system 

(5·4a) 

(5'4b) 

where A and B are close to 4. Particularly, for A=B=4, they have found a (V-I-like 
power spectrum for X n. From a standpoint of the stability of the fixed point X n = 0, the 
above system can be studied in a similar way as in the present paper. Detailed analyses 
will be reported elsewhere. 

Finally, we note that Kaneko has reported an intermittency phenomenon in his 
coupled-map lattice system. I4) His intermittency is rather spatial than temporal. It may 
be an important task to clarify the interrelation between the temporal and spatial inter
mittencies. 
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Appendix A 

Let us start with the perturbation equation of (1· 5) around the synchronized motion 
Xno, (Un(~) =Xn(~) - XnO), 

wherex~+l=f(xnO). The Fourier transform Un.k of Un(~) obeys 

Un+l.k= f'(xnO) ¢ kUn.k. 

(A ·1) 

(A·2) 

The stability of W unif can be discussed with the exponent Ak for the wavenumber h, 
defined by 

(A·3) 

where ilo is the Lyapunov exponent of X~+l = f(xnO) (Eq. (2·5)). Here we have used (1· 7). 
If A k < O( > 0) for all (certain) h, fluctuations around the uniform oscillation Wunif are 

linearly stable (unstable). Since the system (1· 4) or (1· 5) is regarded as the dynamical 
equation governing the macroscopic motion, we can assume that the microscopic degrees 
of freedom have been eliminated under the assumption that they are always stable 
irrespective of macroscopic motion. This gives the condition that A k should be negative, 
if Ihl is sufficiently large. Particularly, for (1· 9) we obtain 1).3) 

(A·4) 

which satisfies the above condition. Equation (A· 4) is a monotonously decreasing func· 

tion of Ihl and its sign changes at Ihl=/ilo/a from positive to negative, if W unif is chaotic, 
(ilo>O). On the other hand, if Wunif is periodic (ilo<O), then Ak is always negative. This 
means that the uniform periodic oscillation is stablel)-3) against spatial non· homogeneous 
fluctuations. 

Let us turn to (1·18) and (1·19). When the non· uniformity is weak, they can be 
expanded in Vn (Eq. (1·17b)) as 

- f(- )+f"(Xn) 2+0( 4) Xn+l= Xn 2 Vn Vn, (A ·5a) 

(A ·5b) 

Hereafter we will show that when the uniform chaos is weak and (1·4) in one 
dimensional space can be described by the three mode truncation, (1· 4) is equivalent to 
(A· 5), and so, is essentially the same as (1·14). Let the system be on a line with the 
length I under the periodic boundary condition. We divide Xn(~) as 

(A·6) 

where Xn is the spatial average of XnC~) (xn= 1-lfJxn(~)d~), and Un(~) is the fluctuation. 
By introducing the Fourier transform 

(A·7) 
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(1· 4) can be written as 

- +1~_ ik~-f(-)+f,(-)l~·:i:- ik~ Xn+l t",-,kUn+l,ke - Xn Xn l",-,k'f'kUn,ke 

(A·8) 

where ~ k··· = (// 27f) f dk···. Now we assume that ,10 is appropriately small and (A· 8) can 
be approximated by three modes with wavenumbers k = - Q, 0, Q (Q > 0). The uniform 
mode (k=O) turns out to obey 

- f( - )+ f"(Xn) 1- 12 Xn+l~ Xn 12 Un,Q, (A ·9a) 

where we have used Un,o=O. Comparing the Fourier coefficients for k= Q of both hand 
sides of (A· 8), we get 

(A ·9b) 

Under the replacement 

(A ·10) 

Vn being chosen as a real number, (A· 9a) and (A· 9b) are equivalent to (A· 5a) and (A· 5b), 
respectively provided that O( Vn 3) are neglected. 

Appendix B 
-- The Power Law Behavior of PL(r)--

Let us consider a set R={rj, j=1, 2, 3, '.', M}, where M is taken to be sufficiently 
large. We divide R into two subsets R(L) and R'(L). Here an element of Rj(j=l, 2, 3, 
'.', N) of R(L) satisfies Rj~L and an element R/ (/=1, 2, 3, '.', M - N) of R'(L) satisfies 
R/>L, where L(~1) is an arbitrary constant, and Nand M-N are assumed to be 
sufficiently large. 

The probability density PL(r) is calculated with the subset R(L) by 

PL( r) = lim N1 ~r=lo(Rj- r). (O~ r~L) 
M-oo 

(B·1) 

By putting R j = LRj , (B·1) can be rewritten as 

(B·2) 

where 

(B·3) 

is independent of L. 
We define the scale 

(B·4) 
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1102 H. Fujisaka and T. Yamada 

Let Ai be the average of r taken over O~ r~ r(l), 

(B·5) 

Under the similarity assumption, the ratio 

(B·6) 

is assumed to be independent of I and 7J is assumed to be non-negative. If 7J *0, then the 
comparison of (B·6) with (B·2) yields 

We obtain 

PL(r)=7Jr-l(r/L)~ . 

On the other hand, if 7J =0, then g(8) is independent of 8, leading to 

PL ( r) r:x r- 1 
• 

This is not normalizable at r = 0. 

Appendix C 
-- Derivation of (3· 6) --

(B·7) 

(B·S) 

(B·9) 

As was discussed in § 3, the temporal evolution of rn in Case A consists of two 
characteristic processes, the exponential growing with the rate Xo and its sudden diminish
ment. With this observation we propose a modeled stochastic process, 

(C·1) 

Rn is the random force «Rn>=O) caused by the nonlinear effect of orn and satisfies 

<RnRo>=IOno, (C·2) 

where I is the intensity of R n , and < ... > is the average over the ensemble for the random 
force. In the temporal region where rn exponentially grows, Rn takes almost zero. The 
exponential growing ceases to continue when Rn acts, leading to a sudden diminishment 
of rn. As a result, rn can be steady. Our stochastic model is different from the Ornstein
Uhlenbeck process by the sign of Xo, where Rn acts so as to excite the deviation from the 
average <rn>. 

Solving (C·l) yields 

Taking the square of (C·3) and the average, we get, for n~O, 

CoO + e2~on) -2e~onCn =I(e2~on -1) / (e2~o-1) , 

(C·3) 

(C·4) 

where en = <ornoro> is the double time correlation function. Since rn is steady, Cn should 
vanish as n-HX), which requires the equality 

(C·5) 
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This is nothing but the fluctuation-dissipation theorem, which ensures the balance between 
the growing of rn and the action of the random force, i.e., ensures the stationality of the 
process {r n}. The insertion of (C -5) into (C -4) leads to 

(C-6) 

for n~O. Substituting (C-6) into 5(w)=~';;'~_",Clnleiwn gives the power spectrum4
) 

5(w) =...G._ sinh(xo) 
2 sinh2(xo/ 2) +sin2(w/ 2) 

(C-7) 

In the limit xo-40 and w-40, this becomes (3-6). 
Since the random force Rn acts so as to make orn steady, there is still a correlation 

between oro and Rn as 

<Rnoro) =0 , (n~ -1) 

= - 2 Cosinh(xo) e -I<on . (n~O) 

(C-Sa) 

(C-Sb) 

This is again different from the assumption made in the Ornstein-Uhlenbeck process 
«Rnoro)=O for n~O). 

Appendix D 
-- Derivation of (4 -3) --

Noting that in Case B there are a continuously infinite number of damping rates near 
_ a = ac, we assume that the power spectrum of r n for a ~ ac is given by the superposition 

of "Lorentzians", 

() Co 1'" ( ) sinh(x) 
5 w =2 0 g x sinh2(x/ 2) +sin2(w/ 2) dx . (D-l) 

Here g (x) is the density of mode with the decay rate x and is assumed to vanish for x < rl 

and x> ru(ru> r l >0). We further assume that rl is small for a~ ac and vanishes at ac. 
Since one typical characteristic inverse time near a = a c is Xo, one may put r l ~ Xo. On the 
other hand, ru is assumed to be O(XOo) near a=ac. 

For a sufficiently low w, the most dominant contribution to 5(w) comes from 
sufficiently small x, if g(x) smoothly depends on x. Assuming that the most dominant 
part of g(x) for small x is proportional to the "correlation time" (=I/x), we assume that 
g (x) ex: 1/ sinh(x), which is consistent with g (x) ex: 1/ x for small x. Since this function 
rapidly approaches zero as x increases, large x modes give less contribution to 5(w). 
This allows us to replace ru by 00. Then (D -I) becomes 

r'" dx 
5(w)~BCoJI<o sinh2(x/2)+sin2(w/2) . 

Here B is determined by the sum-rule f",,5(w)dw=2J[Co as 

B = 1/2 In coth(xo/2) . 

Carrying out the integration in (D -2), we obtain 

5() 4BCo [J[ -1{ (Iwl) (xo)}] w ~ sinlwl T- tan cot 2 tanh 2 . 

(D -2) 

(D-3) 

(D-4) 
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In the limit xo---'O and (L)---'O, (D·4) is given by (4·3). 

References 

1) H. Fujisaka and T. Yamada, Prog. Theor. Phys. 69 (1983), 32 (this is referred to as I). 
2) T. Yamada and H. Fujisaka, Prog. Theor. Phys. 70 (1983), 1240 (this is referred to as II). 
3) T. Yamada and H. Fujisaka, Prog. Theor. Phys. 72 (1984), 885 (this is referred to as III). 
4) H. Fujisaka and T. Yamada, Prog. Theor. Phys. 74 (1985), 918. 
5) A. S. Pikovsky, Z. Phys. B55 (1984), 149. 
6) H. Fujisaka, Prog. Theor. Phys. 70 (1983), 1264. 
7) H. Fujisaka, Prog. Theor. Phys. 71 (1984), 513. 

H. Fujisaka and M. Inoue, Prog. Theor. Phys. 74 (1985), 20. 
8) P. Manneville and Y. Pomeau, Physica ID (1980), 219. 
9) J. E. Hirsch, B. A. Hubermann and D. J. Scalapino, Phys. Rev. A25 (1982), 519. 

10) Y. Aizawa, Prog. Theor. Phys. Supp!. No. 79 (1984), 96 and references cited therein. 
11) I. Procaccia and H. Schuster, Phys. Rev. A28 (1983), 1210. 
12) B. C. So and H. Mori, Prog. Theor. Phys. 72 (1984), 1258. 
13). K. Tomita, Prog. Theor. Phys. Supp!. No. 79 (1984), L 

H. Sakaguchi and K. Tomita, to be published. 
14) K. Kaneko, Prog. Theor. Phys. 72 (1984), 480 and preprint. 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/75/5/1087/1849732 by guest on 21 August 2022


