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The coupled-oscillator system described by differential equations is studied by a mapping. The 
mapping function for the coupled system is derived from the one for the uncoupled system. The bifurca
tion diagram is examined first by numerically integrating the coupled differential equations and second by 
iterating the mapping for the coupled system. Both approaches give quite similar results: Especially the 
transition from the uniform chaos to the non-uniform one occurs at the same value of the bifurcation 
parameter for both approaches. 

§ 1. Introduction 

In a previous paper of this series (referred to as I) the global stability of a macrooscil
lation is considered.!) The consideration is made on the system consisting of N -equiva
lent oscillators. The state vector of the j-th oscillator XU) evolves in time as 

j=1,2,"',N, (1.1) 

where the summation is taken over a given configuration of coupling and f is a periodic 
function of the period 27[/ (f) with respect to the variable t. When the scalar coupling 
strength D exceeds a certain value, the macrooscillation or the synchronized state lJfunif 

appears. Below this critical D value the synchronized state loses the stability and a non
uniform state arises. Further variation of D brings about various states and a bifurca
tion scheme. 

In various systems described by differential equations an appropriate discretization in 
time leads to the appearance of mapping functions. 2

) This discretization can be done by 
taking a Lorenz plot or a Poincare map Therefore in these systems the time evolutions 
of dynamical variables at discrete time can be obtained by simply iterating the mappings. 

In the present paper we will consider the coupled system (1·1) in the case where the 
uncoupled system, 

(1·2) 

has the mapping, 

(1·3) 

where Xn U ) is the state vector of the j-th oscillator at time, t=nT (n=O,l,2,···). When 
the coupling terms are introduced, the description by the mapping should be modified. 
The purpose of the present paper is to show that even for the coupled system a mapping 
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approach is possible with an appropriate modification of the mapping function. Thus the 
temporal behaviors of coupled system can be obtained by simple iterations of the resulting 
modified mapping. 

A coupled mapping system has been studied by Kaneko,3) and Lee and Tomita. 4
) 

Their equations can be written as follows: 

x}nl =g(x~!))+ D(X~2)- x~!)), 

X~2~1 =g(X~2»)+ D(x~!)- X~2»), (1·4 ) 

where g is a one-dimensional mapping and D is a coupling constant. From these equa
tions various states including a hyperchaos are obtained. However, for a large D value, 
IXn

(2
)-Xn(1)I--HlO as n->oo.4) Therefore, Eqs. (1'4) cannot be correct basic mapping equa

tions corresponding to system (1'1). 
In § 2 we will derive a mapping which correctly gives the large coupling limit of the 

coupled system. In § 3 this mapping will be examined for simple illustrative examples. 
In § 4 the mapping will be applied to a particular model and the results will be compared 
with those calculated from the original coupled differential equations. Section 5 will be 
devoted to summary and discussion. 

§ 2. The mapping for the coupled system 

N ow we consider the N -equivalent oscillator system (1. n By introducing a new 
state vector, 

X= 

Eq. (1.1) can be written in the form 

where F is the flow defined by 

dX -dt= F( X; t ) + DX, 

F= 

f(x(1);t) 

f (XC2 ); t) 

f (XCN);t) 

(2'1) 

(2·2) 

(2·3) 

and t5 is the diffusion matrix whose explicit form depends on the given configuration of 
coupling. For simplicity, we will hereafter consider the special case, System I of I, where 
all oscillators couple:!) namely, 

(2'4) 

It is to be noted that for N = 2 and 3 System I is equivalent to System II .1) For the present 
configuration of coupling t5 is written as 
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-(N-l)lm 1m 

D=DC=D 
1m -(N -l)lm 

(2'5) 

where 1m denotes the m X m unit matrix and m is the number of components of the state 
vectors {XU)}. 

Defining the vector Y as 

Y=exp{ - D( t- tn )}X, (2'6) 

we have 

dY - -
Tt=exp { - D(t- tn)}F(exp{D(t- tn)} Y;t), (2'7) 

where tn = n T( n = 0,1,2,'" ) with a constant T. From the calculation given in Appendix 
A, we obtain 

exp(Dt)= 1 + ~D(N)( t )C, (2·8) 

where 

~D(N)(t)= {l-exp( - NDt)}/N. (2·9) 

Here 1 is the unit matrix and the matrix C defined in (2'5) is used. By writing the vector 
Yas 

Y= 

a simple calculation yields 

i=1,2,"·,N. 

In terms of {y(i)}, Eq. (2'7) can be written as 

As is proved in Appendix B, Eq. (2·12) can be approximated, 

y(i)"c'f(y(i); t), 

(2·10) 

(2·11) 

(2·12) 

(2'13) 

if the second order deviations of the state vectors from the macrooscillation are discarded. 
Equation (2 '13) is just the same as (1.2). Therefore, if the uncoupled system has the 
mapping (1.3), we obtain for i=1,2, .. ·,N 

(2 '14) 

where Yn+\i) and Yn(i) are the vectors y(i) at time t=tn+l=(n+1)T and tn=nT, re
spectively. Since ~D(N)(O)=O, Xn(i)=Yn(i) at t=tn. By putting t=tn+1 in (2'11), we have 
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(2·15) 

Use of (2 ·14) and (2 '15) yields 

(2·16) 

Hereafter we will use the terminologies, the mapping approach and the differential 
equation approach when use are made of Eqs. (2 '16) and (1.1) as the basic equations, 
respectively. 

§ 3. Simple examples 

When the number of oscillators N is equal to 2 and the mapping g is reduced to a one
dimensional map, Eq. (2 ·16) becomes 

x n+~l)= g(Xn (1»)+ ~D(2)( T ){g(Xn(2»)- g(x n (I»)}, 

(3'1) 

where x n (i)(i = 1,2) is a component of the state vector Xn (i) and g is the corresponding one
dimensional mapping. This equation can be written in the following form: 

(3·2) 

with D'={exp(2DT)-1}/2. This has the same form as Eq. (1'4), but in the coupling 
terms xn(i)are replaced by Xn+~i)(i=1,2). 

In a large D limit, ~D~~)=1/2 and then Xn+~I)=Xn+~2). This means that for a large 
coupling strength the synchronized state lJfunif appears. I) The synchronized state or the 
macro oscillation loses stability as D is decreased. The stability problem of the macroos
cillation can be treated by the analogous method developed in I.I) Let XOn be a solution 
of (3'1) in lJfunif. The Xn(i) can be written as Xn(i)=Xon+ Un(i), where Un(i) is the deviation 
from lJfunif. Up to the first order in Un(i) we get, 

(3·3) 

where rn= Un(2)- Un(l) and g' is the derivative of g. Therefore the stability of lJfunif is 
determined by the sign of the following quantity: 

(3'4) 

where<'" > denotes the time average. Simple calculation gives 

(3'5) 

where ,,1L is the largest Lyapunov exponent in lJfunif. *) For chaotic lJfunif, Ih > 0 and the 
macro oscillation become unstable at D = Dc =,,1d 2. The threshold value Dc is exactly 
the same as the one derived in the differential equation system (1'1). The results 
obtained in this section can be easily extended for general mappings and arbitrary N. 

*) In the present paper the Lyapunov exponents for the mapping are defined by dividing the usual definition 
by T.51 Thus Lyapunov exponents for the mapping and the differential equation coincide with each other. 
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§ 4_ Coupled Brusselator model 

In this section a concrete model is studied with the mapping approach developed in § 2 
and the differential equation approach. We consider the model studied by Tomita and 
Kai. 5

) The flow f and the state vector x of the model are given by 

(4-1) 

with ii = acos( cot). Without the external force ii, this is nothing but the Brusselator 
model. 6) Hereafter the following set of parameters is adopted: A = 0.4, B ='1.2, a = 0.05 
and co=O.S. For these parameter values the uncoupled system described by 

;i=f (4-2) 

shows a chaotic behavior. The largest Lyapunov exponent of the chaos is numerically 
calculated as il L "-'0.0139S. We here denote the value of x at time t= tn=(SJ[/co)n as xn(n 
=0,1,2, ... ). Then the succesive Xn'S form the one·dimensional map, Xn+l = g(Xn), which is 
shown in Fig. 1. The mapping function g is approximated by a power series whose 
coefficients are given in Table I. 

0..37 

g(x) 

0.35 

0..33 

x 
0..31 I--~I--~I--~I--~I--~I--~I+-

0..31 0..33 0.35 

Fig. 1. The mapping function g for the coupled 

model considered in the present text. The full 
line is calculated from the power series in Table 
I and the dots are obtained by numerically inte· 

grating the uncoupled system (4·2). 

The two oscillator system is constructed 
by introducing coupling between two oscil· 
lators whose state vectors are 

(4-3) 

respectively. The time evolution of the cou· 
pled system is described by 

;i(J) = f (x(J); t )+ D(X(2) - x(I)), 

(4-4) 

where the flow f is given by (4-1). Equa· 
tion (4 -4) is numerically simulated by using 
the Runge-Kutta-Gill method with the time 
step (h/ co)/ 50. The bifurcation diagram is 
examined by starting with, x(1) = (0.35,2.75) 
and x(2)=(0.32,2.50) at D=O, and increasing 

Table I. The expansion coefficients of the mapping function 

g(x )=xo+ ~ C,(x-xo)'. 

xo 
Co 
C 
C2 

C3 
C 

/-() 

0..34943956 
0.180.80.436 X 10- 1 

-0.81428963 

-0.51875687 X 102 

-0.74237535x 103 

-0.20892060 X 105 

Co -0.19918181 x 106 

C6 0.31899196 X 107 

C7 0.48947795 x 109 

C, 0.18738313 X 1011 

C9 0.:32766486 x lOI2 

CIO 0.24180756 X 1013 
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Fig. 2. The Poincare maps: (a) D=O.0026. chaos C. (b) D=O.0031. quasiperiodic state Q. P. 
(c) D=O.0040, periodic state P. (d) D=O.0066.chaos CII, (e) !J=O.0075, chaos CII, (f) IJ=O.0059, 

periodic state. 
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0.30 '-----_'-----_'------Ll_"------1_---'_----'---'----'_-----' 

the coupling strength D by 0.00005 until 
0.008. The state vectors of the preceding 
calculation are set to be the initial condi
tion for the increased coupling strength. 
The phase of the system is determined by 
taking the Poincare map and calculating 
the Lyapunov exponent after sufficiently 
large initial time steps. The Poincare 
map is obtained by taking the projection of 
the state vectors on (x (1), x (2)) plane at t 
= tn. The values of x(l) and X(2) at t = tn 

are denoted by Xn(l) and Xn(2), respectively. 
In Fig.2 the Poincare maps for several D 
values are plotted. In Figs. 2(a)~(e) 

0.0 0.002 0.004 0006 D 0.008 

Fig. 3. The bifurcation scheme by the differential 
equation approach with the iterated value of 

Xn(l) there appear five phases which we denote 
by CI, Q.P, P, Cn and Cm, respectively. The C, Cn and Cm are chaotic states, Q.P is a 
quasiperiodic state and P is a periodic state which in the original unit corresponds to 
eight-periodic state. In the bifurcation diagram the periodic state shown in Fig.2(f) does 
not appear since this phase originates from other basins than considered here. The 
bifurcation diagram is illustrated in Fig.3 with the iterated values of x n (I). The transition 
from the periodic state P to the chaos Cn is of the first order type. By using Eq. (3·25) 
of I the breakdown of the uniform chaos Cm occurs at D = Ad 2 ~ 0.00699. *) This agrees 
with the present numerical calculation. In the bifurcation the window structures arise 

*) It is to be noted that the coupling D/2 in Eq. (1. 3) in I should be read D in the present work (see (1.1)). 
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Fig. 4. The bifurcation scheme by the mapping 
approach with the iterated value of x n (1;. 

but they are omitted for simplicity. 
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Fig. 5. The largest and the second largest Lyapunov 
exponents which are represented by the full line 
with black circles and the full line, respectively. 
These values are obtained by averaging over 
70000 iterations. The jump of the Lyapunov 
exponents near D = 0.0063 corresponds to the first 
order transition mentioned in § 4. 

N ext we consider the bifurcation diagram of the coupled system with the mapping 
approach. The basic equations for N = 2 are Eq. (3'1) with T = 81[/ OJ, where the mapping 
function g can be computed from Table I. A sequence of transitions is obtained by a 
similar procedure to the differential equation approach which is based on (4'4). The 
initial values are Xn=bl)=O.35 and Xn=b2 )=O.32 for D=O and the rest of procedure is the 
same as done for the differential equation approach. In Fig. 4 the bifurcation diagram 
with the iterated values of Xn(l) is shown. The sequence of transitions completely coin
cides with that of the differential equation approach though the values of transition points 
are slightly different. Quite similar Poincare maps are obtained for the same values as 
in Fig. 2. The transition from P to CII is also of the first order type. The largest and the 
second largest Lyapunov exponents are calculated by a similar method developed by 
Shimada and Nagashima7

) and plotted in Fig. 5. As seen from this figure the second 
largest Lyapunov exponent changes its sign at the transition point between CII and CIII. 
The sign change of the second largest Lyapunov exponent also occurs at a small D. 
However, we cannot find any remarkable phase change at this D value. 

§ 5. Summary and discussion 

We have studied a coupled system by two approaches: the differential equation 
approach and the mapping approach. The basic equations of the latter approach are 
derived from the original coupled differential equations on the assumption that the 
deviations of the state vectors from those of the macrooscillation are small. Thus, the 
same value is obtained for the transition point from CII to CIII by both approaches. For 
D = 0 the system displays the same temporal behaviors of the state vectors for the two 
approaches as it should be. These facts explain .why even for intermediate coupling 
strength there appear similar bifurcation schemes in both approaches. 

We have been interested in the global bifurcation scheme. A transfer function can be 
defined through xn+i!)= h(xn(l)), and numerically constructed in a chaos. In the present 
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case, however, the transfer function h does not lie on a single curve but rather forms a 
scattered band except the uniform chaos. Therefore, the bifurcation schemes studied in 
§ 4 cannot be described by a one dimensional map. However it may be possible that the 
terminologies of one-dimensional map with external noiseS) can be applied to interpret the 
present results; for instance, the lack of the period doubling transition. 

A continuous system can be also studied by the mapping approach. In this case the 
coupling is caused through diffusion and an appropriate extension of the mapping 
approach should be done, correspondingly. A chemical turbulence9

) is an example of the 
continuous system, where the spatial randomness is important as well as the temporal one. 
It is also interesting to extend our formulation to the case where the coupling D is not a 
scalar. These are future subjects. 

Appendix A 

The eigenvalue equation, 

detiD - AI = 0, (A'1) 

has eigenvalues A =0, A = - N which are m-and m(N -1 )-fold degenerate, respctively. 
The matrix 15 is diagonalized as follows: 

° (A ·2) 

with 

1m 1m 

U= 
1m-(N-1)lm 

(A·3) 

From (A· 2) one can easily get 

6 

exp(15t)= 1 - U ° U- 1(1-exp( - NDt)) 

° (A '4) 

Appendix B 

In the synchronized state lJfunif one has 

i=1,2,-··,N. (B'1) 

Therefore, if the state vectors do not deviate appreciably from those of the macrooscilla
tion, the second term of (2·11) is small compared with the first term. Thus we expand 
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(B·2) 

where 

N 

loyl ~ Iy(i)- (~yU»)/ NI, 
J=1 

(i=1,2,-",N) 

and represents the deviation of the state vector from the macro oscillation since it takes 
zero value in the synchronized state. Because of small loyl, we also obtain 

f (yU») = f (y(i))+ afa~i\i)) . (yUL y(i))+ O(rOyj2). 

Substitution of (B·2) and (B·3) into the right-hand side of (2·12) yields 

y(i)= f (y(i»)+ ~D(N) af (~i(:») . ± (yU)_ y(i»)+ ~-W) ± {f (yU»)_ f (y(i))} 
ay J~l J~l 

where use has been made of the identity, 

~D(N)+ ~_WL N~_W)~D(N)=O. 
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