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Abstract

Numerous small distributed energy resources (DERs) form a new generation of power systems

- the microgrid. In general, a microgrid stands for a cluster of DERs, which can collectively

operate as an individual low-voltage power system during islanded mode. A microgrid can

also be operated in connected mode with a large power system. DERs are often interfaced

to a microgrid through power electronic inverters, forming an inverter-based microgrid. As

inverters obtain very different characteristics to conventional generation units (e.g. synchronous

generators), characteristics of microgrids significantly differ from those of conventional power

systems. As a result, popular stabilizing and power sharing approaches, which are applied

to conventional power systems, are no longer effective for the control of islanded microgrids.

For the case of islanded parallel-connected inverter-based microgrids, a novel power control

approach together with a thorough stability analysis are developed in this thesis. Dynamics of

lower control levels of inverters are relatively fast and can be neglected. For the stability analysis

of microgrids at the power control level, inverters are considered to be ideal voltage sources with

controllable voltage magnitudes and phase angles. In order to avoid fast communication and

control interconnection between inverters, a decentralized power control approach is proposed.

The control approach requires clock synchronization between inverters, which can be realized

by the global positioning system. The main goal at the power control level is the control of

power flows within a microgrid, where the closed-loop stability is an essential requirement.

For a normal operation of loads, the performance of voltages and frequencies in the sense of

magnitude deviations and higher-frequency harmonics is also important.

From a power system perspective the stability of microgrids is investigated in the sense of

small-signal stability. In the thesis the stability of microgrids is analyzed by using control system

techniques. For the nominal stability analysis, a linearized model of microgrids is derived. There

are different uncertainties and disturbance sources to the stability of microgrids such as load

dynamics, load and line uncertainties and changes of power references. Accordingly, stability

of microgrids against the aforementioned uncertainties and disturbances is investigated. Load

dynamics are considered by including load models in the stability analysis. With respect to

load and line uncertainties, robust stability of a microgrid and robust performance of inverter

output voltages are studied in the H∞ control. With a proposed decentralized power control

loop, inverter controllers are synthesized by using the linear matrix inequality (LMI) technique.

Different LMI problems are proposed to design decentralized inverter controllers to guarantee

the asymptotic stability of an overall microgrid. Furthermore, a droop-based power sharing

control is proposed. Although a desired power sharing performance is not analytically proved, it

will be shown via simulation that power sharing between inverters is achieved without causing

stability and voltage performance problems. The effectiveness of proposed microgrid models

and related controller design methods are validated via computer simulations.





Zusammenfassung

Zunehmende dezentrale Energiequellen leiten eine neue Generation von Stromsystemen ein

- das Microgrid. Im allgemeinen Verständnis ist ein Microgrid ein Cluster von dezentralen

Stromerzeugern, die kollektiv als ein individuelles Stromssystem im Inselbetrieb funktionieren

können. Ein Microgrid kann auch im Verbundbetrieb mit einem großen Stromnetz betrieben

werden. Dezentrale Stromerzeuger sind normalerweise mit einem Microgrid durch leistungs-

elektronische Umrichter verbunden, dabei bildet sich ein Umrichter-basiertes Microgrid. Weil

die Umrichter stark unterschiedliche Eigenschaften im Vergleich zu konventionellen Strom-

erzeugern (z.B. Synchrongeneratoren) haben, unterscheiden sich die Eigenschaften eines Micro-

grids deutlich von denen eines konventionellen Stromsystems. Daher sind die bekannten stabili-

sierenden und leistungsverteilenden Regelungsverfahren, die für große Stromnetze implemen-

tiert wurden, nicht effektiv für die Regelung eines Microgrids im Inselbetrieb. In dieser Arbeit

wird für den Inselbetrieb eines Umrichter-basierten Microgrids, in dem die Umrichter in parallel

zu einander verbunden sind, ein neues Leistungsregelungsverfahren zusammen mit einer ausführ-

lichen Stabilitätsanalyse entwickelt. Die Dynamiken der untergeordneten Regelkreise eines

Umrichters werden vernachlässigt. Für die Stabilitätsanalyse eines Microgrids auf dem Leis-

tungsregelungsniveau werden die Umrichter als ideale Spannungsquellen mit steuerbaren Span-

nungsmagnituden und Phasenwinkeln betrachtet. Um auf eine schnelle Kommunikation und

Regelkopplung zwischen den Umrichtern zu verzichten, wird ein dezentraler Leistungsregelkreis

für die Umrichter-basierten Microgrids vorgeschlagen. Das Leistungsregelungsverfahren benö-

tigt lediglich eine Uhrensynchronisation für die Umrichter, die durch das Globale Positions-

bestimmungssystem realisiert werden kann. Das Hauptziel der Leistungsregelung ist die Rege-

lung des Energieflusses innerhalb eines Microgrids, wobei die Stabilität des geschlossenen

Microgrids eine wichtige Voraussetzung ist. Für einen sicheren Betrieb der verbundenen Lasten

ist darüber hinaus die Regelgüte der Spannungen und Frequenzen im Sinne von Magnituden-

abweichungen und Oberschwingungen wichtig.

Aus Sicht der Energiesystemtheorie wird die Stabilität eines Microgrids hinsichtlich der Klein-

signalstabilität untersucht. In dieser Arbeit wird die Stabilitätsanalyse eines Microgrids mit

Hilfe der Regelungstheorie durchgeführt. Für die nominale Stabilitätsanalyse wird ein lineari-

siertes Modell eines Microgrids vorgestellt. Allerdings gibt es verschiedene Unsicherheits- und

Störungsquellen für die Stabilität eines Microgrids, z.B. Lastdynamiken, Lastunsicherheiten,

Leitungsunsicherheiten sowie Änderungen von Leistungssollwerten. Demzufolge wird die Stabi-

litätsanalyse eines Microgrids gegenüber den obengenannten Unsicherheiten und Störungen

durchgeführt. Die Lastdynamiken werden mit Hilfe von Lastmodellen in der Stabilitätsanalyse

betrachtet. In Bezug auf die Last- und Leitungsunsicherheiten werden die robuste Stabilität

eines Microgrids und die robuste Performance der Umrichterausgangsspannungen im Rahmen



der H∞-Regelung untersucht. Anhand eines vorgeschlagenen dezentralen Leistungsregelkreises

werden die Leistungsregler für die Umrichter mit Hilfe der Linear Matrix Inequality (LMI)

Technik entworfen. Verschiedene LMI-Optimierungsprobleme werden für den Entwurf von

den dezentralen Leistungsreglern vorgestellt, die die asymptotische Stabilität eines gesamten

Microgrids gewährleisten sollen. Außerdem wird ein droop-basierter Regelungsansatz für die

Leistungsverteilung innerhalb eines Microgrids vorgestellt. Obwohl eine genaue Leistungsvertei-

lung zwischen den Umrichtern nicht hergestellt worden ist, zeigt die Simulation, dass eine

Wirkleistungsverteilung zwischen den Umrichtern dem eingestellten Verteilungsverhältnis annä-

hernd entspricht, ohne Stabilitäts- und Spannungsperformanceprobleme auszulösen. Die Wirk-

samkeit der vorgeschlagenen Reglerentwurfsmethoden wird durch die Simulationen validiert.
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Chapter 1

Introduction

1.1 Motivation of microgrids

Power system engineers, researchers and power customers everywhere are concerned with prob-

lems of fossil fuel resource depletion, poor energy efficiency and environmental pollution. As

part of the Kyoto Protocol [3], many countries plan to cut down greenhouse gas emissions

to counter climate change and global warming. Therefore, the interest in alternative energy

resources, such as biogas, wind power, solar energy, fuel cells, etc., has increased significantly

in the last decades. The widespread implementation of renewable energy sources leads to an

increasing amount of small grid-connected generation units (100’s of [kVA] [4]) at low-voltage

levels, such as windturbines, solar photovoltaics, microturbines, among others. Those power

generation units are often called distributed energy resources (DERs) and are usually placed next

to consumption points. Most DERs are naturally direct current (DC) or unregulated alternative

current (AC) sources, while conventional power networks are normalized AC systems. Thus,

DERs are interfaced to power networks via power electronic devices called inverters. In order

to take control over those small generation units, the concept of microgrids has been introduced

[5–7]. A microgrid formed by a combination of DERs with inverter interfaces is called an

inverter-based microgrid [8–11]. In Figure 1.1, a schematic representation of a microgrid is

shown.

Microgrid is a relatively new concept for both power system and control system communities.

It was first formulated in the Consortium for Electric Reliability Technology Solutions program

(CERTS) in 1999 as a cluster of micro-generators and storages with an ability to separate and

isolate itself from the utility seamlessly with little or no disruption to connected loads [12, 13]. A

definition of an AC microgrid is made in [14], providing a common understanding of microgrids

among the research community. A microgrid can operate in connected mode with a high-voltage

transmission network and execute power exchange with it. In connected mode, the transmission

1
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FIGURE 1.1: Schematic representation of a microgrid.

network is dominant and the microgrid is considered as a single load or a single generation

unit. Another valuable motivation of microgrids is their possibility to automatically separate

themselves and start operating in isolated mode in case of detected faults in the transmission

network [12]. Thus, a microgrid can isolate its loads from faults and thereby maintain its service

without harming the transmission network’s integrity. A microgrid then operates autonomously

and supplies power due to load priorities [15]. A microgrid can be reconnected to a transmission

network when all faults are cleared [5, 16].

1.2 Challenges and contributions

One of the most meaningful contributions of microgrids is the possibility of constructing small

autonomous power systems. It will enable a big step forward in changing from centralized to

decentralized power generation. In addition, stand-alone microgrids can supply electrical power

to off-grid areas without long power lines to large power plants. However, researchers have

identified many technical challenges concerned with stability and performance in the sense of

voltage and frequency as well as power balance and synchronous operation between inverters

in microgrids while operating in isolated mode [5, 8, 10, 17–21]. Hence, the case of isolated

inverter-based microgrids is investigated in this thesis.

Being mainly formed by DERs with low inertia and capacity, microgrids are highly sensitive to

uncertainties. Moreover, due to the intermittent nature of renewable sources, i.e., inconsistent

sunshine or wind, some DERs can be unavailable during operation. Hence, it is a control

challenge to maintain service of microgrids with a sufficient performance of frequencies and

voltages in the presence of disturbances from natural sources and load uncertainties. Sufficient

performance of voltage and frequency refers to their acceptable (small) variations around nomi-

nal values. The difficult task is to achieve this functionality without extensive custom engineering

while still ensuring high system reliability and generation placement flexibility [22].
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Another important challenge associated to the operation of microgrids is the power flow strategy,

which announces that all generation units in a microgrid should collectively perform a power

exchange strategy for an optimal and economic operation. A common power flow strategy

within a microgrid is the power sharing between inverters [5, 6, 21]. The power sharing concept

indicates an ability of generation units in a microgrid, which should share any increase in system

load by predefined ratios [6, 19–21, 23–26]. Power sharing ratios between inverters can also be

adjusted during operation of microgrids due to different system conditions.

Dealing with inverter-based microgrids, whose physical characteristics are significantly different

from characteristics of large power systems, the classical control approaches applied to large

power systems are no longer adequate. Hence, it is necessary to investigate novel control

approaches together with a thorough stability analysis for microgrids.

The thesis presents a combination of several fields: the LMI-based optimization, control of

microgrids and H∞ control. The contributions of this thesis are summarized as follows. (i)

Stability of microgrids at the power control level is considered. A power control loop of an

inverter is mainly characterized by a power control law and dynamics of a low-pass filter, which

is required for the measurement of inverter output power. Dynamics of lower control levels as

well as dynamics of physical output filters of inverters are neglected. A linear state-space model

of microgrids is derived for stability analysis and controller design purpose. A decentralized

control approach together with an LMI stability condition is proposed to asymptotically stabilize

microgrids, while simultaneously guaranteeing zero steady-state deviations of inverter output

frequencies. (ii) Load models are presented to outline an influence of loads on the microgrid

stability. Accordingly, controller design methods based on the LMI technique, the Lyapunov

stability theorem and the small-gain theorem are proposed to guarantee the asymptotic stability

of microgrids despite load dynamics. (iii) With the proposed power control loop, magnitudes

of inverter output voltages should vary around their nominal values to manage output active and

reactive power. Therefore, if a microgrid is subjected to load and line changes (uncertainties),

voltage magnitudes can violate acceptable limits and cause functionality problems to connected

loads. Regarding this issue, the robust stability of microgrids and the robust performance with

respect to output voltages of inverters are investigated in an H∞ control framework. As the H∞

control framework employed in the thesis requires asymptotically stable model uncertainties, a

modification of the power control loop is proposed. As a result, load and line uncertainties in a

microgrid are represented by an asymptotically stable model uncertainty. A generalized system

model with possible uncertainties and weight functions is then introduced. (iv) Furthermore,

based on an H∞ norm condition for robust performance, an LMI optimization problem is

proposed for controller synthesis. Feasible inverter controllers guarantee the robust stability of

microgrids and the robust performance with respect to voltages under considered uncertainties

(e.g., load uncertainties, reference changes). (v) Based on the LMI problem mentioned in

(iv), a droop-based power sharing control is proposed to improve power sharing performance
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between inverters without causing stability and voltage performance problems. This is achieved

by adding variable constraints to the LMI problem.

1.3 Outline

The thesis is organized as follows:

Chapter 2 recalls some preliminaries from power system theory and control theory, which are

used in the thesis. An introduction of several considered control issues and the case study

description are given. A review of existing control approaches to microgrids is provided.

Chapter 3 gives a model of inverter-based microgrids. A power control loop for each inverter is

proposed. Then, based on the LMI technique, a stability condition is presented to design

decentralized stabilizing controllers for inverters in a microgrid.

Chapter 4 outlines the importance of load modeling in microgrids. Accordingly, a combination

of a polynomial load model and an induction machine model is proposed as a dynamic

load model for microgrids. The load model is combined with the inverter model derived in

Chapter 3 to form an overall microgrid model. Based on the Lyapunov stability theorem,

the small-gain theorem and Bounded Real Lemma, two separate LMI stability conditions

are proposed to guarantee the asymptotic stability of microgrids under load dynamics.

Chapter 5 investigates the robust stability of microgrids and the robust performance of inverter

output voltages against uncertainties, using the H∞ control technique. In order to derive

an asymptotically stable model uncertainty, which is caused by load and line uncertainties,

a modification of the power control loop proposed in Chapter 3 is presented. A generalized

model of a microgrid is obtained, which consists of a nominal model of interconnected

inverters, an additive model uncertainty and weight functions. Within the H∞ control,

weight functions reflect knowledge of model uncertainties and performance requirements

for voltages. For a derived system model, an LMI optimization problem is introduced to

guarantee the robust stability of a microgrid and the robust performance of inverter output

voltages.

Chapter 6 investigates the power sharing between inverters in a microgrid. Based on the power

control loop proposed in Chapter 5, droop gains in each inverter controller are defined.

By introducing additional variable constraints to the LMI problem derived in Chapter 5,

droop-based controllers for inverters can be designed, which improve the power sharing

performance between inverters without causing stability and voltage performance problem.

Chapter 7 concludes the thesis and gives an outlook for future research.



Chapter 2

Control problem formulation and state

of the art

This chapter gives an overview of the considered class of microgrids, introducing a general

system setup, assumptions and related control issues, which serve as a framework of contribu-

tions achieved in the thesis. A review of existing control approaches to inverter-based microgrids

is presented. Moreover, some general requirements for control strategies at the power control

level of microgrids are recast in this chapter, serving as a guideline for the controller synthesis

proposed in the following chapters.

2.1 System setup and general assumptions

The most common architecture of microgrids is the one in which inverters are connected to

each other in parallel. Microgrids with parallel structures attract most attention from microgrid

research communities. This is confirmed by numerous publications such as [10, 21, 25, 27–

29] as well as by most real-world microgrid prototypes, which are recast in [11, 30]. Such a

microgrid can contain an arbitrary number of generation units and loads. Generation units are

interfaced to the network via inverters. A parallel structure means that all the inverters in a

microgrid are connected to a common bus. The common bus in turn is connected to a point of

common coupling, which is a connection point between a microgrid and a transmission network.

This thesis investigates only the case of microgrids with parallel-connected inverters. Loads are

modelled as constant impedances for all stability studies, except in Chapter 4, where a more

detailed load modeling is addressed. A structure of a microgrid consisting of n inverters and

(n+m) loads is shown in Figure 2.1, where Zi denotes constant impedance loads, and ZLi are

5
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impedances of connecting power lines, i = 1, . . . ,(n+m). In Figure 2.1, there are n loads, which

are directly connected at inverter outputs, and m independent loads.

Inverter 2 ZL2

Inverter 1 ZL1

Transmission grid 

(high voltage)

PCC

Inverter n ZLn
..

.

Microgrid

(low voltage)

Zn+1

Zn+m

ZL(n+1)

ZL(n+m)

Z1

Z2

Zn

I1

I2

In

FIGURE 2.1: A microgrid network.

Inverters inject energy into the network and are therefore called active nodes. Constant imped-

ance loads Zi, i = 1, . . . ,(n+m), simply consume electrical energy and are called passive nodes.

The definitions of active and passive nodes are taken from the electrical network theory and

passivity theory. Active nodes generate power and may cause system instability [31], whereas

passive loads absorb power, keeping a power balance condition in the system.

An impedance Z can be represented in Cartesian form and in phasor form as follows:

Z = R+ jX = |Z|ejφZ , (2.1)

where R is the resistance, X is the reactance, |Z|=
√

R2 +X2 and φZ = arctan X
R are the magnitude

and angle of the impedance, and j is the imaginary unit.

In order to derive a network equation, the definition of an admittance Y is introduced as follows:

Y =
1

Z
=

1

R+ jX
=

R

R2 +X2
− j

X

R2 +X2
= G+ jB, (2.2)

where G is a conductance, and B is a susceptance [32].

The network equations in terms of the node admittance matrix can be written as follows [33]:




I⃗1

I⃗2

...

I⃗n

0
...

0




=




Y11 Y12 . . . Y1n Y1(n+1) . . . Y1(n+m)

Y21 Y22 . . . Y2n Y2(n+1) . . . Y2(n+m)

...
...

. . .
...

...
. . .

...

Yn1 Yn2 . . . Ynn Yn(n+1) . . . Yn(n+m)

Y(n+1)1 Y(n+1)2 . . . Y(n+1)n Y(n+1)(n+1) . . . Y(n+1)(n+m)

...
...

. . .
...

...
. . .

...

Y(n+m)1 Y(n+m)2 . . . Y(n+m)n Y(n+m)(n+1) . . . Y(n+m)(n+m)







V⃗1

V⃗2

...

V⃗n

V⃗n+1

...

V⃗n+m




, (2.3)
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where

n number of inverter nodes in the system,

m number of load nodes in the system,

Yii self admittance at node i, i = 1, . . . ,(n+m),

Yik mutual admittance between node i and node k, i ̸= k, i,k = 1, . . . ,(n+m),

I⃗i output current of node i, i.e., current provided by an inverter i, i = 1, . . . ,n,

V⃗i voltage to the ground of node i, i = 1, . . . ,(n+m).

A self admittance Yii is equal to the sum of all admittances terminating at node i, whereas a

mutual admittance Yik is equal to the negative sum of the two admittances between node i and

node k [33]. From the Figure 2.1, the following is obtained:

Yii =
1

Zi
+

1

ZLi
= Gii + jBii, i = 1, . . . ,(n+m),

Yik =− 1

ZLi
− 1

ZLk
= Gik + jBik, i ̸= k, i,k = 1, . . . ,(n+m).

(2.4a)

(2.4b)

As seen in (2.3), passive nodes, i.e., constant impedance loads, do not inject electrical current

into the network, i.e., I⃗i = 0, i = (n+ 1), . . . ,(n+m). Thus, a microgrid can be represented

equivalently by using the standard Kron-reduction technique to eliminate passive nodes in the

system [32, 34]. For the stability analysis conducted in the thesis, instead of working with

the node admittance matrix (2.3), it is more convenient to consider a lower dimensional Kron-

reduced admittance matrix of the microgrid, which only contains active nodes [19, 20, 32–34].

The Kron-reduction technique is illustrated by the following example. Consider a simple elec-

trical network with two active nodes and one passive node. Assume that node 1 and node 2 are

active, while node 3 is passive, i.e., I⃗3 = 0. Then, the network equations in terms of the node

admittance matrix can be written as follows:




I⃗1

I⃗2

0


=




Y11 Y12 Y13

Y21 Y22 Y23

Y31 Y32 Y33







V⃗1

V⃗2

V⃗3


 . (2.5)

From the equation above, the following is obtained:





I⃗1 = Y11V⃗1 +Y12V⃗2 +Y13V⃗3,

I⃗2 = Y21V⃗1 +Y22V⃗2 +Y23V⃗3,

0 = Y31V⃗1 +Y32V⃗2 +Y33V⃗3.

(2.6)
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The last equation in (2.6) yields V⃗3 =−Y31V⃗1+Y32V⃗2
Y33

. By substituting V⃗3 into equations of I⃗1 and

I⃗2, the following is obtained:





I⃗1 =

Y11 −

Y13Y31

Y33



  
:= YKron

11

V⃗1 +

Y12 −

Y13Y32

Y33



  
:= YKron

12

V⃗2,

I⃗2 =

Y21 −

Y23Y31

Y33



  
:= YKron

21

V⃗1 +

Y22 −

Y23Y32

Y33



  
:= YKron

22

V⃗2,

⇔
⃗

I1

I⃗2


=


YKron

11 YKron
12

YKron
21 YKron

22


V⃗1

V⃗2


. (2.7)

Thus, the network with the admittance matrix in (2.5) can be represented equivalently by a

Kron-reduced network with the admittance matrix in (2.7). For the ease of notation, the index

"Kron" is eliminated. Instead of YKron
ii and YKron

ik , self and mutual admittances of Kron-reduced

microgrid networks are denoted by Yii and Yik throughout the thesis, respectively. Then, the

Kron-reduced network of a microgrid with n inverters is represented by the following equation:




I⃗1

I⃗2

...

I⃗n



=




Y11 Y12 . . . Y1n

Y21 Y22 . . . Y2n
...

...
. . .

...

Yn1 Yn2 . . . Ynn







V⃗1

V⃗2

...

V⃗n




. (2.8)

A Kron-reduced structure of a simple microgrid with three inverters is illustrated in Figure 2.2.

The Kron-reduced structure of a microgrid with n inverters can be represented in the same

manner as in Figure 2.2.

P1, Q1 P2, Q2

P3, Q3

V1, δ1

Inverter 1

V2, δ2

Inverter 2

V3, δ3

Inverter 3

Y11 Y22

Y33

Y13

Y12

Y23

Node 1

Node 3

Node 2

FIGURE 2.2: A Kron-reduced microgrid network.

Based on the admittance matrix in (2.8), the active and reactive power exchange at each active

node i of a microgrid, i.e., Pi and Qi, respectively, is computed by the following standard power

flow equations [33]:

Pi =
n

k=1

ViVk|Yik|cos(δi − δk −φik),

Qi =
n

k=1

ViVk|Yik|sin(δi − δk −φik),

(2.9a)

(2.9b)
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where Vi,Vk are voltage magnitudes, δi,δk are phase angles of the related voltages, |Yik| and φik,

where i ̸= k, are the absolute value and the angle of the admittance Yik between node i and node

k, whereas |Yii| and φii are the absolute value and the angle of a self admittance Yii of each node

i, and n is the number of inverters in the system. A standard procedure to derive the power flow

equations above is given in Appendix A.1.

Throughout the thesis, it is assumed that all the phase angles of inverter output voltages are

expressed relative to a common rotating reference frame with a constant angular velocity ωnom,

which is equal to the rated frequency of the system, e.g., 2π50 [rad/s]. This assumption allows

to correctly calculate the power exchange Pi and Qi in (2.9).

The power flow equations (2.9) show that the mutual admittance Yik characterizes the intercon-

nection between node i and node k. Moreover, Equations in (2.9) also show that in order to

manage power exchange at each node i, it is necessary and sufficient to take control over voltage

magnitudes Vi and phase angles δi, i = 1, . . . ,n.

Regarding the inverter interface, throughout the thesis, it is considered that generation units are

connected to a microgrid via voltage source inverters, which are also called network-forming

inverters [27, 35, 36]. It is well known that the control system of a voltage source inverter

consists of a three-level structure as presented in Figure 2.3 [8, 10, 27, 35, 37–39]. The PWM

modulator forms the innermost control level, which directly controls the inverter switching. The

current control loop1 regulates the current supplied by the inverter. Setpoint for the current

control loop is provided by the voltage control loop, which controls the output voltage of the

inverter to match its reference.

FIGURE 2.3: Three-level control structure of a voltage source inverter.

As seen in Figure 2.3, an inverter consists of a DC voltage source, a power electronic device and

a physical output filter. One of the commonly used power electronics to convert a DC voltage to

an AC voltage is the insulated-gate bipolar transistor (IGBT). The output voltage of the power

electronic is not sinusoidal. Therefore, a physical low-pass filter is connected in series with the

power electronic to obtain a near sinusoidal AC voltage at the output of the inverter.

1The current controller is the fastest closed-loop controller, which operates as well as a current limiter to prevent
inverter overcurrents, which can occur for several periods due to sudden load changes at inverter output.
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The fact is that inverters are relatively stiff sources with unique values of voltage magnitude

and frequency (if there is no higher control level, which adjusts setpoints for voltage magnitude

and phase angle). When inverters are connected in parallel, due to component and measuring

tolerances, large circulating currents2 between inverters would result if no additional control is

taken [17, 40, 41]. In order to regulate power exchange at each inverter node i, which are directly

related to the current generated by that inverter (i.e. current flow direction, current magnitude,

relative angle between current and voltage, etc.), a power control loop is introduced. As seen

in Figure 2.4, the power control loop generates magnitude and phase angle setpoints for the

inverter output voltage.

FIGURE 2.4: Control loops of a voltage source inverter.

The switching frequency of inverters is in the range of about 2-20 [kHz] [14], which is much

faster than the rated frequency of power systems, e.g., 50 [Hz]. Voltage and current control

loops of inverters normally consist of very fast proportional-integral controllers to track their

references [35]. Moreover, inverter output power is required to drive the power control loop.

Usually, inverter output power is measured through a low-pass filter, which makes the bandwidth

of the power control loop much smaller than the bandwidth of the lower-level control loops.

Hence, dynamics of the pulse-width modulation (PWM) and the middle control loops are much

faster than dynamics of the power control loop, which is strongly influenced by the measuring

low-pass filter.

Based on the facts above, for the stability analysis of inverter-based microgrids the following

assumptions are made. Suppose that there is an ideal voltage source on the DC-side of each

inverter. All inverters are equally treated as voltage source inverters with controllable magnitudes

Vi and phase angles δi of their output voltages. Moreover, the case of ideal voltage source

inverters (VSIs) is assumed, i.e., only the power control loop of inverters is explicitly considered,

while the dynamics of lower control levels are assumed to be exceedingly fast and can be

neglected [8, 27, 37, 38, 42, 43]. This assumption is made to simplify the inverter modelling task,

while performing stability analysis of microgrids at the power control level. An inverter model

includes merely dynamics of the power control loop, which causes most stability problems

2A circulating current between two parallel-connected inverters is a current, which is generated by one inverter
and absorbed by the other. A circulating current between two inverters happens due to (small) differences between
inverter output voltages, which is mainly a consequence of parameter mismatch [40]. Large circulating currents
between inverters can lead to overcurrent or overvoltage for IGBTs and components on the DC-side of inverters, e.g.
capacitors. Circulating currents can result in permanent damage of hardware components and should be avoided.
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[1, 8, 9, 42]. The lower-level control loops are assumed to perfectly and rapidly track their

references [8].

It should be clear that each VSI with the power control loop in Figure 2.4 includes two low-pass

filters: the measuring low-pass filter and the physical output filter. The measuring low-pass filter

is realized digitally, whereas the physical output filter is often an LCL low-pass filter. Usually,

the time constant of the physical output filter is negligible, compared to the time constant of the

measuring low-pass filter [10, 36]. Hence, with negligible dynamics of lower-level control loops

as well as a negligible time constant of the physical filter, Figure 2.5 presents an ideal voltage

source inverter with a power control loop.

FIGURE 2.5: Voltage source inverter with a power control loop.

Remark 2.1.1. In the thesis, the power control loop represents the outermost control loop of

a voltage source inverter (see Figure 2.4). There exist higher (supervisory) control levels of

inverters. For instance, a power management level provides power setpoints for the power

control loop, assuming stability of microgrids at the power control level [7, 15, 44–46]. Higher

supervisory control levels obtain even slower dynamics than the power control loop, and are not

considered in this thesis.

Remark 2.1.2. The realization of the voltage and current control loops in Figure 2.4 is usually

done using the abc/dq0 transformation (Park transformation), which refers 3-phase AC voltages

or currents to a d−q rotating reference frame [35, 47]. The resulting 0-component of a symmetric

3-phase AC value is zero. Rotating angular velocity of the d − q reference frame can be

arbitrarily assigned. In this thesis, all inverters in a microgrid obtain a common rotating reference

frame with a constant angular velocity ωnom. dq0/abc is an inverse transformation of abc/dq0.

dq0/abc transformation is implemented to transform outputs of inverter control loops to 3-phase

AC values, providing references for the PWM modulation procedure. As the voltage and

current control loops of an inverter are not in the focus of this thesis, the abc/dq0 and dq0/abc

transformations of three-phase voltages and currents are not explicitly presented in Figure 2.4.

More details on the control of an inverter as a voltage source can be easily found in literature

[8, 27, 35, 36].

Remark 2.1.3. Different from generators, inverters are power electronic devices which do not

contain any rotating mass and therefore, do not obtain any mechanical inertia [27, 48, 49].

Generators obtain a possibility to instantly change their generated output power to supply load
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changes, i.e., inertial response [50–52]. As will be shown in Chapter 3, with negligible dynamics

of lower-level control loops, a power control loop for each inverter is proposed so that inverters

in a microgrid operate and react inertially to load changes. As seen in Figure 2.5, inverter output

power is measured through a low-pass filter to drive the power control loop. In addition, the

power control loop contains an integrator, which is needed to generate a phase angle reference

for inverter output voltage. Dynamics of the low-pass filter and the integrator result in delayed

response of inverters to load changes, i.e., providing an artificial inertia to inverters. In Chapter

3 it will be shown that dynamic model of an inverter is associated to the integrator and the

measuring low-pass filter. The stability of a microgrid therefore depends explicitly on parameters

of the low-pass filters, on control laws for the power control loop of inverters as well as on the

network structure, which is described by the admittance matrix.

In Figure 2.6, a line-to-neutral output voltage of a three-phase inverter with different PWM

switching frequencies is presented. For this example, a three-phase sinusoidal reference input

is compared with a triangle carrier signal, generating logic commands for the inverter to switch

on/off. The inverter output voltage has a switching form. This three-phase PWM voltage is

filtered by a physical low-pass filter, resulting in a near sinusoidal inverter output voltage. It is

seen in Figure 2.6 that with a low PWM switching frequency (2.5 kHz), the output voltage is not

ideal sinusoidal. With higher PWM switching frequencies (5 kHz and 10 kHz), the sinusoidal

wave form of the output voltage is significantly improved. Today’s inverter technologies possess

high switching frequencies, which allow voltage source inverters (with physical low-pass filters)

to generate almost ideal sinusoidal output voltages.

The motivation of the system setup and assumptions above will be further elaborated in the next

section, where the control issues of microgrids are introduced. Additional assumptions are also

presented during the thesis depending on particular problem settings.

2.2 Stability and performance aspects of microgrids

Stability is essential for the operation of microgrids and therefore, it is the main objective of the

thesis. However, there exist different stability definitions in control theory and power system

theory. Stability of microgrids will be first discussed from both perspectives to specify stability

issues of microgrids, which are considered in the thesis. Afterwards, several stability definitions

from control theory will be introduced for their implementation throughout the thesis. Several

performance requirements for microgrids will also be mentioned in this section.
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FIGURE 2.6: Output voltage of an inverter with different PWM switching frequencies: upper
figure 2.5 kHz; middle figure 5 kHz; lower figure 10 kHz.

2.2.1 Stability of microgrids from a power system perspective

Definition 2.1. [33] Microgrid stability in particular, and power system stability in general can

be broadly defined as a property of a power system to remain in a state of operating equilibrium

under normal operating conditions and to regain an acceptable state of equilibrium after being

subjected to a disturbance. �

Similar to large power systems, different stability issues of inverter-based microgrids are classi-

fied as illustrated in Figure 2.7 [1, 12, 33, 53]. It is seen that, with respect to Definition 2.1,

power system theory introduces different stability definitions based on different reasons, which

affect the state of operating equilibrium of a microgrid.

In this thesis, stability analysis will be studied explicitly in the sense of small-signal stability.

Small-signal stability is also called small-disturbance rotor angle stability [53]. In power system

theory, the rotor angle stability refers to an ability of synchronous machines of an interconnected

power system to remain in synchronism after being subjected to a disturbance [33, 53]. As

most generation units in today’s power systems are synchronous machines, the rotor angle

stability definition was introduced for them. In the case of microgrids, VSIs are operated as

network-forming generation units to replace synchronous generators. VSIs can be seen as power
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FIGURE 2.7: Microgrid stability issues from power system perspective [1].

electronic devices, which mimic synchronous generators. Therefore, it is a common practice to

analyze stability of microgrids based on the classical stability definitions of large power systems.

As inverters do not contain any rotor, rotor angles in this case should be understood as voltage

phase angles of inverters, and the term phase angle stability will be used instead of rotor angle

stability.

In the small-signal stability analysis, state variables of a microgrid are expressed as deviations

of system values from their equilibriums. Small-signal stability is defined as an ability of a

system to maintain synchronism among generation units when subjected to small disturbances

[53]. In power system analysis, small disturbances are considered to be small enough so that by

considering a linear model of a nonlinear power system, the state of the system can be inferred

[33]. As illustrated in Figure 2.7, the focus of small-signal analysis lies on feedback power

controller, small load changes, system damping and power limits of DERs.

Microgrids can also be subjected to larger disturbances, e.g., large changes of system loads.

As will be shown in Chapter 5, impedance uncertainties of a microgrid will be formulated as a

model uncertainty for stability analysis.

Remark 2.2.1. It should be noted that there is no clear difference between disturbance and

uncertainty in power system theory. In power system literature, these two terms are used

interchangeably. However, disturbance and uncertainty are two different definitions in control

system theory. For instance, in power system literature a disturbance can refer to a connection of

a load to a power system. From the control system point of view, a connection of a load creates

a model uncertainty, where model uncertainty refers to the difference or errors between models

and reality [54–56]. Disturbance is also called signal uncertainty in control system theory and

refers to measurement noise, process noise, etc. [54, 56].
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Given an initial stable operating condition of a microgrid, there is a power balance in the system

and the power flow equations (2.9) hold. If the system is perturbed, this stable condition is upset,

resulting in oscillations of system variables (e.g., inverter phase angles, voltage magnitudes,

output power of inverters). Instability may occur if inverter phase angles and voltage magnitudes

are not properly controlled to maintain a synchronous operation. It is a fact that most stability

problems of microgrids appear from the most outer control loop of inverters, i.e., the power

control loop [1, 18]. Inverter output power is directly dependent on phase angles (and voltage

magnitudes). Hence, by addressing the power control loop of a microgrid, it is dealt with

the phase angle stability of the system, and vice versa. Especially small-signal analysis can

give useful information about the system state and therefore is a powerful tool widely used in

controller design for microgrids [8, 9, 15, 28, 39].

Moreover, disturbances from loads can be in form of a feedback influence of load dynamics

on the system stability. In power system studies, load dynamics create most voltage stability

problems (see Figure 2.7). Voltage stability refers to the ability of a power system to maintain

steady voltages at all buses in the system after being subjected to a disturbance from a given

initial operating condition [53]. Dealing with load dynamics, load modeling must be investigated

to achieve a more precise insight into load influences on the system stability. A suitable controller

design can then be proposed to stabilize a microgrid under an influence of load dynamics.

Remark 2.2.2. The term voltage stability does not mean that in a power system, voltages can be

stable, while other system variables can be unstable, and vice versa. As will be shown in Chapter

4, measurements of real power systems show that load variations cause variations of voltages.

Consequently, voltage variations induce via load dynamics power demand variations, which

can further cause oscillations of other system variables. Strong oscillations of system variables

may cause system instability. Thus, voltage variations and load dynamics represent a reason

of oscillations of other system variables, rather than a result of it. Therefore, the term voltage

stability is used in literature and load dynamics are specified as a voltage stability problem [33].

2.2.2 Stability of microgrids from a control system perspective

In control system theory, the system stability in the sense of Lyapunov is defined as follows.

Consider an autonomous system, which satisfies the Lipschitz condition on the uniqueness of

solution [57]

ẋ = f (x), (2.10)

where f : D → Rn is a locally Lipschitz map from a domain D ⊂ Rn into Rn.

Assume that f (x) in (2.10) satisfies f (0) = 0.
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Definition 2.2. [57] The equilibrium point x = 0 of (2.10) is

• stable if, for each ϵ > 0, there is η = η(ϵ)> 0 such that:

∥x(0)∥< η ⇒ ∥x(t)∥< ϵ, ∀t ≥ 0, (2.11)

• unstable if not stable,

• asymptotically stable if it is stable and η can be chosen such that:

∥x(0)∥< η ⇒ lim
t→∞

x(t) = 0. (2.12)

�

With respect to Stability Definition 2.2, the Lyapunov’s stability theorem is presented in the

following.

Theorem 2.3. [57] Let x = 0 be an equilibrium point for (2.10) and D ⊂ Rn be a domain

containing x = 0. Let V : D → R be a continuously differentiable function such that:

V(0) = 0 and V(x)> 0 in D−{0}, (2.13)

V̇(x)≤ 0 in D. (2.14)

Then, x = 0 is stable. Moreover, if

V̇(x)< 0 in D−{0}, (2.15)

then x = 0 is asymptotically stable.

In this thesis, the control system approach is used to formulate stability conditions for microgrids.

Throughout the thesis, Stability Definition 2.2 and Theorem 2.3 will be used to state, whether a

system is (asymptotically) stable.

Furthermore, for stability and performance analysis in the thesis, the following definitions are

introduced.

Definition 2.4. [56]

• Nominal stability - a system is stable without model uncertainty.

• Nominal performance - a system satisfies some performance specifications without model

uncertainties.
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• Robust stability - a system is stable for all perturbed plants about the nominal model up

to the worst-case model uncertainty.

• Robust performance - a system satisfies some performance specifications for all perturbed

plants about the nominal model up to the worst-case model uncertainty. �

As mentioned in Subsection 2.2.1, the small-signal stability (in the power system sense) of

microgrids will be studied in the thesis. A common approach for small-signal analysis of a power

system is to study a linearized system model around an equilibrium point [9, 39, 58]. Variables

of the linearized model are defined as deviations of system values from their equilibriums.

From the control system theory, by analyzing the stability of a nonlinear system based on a

linearized model of that system around an equilibrium point, the local stability of the system

around this equilibrium point can be stated (if the linearized model does not have eigenvalues

on the imaginary axis (see Remark 2.2.3)).

Note that the nominal stability of a microgrid (defined in control system sense) can be compared

with its small-signal stability (defined in power system sense). However, these two stability

definitions should be clearly separated. The small-signal stability in power system theory refers

to the system stability despite small uncertainties such as small load changes, i.e., small model

uncertainties. In comparison to that, the nominal stability in control system theory defines

system stability without model uncertainties [56].

Furthermore, load and line changes/uncertainties in a power system can be large enough to

cause large oscillations of system variables, which may result in system instability. In this

case, stability analysis of a microgrid based on its nominal model is not sufficient, but stability

analysis must consider also model uncertainties, which are caused by load and line uncertainties.

According to Definition 2.4, the stability analysis concerning a nominal system model and model

uncertainties refers to the robust stability of the system. Note that local robust stability of

microgrids will be studied as it is based on a linearized system model at an equilibrium and

a model uncertainty.

For studying a linearized system model of a microgrid, the following theorem and definition are

also useful.

Theorem 2.5. [57] Consider a linear time-invariant system:

ẋ = Ax, (2.16)

the equilibrium point x = 0 is asymptotically stable if and only if all eigenvalues of A have

negative real parts.
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Definition 2.6. [57] When all eigenvalues of A in (2.16) have negative real parts, A is called a

Hurwitz matrix. �

Thus, the equilibrium point x = 0 of (2.16) is asymptotically stable if and only if A is Hurwitz.

In this case, x = 0 is also the unique equilibrium point.

The following theorem is known as Lyapunov’s indirect method, which is used for the case

when stability of a nonlinear system at the origin is analyzed on the basis of a linearized system

model.

Theorem 2.7. [57] Let x = 0 be an equilibrium point for the nonlinear system:

ẋ = f (x), (2.17)

where f : D → Rn is continuously differentiable and D is a neighborhood of the origin. Let

A =
∂f

∂x
(x)


0

. (2.18)

Then,

1. The origin is asymptotically stable if Reλi < 0 for all eigenvalues λi of A.

2. The origin is unstable if Reλi > 0 for one or more of the eigenvalues λi of A.

Remark 2.2.3. [57] Regarding Theorem 2.7, if A has some eigenvalues with zero real parts with

the rest of the eigenvalues having negative real parts, then linearization fails to determine the

stability properties of the origin of the nonlinear system. In Chapter 3, a multi-input multi-output

(MIMO) state-space model for each inverter in a microgrid will be proposed, which contains

Pi and Qi from the power flow equations (2.9). As seen in (2.9), Pi and Qi are nonlinear

algebraic equations, making each inverter a nonlinear system. As a result, a microgrid is a

MIMO nonlinear system. Therefore, in order to state the asymptotic stability of a nonlinear

microgrid at an equilibrium based on a linearized system model, the linearized system must be

asymptotically stable.

2.2.3 Voltage and frequency performance

Analyzing stability of microgrids under different uncertainties such as load and line changes,

loss of generation units, etc., one realizes that uncertainties have a potential to deteriorate the

system stability margin as well as the performance of inverter output voltages and frequencies.

According to grid-code requirements [59, 60], deviations of voltage magnitudes and frequencies
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must be kept within acceptable ranges around their nominal values, e.g., ±1% around nominal

value for frequencies, and ±5% around nominal value for voltages [61]. Additionally, inverter

output voltages should not contain a large amount of the total harmonic distortion (THD), which

is a measurement of higher harmonic components in voltages [62]. For low-voltage power

systems (whose nominal voltage is less than 1 [kV] [63]), an acceptable range for THD is

normally around 8% [61, 64]. These requirements are included in power system design to

ensure safe functionality of system loads. Therefore, beside the stability analysis, this thesis also

partly considers the voltage and frequency performance, which is often referred to power quality

problems in literature [33, 65–67]. A detailed review of power quality issues of microgrids can

be found in [68–70].

2.2.4 Power flow strategy

For a safe, reliable and beneficial operation of microgrids, beside the stability issues and the

performance with respect to voltages and frequencies, power flow strategies should also be

studied. Within a power system with a large amount of generation units, a power flow strategy is

often interpreted as a possibility of the system to regulate the portions of electrical power, which

are generated by individual generation units to supply the total system load demand [15, 22, 33].

With the possibility to control the power flow within microgrids, system operators can apply

different power management strategies with respect to different conditions of weather, time,

load demand, etc., to provide the most beneficial system operation. Among different power flow

strategies, the most popular is the power sharing.

Power sharing is a classical definition in the power system field, which means that all the

generation units in a power system should share the total system load demand in a desired way,

which is predefined by power sharing ratios [19, 20, 33, 38]. A popular power sharing approach

is the classical droop control, which will be reviewed in detail in Section 2.4. The thesis will

explicitly consider the power sharing strategy as an attempt to operate inverter-based microgrids

similarly to conventional power systems. Technically, power sharing between inverters will

reduce current and loading stress, e.g. overcurrent, thermal stress, on particular inverters.

Consequently, less stressful operation of inverters will reduce faults during operation and prolong

life of power electronics.

Remark 2.2.4. It is noteworthy that the main goal at the power control level is the control

of power flows within a microgrid. However, once a (power) control loop is added to each

inverter, the closed-loop stability of microgrids and the performance of voltages and frequencies

become the most important requirements. Different power flow strategies can be accomplished

only when the stability of microgrids and a sufficient performance of voltages and frequencies

are guaranteed. Power flow strategy is a performance criterion of the power control loop,
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whereas the stability of microgrids and the performance of voltages and frequencies are essential

requirements. This point of view will also be reflected in the thesis. The stability of microgrids

and the performance of voltages and frequencies against uncertainties and disturbances will be

considered first. The power sharing control will be investigated in Chapter 6.

2.3 Requirements for power control strategy

At the power control level, inverter control approaches must be definitely decentralized for

microgrids to be largely independent of communication [5, 71]. Following the common accept-

ance of the microgrid research community while searching for requirements for stabilizing and

power flow controllers of microgrids, the following specifications are summarized [5, 8, 10, 42]:

1. A power controller of each inverter in a microgrid is decentralized.

2. Inverter controllers must guarantee the overall system stability.

3. Deviations of inverter output voltages and frequencies should not violate acceptable limits

defined by grid-code documents to maintain a smooth functionality of system loads.

4. Controllers must allow all the inverters to work in plug-and-play and peer-to-peer manner.

5. Despite the intermittent nature of renewable energy sources, the power balance in micro-

grids must be guaranteed.

6. Controllers should be able to allow all the generation units in a microgrid to establish a

desired power flow strategy.

The first two requirements are necessary for microgrids to operate independently from a commu-

nication infrastructure, i.e., there is no control interconnection between inverters. Communica-

tion can be added to improve system performance and robustness. However, these requirements

are essential for a secure and reliable power supply of a microgrid, i.e., the system should

continue to operate and supply load demand even in case of loss of communication.

The third requirement was explained in Subsection 2.2.3, whereas the fourth is complementary

to the first two requirements, addressing the structural flexibility of microgrids. That is, the

peer-to-peer and plug-and-play concepts must be promoted in each component of microgrids

[5, 72]. The peer-to-peer concept implies that there are no components like a main generation

unit or a large storage, which are critical for the operation of microgrids. The system must

continue operating in case of loss of any unit. Meanwhile, the plug-and-play means that a

generation unit can be arbitrarily added to a microgrid without causing control and protection

problems to already existing units of the system [6].
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The last two requirements, in other words, express that a stable operation of microgrids is

achieved only in the case generated power is equal to system load demand, and for a beneficial

system operation, inverter controllers should be able to form a desired power flow strategy. As

mentioned above, power flow strategy will be investigated in the sense of power sharing between

inverters. The power sharing control proposed in this thesis is decentralized and does not require

any communication.

2.4 Review of existing control approaches

Regarding the aforementioned control issues of microgrids, researchers have published different

solutions to answer the question: How to make microgrids work? This section gives a review of

several popular methods. An important decentralized control approach to provide power sharing

to microgrids and maintain output frequencies and voltages of inverters around nominal values

is the classical droop control, which is commonly applied to synchronous generators in large

power systems [33]. The idea of the classical droop control is explained as follows. Consider a

power system with n generation units attached with the following assumptions:

• The connecting lines between generation units are inductive (Rik ≪ Xik, i ̸= k, i,k =

1, . . . ,n), i.e., line resistances can be neglected (Rik ≈ 0, Gik ≈ 0).

• Differences between phase angles of different generation units are assumed to be small,

then sin(δi − δk)≈ (δi − δk), cos(δi − δk)≈ 1.

Based on the assumptions above, the following is derived from the power flow equations (2.9)

(see Appendix A.2 for more detail):

Pi ≈ V2
i Gii −

n

k=1, k ̸=i

ViVk(δi − δk)Bik, Qi ≈ V2
i Bii +

n

k=1, k ̸=i

ViVkBik. (2.19)

It can be seen from (2.19) that Pi can be influenced through the phase angles and the voltage

magnitudes, whereas Qi can be controlled by the voltage magnitudes. In order to establish a

decentralized power control law, the droop control feeds back Qi to Vi, and Pi to δi, or explicitly

to its derivative ωi. The droop control is represented by the following (known as f/P and V/Q

control loops) [8, 10, 33]:

ωi = ωi0 − kpi
(Pi −Pi0),

Vi = Vi0 − kqi
(Qi −Qi0),

(2.20)
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where kpi
and kqi

are the droop gains, ωi and Vi are the frequency and the voltage magnitude, Pi

and Qi are the output active and reactive power, and ωi0 ,Vi0 ,Pi0 ,Qi0 are the nominal values of

the frequency, voltage, active and reactive power, respectively.

From the control point of view, the droop control law refers to a relatively simple proportional

controller, which defines a ratio of power portions shared between generation units by the droop

gains. Furthermore, the frequency is assumed to be identical everywhere in a power system and

serves implicitly as a communication channel to inform each generation unit about the active

power demand in the system. The voltage deviations command the generation units to adjust

their reactive power outputs, although voltage and reactive power compensation have a more

local characteristic in power systems [33, 73].

Using the classical droop control, Coelho, Katiraei, Brabandere, Filho, Pogaku, Doerfler et al.

have investigated the power sharing and stability issues of inverter-based microgrids in the

sense of small-signal stability [8, 15, 26, 39, 42, 72, 74]. Although being a successful control

method in large power systems, the droop control experiences many drawbacks when being

theoretically and practically applied to microgrids. The reasons are recast as follows. The

physical characteristics of inverter-based microgrids differ significantly from the characteristics

of large power systems. Microgrids normally operate at low-voltage levels, where the ratios

between line resistances and reactances (known as R/X ratio) are considerable, making the

above assumption of the droop control approach on purely inductive connecting lines between

generation units no longer correct. Besides, dealing with power electronic devices like inverters,

there is no inherent physical relation between power balance and network frequency as in

power systems with synchronous generators. Therefore, the classical droop control method

exhibits limitations in low-voltage inverter-based microgrids, resulting in poor power sharing

performance and lack of system robustness [19, 20, 38, 75].

As the connecting lines between generation units in low-voltage microgrids are no longer purely

inductive, there exist strong linkages between the active power and the output voltage as well

as between the reactive power and the output frequency of a generation unit. This fact has

been reported in a number of publications as a main reason to cause drawbacks of the droop

control to stabilize microgrids and achieve a desired power sharing [10, 29, 76, 77]. Guerrero,

Filho, Brabandere, Lee et al. have tried to overcome the coupling problem by including line

resistances in the controller design procedure [10, 21, 28, 37, 38]. Brabandere and Filho et al.

have developed alternative droop control methods in order to include the couplings between

f/P and V/Q in the controller design. In their approaches, the active and reactive power are

modified by both frequency and voltage variations. This can be done by adding V/P and f/Q

control loops to the classical droop control.

Guerrero, Matas et al. proposed a technique called virtual output impedance to virtually reduce

the R/X ratio of connecting lines [21, 38]. The virtual output impedance is an additional control
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loop, which is placed at the output of the droop control loop. It is known that the droop

control loop provides a voltage reference input for the voltage control loop (see Figure 2.4).

By deducting an appropriate portion of the inverter output current Ii from the voltage reference

input, this technique is able to virtually modify the output impedance of an inverter. That is:

Vvirtual Zi = Vrefi −Zi(s)Ii, (2.21)

where Vrefi is delivered by the droop control loop, Vvirtual Zi is the modified voltage reference, and

Zi(s) is the virtual output impedance, where s is the Laplace variable. Based on this principle,

different designs of the virtual output impedance Zi(s) have been proposed in order to improve

the stability margin and the power sharing performance in microgrids [21, 24, 38].

The methods above perform better power sharing and partially reduce the coupling between

active and reactive power control loops in particular cases of microgrids with a small number of

generation units. However, a desired power sharing is not achieved, and it is still impossible to

derive an analytical solution to guarantee the stability for the general case of microgrids.

To overcome the stability drawback of the droop-based control approaches, several alternative

stabilizing control strategies have been published. Zhu, Dasgupta, Yang, Gustavo et al. proposed

a master/slave operational approach of microgrids [44, 78–80]. The main idea of the master/slave

operational approach is that there exist master generation units, which form a power network

and assure the voltage and frequency stability of the system. Those master generation units can

be a diesel generator, a large storage device or a microturbine, which operate uninterruptedly

and mainly provide electrical power to sensitive loads of the system. Other generation units

such as, wind turbines, photovoltaics, etc., operate like current sources, which simply attempt

to maximally inject their harvested electrical energy into the system, but do not act as network-

forming units. This concept can guarantee stability of autonomous microgrids, and is therefore

preferred in industry. This approach is also implemented in several real-world microgrids

as a first step of the microgrid realization [30]. Nevertheless, the main disadvantage of the

master/slave approach is that the system stability depends on the master generation units. In

case master units are lost, the other generation units do not guarantee the system stability.

Hesse, Zhong, Beck et al. have reported the instability of microgrids due to the low-inertia nature

of distributed energy resources with inverter interfaces, in contrast to synchronous generators

with rotating masses. To overcome this problem, the concepts of virtual synchronous machine

and synchronverter to combine inverter technology with properties of synchronous generators

were introduced [50, 51, 81, 82]. The main idea of those methods is to provide a larger inertia to

distributed energy resources by letting inverters mimic the operating principle of synchronous

generators. The synchronverter concept proposed in [50, 83] by Zhong et al. is a very promising

approach to control voltage source inverters. In this approach, an inverter model is proposed,

which is similar to a model of an synchronous generator. The control of a synchronverter
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is also similar to the control of a synchronous generator with virtual excitation voltage and

virtual mechanical torque. However, there is still a lack of a mathematical stability proof for an

implementation of synchronverters in a microgrid. In addition, the model of a synchronverter

with its complexity makes the stability analysis of a synchronverter network a nontrivial task.

The aforementioned approaches were developed mainly by researchers from the power system

community. Since it concerns control issues, the microgrid topic has also become a research

interest of the control community. Using powerful tools from the control system theory, several

authors have investigated the stability aspects of microgrids with respect to line and load uncer-

tainties and disturbances. Several contributions on the synchronization, robust plug-and-play

operation of microgrids as well as a desired power sharing control based on the droop control

idea were proposed [26, 36, 72, 74, 75, 84–86]. Though proposing several encouraging control

approaches which guarantee the local exponential stability of inverter-based microgrids, these

methods face implementation challenges. An example among other challenges is that different

assumptions of different classes of microgrids were made for stability analysis. The reason

originates from the definition and lack of established standards for microgrids [87]. A guideline

for design and implementation of microgrids has been made by IEEE in [7]. However, being

a new engineering topic, different classes of microgrids were defined by research interests of

authors. A review of different types of real-world microgrids can be found in [30]. As a

consequence, a stability analysis proposed for one class of microgrids may not be relevant for

the others. For instance, stability analysis and reactive power sharing of inductive microgrids

were investigated in [26, 85]. However, the assumption on inductive microgrids is not always

appropriate. At the same time, the case of resistive microgrids is studied in [24, 88]. Another

example can be the communication-based distributed control approach proposed in [68]. The

control approach considers the load nonlinearity and transient disturbances in microgrids. Then,

a distributed current controller for each inverter subsystem is introduced. The power sharing

and power quality performances depend on the bandwidth of the communication link. However,

in case of a collapse of the communication channel, distributed inverter controllers do neither

guarantee a good power sharing ratio, high-quality of output power nor the system stability.

The above discussion has just briefly reviewed some research activities in the microgrid field.

Being a relatively new concept, microgrid attracts more and more attention from researchers

all over the world. Although there are various published contributions on control and stability

analysis of microgrids, none of those approaches truly guarantees the system stability as well as

sufficient power flow performance with respect to the decentralized control requirements recast

in Section 2.3. Often, stability issues are either ignored or lack mathematical proof. The main

reason is the lack of a suitable system modeling to enable an application of strong controller

design approaches. Therefore, many issues on the stability analysis, control approach, voltage

and frequency performance, power flow strategy, etc., in the microgrid field are still open.
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With respect to the presented material, a new model of inverter-based microgrids, a new power

control loop for each inverter as well as suitable controller designs need to be investigated to

satisfy the control requirements recast in Section 2.3. As stability of inverter-based microgrids

is claimed to be difficult to achieve, a thorough stability analysis is required. Decentralized

controllers of inverters must target several control goals simultaneously: robust stability against

load and line uncertainties, sufficient voltage and frequency performance, and power flow strat-

egy. It is worth mentioning that these control goals are separated into different categories. Since

a power control loop is added to each inverter, the stability and the performance of voltage and

frequency are the essential requirements for a normal operation of microgrids. The power flow

issue remains the main goal at the power control level. However, different power flow strategies

can be accomplished only when the stability of microgrids is assured.

2.5 Summary

General assumptions and the considered class of microgrids were introduced. The considered

stability aspects of microgrids have been reviewed from both power system and control system

perspectives. From a power system perspective, the small-signal stability of microgrids against

small load and line uncertainties was discussed. In addition, load dynamics represent a reason,

which can cause voltage stability problems for microgrids. Consequently, stability of microgrids

against influences of load dynamics should be studied via load modeling. Furthermore, as

stability of microgrids will be analyzed based on control theory in the following chapters, several

stability definitions from the control theory were introduced. Moreover, a sufficient performance

of voltages and frequencies is also essential for a normal operation of microgrids. The control

goal at the power control level is the control of power flows within a microgrid. However, the

essential requirements for the power control level have been defined as: the (robust) stability

of microgrids, sufficient voltage and frequency performance. Further, general requirements for

the realization and design of the power control level of microgrids have been listed. Some

research activities in the field of control of microgrids have been reviewed. In the following,

the contributions of the thesis announced in Section 1.2 will be presented with respect to the

framework described above.





Chapter 3

Modeling of inverter-based microgrids

and decentralized control approach

The main goal at the power control level involves the control of power flows within a microgrid.

However, since a control loop is added, the (closed-loop) stability of microgrids becomes an

essential requirement. Hence, priority is given to the stability of microgrids. In this chapter,

a state-space model of inverter-based microgrids is presented. Then, a power control loop for

each inverter is proposed, which requires a global time receiver for the clock synchronization

purpose. All inverters in a microgrid receive the same timing information, e.g. via GPS, for

local clocks of inverters to synchronize. This will assure that phase angles of all inverters in a

microgrid are expressed relative to the same rotating reference frame. In order to construct a

complete control approach for microgrids, an LMI stability condition is proposed to synthesize

decentralized inverter controllers. The control approach will be validated via simulation.

3.1 Modeling of inverter-based microgrids

Based on the assumptions of the considered microgrids presented in Chapter 2, the active and

reactive power exchange at each node i of a microgrid is expressed by the standard power flow

equations (2.9). The active and reactive power are measured through a low-pass filter with time

constant τi and unity gain as follows:

P̃i =
Pi

τis+1
, Q̃i =

Qi

τis+1
, (3.1)

where Pi,Qi are the Laplace transforms of the active and reactive power, while P̃i and Q̃i are the

Laplace transforms of the measured active and reactive power, and s is the Laplace variable.

27
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Note that by a slight abuse of notation, Pi,Qi, P̃i, Q̃i are used to denote active power, reactive

power and their measured values in both time and Laplace domains throughout the thesis,

respectively.

As mentioned in Chapter 2, voltage phase angles δi, i = 1, . . . ,n, are expressed relative to a

common rotating reference frame with a constant angular velocity ωnom, where ωnom is chosen

to be equal to desired network frequency, e.g., 2π50 [rad/s]. Relative to this reference frame, a

voltage phase angle δi(t) is computed as follows:

δi(t) = (ωi −ωnom)t+ δi0 , (3.2)

where ωi is an inverter output frequency, δi0 is an initial value of δi.

Throughout the thesis, (ωi −ωnom) is denoted by ∆ωi. Thus, ∆ωi stands for the deviation of an

inverter output frequency from its (nominal) desired value.

Hence, a state-space model of an inverter i is represented by the following ordinary differential

equations (ODEs): 



δ̇i =∆ωi,

˙̃Pi =
−P̃i +Pi(V1, . . . ,Vn,δ1, . . . ,δn)

τi
,

˙̃Qi =
−Q̃i +Qi(V1, . . . ,Vn,δ1, . . . ,δn)

τi
,

(3.3)

where ∆ωi denotes deviation of inverter output frequency from its desired value ωnom, Vi is the

magnitude of the output voltage of an inverter i, Pi and Qi are given in (2.9) and i = 1, . . . ,n.

It is noteworthy that the inverter model above is nonlinear as Pi and Qi are nonlinear functions

of Vi, δi, i = 1, . . . ,n. The network structure and the interconnection between inverters are

represented by network admittances, which are involved in Pi and Qi (see (2.9)).

In order to investigate the stability of a microgrid around an equilibrium point, a linearized

state-space model of a microgrid is considered. The microgrid model obtains a state variable

x(t), a control input u(t) and a system output y(t) defined in time domain as follows:

xi(t) =




δi − δi0

P̃i − P̃i0

Q̃i − Q̃i0


 , ui(t) =


∆ωi

Vi −Vi0


, x(t) = y(t) =




x1(t)
...

xn(t)


 , u(t) =




u1(t)
...

un(t)


 , (3.4)

where xi(t),ui(t) are the state variable and the control input of an inverter i, which are defined

with respect to a nominal equilibrium point:

xi0 =

δi0 P̃i0 Q̃i0

T
, ui0 =


0 Vi0

T
. (3.5)
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As seen in (2.9), Pi, Qi can be varied by adjusting phase angles and voltage magnitudes.

However, by applying the idea of the droop control, the frequency deviation ∆ωi is controlled

instead of a direct modification of the phase angle δi. A power control loop for each inverter

with the chosen variables as in (3.4) will be presented in the next section. It will be shown that

under this power control loop inverter output frequencies will always converge to a common

rated value, i.e., ∆ωi = 0 in steady-state. Thus, the selected system variables refer to an angle

droop control and a voltage droop control.

Remark 3.1.1. Based on the control input ui(t) and the output yi(t) = xi(t) defined in (3.4),

a decentralized power control loop for each inverter will be presented in the next section.

The stability of a closed-loop microgrid with respect to the variables (3.4) and the nominal

equilibrium point (3.5) indicates the system nominal stability. However, an equilibrium point

of a power system is often not completely known in advance and changes during operation,

depending on the system topology and load conditions. This results in new equilibrium points,

and invalidates the variables (3.4). Regarding this matter, load uncertainties will be considered

as model uncertainty to a linear time-invariant (LTI) system model in the H∞ control in Chapter

5. Load uncertainties will be represented by an additive uncertainty ∆̃. The stability of the

closed-loop system with respect to the state variables in (3.4) and the load uncertainty ∆̃ implies

the robust stability of the system. The system stability will then be guaranteed within a region

around the nominal equilibrium point (3.5).

Based on the inverter model (3.3), by linearizing the power flow equations (2.9) around the

interesting operating point (3.5), an LTI state-space model of a microgrid with n inverters is

derived as follows: 
ẋ(t) = Ax(t)+Bu(t),

y(t) = Cx(t) = x(t),
(3.6)

and an inverter i is associated to one subsystem of (3.6) with the following state-space model:

ẋi(t) = Aiixi(t)+Biiui(t)+
n

k=1
k ̸=i


Aikxk(t)+Bikuk(t)


, i = 1, . . . ,n, (3.7)

where A ∈ R3n×3n,B ∈ R3n×2n,C = I3n×3n is an identity matrix, and

Aii =




0 0 0
∂Pi
τi∂δi


0

−1
τi

0

∂Qi
τi∂δi


0

0 −1
τi


, Bii =




1 0

0 ∂Pi
τi∂Vi


0

0 ∂Qi
τi∂Vi


0


, Aik =




0 0 0
∂Pi
τi∂δk


0

0 0

∂Qi
τi∂δk


0

0 0


, Bik =




0 0

0 ∂Pi
τi∂Vk


0

0 ∂Qi
τi∂Vk


0


.

(3.8)

The linearization of the power flow equations (2.9) around the equilibrium point (3.5) can be

found in Appendix A.3. It can be seen from (3.7) that inverters are interconnected with each
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other through their state variables and control inputs, which are specified by the matrices Aik

and Bik. Aii and Bii are system matrices of each inverter i.

Remark 3.1.2. The interconnection term
n

k=1
k ̸=i


Aikxk(t)+Bikuk(t)


in (3.7) can be considered

as a disturbance source to an inverter subsystem i. Thus, the interconnection between inverters is

a disturbance source to the stability of inverters as well as to the stability of an overall microgrid.

Matrix A in (3.6) has 3n eigenvalues, which are the roots of its characteristic equation:

det(λI −A) = 0. (3.9)

Denote the 3n eigenvalues of the matrix A by λ11
,λ12

,λ13
, . . . ,λn1 ,λn2 ,λn3 . As seen in (3.8), the

first row of matrix A contains only zero elements. The characteristic equation (3.9) is equivalent

to the following:

λ11
·

λ12

−A11(2,2)

·

λ13

−A11(3,3)

· · ·λn1 ·


λn2 −Ann(2,2)


·

λn3 −Ann(3,3)


= 0

⇔ λ11
·

λ12

+ 1
τ1


·

λ13

+ 1
τ1


· · ·λn1 ·


λn2 +

1
τn


·

λn3 +

1
τn


= 0.

(3.10)

It is seen from (3.10) that matrix A has n zero eigenvalues, i.e., λi1 = 0, i = 1, . . . ,n. The other

2n eigenvalues are negative real, which are determined by the time constants τi of the measuring

low-pass filters, i.e., λi2 =λi3 =− 1
τi

, i= 1, . . . ,n. The eigenvalues imply that dynamic behaviour

of an open-loop microgrid depends on the time constants of the employed low-pass filters.

Remark 3.1.3. The fact that eigenvalues of matrix A in (3.6) do not depend on the intercon-

nection between inverters should be explained at this point. As seen in Figure 2.3, with negligible

dynamics of lower control levels as well as dynamics of the physical low-pass filter, an inverter

is considered as an ideal voltage source, generating a voltage with constant magnitude and

frequency. Therefore, when low-pass filters are added to measure output power of inverters,

dynamics of the open-loop microgrid are caused only by these measuring filters. This explains

why the nonzero eigenvalues of the system matrix A in (3.6) only depend on the time constants

of the measuring filters. It is a contrast to synchronous generators with internal dynamics of

frequency, which are often described by the classical swing equation [33, 47].

As mentioned in Remark 2.2.3, the zero eigenvalues of matrix A make the system (3.6) fail

to determine the stability properties of the nonlinear microgrid. Hence, a controller shall be

designed to asymptotically stabilize the system (3.6).

The definition of stabilizability of the system (3.6) with the chosen variables should be mentioned

here.
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Definition 3.1. [54] A dynamic system of Equation (3.6) or a pair (A,B) is stabilizable if there

exists a state-feedback controller K such that the closed-loop system is asymptotically stable,

i.e., all the eigenvalues of matrix (A+BK) are in the open left-half plane. �

The system stabilizability can be mathematically checked by the Popov-Belevitch-Hautus (PBH)

rank test [54, 89]. The system (3.6) is stabilizable if and only if the matrix [A − λI,B] has

full-row rank for all eigenvalues λ of A with Reλ≥ 0. As shown in (3.10), matrix A has n zero

eigenvalues and 2n negative real eigenvalues. Thus, in order to check the stabilizability of the

system (3.6), it is necessary and sufficient to check whether the matrix [A,B] has full-row rank.

By investigating the 3n× 5n matrix [A,B], it becomes apparent that it has 3n columns, which

contain precisely one nonzero element. All these elements appear in different positions of the

respective columns, indicating the linear independence of these columns. Hence, column (and

therefore row) rank of the matrix [A,B] is always 3n, which implies the system stabilizability.

Problem 3.1.1. Design local state-feedback controllers Ki : ui(t) = Kixi(t), i = 1, . . . ,n, for

each subsystem (3.7) so that the overall interconnected system consisting of (3.6) and the state-

feedback control law:

u(t) = Kx(t), K = diag(K1, . . . ,Kn) (3.11)

is asymptotically stable in the sense of Lyapunov.

In order to derive an LMI stability condition to design the controller K in the next section, the

system matrices A,B in (3.6), which are given according to (3.7) and (3.8), are decomposed into

block-diagonal Ad,Bd and block off-diagonal parts AH ,BH as:

Ad = diag(A11, . . . ,Ann), AH = A−Ad,

Bd = diag(B11, . . . ,Bnn), BH = B−Bd.
(3.12)

Define the block-diagonal closed-loop system as Acld := Ad +BdK; then the state-space model

of the closed-loop system with the controller K can be written as follows:


ẋ(t) = Acld x(t)+(AH +BHK)x(t) = (A+BK)x(t) = Aclx(t),

y(t) = x(t).
(3.13)

3.2 Decentralized state-feedback stabilizing controller design

In this section, a decentralized controller design based on the LMI technique is proposed, which

guarantees the asymptotic stability of the system (3.13). The control loop of a single inverter is

shown in Figure 3.1. Inverter output current Ii and voltage Vi are measured in order to calculate
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the active and reactive power. The phase angles δi of all inverters are expressed relative to a

common rotating reference frame with a constant angular velocity ωnom. The common rotating

reference frame for all inverters is created by local clocks of inverters, which are synchronized

by a global time signal, e.g. via GPS signal or Ethernet network. Therefore, a global time

receiver, e.g. a GPS receiver or an Ethernet device, is required for each inverter, but no other

communication link between inverters is needed [90–92]. This procedure is referred to as clock

synchronization. In case the global time input of an inverter is lost for several seconds, the local

clock is still able to create a sufficiently accurate rotating reference frame for the inverter [92].
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FIGURE 3.1: Power control loop of an inverter.

Note that in the proposed system model (3.6), the deviation of the phase angle (δi − δi0) is

defined as a state of an inverter subsystem. Therefore, if the controller K in (3.11) stabilizes

the microgrid, the steady-state deviations of the inverter phase angles δi(t), i = 1, . . . ,n, will

be constant. In case the system operates exactly at the interesting equilibrium point (3.5), it

follows that limt→∞(δi(t)− δi0) = 0. This infers zero steady-state deviations of inverter output

frequencies as ∆ωi = δ̇i = 0.

The zero steady-state deviation of inverter output frequencies is consistent with the nature of

microgrids with power electronic interfaces, where there is no inherent relation between network

frequency and power balance in the system. Instead, according to the power flow equations (2.9)

the power balance is obtained by drooping phase angles and magnitudes of voltages with respect

to their nominal values.

A note on steady-state magnitude deviations of voltages is made here. With the variables defined

in (3.4), the state-feedback controller ui(t) = Kixi(t) is as follows:


∆ωi

Vi −Vi0


=


Ki,11 Ki,12 Ki,13

Ki,21 Ki,22 Ki,23





δi − δi0

P̃i − P̃i0

Q̃i − Q̃i0


 , (3.14)
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which infers the following:

Vi −Vi0 = Ki,21(δi − δi0)+Ki,22(P̃i − P̃i0)+Ki,23(Q̃i − Q̃i0). (3.15)

In steady-state, it can be inferred from (3.3) that P̃i = Pi and Q̃i = Qi. Consider the equation

above in steady-state. Assume that the controller gains are nonzero. Then, (Vi −Vi0) is equal

to zero in two cases. First, (Vi −Vi0) = 0 if (δi − δi0) = (P̃i − P̃i0) = (Q̃i − Q̃i0) = 0, which

means that the inverter i operates exactly at the interesting equilibrium point (3.5). Second,

in case the inverter i does not operate exactly at the interesting equilibrium, (Vi − Vi0) = 0

happens for particular load conditions so that the elements on the right-hand side of (3.15) are

not simultaneously zero, but the sum is zero.

However, in most cases with arbitrary load conditions there are steady-state deviations of voltage

magnitudes from their nominal values. Although the voltage restoration is not in the scope of

this thesis, in Chapter 5 the performance controller design will be proposed to reduce deviations

of voltage magnitudes from their nominal values, i.e., reduce the control effort.

Remark 3.2.1. The power sharing issue is considered to be the main task of the power control

loop (see Remark 2.2.4). It will be demonstrated via simulation that the load demand of a

microgrid is shared among inverters. That is, when a load demand at node i of a microgrid

is increased during operation, other inverters also react to the load change and there is power

exchange between system nodes, namely, the power sharing. As will be shown in Chapter 6,

by adjusting controller gains without causing system instability, the power sharing performance

can be improved. However, an exact power sharing is not achieved. None of the up-to-date

proposed (communicationless) control methods gives an analytical solution to ensure a desired

power sharing in microgrids with arbitrary R/X ratios of power connecting lines, especially in

the case of reactive power sharing. For the case of microgrids with negligible resistive effects

of connecting power lines between inverters, a consensus-based distributed voltage control is

proposed in [85, 86], which guarantees a desired reactive power distribution in steady-state,

while only requiring distributed communication among inverters.

Theorem 3.2. Consider the closed-loop system (3.13). Let Pii ∈R3×3, i= 1, . . . ,n, be symmetric

positive definite matrices and define P = diag(P11, . . . ,Pnn) ∈ R3n×3n, where n is the number of

inverters in the system. Define the following variables:

X = diag(X11, . . . ,Xnn) = P−1, Y = diag(Y11, . . . ,Ynn) = KP−1, (3.16)

where Xii ∈ R3×3, Yii ∈ R2×3, i = 1, . . . ,n. The block-diagonal controller K = YX−1 ∈ R2n×3n

guarantees the asymptotic stability of the closed-loop system (3.13) if the following LMI is
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feasible with 0 < γ ≤ 1:




AdX+BdY+(AdX+BdY)T AH BH X YT

AT
H −γI 0 0 0

BT
H 0 −γI 0 0

X 0 0 −γI 0

Y 0 0 0 −γI




< 0. (3.17)

Proof. The proof of Theorem 3.2 uses Lyapunov’s stability theorem [93] and is inspired by

[94]. Let the selected Lyapunov function associated to the closed-loop system (3.13) be given in

the form V(x) = xTPx, with a symmetric positive definite block-diagonal matrix P. Then, with

(3.13), the derivative of the Lyapunov function V(x) with respect to time is obtained as follows:

V̇(x) = ẋTPx+ xTPẋ = xTAT
cld P+PAcld +AT

HP+PAH +KTBT
HP+PBHK


x. (3.18)

The product of a matrix and its transpose is a positive semidefinite matrix. Then, the following

is derived:

(PAH − I)(AT
HP− I) = PAHAT

HP+ I −AT
HP−PAH ≥ 0,

(KT −PBH)(K −BT
HP) = KTK +PBHBT

HP−KTBT
HP−PBHK ≥ 0.

(3.19a)

(3.19b)

The above matrix inequalities can be rewritten as follows:

PAHAT
HP+ I ≥ AT

HP+PAH ,

KTK +PBHBT
HP ≥ KTBT

HP+PBHK.

(3.20a)

(3.20b)

where PAHAT
HP+ I > 0, KTK +PBHBT

HP ≥ 0.

With 0 < γ ≤ 1,

1

γ
(PAHAT

HP+ I)≥ PAHAT
HP+ I ≥ AT

HP+PAH ,

1

γ
(KTK +PBHBT

HP)≥ KTK +PBHBT
HP ≥ KTBT

HP+PBHK.

(3.21a)

(3.21b)

Substituting (3.21) into (3.18) yields the following upper bound for V̇(x):

V̇(x)≤ xT


AT
cld P+PAcld +

1

γ
PAHAT

HP+
1

γ
I +

1

γ
KTK +

1

γ
PBHBT

HP


x. (3.22)
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Forcing the above upper bound of V̇(x) to be negative for all x ̸= 0, which is equivalent to the

following:

AT
cld P+PAcld +

1

γ
PAHAT

HP+
1

γ
I +

1

γ
KTK +

1

γ
PBHBT

HP < 0, (3.23)

is a sufficient condition for the asymptotic stability of the system (3.13) to be achieved.

For the following part of the proof, the Schur complement formula is recalled, which states the

following equivalent conditions [95]:

M =


M11 M12

MT
12 M22


< 0 ⇔


M22 < 0,

M11 −M12M−1
22 MT

12 < 0.
(3.24)

According to the Schur complement formula, Inequality (3.23) is equivalent to the following

matrix inequality:




AT
cld

P+PAcld PAH PBH I KT

AT
HP −γI 0 0 0

BT
HP 0 −γI 0 0

I 0 0 −γI 0

K 0 0 0 −γI




< 0. (3.25)

The matrix inequality above cannot be directly solved by the available LMI tools because of the

product of variables in (AT
cld

P+PAcld). However, by taking the standard change of variables as in

(3.16), Inequality (3.25) can be turned into an LMI, which can be solved by LMI tools [95]. By

pre- and post-multiplying (3.25) by the symmetric positive definite matrix diag(P−1, I, I, I, I),

where P is a block-diagonal matrix, the LMI (3.17) with two variables X > 0,Y is derived,

where both X and Y are block-diagonal. Note that the standard variable transformation (3.16)

to synthesize state-feedback controllers does not introduce conservatism [95].

The structure constraints of the variables X and Y in (3.16) are introduced in order to derive

a block-diagonal controller for the overall system. A decentralized power controller of each

inverter i is calculated by Ki = YiiXii
−1. This note completes the proof.

Based on the matrix inequality (3.23), a note on the introduction of γ in (3.21) can be made.

Denote the derivative of the Lyapunov function in (3.18) by V̇(x) = xTPx, where P =

AT

cld
P+

PAcld +AT
HP+PAH +KTBT

HP+PBHK

. The condition (3.23) is equivalent to the following:

P+
1

γ
(PAHAT

HP+ I +KTK +PBHBT
HP)− (AT

HP+PAH)− (KTBT
HP+PBHK)

  
:=Q

< 0, (3.26)
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where γ ∈ (0,1] and Q is a symmetric positive semidefinite matrix as shown in (3.21). The

singularity of Q happens if γ = 1 and equality holds in (3.20).

By decreasing γ ∈ (0,1], Q is forced to be "more" positive semidefinite1. Therefore, P must be

"more" negative definite so that the condition (3.26) is satisfied. Hence, by decreasing γ ∈ (0,1],

P is forced to be "more" negative definite and V̇(x) is more negative. This indicates faster

settling time of the closed-loop system (3.13) with a resulting controller K. Therefore, the

decrease of γ can be implemented as an optimization objective, while solving the LMI (3.17).

Decreasing γ makes the upper bound in (3.22) more conservative. Consequently, smaller γ

yields more conservatism of the LMI (3.17).

The LMI optimization problem is formulated as follows:

minimize γ such that





LMI (3.17) is feasible over X and Y,

X and Y are block-diagonal as defined in (3.16),

X > 0,

0 < γ ≤ 1.

(3.27)

Remark 3.2.2. It is clear that the decentralized control approach with an overall block-diagonal

controller is generally more conservative than the case with full-matrix controller, where no

structure constraint on the LMI variables is needed. However, a full-matrix controller would

indicate control interconnection between inverters, which is not desired as it relies on a commu-

nication network. The feasibility of the LMI (3.17) depends on the inevitable interconnection

between inverters. Meanwhile, the LMI achieves the highest feasibility chance in the case of

no or a slight interconnection. In addition, the conservatism of Theorem 3.2 arises also from

the inequalities in (3.21), i.e., the chance of feasibility of the LMI (3.17) reduces when γ moves

toward zero.

Remark 3.2.3. The upper bounds of the matrix inequalities in (3.21) could be chosen with

four different optimization variables as


1
γ1

PAHAT
HP+ 1

γ2
I


and


1
γ3

KTK+ 1
γ4

PBHBT
HP


, where

γ1,γ2,γ3,γ4 ∈ (0,1]. As a result, these four different optimization variables can appear in the

diagonal elements of the LMI (3.17), instead of a single optimization variable γ. However,

for the sake of simplicity and later implementation of Theorem 3.2 in the thesis, only one

optimization variable γ is suggested. Note that this simplification also introduces some conser-

vatism to the LMI (3.17).

1A matrix A is said to be "more" positive (semi)definite than a matrix B if (A−B) is a positive (semi)definite
matrix. Similarly, a matrix A is "more" negative (semi)definite than a matrix B if (A−B) is a negative (semi)definite
matrix.
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3.3 Simulation study

In this section, an academic example is provided to show the effectiveness of the proposed

control loop in Figure 3.1 and the stability condition presented in Theorem 3.2. Consider a

simple system shown in Figure 3.2, which consists of two inverters with constant impedance

loads. The structure and parameters of the test system are similar to the test microgrid with two

inverters in [42]. However, the output power of inverters in the example in [42] is relatively

small (< 1[kVA]). In order to derive more realistic simulation results, compared to one of the

first real-world microgrids presented in [96], parameters of loads in this example are selected so

that the output power of inverters is in the range of 10’s of [kVA]. Parameters of the test system

are provided in Table 3.1.

As the stability condition derived in Theorem 3.2 refers to the system nominal stability, the

simulation goal is to validate the nominal stability of the system around an equilibrium point.

From the power system point of view, small load changes are applied to the system during

operation in order to verify the small-signal stability of the system.

Remark 3.3.1. Note that there is a difference between the nominal stability (defined in control

system theory) and the small-signal stability (defined in power system theory). The nominal

stability means that the system is asymptotically stable without model uncertainty [56]. However,

small-signal stability implies an ability of a system to maintain synchronism among generation

units when subjected to small uncertainties [33, 53] (see Subsection 2.2.1). Small uncertainties

in this case are small load changes, which refer to small model uncertainties of the system.

ZL

Z1 Z2

Inverter 1 Inverter 2ZL ZL1 2

FIGURE 3.2: Test system with two inverters and impedance loads.

A controller K is designed by solving the LMI optimization problem (3.27). As shown in

the proof of Theorem 3.2, a resulting controller K guarantees the asymptotic stability of the

microgrid in a small region around the equilibrium point, where dynamic behaviour of the

microgrid can be described by the linearized model (3.6). Simultaneously, by decreasing γ ∈
(0,1], the settling time of the closed-loop system can be expected to decrease.

Simulation is conducted in Matlab. Note that a Matlab Simulink model of the system in Figure

3.2 is simulated, but not the linearized system model (3.6). The linearized model is constructed

for the controller design purpose. The equilibriums of active and reactive power are calculated

by solving the power flow equations (2.9) using the admittance matrix Y of the system at nominal

operating frequency ωnom. Small load changes are applied at t = 5[s] (Z1 := Z1 +∆Z1) and

t = 10[s] (Z2 := Z2 +∆Z2).
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TABLE 3.1: Test system parameters

Voltages and V10
= 1029[V] δ10

= 0.000[rad]
phase angles V20

= 1030+1.3i[V] δ20
= 0.0013[rad]

Active and P̃10
= 10.75[kW] P̃20

= 15.62[kW]

reactive powers Q̃10
= 3.56[kVar] Q̃20

= 8.06[kVar]
Base values Sbase = 40[MVA] Vbase = 1030[V]

Zbase = 0.0265[Ω] δbase = 1[rad]
Load impedances Z1 = 108+ i10.8[Ω] Z2 = 45+ i28[Ω]

∆Z1 =−18.8− i0.166[Ω] ∆Z2 =−4.05− i4.35[Ω]
Line impedances ZL1 = 0.4+ i0.4[Ω] ZL = 0.8+ i0.42[Ω]

ZL2 = 0.4+ i0.3[Ω]
Nominal frequency fbase = 50[Hz] ωnom = 2πfbase[rad/s]

Filter parameter τ1 = 0.0265[s] τ2 = 0.0265[s]

In the controller design procedure, the system variables are converted into per unit values for

computational simplicity by eliminating units and expressing system quantities as dimensionless

ratios [33]. Thus,

quantity in per unit =
actual quantity

base value of quantity
. (3.28)

Generally, the base values of power and voltage, and the nominal rated system frequency fbase

are selected. In case the stability of power systems is analyzed, the base power Sbase can be

chosen as an arbitrary large number [33]. In this simulation study, the base power is chosen

to be high enough to increase numerical efficiency when solving the LMI problem. The base

voltage Vbase is normally chosen to be equal to the rated voltage of the system. The base values

of other system quantities are automatically set and depend on the base power and the base

voltage, for instance:

Zbase =
V2

base

Sbase
[Ω]. (3.29)

The LTI state-space model (3.6) and the LMI problem (3.27) are formulated for the system in

Figure 3.2 with parameters presented in Table 3.1. The LTI state-space model can be derived

by using Matlab Simulink as shown in Appendix A.4. The LMI optimization problem (3.27)

is solved by using Yalmip toolbox [97] and SeDuMi solver [98] in Matlab. The LMI variables

X,Y are defined in advance to obtain the block-diagonal structures as in (3.16).

The LMI solver stops when the least possible value of γ is reached. In this particular example,

an optimum γ = 0.18978 is achieved after 12 iterations. As the LTI state-space model of the

system in Figure 3.2 and the associated LMI problem are constructed with per unit values, the
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resulting inverter controllers are also given in per unit as follows:

K1 =


−1.9762 −0.0191 0.0148

0.0008 −0.3696 −0.5071


, K2 =


−1.9726 −0.0185 0.0162

0.0126 −0.4763 −0.4657


. (3.30)

The equivalences of the controllers above in actual quantities are as follows:

K1=


−2.0[ 1

s ]−5.0·10−7[ rad
skW ] 3.7·10−7[ rad

skVar ]

0.86[ V
rad ] −0.01[ V

kW ] −0.013[ V
kVar ]


,K2=


−2.0[ 1

s ]−5.0·10−7[ rad
skW ]4.1·10−7[ rad

skVar ]

13.01[ V
rad ] −0.013[ V

kW ] −0.012[ V
kVar ]


.

(3.31)

Remark 3.3.2. It is seen in (3.30) and (3.31) that the controller gains K1(1,2), K2(1,2) from

active power to frequency deviations are relatively small. However, this is comparable to the

typical droop gains provided in [8, 27, 45, 92, 99].

Remark 3.3.3. An empirical experience was achieved, while solving the LMI problem (3.27). If

γ is decreased to be close to zero, the resulting matrix P and the LMI (3.17) also become closer

to singularity. Therefore, it is useful to set a small positive lower bound for γ, while solving the

LMI problem (3.27), to avoid numerical problems.

Remark 3.3.4. Making the closed-loop system "as fast as possible" by minimizing γ ∈ (0,1],

one may also make the system nonresistant with respect to modelling errors. This is already

explained by the fact mentioned in Remark 3.3.3. Therefore, the issue with modelling errors,

also called model uncertainties, should be addressed. Chapter 5 is dedicated to this issue.

The controllers (3.30) result in stable real eigenvalues of the closed-loop system matrix (A+BK)

in a range [−61.9349,−1.9654] 2.

The transfer function matrix from reference input to system output of the closed-loop system is

as follows:

Gcl(s) =−(sI −A−BK)−1BK. (3.32)

A plot of singular values of the closed-loop system as functions of frequency is presented in

Figure 3.3. The singular values give information about the gains of the system [56]. It is

seen in Figure 3.3 that the system gains are relatively small at high frequencies. Moreover,

uncertainties of power systems often occur at high frequencies [100, 101]. Therefore, the

relatively small gains of the closed-loop system at high frequencies should reduce effects of

uncertain perturbations on the system stability.

2With a larger γ = 0.5, the LMI (3.17) is still feasible and yields closed-loop eigenvalues in the range
[−37.7323,−1.7975]. Thus, γ = 0.5 results in a slower settling time of the closed-loop system, compared to the
optimal case.
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FIGURE 3.3: Singular values of the frequency response Gcl(jω).

The simulation is carried out in Matlab Simulink with a nonlinear microgrid, whose parameters

are given in Table 3.1. Each inverter is modelled as an ideal voltage source with controllable

voltage magnitude and phase angle. Power electronic IGBT and lower inverter control levels are

not simulated.

Simulation results are displayed in Figure 3.4. The transfer processes in Figure 3.4 show that

the system is stabilized around the equilibrium point presented in Table 3.1. When load changes

are applied, both inverters have to generate more power to supply the load demand. As stated

in Section 3.2, with the proposed control scheme in Figure 3.1 deviations of inverter output

frequencies always converge to zero. As shown in Equation (3.15), there exist steady-state

deviations of voltages in most cases. In this particular example, the voltage deviations are

relatively small under small load changes. However, when the load demand is increased, a

tendency of increasing deviations of voltage magnitudes from their nominal values is observed.

Thus, there must be a guarantee that under large uncertainties, magnitude deviations of voltages

do not violate acceptable limits. This control issue concerning the performance of inverter output

voltages will be discussed in Chapter 5.

3.4 Summary

An LTI state-space model of inverter-based microgrids was introduced in this chapter. The

model includes the coupling between inverters as well as the arbitrary R/X ratios of connecting

lines between them. A power control loop with a decentralized controller for each inverter was

proposed. In the proposed control loop, a global time signal is required to synchronize the clocks

of all inverters in a microgrid, but no other communication link between inverters is required.

Then, an LMI stability condition for the linearized system model of microgrids was presented.

The derived LMI is a sufficient stability condition and was formulated as a theorem. Based

on the derived LMI optimization problem, a state-feedback controller for a microgrid can be

designed. By forcing LMI variables to obtain block-diagonal structures, a resulting controller is

also block-diagonal. Each diagonal block of the resulting controller is a decentralized controller

of a single inverter. By forcing block-diagonal structures of the LMI variables, a conservatism

is also introduced to the LMI problem.
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FIGURE 3.4: Transfer processes of the test system with decentralized stabilizing controllers.

The simulation of a simple microgrid was conducted to validate the effectiveness of the proposed

control approach. For this particular example, it was shown that the microgrid still remains

stable in spite of small load changes. Simultaneously, inverter output frequencies always return

to a nominal value ωnom. Voltage deviations are relatively small against small load changes.

However, zero-steady state deviations of inverter output voltages are not guaranteed when load

changes are applied. Voltage magnitudes should vary around their nominal values to modify

inverter output power.

It should be mentioned that by conducting a computer simulation of a microgrid, all inverters are

synchronized. A global time signal is required in the proposed decentralized control approach



Chapter 3. Modeling of inverter-based microgrids and decentralized control approach 42

to provide the synchronization to all inverters in real microgrids. The synchronization between

inverters is often reflected by the Precision Time Protocol, which is defined in the IEEE Standard

1588-2008 [102]. A promising solution for the global time synchronization between inverters

is the GPS time synchronization, which was presented at the start of the 1990s [90], after

the GPS technology was available for civil applications. Nowadays, GPS clock signal for

inverter synchronization is more and more accepted in the microgrid world to be a potential

implementation of the IEEE Precision Time Protocol. Several independent references on the

use of GPS for inverter synchronization are [91, 92, 99, 103–106].

Based on the contributions presented in this chapter, several control issues concerning voltage

performance, robust stability of microgrids under load changes and power sharing between

inverters will be investigated in the following chapters.



Chapter 4

Load modeling and system stability

under load dynamics

In large power systems, where dynamics of generation units are dominant, dynamics of loads

are negligible and were often ignored in the past. However, the amount of loads in power

systems quickly increases, which leads to the fact that power systems are often heavily loaded1.

Consequently, dynamics of loads in modern power systems demonstrate a significant influence

on system stability [2, 33, 107–111]. Interconnection between loads and generation units in

power systems (also called load responses) has been reviewed in details in literature, see [2,

108, 109] for instance.

In the case of inverter-based microgrids, distributed generation units mostly formed by renewable

energy sources obtain smaller inertia and capacity than synchronous generators in traditional

large power systems. Therefore, microgrids are highly sensitive to load dynamics, compared

to large power systems [112]. Load dynamics and the interconnection between loads and

generation units in microgrids should be studied in order to propose an effective control law

for inverters to compensate disturbances from load dynamics.

In this chapter, the interaction between loads and inverters in microgrids is studied. A load

modeling is introduced for stability analysis of microgrids. Then, a system model consisting

of interconnected inverters and a dynamic load is proposed. Based on the power control loop

proposed in Chapter 3, two separate LMI stability conditions will be presented to guarantee the

robust stability of microgrids under influences of load dynamics.

1It is mentioned in [107] that voltage instabilities, e.g. voltage collapse, are always related to heavily loaded
power systems, where voltage collapse is a dynamic phenomenon.

43
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4.1 Interaction between loads and generation units

Classical power system studies used to neglect load dynamics, using static load models. How-

ever, loads not only statically depend on voltages and frequencies, but also demonstrate dynamic

characteristics. As reported in a number of publications [2, 107, 110, 111, 113], measurement

results of actual power systems indicate that the typical response of loads to a step change in

voltage has a general form presented in Figure 4.1. Active and reactive power have qualitatively

similar responses [2]. It can be seen that the step change in voltage V causes an immediate step

change in power demand P. Following this, the power demand converges to a steady-state value.

As seen in Figure 4.1, the recovery of the power demand has an exponential form. This transient

recovery of power demand describes the dynamic behavior of loads. When the load response

settles at a new equilibrium point and the transient processes complete, the steady-state power

demand is a function of the steady-state voltage. The power mismatch, the rate of the recovery

and the initial power step greatly depend on load conditions [109].

Power 

mismatch
P

V

Time

Time

FIGURE 4.1: Typical load response to a voltage step change of a power system [2].

Researchers from power system communities often analyze a load-system interaction by decom-

posing a power system into a feedback system as shown in Figure 4.2 [108, 109]. The Power

System block in Figure 4.2 stands for generators, their controllers, connecting lines, FACTS

devices, etc. A power system normally has many loads. A single load, whose dynamics are

of interest, is presented by the Dynamic Load block in Figure 4.2. Other loads, which are not

of immediate interest, are treated as part of the Power System. See [108, 109] for more details

on this decomposition approach. Depending on load and system parameters, the feedback from

Dynamic Load may improve or deteriorate overall system damping [2, 108, 109, 113, 114].

Power 

system

Dynamic 

load

+

+

∆V

∆P

∆Pd

FIGURE 4.2: Load - power system interaction.

Consider some sinusoidal variation in bus power ∆P (power disturbance). A voltage variation

∆V in power system buses will appear, whose magnitude and phase relative to ∆P depend on
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dynamic behaviour of the Power System. Via the Dynamic Load ∆V will induce some power

demand variation ∆Pd. Magnitude of ∆Pd and its phase relative to ∆V depend on dynamic

behaviour of the Dynamic Load. If ∆Pd happens against the phase of ∆P, overall power system

damping will be improved. However, if ∆Pd happens to be in phase with ∆P, oscillations in

the system will be reinforced. Especially for the case of weak power systems a feedback due to

Dynamic Load could reduce system damping and cause system instability [108, 109, 115, 116].

Because of small capacity and low inertia of distributed energy resources, it is expected that

load dynamics have an even more significant impact on stability of microgrids, compared to

conventional power systems. In order to accurately investigate the stability and performance of

inverter-based microgrids, load dynamics should be studied via load modeling. Furthermore, the

same feedback influence of dynamic load in Figure 4.1 and Figure 4.2 is adopted for the case of

inverter-based microgrids. It will be clear in the next section that the Power System block stands

for inverters, their controllers and constant impedance loads. The Dynamic Load block stands

for an aggregate load, which is modelled by an induction machine model.

4.2 Load modeling

The importance and complexity of load modeling are discussed in detail in literature [2, 33, 109,

113, 117]. Load modeling is a nontrivial task in power system studies because of the complicated

composition of a large number of individual loads in power systems, e.g., TVs, lamps, motors,

heaters, etc., which can vary depending on many factors, e.g., weather, time, system operation.

Even if the load composition were known, it would be impractical to present a model for each

individual load due to their large number in power systems, resulting in highly complex system

models. Hence, a load representation for power system stability studies is based on a number of

simplifications [33]. The common practice is to represent the composite load characteristics as

seen from a generation point by composite load models [2, 33, 107, 118].

Load models should describe load dynamics accurately enough and at the same time be relatively

simple for stability analysis. By searching for a suitable load model for microgrids, the common

acceptance of power system communities is considered. As common practice, a combination

of a polynomial load model and an induction machine model is implemented to describe the

composite load characteristics of a microgrid. The load models will be presented in the following

subsections, whereas an explanation to their implementation is given hereafter.

Typically, induction machines are extensively employed in today’s power systems and con-

sume about 60% up to 70% of the total system load demand [33, 119–121]. Thus, dynamics

attributable to induction machines are usually considered to exhibit the most significant aspects

of composite load dynamics. By applying this common assumption in power system studies
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to the case of microgrids, a model of an induction machine for transient stability analysis is

implemented to describe the dynamic behavior of the aggregate load of a microgrid. This

aggregate induction machine is considered to be connected to a common bus between inverters.

Accordingly, the induction machine model represents the most important influence of the feed-

back path from loads. The aggregate load modelled by an induction machine is a dynamic

load and should therefore be seen as an active node in a microgrid. It is consistent with the

representation of network equations in terms of the node admittance matrix (2.3), where effects

of generation units and active elements in a power system are reflected in node currents [33,

page 257]. It is different from constant impedance loads, which are included in node admittance

matrix.

A representation of a microgrid with n inverters and an induction machine is shown in Figure

4.3, where the induction machine is denoted by a node S (S stands for stator as the stator is

connected to a power source).

Inverter 2Inverter 1 Inverter n

. ..

V1, δ1 V2, δ2 Vn, δn

Common bus

Transmission 

network

PCC
M

ic
ro

g
ri

dP1, Q1 P2, Q2 Pn, Qn

Aggregate 

load

S

FIGURE 4.3: Representation of a microgrid with n inverters and an aggregate load S.

It was shown in Chapter 3 that under the power control loop proposed in Figure 3.1, if a

microgrid is stabilized, inverter output frequencies always return to a common nominal value.

However, in most cases with arbitrary load conditions, steady-state deviations of voltage mag-

nitudes from their nominal values exist (see Equation (3.15)).

Characteristics of loads depend on magnitudes and frequencies of their supplied voltages [33].

As inverter output frequencies always converge to a nominal value, frequency dependent charac-

teristics of loads are neglected2. However, because of steady-state magnitude deviations of

inverter output voltages, the dependence of loads on voltage magnitudes should be considered.

As reported in literature, voltage magnitudes have a relatively local behavior [6, 17, 33, 36].

Thus, loads connected close to an inverter i are more dependent on the voltage magnitude of

that particular inverter. Stemming from the local behavior of voltage magnitudes as well as their

influence on loads, the voltage magnitude dependence of loads connected to each inverter node

should be locally described by a local voltage dependent load model.

2During transients in a microgrid, inverter output frequencies also vary and can effect load characteristics.
However, the frequency dependence of loads during transients is also neglected. This is encouraged by the facts
that (i) an inverter can change the frequency of its output voltage very fast, independently of its injected power, and
(ii) relatively large deviations of inverter output frequencies from a nominal value (100’s of [mHz]) normally happen
during transients, which are caused by sudden changes, such as loss of a generation unit, (large) sudden load changes,
etc. These kinds of changes have a switching behavior, which is not analytically considered in the thesis.
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In order to include the voltage dependent nature of loads in stability analysis of microgrids, a

polynomial load model is implemented for loads, which are locally connected to each inverter.

The polynomial model is individual for each inverter. As will be shown in Subsection 4.2.1, the

polynomial model is a static load model, which expresses the voltage dependence of the output

power of an inverter at any instant of time as algebraic functions of a local voltage magnitude at

that instant [33].

Remark 4.2.1. By applying a polynomial static load model for the local load of each inverter,

it is assumed that local load dynamics associated to each inverter are negligible, compared to

dynamics of the common aggregate load, i.e., the aggregate induction machine. For local loads

of inverters, power mismatches are concerned, when local voltage magnitudes vary around their

nominal values during operation of microgrids (see Figure 4.1).

Remark 4.2.2. Assuming that the structures of the load models are known, the task of load

modeling is in fact a system identification procedure [122], i.e., finding coefficients of the

induction machine model and the polynomial load model. Load identification methods are

widely documented in literature [118, 122–126], where the two most popular approaches to load

modeling are the component-based approach [127] and the measurement-based approach [118,

122, 128, 129]. The component-based approach develops load models, using information of

dynamic behaviors of all individual loads in a power system. The measurement-based approach

is possible by placing sensors at system buses to determine parameters of load models. Therefore,

for the load modeling task, it is necessary to obtain either sensor measurements or information

of load compositions, which is the case assumed in this thesis. Consider a particular microgrid,

system designer should decide which method is more suitable. The thesis does not investigate

the identification task, but rather focuses on general stability analysis of microgrids, assuming

that parameters of load models are known.

4.2.1 Polynomial model

In a microgrid with n inverters and an induction machine S presented in Figure 4.3, the active

and reactive power Pi,Qi exchange at each inverter node i is computed similarly to the power

flow equations (2.9) as follows:

Pi =
n

k=1

ViVk|Yik|cos(δi − δk −φik)+ViV ′
s|Yis|cos(δi − δ̃′s −φis),

Qi =
n

k=1

ViVk|Yik|sin(δi − δk −φik)+ViV ′
s|Yis|sin(δi − δ̃′s −φis),

(4.1)



Chapter 4. Load modeling and system stability under load dynamics 48

where δ̃′s and V ′
s are the phase angle and the voltage magnitude of the aggregate load S. Note

that δ̃′s is expressed in the same reference frame as δi, i = 1, . . . ,n. |Yis| and φis are the absolute

value and the phase angle of the admittance Yis between node i and the load S.

The polynomial load model to investigate the voltage dependent behavior of local loads of an

inverter i is given as follows [33, 107]:

Pp
i = Pi


pi1


Vi
Vi0

2
+pi2

Vi
Vi0

+pi3


,

Qp
i = Qi


qi1


Vi
Vi0

2
+qi2

Vi
Vi0

+qi3


,

(4.2)

where Pp
i ,Qp

i denote the actual active and reactive power exchange at node i, Pi,Qi are calculated

by Equations (4.1). pi1 to pi3 and qi1 to qi3 are coefficients of the model, where pi1 +pi2 +pi3 = 1,

qi1 +qi2 +qi3 = 1, i = 1, . . . ,n, Vi and Vi0 are the magnitude of an inverter output voltage and its

nominal value, respectively.

As shown in (3.2), inverter phase angles δi(t), i = 1, . . . ,n, are expressed relative to the same

rotating reference frame with a constant angular velocity ωnom. It is seen from (4.1) that power

exchange between an inverter node i and the induction machine node S depends not only on

the voltage magnitudes V ′
s and Vi, but also on the angular difference between these voltages.

Therefore, in order to calculate Pi,Qi in (4.1), it is necessary to represent inverter phase angles

δi(t) and the phase angle δ̃′s(t) of the induction machine in the same rotating reference frame.

This issue is introduced in the next subsection.

4.2.2 Induction machine model

An induction machine contains a rotor, a stator and a flux linkage between them. An external

AC current is applied to the stator but the rotor is not supplied by any external source. Following

Faraday’s law, there appears an induction and AC currents in the rotor, which enable the rotor to

rotate. More details on the physical description of induction machines can be found in [33, 130].

A representation of an induction machine can be obtained by taking effects of mechanical

transients and rotor electrical transients into account. Effects of stator electrical transients can

usually be neglected [33, 119]. Rotor voltage is assumed to be equal to zero [33]. These

simplifications are normally taken to ensure compatibility of the induction machine model

with models of other system components, e.g., inverter model in this case. It will be shown

that a suitable dynamic model of an induction machine for stability analysis is derived by

eliminating rotor currents and expressing a relationship between stator current and voltage

behind the transient reactance.
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Mathematically, the model of an induction machine is derived by the following procedure. First,

a standard induction machine model in a d−q rotating reference frame is introduced, which can

be easily found in literature [33, 47, 131, 132]. Note that the standard model of an induction

machine is derived in per unit. Based on the Center of inertia (COI) principle3, the angular

velocity of the d− q rotating reference frame of the standard induction machine model will be

defined by the output frequencies of inverters, i.e., generation units in the system. In addition,

stator currents of the induction machine will be replaced by expressions with voltages and phase

angles of inverters and the induction machine. This will enable a modification of the standard

induction machine model. A modified induction machine model can be then combined with the

inverter model (3.3) to form an overall microgrid model.

Induction machines can obtain one or more pairs of poles. However, without loss of generality

and for convenience in analysis, only one pair of poles is considered. The basic equations of

an induction machine are associated to its stator, rotor circuits, and the linkage between stator

and rotor, which are AC quantities and contain electrical angles, which in turn vary in time.

This introduces considerable mathematical complexity in deriving induction machine models.

Regarding this issue, the standard equations of an induction machine are usually represented in

a d − q rotating reference frame. Thus, the d − q transformation simplifies the basic equations

of an induction machine, replacing its AC quantities by DC quantities.

Usually, the preferred d − q reference frame for an induction machine is selected to have the

axes rotating at the frequency of the stator voltage [33, 132]. In this case, the frequency of the

stator voltage is the network frequency, namely, the synchronous speed of a microgrid, which

can vary during transient processes in the system.

As shown in Figure 4.3, the considered induction machine is connected to the common bus of

the microgrid. Therefore, it is assumed that the synchronous speed (i.e., generalized network

frequency) denoted by ωs can be calculated by the Center of inertia principle [33, 133, 134] to

form a COI d−q reference frame for the induction machine model. The axes of the COI d−q

reference frame rotate at the frequency of the common bus of the microgrid, which is influenced

by all inverters. Hence, ωs can vary during transients in the system. Additionally, ωs is also the

frequency of the AC voltage provided to the stator of the induction machine. At a steady-state,

the microgrid is synchronously stable, i.e., the frequencies ωs and ωi, i = 1, . . . ,n, are equal to

each other, converging to a fixed nominal value of the system frequency ωnom, e.g., 2π50 [rad/s].

The COI principle for calculating ωs in dependence on ωi, i = 1, . . . ,n, will be introduced

thereafter. Thus, for the microgrid in Figure 4.3, there are the COI reference frame for the

induction machine and the reference frame of inverter phase angles with a constant angular

3For convenience in describing transient behavior of a power system with multiple synchronous generators,
generator rotor angles are expressed relative to an inertial center of all generators. The position of the center of
inertia is defined by the COI principle.
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velocity ωnom. The angular difference between the two rotating reference frames will also appear

in the modified induction machine model.

The standard per unit model of an induction machine in the COI d−q reference frame.

The basic equations of an induction machine are associated to voltages, currents and flux linkages

of a stator and a rotor. The stator and rotor flux linkages are [33, 132]:

Ψds = Lssids +Lmidr,

Ψqs = Lssiqs +Lmiqr,

Ψdr = Lrridr +Lmids,

Ψqr = Lrriqr +Lmiqs,

(4.3a)

(4.3b)

(4.3c)

(4.3d)

where Ψds,Ψqs are correspondingly the d − q components of the stator flux, Ψdr,Ψqr are the

d − q components of the rotor flux. idr, iqr, ids and iqs are the d − q components of the rotor

and stator currents. Ls,Lr are the stator and rotor leakage inductances, respectively. Lm is the

magnetizing inductance. Finally, Lss and Lrr are the stator and rotor inductances defined as:

Lss = Ls +Lm, Lrr = Lr +Lm. (4.4)

The stator and rotor voltages in the d−q reference frame are [33, 132]:

vds = Rsids −ωsΨqs +
dΨds

dt
,

vqs = Rsiqs +ωsΨds +
dΨqs

dt
,

vdr = Rridr −
dθr

dt
Ψqr +

dΨdr

dt
,

vqr = Rriqr +
dθr

dt
Ψdr +

dΨqr

dt
,

(4.5a)

(4.5b)

(4.5c)

(4.5d)

where vds,vqs,vdr and vqr are the d − q components of the stator voltage and rotor voltage,

respectively. Rs and Rr are the resistances of stator and rotor. ωs is the frequency of the stator

field. The corresponding transformations of the rotor quantities in relation to the synchronous

COI rotating d− q reference frame are defined by an angle θr, by which the stator phase angle

leads the rotor phase angle. The rotor slip defined by dθr
dt characterizes the difference between

the rotor speed ωr and the speed of stator field. The rotor slip is computed in per unit as follows:

dθr

dt
=

ωs −ωr

ωs
. (4.6)

For stability analysis, stator transients caused by DC components in stator transient currents are

neglected, then the terms dΨds
dt and dΨqs

dt in (4.5) can be eliminated [33]. Moreover, there are

several types of rotor structure, e.g., wound rotor, squirrel-cage rotor. It is a common practice
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in power system analysis to consider the squirrel-cage rotor, whose rotor voltages are zero, i.e.,

vdr = vqr = 0 [33]. Based on these assumptions, the equations of stator and rotor voltages (4.5)

become the following:

vds = Rsids −ωsΨqs,

vqs = Rsiqs +ωsΨds,

vdr = Rridr −
dθr

dt
Ψqr +

dΨdr

dt
= 0,

vqr = Rriqr +
dθr

dt
Ψdr +

dΨqr

dt
= 0.

(4.7a)

(4.7b)

(4.7c)

(4.7d)

From (4.3c) and (4.3d), the following is achieved:

idr =
Ψdr −Lmids

Lrr
, iqr =

Ψqr −Lmiqs

Lrr
. (4.8)

Substituting the equations above into (4.3a) and (4.3b) yields the following:

Ψds = Lssids +Lm
Ψdr −Lmids

Lrr
=

Lm

Lrr
Ψdr +


Lss −

L2
m

Lrr


ids,

Ψqs = Lssiqs +Lm
Ψqr −Lmiqs

Lrr
=

Lm

Lrr
Ψqr +


Lss −

L2
m

Lrr


iqs.

(4.9a)

(4.9b)

With Ψds and Ψqs in (4.9), the equations for stator voltages (4.7a) and (4.7b) can be written as

follows:

vds = Rsids −ωsΨqs = Rsids +ωs
−Lm

Lrr
Ψqr

  
:= v′ds

−ωs


Lss −

L2
m

Lrr



  
:= X′

s

iqs,

vqs = Rsiqs +ωsΨds = Rsiqs +ωs
Lm

Lrr
Ψdr

  
:= v′qs

+ωs


Lss −

L2
m

Lrr


ids.

(4.10a)

(4.10b)

In the equations above, X′
s is called the transient reactance of the induction machine. The stator

voltage in the complex number form can be expressed as follows:

V⃗s = vds + jvqs = Rs (ids + jiqs)  
:= I⃗s

+jX′
s(ids + jiqs)+ v′ds + jv′qs  

:= V⃗ ′
s

, (4.11)

where V⃗s is the stator voltage vector, I⃗s is the stator current vector, and V⃗ ′
s is called the voltage

behind transient impedance (Rs + jX′
s).
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Equation (4.11) implies that for stability studies, an induction machine can be replaced by a

simpler electrical circuit as displayed in Figure 4.4 with the following relation [33]:

V⃗s = (Rs + jX′
s)⃗Is + V⃗ ′

s. (4.12)

Rs

Vs
'

Vs

Xs
'

→ →Is

→

FIGURE 4.4: Equivalent circuit of an induction machine for stability studies.

As defined in (4.10), Ψdr and Ψqr can be expressed by v′ds and v′qs. Then, by plugging the derived

expressions with v′ds and v′qs into (4.7c) and (4.7d), the following ODEs are derived:

dv′ds

dt
=− Rr

Lrr


v′ds +

ωsL2
m

Lrr
iqs


+

dθr

dt
v′qs,

dv′qs

dt
=− Rr

Lrr


v′qs −

ωsL2
m

Lrr
ids


− dθr

dt
v′ds.

(4.13a)

(4.13b)

Denote

Xs = ωsLss ,
Lrr

Rr
= T ′

0 ,
dθr

dt
=

ωs −ωr

ωs
, (4.14)

then the ODEs (4.13) and an acceleration equation of the rotor build a state-space model of an

induction machine as follows:





dv′ds

dt
=− 1

T ′
0


v′ds +(Xs −X′

s)iqs


+

dθr

dt
v′qs,

dv′qs

dt
=− 1

T ′
0


v′qs − (Xs −X′

s)ids


− dθr

dt
v′ds,

dωr

dt
=

ωs

2Hs
(Ts −Tm),

(4.15)

where X′
s and Xs are defined in (4.10) and (4.14), respectively. The acceleration equation of the

rotor describes the relation between the input electrical torque Ts, the output mechanical torque

Tm of an induction machine and the rotor speed ωr. Hs is the inertia constant of the induction

machine.

A common representation of the mechanical torque Tm is as follows:

Tm = Tm0


ar

ωr

ωs

2
+br

ωr

ωs
+ cr


, ar +br + cr = 1, (4.16)

where ar,br,cr are torque coefficients, and Tm0 is the torque at rated rotating speed [33].
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Equations in (4.15) form the classical model of an induction machine, which is commonly used

in stability studies [33, 47, 132].

It is seen that the induction model (4.15) depends on ids, iqs and ωs. In the following, based

on power flow equations between inverters and the induction machine, ids, iqs will be replaced

by other variables of inverters and the induction machine. Moreover, by applying the Center of

inertia principle, the phase angle and the frequency of the stator voltage of the induction machine

will be described by inverter phase angles δi and inverter output frequencies ωi, i = 1, . . . ,n.

Following these replacements of variables, a modified induction machine model will be derived,

which can be combined with the inverter model (3.3) to form an overall microgrid model. The

stability analysis and controller design will be provided based on a derived overall microgrid

model in the next section.

The relation between the two rotating reference frames.

Let δ′s be an angle of the voltage V⃗ ′
s in (4.12). As the standard induction machine model (4.15) is

defined in the COI d−q rotating reference frame with an angular velocity ωs, δ′s is also defined

in this COI d−q rotating reference frame.

Let δ̃′s denote an equivalence of δ′s in the rotating reference frame with a constant angular velocity

ωnom of the inverters. Thus, δ̃′s and δi are represented in the same rotating reference frame. By

using the COI principle, it is assumed that the phase angle δ̃′s of the induction machine can be

calculated by the phase angles δi, i = 1, . . . ,n, of all generation units in the system as follows:

δ̃′s :=
1

HT

n

i=1

Hiδi, (4.17)

where Hi is the inertia constant of each inverter i, and HT :=
n

i=1

Hi [33].

The equation above is often applied for power systems with synchronous generators. Each

generator obtains mechanical and electrical inertia, which is quantitatively represented by an

inertia constant. As mentioned in Remark 2.1.3, an inverter itself does not obtain any inertia.

However, with an additional power control loop presented in Figure 3.1, an artificial inertia is

created by the measuring low-pass filter and the integrator. Therefore, an inertia constant Hi of

an inverter i can be determined by time constant of its power control loop.

As the phase angle δ̃′s is expressed relative to the common rotating reference frame of inverters

with an angular velocity ωnom, δ̃′s is computed similarly to (3.2) as follows:

δ̃′s(t) = (ωs −ωnom)t+ δ̃′s0
, (4.18)

where δ̃′s0
is an initial value of δ̃′s in the rotating reference frame of inverters.
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Based on the equation above and Equation (4.17), the frequency ωs of the stator voltage V⃗ ′
s of

the induction machine S is calculated as follows:

ωs −ωnom = ˙̃δ′s =
1

HT

n

i=1

Hi(ωi −ωnom) =
1

HT

n

i=1

Hi∆ωi, (4.19)

where ωi is an output frequency of an inverter i, i = 1, . . . ,n, and ∆ωi = ωi −ωnom.

Equations (4.17) and (4.19) imply that the phase angle δ̃′s and the frequency ωs of the stator

voltage V⃗ ′
s of the induction machine are influenced by all generation units in a microgrid. The

influential strength of each inverter (with the power control loop in Figure 3.1) is defined by its

inertia constant Hi.

In Figure 4.5 the relation between the COI d − q reference frame and the rotating reference

frame of inverter phase angles is explained, where θ0 is an initial angular difference between the

two rotating reference frames θ.

Vs

ωs
vqs

vds

d

q

ωnom

Vi

θ = (ωs - ωnom)t + θ0 

δs

ωs

ωi

δi

→

→

δs

~

'

'
' '

'

FIGURE 4.5: Relation between the two rotating reference frames.

It is seen in Figure 4.5 that δ̃′s contains the angular difference θ between the two rotating

reference frames. In addition, δ̃′s is assumed to be calculated by the formula in (4.17). Thus,

by using the COI principle, the angular difference θ is directly contained within the inverter

phase angles δi, i = 1, . . . ,n .

A modification of the standard induction machine model.

It is seen in Figure 4.5 that:

v′ds = V ′
s cosδ′s, v′qs = V ′

s sinδ′s. (4.20)

For further analysis, it is assumed that cosδ′s ̸= 0 and sinδ′s ̸= 0. Then,

V ′
s =





v′ds

cosδ′s
if cosδ′s ̸= 0,

v′qs

sinδ′s
if sinδ′s ̸= 0.

(4.21)
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It is noteworthy that a modified induction machine model derived hereafter is only relevant for

the case (cosδ′s ̸= 0) and (sinδ′s ̸= 0), where V ′
s can be calculated as in (4.21).

In Figure 4.4, if (Rs + jX′
s) is considered as a connecting power line to the induction machine

S, the total electrical power S⃗cons.
s consumed by the induction machine can be computed by the

voltage behind transient reactance V⃗ ′
s and the stator current I⃗s as follows:

S⃗cons.
s = V⃗ ′

s · I⃗∗s = (v′ds + jv′qs)(ids − jiqs) = v′dsids + v′qsiqs  
= Pcons.

s

+j(v′qsids − v′dsiqs)  
= Qcons.

s

, (4.22)

where Pcons.
s ,Qcons.

s denote the active and reactive power exchange at the voltage node V⃗ ′
s, I⃗∗s is

the complex conjugate of the stator current I⃗s, and "cons." is an abbreviation for consumption.

As mentioned above, an induction machine is considered as an active node in a microgrid.

Moreover, positive power consumption can be reviewed as negative power generation [33, page

250]. Thus, it is considered that the induction machine S generates negative electrical power,

injecting a negative current −⃗Is into the microgrid (see the direction of I⃗s in Figure 4.4). Thus,

consider a network with n inverters and an induction machine, a Kron-reduced admittance matrix

is derived similarly to (2.8) as follows:




I⃗1

I⃗2

...

I⃗n

−⃗Is




=




Y11 Y12 . . . Y1n Y1s

Y21 Y22 . . . Y2n Y2s
...

...
. . .

...
...

Yn1 Yn2 . . . Ynn Yns

Ys1 Ys2 . . . Ysn Yss







V⃗1

V⃗2

...

V⃗n

V⃗ ′
s




. (4.23)

Remark 4.2.3. It should be mentioned that elements of the admittance matrix in (4.23) are

calculated with the nominal frequency ωnom. The stator impedance (Rs + jX′
s) (see Figure 4.4)

is considered as part of a connecting power line to the induction machine, which is contained in

elements of the admittance matrix in (4.23).

Hence, (negative) active and reactive power injection at node S is computed by the standard

power flow equations (2.9) as follows:

Ps=−Pcons.
s =V ′2

s |Yss|cosφss +
n

i=1

V ′
sVi|Ysi|cos(δ̃′s − δi −φsi) =−(v′dsids + v′qsiqs),

Qs=−Qcons.
s =−V ′2

s |Yss|sinφss +
n

i=1

V ′
sVi|Ysi|sin(δ̃′s − δi −φsi) =−(v′qsids − v′dsiqs),

(4.24a)

(4.24b)

where φsi and |Ysi| are the angle and the absolute value of the mutual impedance Ysi, φss and

|Yss| are associated to the self-admittance Yss.
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As seen in (4.21) that V ′
s in (4.24) can be expressed by v′ds,v

′
qs and δ′s. Therefore, with (4.21) and

(4.24), ids and iqs can be expressed by the following nonlinear functions:

ids =−v′ds|Yss|cosφss + v′qs|Yss|sinφss −
n

i=1

Vi|Ysi|cos(δ̃′s − δi −φsi − δ′s),

iqs =−v′qs|Yss|cosφss − v′ds|Yss|sinφss +
n

i=1

Vi|Ysi|sin(δ̃′s − δi −φsi − δ′s).

(4.25a)

(4.25b)

In addition, the electrical torque Ts in (4.15) can be calculated as follows [33]:

Ts =
Pcons.

s

ωs
=

v′dsids + v′qsiqs

ωs

=
1

ωs


−


v′2ds + v′2qs


|Yss|cosφss −

v′ds

cosδ′s

n

i=1

Vi|Ysi|cos(δ̃′s − δi −φsi)


.

(4.26)

As can be seen in (4.21), the phase angle δ′s can be described as:

δ′s = arctan
v′qs

v′ds

. (4.27)

With the expressions (4.25) and (4.26), ids, iqs and Ts in the induction machine model (4.15)

are eliminated. With (4.27), δ′s is replaced by v′ds and v′qs. With the COI principle presented in

Equations (4.17) and (4.19), δ̃′s and ωs are replaced by δi and ωi (∆ωi), i = 1, . . . ,n. Thus, the

derivatives of v′ds,v
′
ds and ωr in (4.15) can be described as the following nonlinear functions:





v̇′ds(t) = fd(v′ds,v
′
qs,ωr,∆ω1,V1,δ1, . . . ,∆ωn,Vn,δn),

v̇′qs(t) = fq(v′ds,v
′
qs,ωr,∆ω1,V1,δ1, . . . ,∆ωn,Vn,δn),

ω̇r(t) = fr(v′ds,v
′
qs,ωr,∆ω1,V1,δ1, . . . ,∆ωn,Vn,δn).

(4.28)

The differential equations above represent a modified induction machine model. Because of the

complexity of the aforementioned variable replacements, the induction machine model (4.28) is

not fully illustrated here.

Differences between the standard induction machine model (4.15) and the modified model (4.28)

involve: the assumption on the COI principle in (4.17) and (4.19), the assumption of the phase

angle δ′s in (4.21), and the implementation of the power flow equations (4.24).

In the next section, the modified induction machine model (4.28) will be combined with the

inverter model (3.3) to form an overall microgrid model, which is used for stability analysis and

synthesis of inverter controllers.
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4.3 State-space model of a microgrid with a dynamic load

In order to analyze the stability of a microgrid, including the feedback effect of load dynamics,

a linearized state-space model of an overall microgrid is presented. This is done by combining

the induction machine model (4.28) and an inverter model with state variables and control inputs

defined in (3.4). The interesting equilibrium point of each inverter i is formerly defined in (3.5).

Based on the inverter model (3.3) derived in Chapter 3, the inverter model is extended with

respect to the polynomial load model (4.2) as follows:





δ̇i =∆ωi,

˙̃Pi =
−P̃i +Pp

i (V1, . . . ,Vn,δ1, . . . ,δn,v′ds,v
′
qs)

τi
,

˙̃Qi =
−Q̃i +Qp

i (V1, . . . ,Vn,δ1, . . . ,δn,v′ds,v
′
qs)

τi
,

(4.29)

where Pp
i , Qp

i are given in (4.2) and v′ds, v′qs are d−q components of the voltage behind transient

reactance V⃗ ′
s of the induction machine S.

The state variable xs(t) and the input u(t) of the aggregate load S described by the model of an

induction machine (4.28) can be chosen as follows:

xs(t) =




v′ds − v′ds0

v′qs − v′qs0

ωr −ωr0


 , u(t) =




u1(t)
...

un(t)


 , with ui(t) =


∆ωi

Vi −Vi0


, (4.30)

where the control input of S is chosen to be the same as the control input u(t) of the inverters.

A physical explanation is that the induction machine is fed by all inverters. As a result, the

magnitude and frequency of the input voltage of S are influenced by the output frequency ωi and

voltage magnitude Vi of all inverters in the system, i = 1, . . . ,n.

The interesting equilibrium point of the aggregate load S is as follows:

xs0 =

v′ds0

v′qs0
ωr0

T
,

u0 =

0 V10

. . . 0 Vn0

T
=

uT

10
. . . uT

n0

T
.

(4.31)

Hence, by linearizing the inverter model (4.29) and the induction machine model (4.28) (which

is based on the induction machine model (4.15) and the variable replacements in (4.17), (4.19),

(4.25), (4.26) and (4.27)) around the operating point (3.5) and (4.31), an LTI state-space model
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of a microgrid with n inverters and an aggregate load S is obtained as follows:


ẋ(t) = Ax(t)+Bu(t)+Txs(t),

ẋs(t) = Asxs(t)+Bsu(t)+Tsx(t),
(4.32)

where x(t) is defined in (3.4), A ∈ R3n×3n, B ∈ R3n×2n are the system matrices of inverters,

As ∈R3×3, Bs ∈R3×2n are the system matrices of the dynamic load S and T ∈R3n×3, Ts ∈R3×3n

are the interconnection matrices between inverters and the load S. The matrices are as follows:

As =




∂ ḟd
∂v′ds


0

∂ ḟd
∂v′qs


0

∂ ḟd
∂ωr


0

∂ ḟq
∂v′ds


0

∂ ḟq
∂v′qs


0

∂ ḟq
∂ωr


0

∂ ḟr
∂v′ds


0

∂ ḟr
∂v′qs


0

∂ ḟr
∂ωr


0




,Bs =




∂ ḟd
∂∆ω1


0

∂ ḟd
∂V1


0

. . . ∂ ḟd
∂∆ωn


0

∂ ḟd
∂Vn


0

∂ ḟq
∂∆ω1


0

∂ ḟq
∂V1


0

. . .
∂ ḟq

∂∆ωn


0

∂ ḟq
∂Vn


0

∂ ḟr
∂∆ω1


0

∂ ḟr
∂V1


0

. . . ∂ ḟr
∂∆ωn


0

∂ ḟr
∂Vn


0




,

Tsi =




∂ ḟd
∂δi


0

0 0

∂ ḟq
∂δi


0

0 0

∂ ḟr
∂δi


0

0 0




,Ts = [Ts1 . . . Tsn ] , Ti =




0 0 0

∂Pp
i

τi∂v′ds


0

∂Pp
i

τi∂v′qs


0

0

∂Qp
i

τi∂v′ds


0

∂Qp
i

τi∂v′qs


0

0




, T =




T1

...

Tn


 .

(4.33)

Each inverter i, i = 1, . . . ,n, corresponds to a subsystem with the following state-space model:

ẋi(t) = Aiixi(t)+Biiui(t)+
n

k=1, k ̸=i


Aikxk(t)+Bikuk(t)


+Tixs(t), (4.34)

where

Aii =




0 0 0
∂Pp

i
τi∂δi


0

−1
τi

0

∂Qp
i

τi∂δi


0

0 −1
τi


 , Bii =




1 0

0
∂Pp

i
τi∂Vi


0

0
∂Qp

i
τi∂Vi


0


 , Aik =




0 0 0
∂Pp

i
τi∂δk


0

0 0

∂Qp
i

τi∂δk


0

0 0


 , Bik =




0 0

0
∂Pp

i
τi∂Vk


0

0
∂Qp

i
τi∂Vk


0


 .

(4.35)

A slight abuse of notation in the system models above should be mentioned here. In (4.32) and

(4.34), A,B,Aii,Bii,Aik and Bik are still used in this chapter to denote the system matrices of

the inverter part and the matrices of each inverter, respectively. This notation is similar to the

notation in (3.6) and (3.7) in Chapter 3. The system matrices of inverters in (4.32) and (4.34)

have the same structures as the system matrices in (3.6) and (3.7). However, with the polynomial

load model (4.2) and the power flow equations (4.1), elements of matrices A,B,Aii,Bii,Aik and

Bik in (4.32) and (4.34) are different from the matrix elements in (3.6) and (3.7).

Remark 4.3.1. The linearization of the induction machine model (4.28) is algebraically difficult

because of the complication of the model. This task can be simplified by using computer algebra
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systems, such as Scilab or Matlab. In Appendix A.5, an example is provided that shows how to

obtain the linearized model (4.32) for a microgrid with two inverters and an induction machine.

The system output is defined as follows:

y = x = C


x

xs


, (4.36)

where C = [I3n×3n 03n×3].

The system model consisting of (4.32) and (4.36) can be compactly rewritten as follows:


ẋ = A x+Bu,

y = C x,
(4.37)

where x ∈ R(3n+3)×1, A ∈ R(3n+3)×(3n+3) and B ∈ R(3n+3)×2n as follows:

x =


x

xs


, A =


A T

Ts As


, B =


B

Bs


. (4.38)

Based on the microgrid model with a dynamic load (4.37), the control task is still the design of

local state-feedback controllers Ki, i = 1, . . . ,n, for inverters as formulated in Problem 3.1.1. An

additional requirement for the controller design in this chapter is taken so that inverter controllers

should stabilize not only the inverters but also robustly stabilize the overall microgrid system

(4.37), despite load dynamics. In the next section, two separate LMI stability conditions based

on Lyapunov’s stability theorem and the small-gain theorem are proposed. By solving the LMI

problems, the resulting controllers will asymptotically stabilize the system (4.37).

Note that the inverter controllers described in Problem 3.1.1 concern only the inverter part of

the system, no control action is performed for the dynamic load S.

Assumption: For the stability analysis in next section, it is assumed that the dynamic load S is

asymptotically stable, i.e., all the eigenvalues of the matrix As obtain negative real parts. �

4.4 Stability of microgrids under load dynamics

4.4.1 Stability of the system based on Lyapunov’s stability theorem

Consider the system (4.37). As in Chapter 3, the stabilizability of the system can be checked by

the PBH rank test, whether matrix [A−λI,B] has full-row rank for all eigenvalues λ of A with

Reλ ≥ 0. By considering matrix A in (4.38), it is clear that the submatrix A possesses n zero
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eigenvalues and 2n negative real eigenvalues determined by the time constants of the employed

measuring low-pass filters (see Equation (3.10)). The submatrix As belongs to the linearized

dynamic load. According to the assumption above, eigenvalues of As are in the open left-half

plane. Thus, the PBH stabilizability test is reduced to checking the row rank of the matrix [A B].

Furthermore, it will be clear in the following part of this subsection that the inverter controllers

formulated in Problem 3.1.1 will guarantee the asymptotic stability of the closed-loop system.

Hence, the stabilizability of the system (4.37) is confirmed.

As the system is stabilizable, there exists a state-feedback controller K : u = K x so that the

closed-loop system is asymptotically stable. Moreover, as there is no feedback control action

for the dynamic load S, the controller K should be forced to obtain the following form:

K = [K 02n×3], (4.39)

where K = diag(K1, . . . ,Kn) is the controller for the inverter part of the system as defined in

Problem 3.1.1. The zero submatrix of K is associated to the states of the dynamic load S.

The controller K is actually an output-feedback controller as it does not feedback the states of

the induction machine to inverter control inputs. It is shown as follows:

u(t) = K x(t) = [K 0]


x(t)

xs(t)


= KC x(t) = Kx(t) = Ky(t). (4.40)

Therefore, in order to assure that every unstable mode is observable, it is necessary to check the

detectability of the system (4.37).

Definition 4.1. [54] The system (4.37) is detectable if (A+ LC) is asymptotically stable for

some L. �

The system (4.37) is detectable if and only if the matrix


A−λI

C


has full-column rank for all

eigenvalues λ of A with Reλ≥ 0 [54].

It is assumed above that the induction machine is asymptotically stable with negative real

eigenvalues. Moreover, it is mentioned in (3.10) that the inverter part obtains n zero eigenvalues,

where the other 2n eigenvalues are negative real. Thus, the task to check the dectectability of

the system (4.37) is reduced to checking, whether


A

C


has full-column rank.

By investigating the (6n + 3)× (3n + 3) matrix


A

C


, it becomes apparent that its first 3n

columns, each contains one nonzero element and one diagonal element of the identity matrix.

All these nonzero elements appear in different positions of the respective columns, indicating
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the linear independence of these columns. The last three columns of the matrix


A

C


contains

the matrix As of the asymptotically stable induction machine. Hence, column rank of the matrix
A

C


is always (3n+3), which implies the system detectability.

An overall closed-loop system consisting of the open-loop system (4.37) and the feedback

control law u(t) = K x(t) is as follows:

ẋ(t) = (A+B K)x(t). (4.41)

Let V(x) = xTP x > 0 be a Lyapunov function of the system (4.41), where P ∈ R(3n+3)×(3n+3)

is a symmetric positive definite matrix. According to Lyapunov’s stability theorem 2.3, the

asymptotic stability of the system (4.41) is guaranteed if V̇(x) is negative definite. V̇(x) is

derived as follows:

V̇(x) = ẋTP x+ xTP ẋ = xT

(A+B K)TP+P(A+B K)


x. (4.42)

Forcing V̇(x) to be negative definite is equivalent to solving the following matrix inequality to

design a controller K. A resulting controller K guarantees the asymptotic stability of the system

(4.41) if

V̇(x)< 0, ∀x ̸= 0 ⇔ (A+B K)TP+P(A+B K)< 0. (4.43)

For an optimization purpose, an optimization objective γ > 0 is introduced. With γ > 0, the

left-hand side matrix of the matrix inequality above can be forced to be "more" negative definite.

This optimization procedure can be done as follows. Minimize γ > 0 such that:

(A+B K)TP+P(A+B K)<− 1

γ
I < 0

⇔ (A+B K)TP+P(A+B K)+
1

γ
I < 0.

(4.44a)

(4.44b)

According to the Schur complement (3.24), the matrix inequality above is equivalent to:


(A+B K)TP+P(A+B K) I

I −γI


< 0. (4.45)
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In order to design a controller K as defined in (4.39), the following variable transformation and

variable constraints are taken:

X = P−1 = diag(X11, . . . ,Xnn,Xs) ∈ R(3n+3)×(3n+3),

Y = K P−1 = [diag(Y11, . . . ,Ynn) 02n×3] ∈ R2n×(3n+3),
(4.46)

where Xs ∈ R3×3, and Xii ∈ R3×3, Yii ∈ R2×3, i = 1, . . . ,n. Note that because of the zero

submatrix in the controller K in (4.39), Y is defined to contain a zero submatrix.

By pre- and post-multiplying the left-hand side of the matrix inequality (4.45) with a symmetric

positive definite matrix diag(P−1, I), where P is block-diagonal, (4.45) can be equivalently

transformed into the following LMI:


A X+B Y+(A X+B Y)T X

X −γI


< 0. (4.47)

If the LMI above is feasible for X and Y with defined structures as in (4.46), there exists

a positive definite matrix P = X−1 > 0, which makes V(x) > 0 and V̇(x) < 0. A resulting

controller K = Y X−1 asymptotically stabilizes the overall microgrid (4.37). At the same time,

as γ > 0 is minimized, the controller K guarantees that the investigated upper bound of V̇(x)
is the most negative. On the other hand, the LMI (4.47) also becomes more conservative as γ

decreases.

With predefined structures of X and Y in (4.46), a resulting K obtains the defined structure in

(4.39), where K is a block-diagonal controller for the inverter part. The constraints in (4.46)

introduce conservatism to the LMI (4.47).

The LMI optimization problem can be summarized as follows:

minimize γ such that





LMI (4.47) is feasible over X and Y,

X and Y are defined as in (4.46),

X > 0,

0 < γ.

(4.48)

4.4.2 Robust stability with the small-gain theorem

The previous subsection considers the asymptotic stability of the microgrid, when parameters

of the dynamic load are precisely known beforehand. As mentioned in Remark 4.2.2, it is

nontrivial to determine parameters of the induction machine, as it does not concern a particular

induction machine but an aggregated dynamic load. A controller design should take parametric

uncertainties of the induction machine into consideration. This subsection presents a robust
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controller design in the sense that for an upper bound of the dynamic load, a block-diagonal

controller K should be designed to guarantee the asymptotic stability of the overall system.

The system (4.32) shows the interconnection between inverters and the dynamic load S. One

useful tool in studying stability of interconnected systems is the small-gain theorem, see e.g.,

[54–57, 89]. A system gain allows to track how a norm of a signal increases or decreases as it

passes through the system. In this section, based on the small-gain theorem, an LMI stability

condition is derived to design state-feedback controllers for inverters, which asymptotically

stabilize the inverter part despite influences of the dynamic load S.

In order to describe an amplifying gain between input and output vectors of a MIMO system,

the definition of singular values is introduced.

Definition 4.2. [56] Consider a fixed frequency ω, where G(jω) is a constant (n×m) complex

matrix. The singular values of G(jω) are denoted by σi ≥ 0, i = 1, . . . ,min(n,m), which are

computed as follows:

σi(G) =

γi(GHG), (4.49)

where γi is an eigenvalue and GH is the complex conjugate transpose of G. A maximum singular

value is denoted by σ̄ and a minimum singular value is denoted by
¯
σ. �

In this subsection, the H∞ norm will be implemented to specify a peak gain of a transfer function

matrix. The definition of the H∞ norm is given in the following.

Definition 4.3. [54–56] Consider a proper linear asymptotically stable system G(s), whose

frequency response is G(jω). The H∞ norm of G(s) is equal to

∥G(s)∥∞ = max
ω

σ̄(G(jω)), (4.50)

where ∥ · ∥∞ denotes the H∞ norm. �

A closed-loop system consisting of (4.32) and a feedback control law u(t) = Kx(t) as defined in

(3.11) is as follows:


ẋ(t) = (A+BK)x(t)+Txs(t),

ẋs(t) = (BsK +Ts)x(t)+Asxs(t).
(4.51)

Denote the Laplace transforms of x(t) and xs(t) by X(s) and Xs(s), respectively. From the

state-space model above, the transfer function matrices Ginv(s) from Xs(s) to X(s) and Gs(s)
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from X(s) to Xs(s) are derived as follows:

Ginv(s) = (sI −A−BK)−1T ,

Gs(s) = (sI −As)−1(BsK +Ts),
(4.52)

where Ginv(s) is a 3n×3 transfer function matrix, and Gs(s) is a 3×3n transfer function matrix.

The interconnected system (4.51) can be considered as a feedback connection between inverters

and the dynamic load S as shown in Figure 4.6.

FIGURE 4.6: Feedback connection between inverters and a dynamic load S.

The feedback connection in Figure 4.6 can be rearranged as displayed in Figure 4.7.

FIGURE 4.7: Rearranged feedback connection between inverters and a dynamic load S.

In Figure 4.7, the two states x′ and x′s are introduced only for the theory presentation. Let X′(s)

and X′
s(s) be the Laplace transforms of x′ and x′s, respectively. Denote the transfer function

matrices from X′
s(s) to X′(s) and from X′(s) to X′

s(s) by G′
inv(s) and G′

s(s), respectively. Then,

G′
inv(s) = (BsK +Ts)(sI −A−BK)−1,

G′
s(s) = T(sI −As)−1.

(4.53)

As the eigenvalues of matrix As are assumed to be in the open left-half plane. This indicates the

asymptotic stability of the system G′
s(s) = T(sI −As)−1, where T in (4.53) is a constant matrix.

H∞ norms of (sI −As)−1 and T(sI −As)−1 are defined.

According to the small-gain theorem, see e.g., [55, 57, 89], the feedback connection in Figure

4.7b is asymptotically stable if:


G′

inv(s) and G′
s(s) are asymptotically stable,

∥G′
inv(s)G

′
s(s)∥∞ < 1.

(4.54)
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Let γ′
inv = ∥G′

inv(s)∥∞ and γ′
s = ∥G′

s(s)∥∞. A more conservative version of the small-gain

theorem (4.54) is inferred as follows:





G′
inv(s) and G′

s(s) are asymptotically stable,

∥G′
inv(s)∥∞ <

1

∥G′
s(s)∥∞

⇔ γ′
inv <

1

γ′
s
.

(4.55)

Remark 4.4.1. The stability condition (4.54) concerns the frequency response of the overall

system along the frequency axis, whereas the condition (4.55) involves the maximal gains γ′
inv

and γ′
s of different separate parts of the system. Therefore, the stability condition (4.55) is a

more conservative version of the small-gain theorem. H∞ norm is submultiplicative, i.e. for

asymptotically stable G′
inv(s) and G′

s(s), ∥G′
inv(s)G

′
s(s)∥∞ ≤ ∥G′

inv(s)∥∞∥G′
s(s)∥∞. This leads

to a more conservative result in the controller design presented hereafter.

With the assumption on the asymptotic stability of G′
s(s), if the controller K asymptotically

stabilizes G′
inv(s) and decreases γ′

inv so that the condition (4.55) is satisfied, the feedback connec-

tion between inverters and the dynamic load S in Figure 4.7b will be asymptotically stable.

Via the following theorem, an LMI-based controller design is proposed, which guarantees the

asymptotic stability of G′
inv(s), and simultaneously restricts the H∞ norm γ′

inv = ∥G′
inv(s)∥∞ so

that γ′
inv < γmax <

1
γ′

s
.

Theorem 4.4. Consider the transfer function matrix G′
inv(s) in (4.53). Let Pii ∈ R3×3, i =

1, . . . ,n, be symmetric positive definite matrices and P = diag(P11, . . . ,Pnn) ∈ R3n×3n, where n

is the number of inverters in the microgrid. Define the variables X and Y as in (3.16). Then,

a block-diagonal controller K = YX−1 ∈ R2n×3n guarantees the asymptotic stability of G′
inv(s),

and the H∞ norm ∥G′
inv(s)∥∞ = γ′

inv is less than an optimization objective γmax > 0 if the

following LMI is feasible:




AX+BY+(AX+BY)T I (BsY+TsX)T

I −γmaxI 0

BsY+TsX 0 −γmaxI


< 0. (4.56)

Proof. The proof of Theorem 4.4 is based on the Bounded Real Lemma, see e.g., [54, 135],

which implies that for a system represented by a quadruple of matrices (A,B,C,D), whose

transfer function matrix is G(s) = C(sI − A)−1B + D, the matrix A is Hurwitz and the H∞

norm ∥G(s)∥∞ is less than γmax if and only if there exists a symmetric positive definite matrix

P such that:




ATP+PA PB CT

BTP −γmaxI DT

C D −γmaxI


< 0. (4.57)
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If the matrix inequality above is satisfied with some symmetric P > 0, then (ATP+PA) is also

negative definite, which indicates that all the eigenvalues of A obtain negative real parts, i.e., A

is a Hurwitz matrix by Definition 2.6.

By applying the Bounded Real Lemma to the transfer function matrix G′
inv(s) in (4.53), finding

γmax > 0 such that G′
inv(s) is asymptotically stable and ∥G′

inv(s)∥∞ = γ′
inv < γmax is equivalent

to checking the feasibility of the following matrix inequality:




(A+BK)TP+P(A+BK) P (BsK +Ts)T

P −γmaxI 0

BsK +Ts 0 −γmaxI


< 0. (4.58)

The matrix inequality (4.58) cannot be solved directly by available LMI tools because of the

products of variables in P(A+BK). By pre- and post-multiplying (4.58) by a symmetric positive

definite matrix diag(P−1, I, I), where P is a block-diagonal matrix, the following is derived

equivalently to (4.58):




P−1(A+BK)T +(A+BK)P−1 I P−1(BsK +Ts)T

I −γmaxI 0

(BsK +Ts)P−1 0 −γmaxI


< 0. (4.59)

Then, by using the variable transformations P−1 = X and KP−1 = Y as defined in (3.16),

the LMI (4.56) is derived equivalently to (4.59). Note that this change of variables does not

introduce any conservatism to the LMI.

If the LMI (4.56) is feasible with X > 0 and γmax > 0, the matrix inequality (4.58) is also

feasible, which infers that (A+BK)TP+P(A+BK) < 0, P > 0. This infers the asymptotic

stability of the closed-loop inverter system.

Additionally, by virtue of the Bounded Real Lemma, if the LMI (4.56) is feasible, the H∞ norm

∥G′
inv(s)∥∞ = γ′

inv satisfies 0 ≤ γ′
inv < γmax. The theorem is proved.

In the feedback connection in Figure 4.7b, the H∞ norm ∥G′
s(s)∥∞ = γ′

s can be calculated in

advance. By solving the LMI (4.56) with γmax such that 0 < γmax <
1
γ′

s
, a feasible controller will

guarantee the asymptotic stability of the inverter closed-loop system and force the H∞ norm γ′
inv

to be less than γmax < 1
γ′

s
. According to the small-gain theorem (4.55), the asymptotic stability

of the overall microgrid (4.51) is guaranteed as γ′
invγ

′
s < γmaxγ′

s < 1.
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The LMI optimization problem can be summarized as follows:

minimize γmax such that





LMI (4.56) is feasible over X and Y,

X and Y are defined as in (3.16),

X > 0,

0 < γmax <
1

γ′
s
=

1

∥G′
s(s)∥∞

.

(4.60)

Remark 4.4.2. Because of the block-diagonal structure of X and Y, the LMI (4.56) is a sufficient

condition of the matrix inequality (4.58). Furthermore, the LMI condition (4.56) becomes more

conservative if γmax decreases.

4.5 Simulation study

In this section, an academic example is provided to validate the effectiveness of the proposed

system modeling and the two LMI optimization problems to design inverter controllers. Consider

the microgrid shown in Figure 4.8, which consists of two inverters, constant impedance loads

and an induction machine S. Parameters of the test system are provided in Table 4.1. In the

simulation, a large industrial induction machine is adopted with parameters recommended by

the IEEE in [136].

Inverter 1 ZL

Z12Z11

ZL

Z21 Z22

ZL
Inverter 2ZL11 221 2

S

FIGURE 4.8: Test system with two inverters, impedance loads and an induction machine S.

The linearized model of the overall microgrid (4.32) is obtained (see Appendix A.5). After the

linearization, the asymptotic stability of G′
s(s) is verified by checking whether As is a Hurwitz

matrix. For this particular example, As is Hurwitz with eigenvalues in the range [−1.3814±
j6.2930,−0.008] and G′

s(s) is asymptotically stable. The maximum singular value of G′
s(jω) is

calculated. In this example, the peak gain of G′
s(jω) is γ′

s = 8.75 (see Figure 4.9), which is equal

to the H∞ norm of G′
s(s) as G′

s(s) is asymptotically stable.

For comparison purpose, inverter controllers will be designed by solving the two LMI opti-

mization problems (4.48) and (4.60). The LMI problems are solved by using the Yalmip toolbox

and SeDuMi solver in Matlab. By solving the LMI optimization problem (4.48), the following
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TABLE 4.1: Test system parameters for simulation with dynamic loads

Voltages and V10
= 1029[V] δ10

= 0.005[rad]
phase angles V20

= 1030+1.3i[V] δ20
= 0.0035[rad]

Active and P̃10
= 16.7[kW] Q̃10

= 31.4[kVar]
reactive powers P̃20

= 19.5[kW] Q̃20
= 34.8[kVar]

Nominal frequency ωnom = 2πfbase[rad/s] fbase = 50[Hz]
Base values Sbase = 10.8[MVA] Vbase = 1030[V]

Zbase = 0.09823[Ω] δbase = 1[rad]
ωbase = ωnom Lbase = 0.00031[H]

Load Z11 = 58+ i10.8[Ω] Z21 = 45+ i28[Ω]
impedances Z12 = 25+ i25[Ω] Z22 = 28+ i23[Ω]

Line impedances ZL1 = 0.3+ i0.3[Ω] ZL2 = 0.3+ i0.3[Ω]
ZL11 = 0.3+ i0.3[Ω] ZL22 = 0.3+ i0.3[Ω]

Inertia constants H1 = 0.6 H2 = 0.8
Filter parameter τ1 = 0.0265[s] τ2 = 0.0265[s]

Polynomial model p11
= p12

= 0.4,p13
= 0.2 q11

= q12
= 0.4,q13

= 0.2
p21

= p22
= 0.3,p23

= 0.4 q21
= q22

= 0.3,q23
= 0.4

Induction machine Rs = 0.1277[Ω] Ls = 0.0021[H]
parameters Rr = 0.0884[Ω] Lr = 0.0053[H]

Hs = 1.5[J(kg.m2)] Lm = 0.1188[H]
ωr0 = 2π49.8[rad/s] ar = 1,br = 0,cr = 0
Tm0 = 200[N.m]

inverter controllers are obtained with γ = 0.0001:

K1 =


−41.0218 0.0806 −6.3772

0.0381 −0.0010 −0.0001


, K2 =


−41.3265 1.8712 −4.5181

−0.0342 −0.0008 −0.0001


, (4.61)

and their equivalences in actual quantities are as follows:

K1 =


−41.02[ 1

s ] 0.74 ·10−5[ rad
skW ] −6.38 ·10−4[ rad

skVar ]

39.15[ V
rad ] −10−4[ V

kW ] −10−5[ V
kVar ]


,

K2 =


−41.33[ 1

s ] 1.73 ·10−4[ rad
skW ] −4.16 ·10−4[ rad

skVar ]

−35.22[ V
rad ] −7.5 ·10−5[ V

kW ] −10−5[ V
kVar ]


.

(4.62)

The maximum gain γ′
s of the transfer function matrix G′

s(s) should be computed before solving

the LMI problem (4.60). In this example, γ′
s = 8.75. By solving the LMI optimization problem

(4.60), the following inverter controllers are derived with γmax = 0.098:

K1 =


−10.1229 2.1384 −10.9608

−0.0562 1.3916 0.2047


, K2 =


−13.9681 1.3435 −5.4928

−0.0619 1.3386 0.2092


, (4.63)
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and their equivalences in actual quantities are as follows:

K1=


−10.13[ 1

s ]1.95·10−4[ rad
skW ]−10−3[ rad

skVar]

−57.9[ V
rad ] 0.132[ V

kW ] 0.0195[ V
kVar ]


,K2=


−14[ 1

s ] 1.2·10−4[ rad
skW ]−0.5·10−3[ rad

skVar ]

−63.8[ V
rad ] 0.128[ V

kW ] 0.02[ V
kVar ]


.

(4.64)

The inverter controllers (4.64) force the H∞ norm γ′
inv = 0.061<γmax < 0.1143= 1

γ′
s
. According

to the small-gain theorem, K1,K2 in (4.64) guarantee the asymptotic stability of the closed-loop

microgrid in Figure 4.7b. Maximum singular values of the frequency responses G′
inv(jω) and

G′
s(jω), where G′

inv(jω) is calculated with the controllers (4.64), are presented in Figure 4.9.
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FIGURE 4.9: Maximum singular values of the frequency responses G′
inv(jω) and G′

s(jω).

Simulation is conducted in Matlab with the two controller pairs (4.62) and (4.64). A sequence

of discrete events separated by time intervals is included in the simulation according to the

following scenario: initially, Z11,Z21 and the induction machine are connected to the system; at

t = 25[s], the mechanical torque of the induction machine is increased; at t = 50[s] and t = 75[s],

Z12 and Z22 are successively connected to the system in the written order.

The simulation results with the controller pair (4.62) are presented in Figure 4.10. Figure 4.11

shows the simulation results of the system with the controller pair (4.64). It is seen that the

microgrid is robustly stabilized under load uncertainties and load dynamics by both controller

pairs.

At t = 25[s], the mechanical torque Tm is changed, which indicates an increase of the power

consumed by the induction machine. Consequently, the rotor speed is slightly changed and

reaches a new equilibrium. Because of the change of the machine mechanical torque, there

are transient oscillations of the rotor speed and the electrical torque. These oscillations cause

slight oscillations of the inverter variables (voltage magnitudes and frequencies). This effect

demonstrates the feedback influence of dynamic loads of the system stability.
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FIGURE 4.10: Transfer processes of the test system with the controller pair (4.62).
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FIGURE 4.11: Transfer processes of the test system with the controller pair (4.64).
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It is seen in Figures 4.10 and 4.11 that inverter output frequencies robustly converge to the

nominal value, while voltage magnitudes vary around their nominal values. Because of load

changes, steady-state deviations of voltage magnitudes are experienced. Steady-state deviations

of voltage magnitudes caused by the controller pair (4.62) are relatively small. However, with

the controller pair (4.64), the maximal steady-state magnitude deviation of voltages is approxi-

mately 8[V]. Hence, voltage performance of the controller pair (4.64), designed by implement-

ing the small-gain theorem (4.55), is worse compared to the controller pair (4.62), which is

reflected by larger voltage magnitude deviations. Worse performance of the controller pair (4.64)

can be explained by the conservatism of the small-gain theorem mentioned in Remark 4.4.1.

Although magnitude deviation of 8[V] is still acceptable for most of conventional loads, there

exists a possibility that (steady-state) magnitude deviations of voltages become even larger if

larger load changes are applied to the system. Voltage performance will be considered in Chapter

5 to reduce steady-state magnitude deviations of voltages, which are caused by uncertainties.

Steady-state magnitude deviations of voltages in the simulations illustrate the motivation for the

use of the polynomial (voltage dependent) load model (4.2).

4.6 Summary

Load modeling has been investigated in the sense of voltage dependence and feedback influence

of load dynamics. A combination of a polynomial load model and an induction machine model

was chosen for load modeling in stability analysis of microgrids. A standard model of an

induction machine was presented. An induction machine is considered as an active node in

a microgrid. Based on the assumption on the Center of inertia and the implementation of several

variable replacements, a modified model of an induction machine was proposed, which can be

combined with the inverter model. A linearized state-space model of an overall microgrid was

derived, which shows the interconnection between loads and inverters.

Two separate LMI stability conditions based on Lyapunov’s stability theorem and the small-gain

theorem were proposed to guarantee the asymptotic stability of the overall microgrid with

dynamic loads. An academic example was presented to validate the system modeling and the

effectiveness of the LMI stability conditions. The simulation results show that the overall system

is robustly stabilized against load dynamics and load changes.

Thus far, the stability of microgrids against load dynamics and small load changes has been

investigated. In the following, the control goal is extended so that microgrids must be stabilized,

being subjected to larger load and line uncertainties. At the same time, inverters must still

provide sufficient performance of voltages and frequencies to supply connected loads.



Chapter 5

Voltage performance control based on

H∞ control technique

In previous chapters, LMI stability conditions were proposed to design decentralized controllers

of inverters in a microgrid, which asymptotically stabilize the inverters as well as compensate

the feedback influence of dynamic loads on the overall system stability. The control approach

guarantees zero steady-state frequency deviations. However, the voltage magnitude is defined

as a control input of the power control loop of an inverter and should vary around a nominal

value to modify the output power. Therefore, if a microgrid is subjected to load uncertainties

during operation, these can negatively affect the stability of the system as well as the voltage

performance in the sense of magnitude deviations and higher-frequency harmonics.

As reported in detail in literature [33, 70, 76, 137–141], voltages in power systems can contain

higher-frequency harmonics, which are caused by the nonlinear nature of loads. Besides, it is

seen in Equation (3.15) that load changes cause variations of voltage magnitudes. As stated

in Chapter 2, according to grid-code requirements, see e.g., [59, 60], magnitude deviations of

voltages as well as their total harmonic distortions (THD) should not exceed acceptable limits

to sustain smooth and secure functionality of connected loads [142–144].

In this chapter, the robust stability of a microgrid and the robust performance of inverter output

voltages are studied in the H∞ control framework [54–56, 89]. First, a model of a microgrid

with uncertainties is proposed. An additive model uncertainty caused by uncertain admittances

in a microgrid is introduced. The H∞ control technique used in this chapter requires that model

uncertainty must be asymptotically stable [54, 56, 89]. In order to ensure that the considered

model uncertainty is asymptotically stable, the inverter model (3.3) is slightly modified via a

modification of the power control loop in Chapter 3 (see Figure 3.1). Accordingly, a modified

inverter model is introduced and implemented in the H∞ control in this chapter. Furthermore,

a general control problem is formulated, where a generalized plant model of a microgrid with

73
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possible uncertainties is presented. For robust controller design purpose, weight functions are

introduced in the generalized plant model of a microgrid in order to specify requirements on the

system robustness and the voltage performance. By using the H∞ control technique, conditions

for the robust stability and robust performance of a microgrid are introduced. Based on an H∞

norm condition for robust performance, an LMI optimization problem is proposed. The LMI

problem is relatively conservative. However, by solving a single LMI optimization problem,

resulting decentralized inverter controllers simultaneously target several control goals: nominal

stability, robust stability against model uncertainty, robust performance of voltage magnitudes

against model uncertainty and changes of reference inputs (by a higher control level).

Remark 5.0.1. There exists a special H∞ problem called the normalized left coprime factoriza-

tion (NLCF), see e.g. [55] for more details. The NLCF design does not require asymptotically

stable model uncertainties, which is an advantage over the standard H∞ problem implemented

in this chapter. A resulting controller K(s) of the NLCF design has the following form [55]:

K(s) = We(s)Kw(s)Wa(s), (5.1)

where Kw(s) is a resulting transfer function matrix of a suboptimal H∞ problem, We(s) and

Wa(s) are weighting transfer function matrices. In general K(s) in (5.1) is a dynamic controller,

unless We, Wa are restricted to be constant real and a constant real Kw is derived. However, as

a static controller with a predefined structure is designed in this chapter, the NLCF method is,

therefore, not further investigated.

Regarding the voltage THD issue, by selecting suitable weight functions for voltages, resulting

inverter controllers can reduce their higher-harmonic components. However, as the stability and

performance analysis in this chapter is provided based on a linearized system model, no further

statement can be made about the THD of inverter output voltages.

5.1 Modeling of microgrids with uncertainties

During operation microgrids can be perturbed by many factors, which may cause system instabil-

ity and insufficient voltage performance. Thus, inverter controllers must compensate possible

uncertainties. In order to include uncertainties in controller design, a model of microgrids

with uncertainties is developed in this section. A derived system model allows to propose a

controller design for robust stability and robust performance in the next section. The considered

uncertainties are an additive uncertainty (a model uncertainty), which represents parametric

uncertainties of loads and lines, and reference input changes by a higher control level (a distur-

bance input, i.e., signal uncertainty).
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An additive model uncertainty represents an influence of impedance changes on stability of a

microgrid. Load and line conditions of a microgrid can be arbitrarily changed during operation,

which result in uncertain admittance matrices with elements (Yik +∆Yik), i,k = 1, . . . ,n. ∆Yik

physically represents variations of loads and lines from their initial values Yik. Accordingly,

power flow equations with uncertain admittances can be derived similarly to the nominal power

flow equations (2.9) by replacing Yik by (Yik +∆Yik), i,k = 1 . . . ,n.

As will be shown later in this section, in order to derive a model uncertainty, which is caused by

uncertain admittances ∆Yik, i,k = 1, . . . ,n, power flow equations (2.9) will be linearized around

a nominal equilibrium point. A resulting transfer function matrix is a matrix sum of a nominal

transfer function matrix and an additive uncertainty. The asymptotic stability of an uncertain

system under an additive uncertainty can be directly assessed if the transfer function matrices of

both nominal and uncertain systems are asymptotically stable. For this purpose, a modification

of the power control loop in Figure 3.1 is made. A new power control loop is presented in Figure

5.1.
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FIGURE 5.1: A modified power control loop of an inverter.

It is seen that the control loop in Figure 5.1 consists of an additional subordinate control loop

for the first control input ui1(t). This is also the only difference between the two control loops in

Figure 3.1 and Figure 5.1. Based on the power control loop in Figure 5.1, the transfer function

of the subordinate control loop is calculated as follows:

Gsub(s) =
κi

s+κi
, (5.2)

where κi ∈ R, κi > 0. The constant κi is chosen to be positive so that the subordinate control

loop Gsub(s) is asymptotically stable.

Hence, the subordinate control loop (5.2) replaces the integrator in (3.3), which causes zero

eigenvalues of the open-loop microgrid (3.6). Based on the inverter model (3.3) and the subordi-
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nate control loop (5.2), a modified inverter model is derived as follows:





δ̇i =−κi(δi − δi0)+κiui1 ,

˙̃Pi =
−P̃i +Pi(V1, . . . ,Vn,δ1, . . . ,δn)

τi
,

˙̃Qi =
−Q̃i +Qi(V1, . . . ,Vn,δ1, . . . ,δn)

τi
.

(5.3)

A state variable xi(t) and an output yi(t) of the inverter model above are chosen as in (3.4),

except the control inputs ui(t) and u(t), which become as follows:

ui(t) = [ui1 Vi −Vi0 ]
T , u(t) = [u1(t)

T . . . un(t)T ]T . (5.4)

By linearizing the modified inverter model (5.3) around the equilibrium point (3.5), the following

LTI state-space model of a microgrid is derived:


ẋ(t) = Ãx(t)+ B̃u(t),

y(t) = Cx(t) = x(t),
(5.5)

and an inverter i is associated to one subsystem of (5.5) with the following state-space model:

ẋi(t) = Ãiixi(t)+ B̃iiui(t)+
n

k=1
k ̸=i


Aikxk(t)+Bikuk(t)


, i = 1, . . . ,n, (5.6)

where Ã ∈ R3n×3n, B̃ ∈ R3n×2n,C = I3n×3n is an identity matrix, and

Ãii =




−κi 0 0
∂Pi
τi∂δi


0

−1
τi

0

∂Qi
τi∂δi


0

0 −1
τi


 , B̃ii =




κi 0

0 ∂Pi
τi∂Vi


0

0 ∂Qi
τi∂Vi


0


 , Aik =




0 0 0
∂Pi
τi∂δk


0

0 0

∂Qi
τi∂δk


0

0 0


 , Bik =




0 0

0 ∂Pi
τi∂Vk


0

0 ∂Qi
τi∂Vk


0


 .

(5.7)

It is seen in (5.7) that Aik and Bik remain unchanged, compared to (3.8). However, matrices Ãii

and B̃ii are different from Aii and Bii in (3.8). Moreover, Ã and Ãii, i = 1, . . . ,n, are Hurwitz

matrices (with κi > 0).

As mentioned above, in order to derive a model uncertainty, which is caused by uncertain

admittances, Yik in the power flow equations (2.9) are replaced by (Yik +∆Yik), i,k = 1 . . . ,n.

By linearizing the inverter model (5.3) with the derived uncertain power flow equations around

the nominal equilibrium (3.5), the following uncertain system is obtained:


ẋ(t) = (Ã+∆Ã)x(t)+(B̃+∆B̃)u(t),

yd(t) = x(t),
(5.8)



Chapter 5. Voltage performance control based on H∞ control technique 77

where ∆Ã ∈ R3n×3n and ∆B̃ ∈ R3n×2n are caused by uncertain admittances, and yd(t) is the

output of the uncertain system.

Denote the block-diagonal and block off-diagonal parts of ∆Ã,∆B̃ by ∆Ãii,∆B̃ii and ∆Aik,∆Bik,

i ̸= k, respectively. It is seen in (5.7) that parameters of the power flow equations (2.9) only

affect the matrix elements Ãii,21, Ãii,31, B̃ii,22, B̃ii,32, Aik,21, Aik,31, Bik,22 and Bik,32. Consequently,

submatrices of ∆Ã and ∆B̃ have the following structures:

∆Ãii =




0 0 0

∗ 0 0

∗ 0 0


 , ∆B̃ii =




0 0

0 ∗

0 ∗


 , ∆Aik =




0 0 0

∗ 0 0

∗ 0 0


 , ∆Bik =




0 0

0 ∗

0 ∗


 , (5.9)

where i,k = 1, . . . ,n, i ̸= k and ∗ denotes matrix elements, which can be zero or nonzero.

Based on the structures of Ã and ∆Ã, whose submatrices are presented in (5.7) and (5.9),

respectively, it is seen that (Ã+∆Ã) is also a Hurwitz matrix, which implies the asymptotic

stability of the uncertain system (5.8).

Remark 5.1.1. By considering the uncertain state-space model (5.8), the fact is neglected that

with different load conditions, the system obtains different equilibrium points. However, the

system variables x(t), u(t), yd(t) are defined relative to the nominal equilibrium point (3.5).

From (5.8) the following transfer function matrix of an uncertain microgrid is derived:

G̃∆(s) = (sI − Ã−∆Ã)−1(B̃+∆B̃), (5.10)

where G̃∆(s) is a 3n×2n transfer function matrix of the asymptotically stable uncertain system.

In order to separate G̃∆(s) into a nominal transfer function matrix and an uncertain part, the

following lemma is implemented.

Lemma 5.1. [54] Let A be a square matrix partitioned as follows:

A=


A11 A12

A21 A22


,

where A11 and A22 are also square matrices. Suppose A11 and A22 are both nonsingular

matrices, then

(A11 −A12A−1
22 A21)

−1 =A−1
11 +A−1

11 A12(A22 −A21A−1
11 A12)

−1A21A−1
11 . (5.11)

�
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Apply Lemma 5.1 to (sI − Ã−∆Ã)−1, where

A11 = sI − Ã, A12 =∆Ã, A21 =A22 = I3n×3n, (5.12)

the following is derived:

(sI − Ã−∆Ã)−1 = (sI − Ã)−1 +(sI − Ã)−1∆Ã


I − (sI − Ã)−1∆Ã
−1

(sI − Ã)−1. (5.13)

Plugging (5.13) into (5.10) yields the following:

G̃∆(s) = (sI − Ã−∆Ã)−1(B̃+∆B̃)

=

(sI − Ã)−1 +(sI − Ã)−1∆Ã


I − (sI − Ã)−1∆Ã

−1
(sI − Ã)−1


(B̃+∆B̃)

= (sI − Ã)−1B̃  
= G̃(s)

+(sI − Ã)−1∆B̃+(sI − Ã)−1∆Ã

I − (sI − Ã)−1∆Ã

−1
(sI − Ã)−1(B̃+∆B̃)

  
:= ∆̃(s)

,

(5.14)

where G̃(s) is the transfer function matrix of the nominal system (5.5), ∆̃(s) is an additive

uncertainty. Note that with the defined structures of ∆Ã and ∆B̃ in (5.9), ∆̃(s) is a structured

uncertainty.

As ∆̃(s) = G̃∆(s)− G̃(s), where G̃∆(s) and G̃(s) are both asymptotically stable, ∆̃(s) is an

asymptotically stable additive uncertainty. Note that an asymptotically stable uncertainty is a

prerequisite for the implementation of the classical H∞ control.

Consider the test microgrid in Figure 3.2. A nominal transfer function matrix G̃(s) is derived

with parameters in Table 3.1. Then, by varying load and line admittances, different cases of

∆̃(s) are derived. Accordingly, different singular values of ∆̃(jω) are obtained, some of which

are presented in Figure 5.2. Remind that ∆̃(s) is a 3n×2n transfer function matrix, ∆̃(jω) has,

therefore, 2n singular values. Maximum singular values of ∆̃(jω) associated to different load

and line variations are denoted by the square symbols on the vertical axis of Figure 5.2.

A closed-loop microgrid with an additive uncertainty ∆̃(s) is shown in Figure 5.3, where Y(s),

U(s), Yd(s), R(s), E(s) are the nominal system output, control input, perturbed system output,

reference input and error, respectively.

At the power control level, inverters obtain reference inputs for their active and reactive power

outputs. However, power references may not be equal to steady-state power outputs of inverters.

The reason is, that with a static feedback controller K, an ideal reference tracking of output

power is normally not achieved, unless the microgrid operates at an equilibrium point, where

the power references are given. In addition, power reference inputs can be assigned on purpose

by a higher control level, e.g., power management level, in order to accomplish an optimal
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FIGURE 5.3: Closed-loop microgrid with an additive uncertainty.

system operation. For instance, power references are assigned to reduce mismatches between

power references and output power. As a result, steady-state magnitude deviations of inverter

output voltages from their nominal values can be decreased (see Equation (3.15)).

Thus, with a static controller K, power mismatches exist in most cases. The larger power

mismatches are, the larger steady-state deviations of inverter output voltages become (see (3.15)).

Reference changes (by a higher control level) and differences between power references and

output power must be considered as a disturbance source on the performance of inverter output

voltages. It should be mentioned that the system stability is only affected by ∆̃(s), while the

performance of voltage magnitudes is affected by both ∆̃(s) and reference changes.

5.2 H∞ control for microgrids with uncertainties

In the following, a system model with the aforementioned model uncertainty and disturbance

input is proposed. Requirements on robustness and voltage performance are introduced in the

framework by adding artificial weight functions to a generalized plant model of the system.

Based on the H∞ control technique, conditions for robust stability and robust performance are

presented. The generalized plant model of the system with weight functions and disturbances

will be given in Laplace domain, then a state-space realization is obtained. In the next section,
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the derived state-space model allows to present a controller synthesis, which guarantees the

robust stability of a microgrid and the robust performance of inverter output voltages.

It is noteworthy that the worst case scenario of the model uncertainty ∆̃(s) is considered, i.e. the

structure of ∆̃(s) is neglected. It is consistent with the H∞ control technique, which considers

the system stability with respect to the worst case model uncertainty [145].

5.2.1 General control problem formulation

In H∞ control it is preferable to reflect the knowledge of uncertainties and the system perfor-

mance objectives by choosing appropriate weight functions. Thus, let ∆̃(s) defined in (5.14) be

decomposed as:

∆̃(s) = ∆(s)WT(s), ∥∆∥∞ < 1, (5.15)

where WT(s) is a 2n×2n weight function matrix of load uncertainties, which are now represented

by an uncertainty ∆(s). ∆(s) and WT(s) are selected to be asymptotically stable. Note that ∆(s)

and ∆̃(s) are 3n×2n matrices as G̃(s) and G̃∆(s).

Remark 5.2.1. There are different possibilities to weight ∆̃(s), such as WT1(s)∆(s)WT2(s) or

WT(s)∆(s) [56]. It is not straightforward to state which one suits best. However, the presented

theory works for all cases.

A feedback system with possible uncertainties is displayed in Figure 5.4, where G̃(s) consists

of the interconnected inverters and K is the controller. The variables U(s),Y(s),Yd(s), and E(s)

are control input, nominal plant output, perturbed plant output, and error, respectively. Vd(s)

and Ud(s) are the input and output of ∆(s), and R(s) is a reference input. WU(s), WE(s) and

WT(s) are weight functions, whose choice will be explained in the next subsection. Finally,

Z1(s), Z2(s) are performance outputs.
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Z1

Yd

∆

Y

Vd
WU(s)

E

Ud

R=W

+
+

+
-

WT(s)

K

~

Z2
WE(s)

FIGURE 5.4: Feedback system with possible disturbances.

Concerning notation, capital and lower-case letters denote identical variables in the Laplace and

time domain, respectively.
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The reference input W(s) = R(s) and the performance outputs Z1(s), Z2(s) are introduced for

controller design purpose. It is seen from Figure 5.4 that Z1(s) = WU(s)U(s) is a weighted

control input, where the control input U(s) consists of frequency and voltage deviations of all

inverters (see (5.4)). Furthermore, Z2(s) = WE(s)E(s) is a weighted control error, where E(s)

represents differences between system outputs, i.e. voltage phase angles and power outputs

of inverters, and there reference inputs. Note that frequency deviations from a nominal value,

e.g. 2π50 [rad/s], only happen during transients in the system, whereas steady-state voltage

deviations can exist, depending on the control error E(s). It will be clear later in this chapter

that the objective of the H∞ control is to minimize the H∞ norm from the disturbance input

Ud(s) and the reference input R(s) to the performance outputs Z1(s) and Z2(s).

The state variable x(t) is defined as in (3.4), while the control input u(t) of the inverters is defined

in (5.4). The nominal output of the inverter plant G̃(s) is defined as y(t) = x(t). The variables

w(t), ud(t), z1(t) and z2(t) are defined in the time domain as follows:

wi = ri ∈ R3×1, w = [wT
1 , . . . ,wT

n ]
T ∈ R3n×1,

udi ∈ R3×1, ud = [uT
d1

, . . . ,uT
dn
]T ∈ R3n×1,

z1i ∈ R2×1, z1 = [zT
11

, . . . ,zT
1n
]T ∈ R2n×1,

z2i ∈ R3×1, z2 = [zT
21

, . . . ,zT
2n
]T ∈ R3n×1,

(5.16)

where the variables indicated by an index i are associated to an inverter i.

The system in Figure 5.4 can be displayed equivalently by a general control configuration for

controller synthesis presented in Figure 5.5, where P(s) itself includes the transfer function

matrix G̃(s) and the weight functions [56]. P(s) is called a generalized plant model.

P(s)

K
UE

W
Z1

Δ
UdVd

Z2

FIGURE 5.5: General control configuration.

The transfer function matrix P(s) is derived from Figure 5.4 by the following relations:

Vd(s) = WT(s)U(s),

Z1(s) = WU(s)U(s),

Z2(s) = WE(s)E(s) = WE(s)

−W(s)+Ud(s)+Y(s)


,

E(s) =−W(s)+Ud(s)+ G̃(s)U(s),

(5.17)
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which infer the following:




Vd(s)

Z1(s)

Z2(s)

E(s)




=




0 0 WT(s)

0 0 WU(s)

WE(s) −WE(s) WE(s)G̃(s)

I −I G̃(s)




  
:= P(s)




Ud(s)

W(s)

U(s)



=


P11(s) P12(s)

P21(s) P22(s)







Ud(s)

W(s)

U(s)




.

(5.18)

Alternatively, the system in Figure 5.5 can be represented by the N∆-structure in Figure 5.6,

where N(s) is related to P(s) and K by a lower linear fractional transformation as follows:

Fl(P,K) = N(s) = P11(s)+P12(s)K

I −P22(s)K

−1
P21(s)

=




WT(s)KS(s) −WT(s)KS(s)

WU(s)KS(s) −WU(s)KS(s)

WE(s)S(s) −WE(s)S(s)




,
(5.19)

where S(s) =

I − G̃(s)K

−1
is the sensitivity of the system [56]. Note that the negative sign in

S(s) is caused by the fact that the feedback signal in Figure 5.4 is positive.

W

Z1

Δ
UdVd

N(s)

Z2

FIGURE 5.6: N∆-structure for performance analysis.

The upper left block N11(s) of N(s) in (5.19) is the transfer function matrix from Ud(s) to

Vd(s). Hence, in order to analyze the robust stability of the system in Figure 5.4, the system is

rearranged into the M∆-structure presented in Figure 5.7 [56], where

M(s) = N11(s) = WT(s)KS(s). (5.20)

UdVd
Δ

M(s)

FIGURE 5.7: M∆-structure for robust stability analysis.

According to the small-gain theorem (4.54), the system in Figure 5.7 is asymptotically stable if

M(s) and ∆ are asymptotically stable and the system gain is less than 1, i.e., ∥M(s)∆∥∞ < 1.
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With ∥∆∥∞ < 1, the system in Figure 5.7 is robustly stable if:

∥M(s)∥∞ ≤ 1. (5.21)

It should be noted that the robust stability condition (5.21) includes some conservatism in the

sense that the structure of the model uncertainty ∆ is ignored.

For performance analysis, the N∆-structure in Figure 5.6 is considered. In (5.19) the lower

right blocks N22(s) and N32(s) of N(s) are the transfer function matrices from W(s) to Z1(s)

and Z2(s), respectively. The system nominal performance (when ∆= 0) is guaranteed if N(s) is

asymptotically stable and the H∞ norm of the transfer function matrix from W(s) to Z1(s) and

Z2(s) is less than 1 [56]. The condition for nominal performance is as follows:





N(s) is asymptotically stable,


N22(s)

N32(s)


∞

=




−WU(s)KS(s)

−WE(s)S(s)


∞

< 1.
(5.22)

Note that WU(s) and WE(s) are chosen, so that the condition (5.22) corresponds to desired

performance goals.

Furthermore, in Figure 5.6, the uncertain closed-loop transfer function matrix from W(s) to

Z1(s) and Z2(s) is related to N(s) and ∆ by an upper linear fractional transformation as follows

[56]:

Fu(N,∆) =


N22(s)

N32(s)


+


N21(s)

N31(s)


∆(I −N11∆)−1N12. (5.23)

The robust performance property of the system in Figure 5.6 is achieved if and only if N(s) is

asymptotically stable and the following condition is satisfied [56]:

∥Fu(N,∆)∥∞ ≤ 1, ∀∥∆∥∞ < 1. (5.24)

In [56] it is shown that the robust performance condition (5.24) is equivalent to a condition,

which is related to a value called the structured singular value. Therefore, the definition of the

structured singular value is given hereafter.

Definition 5.2. [56, 146] Let M be a given complex matrix. Let ∆ = diag(∆i), i = 1, . . . ,n,

denote a set of complex matrices with σ̄(∆) ≤ 1 and with a given block-diagonal structure (in

which some of the blocks may be repeated and some may be restricted to be real). The real
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non-negative function µ(M), called the structured singular value, is defined by:

µ(M) =
1

min{km|det(I − kmM∆) = 0 for structured ∆, σ̄(∆)≤ 1} . (5.25)

If no such structured ∆ exists then µ(M) = 0. �

The robust performance condition (5.24) is equivalent to the following condition [56]:

µ∆(N(jω))≤ 1, ∀ω, (5.26)

where µ∆(N(jω)) is the structured singular value of N(jω) with respect to ∆, where

∆=


∆ 0

0 ∆P


, (5.27)

and ∆P is a full complex uncertainty with the same dimension as Fu(N,∆)T .

The robust performance property is guaranteed if either the condition (5.24) or (5.26) is satisfied.

However, from the conditions (5.24) and (5.26), it is a nontrivial task to formulate an LMI

problem to design a controller K that guarantees the robust performance of the system in Figure

5.6. Nevertheless, as µ∆(N(jω)) ≤ ∥N(s)∥∞,∀ω (see [56, page 338] for more detail), the

following is a sufficient condition for (5.24) and (5.26) [56]:

∥N(s)∥∞ ≤ 1. (5.28)

In the following subsection, for the robust performance of the system in Figure 5.6, a controller

design is proposed by using the more conservative H∞ norm condition (5.28). Since it is clear

from (5.19) that ∥M(s)∥∞ ≤ ∥N(s)∥∞, the condition (5.28) is sufficient for (5.21).

The derived N(s) in (5.19) recalls a standard stacked S/KS H∞ problem. A small σ̄(S(jω))

yields disturbance rejection of the system and a small σ̄(KS(jω)) reduces control effort (see

e.g., [56, 89]), where σ̄ denotes a maximum singular value. N(s) in (5.19) also presents a

trade-off problem as σ̄(S(jω)) and σ̄(KS(jω)) cannot be simultaneously minimized. Therefore,

the frequency-dependent weight functions are introduced so that by minimizing ∥N(s)∥∞, the

maximum singular value σ̄(S(jω)) can be forced to be small in a range of frequency, where

σ̄(KS(jω)) can be large, and vice versa.

Remark 5.2.2. The feasibility of the conditions (5.21), (5.22) and (5.28) strongly depend on the

choice of the weight functions, i.e., the required robustness and performance.
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5.2.2 Choice of weight functions

The choice of weight functions for a particular control problem often involves ad hoc many

iterations and fine tuning. There is no common form of weight functions that works in every

case. Some guidelines on weight functions can be found in [54–56]. This thesis considers

WU(s), WE(s) and WT(s) as illustrated in Figure 5.4, which should reflect the performance

objectives and knowledge of the uncertainty, respectively. The weight functions WE(s), WT(s)

and WU(s) must be chosen to be asymptotically stable to guarantee the asymptotic stability of

N(s) [55, 56].

As shown in (5.15), ∆̃ = ∆(s)WT(s). Then, the (open-loop) transfer function matrix of the

uncertain inverter system in Figure 5.4 is given by:

G̃∆(s) = G̃(s)+∆̃(s) = G̃(s)+∆(s)WT(s), ∥∆∥∞ < 1, (5.29)

where ∆(s) is an asymptotically stable model uncertainty.

From (5.29), the following lower bound of the H∞ norm of WT(s) is achieved:

∥G̃∆(s)− G̃(s)∥∞ = ∥∆WT(s)∥∞ ≤ ∥∆∥∞∥WT(s)∥∞ ≤ ∥WT(s)∥∞. (5.30)

Remark 5.2.3. If the robust stability condition (5.21) with the above defined WT(s) cannot be

satisfied by any controller K, the robust stability condition (5.21) may be feasible with a smaller

∆̃(s) and a smaller maximum singular value of WT(s), respectively.

WT(s) should be chosen so that the H∞ norm constraint in (5.30) is satisfied. Moreover, based

on the frequency response technique, WT(s) is chosen so that the class of uncertainty

{∆̃(s) | ∆̃(s) = ∆WT(s), ∥∆∥∞ < 1, ∆(s) is asymptotically stable} (5.31)

covers all possible admittance uncertainties 1.

For simplicity of the theory presentation, WT(s) for a microgrid with n inverters is chosen to be

a 2n×2n diagonal transfer function matrix with identical transfer functions, such as:

WT(s) = Wt(s)I2n×2n, Wt(s) =
τ ts+ rt

0

(τ t/rt∞)s+1
, (5.32)

1While designing robust inverter controllers, a range of possible admittance uncertainties should be determined
beforehand. Based on the power flow equations (2.9) and the inverter model (5.3), a nominal and uncertain models
of a microgrid can be obtained. Model uncertainties are subtractions of uncertain models from a nominal model (see
Section 5.1). WT(s) can be defined as an upper bound for all considered admittance uncertainties (see Figure 5.8).
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where rt
0 and rt

∞ are upper bounds for uncertainty ∆̃(s) at steady-state and at high-frequency,

respectively. 1/τ t is the cutoff frequency, and the magnitude of the frequency response Wt(jω)

reaches rt
∞ at ω =∞.

For an uncertainty ∆̃(s), where the singular values of its corresponding frequency response

matrix are shown in Figure 5.2, the choice of Wt(s) is illustrated in Figure 5.8.
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FIGURE 5.8: An example of |Wt(jω)|.

A weight function WE(s) is introduced for disturbance attenuation and reference tracking, i.e.

reducing the control error E(s). It is seen from Figure 5.4 that:

E(s) =−W(s)+Ud(s)+ G̃(s)U(s) =−W(s)+Ud(s)+ G̃(s)KE(s),

⇔

I − G̃(s)K


E(s) =−W(s)+Ud(s),

⇒ E(s) =

I − G̃(s)K

−1−W(s)+Ud(s)

= S(s)


−W(s)+Ud(s)


.

(5.33a)

(5.33b)

(5.33c)

The control error is weighted by WE(s) as follows:

Z2(s) = WE(s)E(s) = WE(s)S(s)

−W(s)+Ud(s)


. (5.34)

From the equation above it is clear that amplifying gains of WE(jω)S(jω) (which are character-

ized by its singular values [55]) should be decreased to reduce influences of disturbance inputs

on the performance output Z2(s) (weighted control error). Reference changes and output disturb-

ances caused by model uncertainties typically happen at low frequencies and can therefore be

successfully attenuated if the maximum singular value of S(jω) is forced to be small at low

frequencies. This can be done by selecting WE(s) so that the form of WE(jω) is similar to the

frequency response of a low-pass filter, where the bandwidth of WE(s) is equal to the bandwidth

of the mentioned disturbances.
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Weight functions for each control error of an inverter i can be chosen as follows:

Wei1(s) =
τ δi

e s+ rδi
0e

(τ δi
e /rδi∞e)s+1

, Wei2(s) =
τ P̃i

e s+ rP̃i
0e

(τ P̃i
e /rP̃i∞e)s+1

, Wei3(s) =
τ Q̃i

e s+ rQ̃i
0e

(τ Q̃i
e /rQ̃i∞e)s+1

, (5.35)

where rδi
0e

, rP̃i
0e

, rQ̃i
0e

are low-frequency gains and rδi∞e
, rP̃i∞e

, rQ̃i∞e are high-frequency gains of the

weight functions, respectively. 1/τ δi
e , 1/τ P̃i

e , 1/τ Q̃i
e are cutoff frequencies.

A 3n×3n weight function matrix WE(s) for the overall system can be chosen as the following:

WE(s) = diag

We11(s),We12(s),We13(s), . . . ,Wen1(s),Wen2(s),Wen3(s)


. (5.36)

An example of Weik(s), i= 1, . . . ,n, k = 1,2,3, is presented in Figure 5.9, where σ̄(S(jω) presents

the maximum singular value of a desired sensitivity S(jω).
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FIGURE 5.9: An example of |Weik(jω)|.

Performance objectives of the control input u = [uT
1 , . . . ,uT

n ]
T , where ui = [ui1 ,Vi −Vi0 ]

T , are

reflected by the weight function WU(s). As seen from Figure 5.4,

U(s) = KE(s) = K

−W(s)+Ud(s)+ G̃(s)U(s)


,

⇔

I −KG̃(s)


U(s) = K


−W(s)+Ud(s)


,

⇒ U(s) =

I −KG̃(s)

−1
K

−W(s)+Ud(s)



= K

I − G̃(s)K

−1−W(s)+Ud(s)


= KS(s)

−W(s)+Ud(s)


.

(5.37a)

(5.37b)

(5.37c)

The control input is weighted as follows (see Figure 5.4):

Z1(s) = WU(s)U(s) = WU(s)KS(s)

−W(s)+Ud(s)


. (5.38)

Amplifying gains of WU(jω)KS(jω) should be decreased to reduce influences of disturbance

inputs on the performance input Z1(s). As stated in the beginning of this chapter, the reduction



Chapter 5. Voltage performance control based on H∞ control technique 88

of control effort is desired. That is, magnitude deviations of inverter output voltages should be

reduced under uncertainties.

Moreover, by appropriately choosing WU(s), another performance objective for inverter output

voltages can be additionally achieved, which is the attenuation of their higher-frequency har-

monic components. Hence, the weight functions of the control inputs of an inverter i are selected

as the following:

Wui1(s) =
τω

i s+ rω0i

(τω
i /rω∞i

)s+1
, Wui2(s) =

τV
i s+ rV

0i

(τV
i /rV∞i

)s+1
, i = 1, . . . ,n, (5.39)

where rω0i
, rV

0i
are low-frequency gains, 1/τω

i , 1/τV
i are the cutoff frequencies, and Wui1(jω) and

Wui2(jω) reach high-frequency gains rω∞i
, rV

∞i
at ω = ∞, respectively. Moreover, rω0i

, rV
0i

,rω∞i
,

and rV
∞i

in (5.39) are chosen to be greater than 1 in order to reduce magnitude deviations of the

control inputs as well as magnitudes of their higher-frequency harmonics.

A 2n×2n weight function matrix WU(s) for the overall system is chosen as the following:

WU(s) = diag(Wu11(s),Wu12(s), . . . ,Wun1(s),Wun2(s)) . (5.40)

An example of Wuik(s), i = 1, . . . ,n, k = 1,2, is presented in Figure 5.10, where σ̄(KS(jω))

presents a maximum singular value of a desired frequency response KS(jω).
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FIGURE 5.10: An example of |Wuik(jω)|.

Hence, if the robust performance condition (5.24) is satisfied with the above defined WU(s),

WE(s) and WT(s), the robust performance of voltages specified by WU(s) is guaranteed despite

the load uncertainty ∆̃(s) and changes of power references R(s). It is expected that magnitude

variations of voltages as well as their higher-frequency harmonic components are reduced as the

gains of WU(s) are chosen to be greater than 1. Consequently, the THD of voltages also reduces.

Remark 5.2.4. Higher-frequency harmonics of voltages in power systems are caused by the

nonlinearity of loads, generation units, etc. [33]. By investigating linearized models of micro-

grids, no further claim about higher-frequency harmonics of voltages could be made. It is a clear

drawback of linear control methods, when linear system models are considered and it is hoped

that the control approach will work for real nonlinear systems.
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5.2.3 State-space realization of the overall system

In order to present an LMI optimization problem in the next section, which is based on the

H∞ norm condition (5.28), it is necessary to derive a state-space representation of N(s). In

this subsection, based on state-space realizations of each component of the system in Figure

5.4, a state-space representation of N(s) is derived. The resulting state-space representation of

N(s) consists of the inverter model G̃(s), the weight functions WT(s), WE(s) and WU(s), and the

feedback control law u(t) = Ke(t), where K needs to be designed.

It is noteworthy that based on the H∞ control it is possible to design a dynamic feedback

controller. However, in order to preserve the static controller structure introduced in Fig. 5.1,

which also allows to synthesize droop-based power sharing controllers for inverters in the next

chapter, the controller K is restricted to be static.

The inverter model G̃(s) and the weight functions WT(s), WU(s) and WE(s) have, respectively,

the following minimal state-space realizations:

G̃(s) =


 Ã B̃

I 0


 , WT(s) =


 AT BT

CT DT


 ,

WU(s) =


 AU BU

CU DU


 , WE(s) =


 AE BE

CE DE


 .

(5.41)

where AT ,AU ,BT ,BU ,CT ,CU ,DT ,DU ∈R2n×2n as WT(s) and WU(s) are 2n×2n transfer function

matrices, and AE,BE,CE,DE ∈ R3n×3n as WE(s) is a 3n×3n transfer function matrix.

Note that no realization procedure is done for the inverter model G̃(s). The state-space model

of the inverters is already obtained in (5.5) by the linearization of the inverter model (5.3).

Moreover, as the state-space realizations in (5.41) of the weight functions are minimal, (AT ,BT),

(AU ,BU) and (AE,BE) are controllable, (AT ,CT), (AU ,CU) and (AE,CE) are observable (see, e.g.

[54–56], for more details on controllability and observability of minimal state-space realizations).

Denote the states of WU(s),WT(s),WE(s) by xU ∈R2n×1, xT ∈R2n×1 and xE ∈R3n×1, respectively.

The following state-space models are derived:


ẋ = Ãx+ B̃u,

y = x,


ẋT = ATxT +BTu,

vd = CTxT +DTu,


ẋU = AUxU +BUu,

z1 = CUxU +DUu,


ẋE = AExE +BEe,

z2 = CExE +DEe.

(5.42)

In (5.42) x(t), u(t), Ã and B̃ are the same state, control input vectors and system matrices as

defined in (3.4), (5.4) and (5.5), respectively. As seen in Figure 5.4 and in the relations (5.17),
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the error e(t) is calculated in the time domain as follows:

e(t) =−r(t)+ud(t)+ y(t) =−w(t)+ud(t)+ x(t), (5.43)

where e(t) is the input of the controller K.

It is seen in Figure 5.6 that the input and output vectors of N(s) are [Ud(s)T W(s)T ]T and

[Vd(s)T Z1(s)T Z2(s)T ]T , respectively. Define in the time domain a state variable x̄(t), an input

w̄(t) and an output z̄(t) of N(s) in Figure 5.6 as the following:

x̄ = [xT xT
T xT

U xT
E]

T , w̄ = [uT
d wT ]T , z̄ = [vT

d zT
1 zT

2 ]
T , (5.44)

where x̄ ∈ R10n×1, w̄ ∈ R6n×1, and z̄ ∈ R7n×1.

In the following, a state-space realization of N(s) based on the state-space models in (5.42) and

a feedback control law u(t) = Ke(t) will be derived. The open-loop system equations (5.42) and

(5.43) can be rearranged as follows:








ẋ

ẋT

ẋU

ẋE




=




Ã 0 0 0

0 AT 0 0

0 0 AU 0

BE 0 0 AE







x

xT

xU

xE



+




0 0

0 0

0 0

BE −BE





ud

w


+




B̃

BT

BU

0




u,




vd

z1

z2


 =




0 CT 0 0

0 0 CU 0

DE 0 0 CE







x

xT

xU

xE



+




0 0

0 0

DE −DE





ud

w


+




DT

DU

0


u,

e =

I 0 0 0






x

xT

xU

xE



+

I −I

ud

w


.

(5.45)

With the notations in (5.44), the open-loop system above can be rewritten as the following:





˙̄x(t) = Āx̄(t)+B1w̄(t)+ B̄u(t),

z̄(t) = C1x̄(t)+D11w̄(t)+D12u(t),

e(t) = C̄x̄(t)+D21w̄(t),

(5.46)

where the sizes of the system matrices are: Ā ∈ R10n×10n, B1 ∈ R10n×6n, B̄ ∈ R10n×2n, C1 ∈
R7n×10n, D11 ∈R7n×6n, D12 ∈R7n×2n, C̄ ∈R3n×10n, D21 ∈R3n×6n. The system matrices possess

the following forms:
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Ā =




Ã 0 0 0

0 AT 0 0

0 0 AU 0

BE 0 0 AE




, B1 =




0 0

0 0

0 0

BE −BE




, B̄ =




B̃

BT

BU

0




, D11 =




0 0

0 0

DE −DE


 ,

C1 =




0 CT 0 0

0 0 CU 0

DE 0 0 CE


 , D12 =




DT

DU

0


 , C̄ = [I 0 0 0] , D21 = [I − I].

(5.47)

In order to formulate a convex LMI condition to design a state-feedback controller K for inverters

in the following section, the open-loop system (5.46) is represented equivalently as follows:





˙̄x(t) = Āx̄(t)+B1w̄(t)+ B̄u(t),

z̄(t) = C1x̄(t)+D11w̄(t)+D12u(t),

e(t) = C̄x̄(t)+ C̄D̄21w̄(t),

(5.48)

with D21 = C̄D̄21, where D̄21 ∈ R10n×6n is chosen as follows:

D̄21 =


I3n×3n 0 0 0

−I3n×3n 0 0 0

T

. (5.49)

With the system representation (5.48), the following is derived:

u(t) = Ke(t) = K

C̄x̄(t)+ C̄D̄21w̄(t)


. (5.50)

With C̄ given in (5.47), define

K̄ = KC̄ = [K2n×3n 02n×2n 02n×2n 02n×3n], (5.51)

where K = diag(K1, . . . ,Kn) is the state-feedback controller for the inverters. The control law in

(5.50) is equivalent to the following:

u(t) = Ke(t) = K

C̄x̄(t)+ C̄D̄21w̄(t)


= K̄x̄(t)+ K̄D̄21w̄(t). (5.52)

Consider the open-loop system (5.48). Close the control loop by applying the control law above,

the following closed-loop system is obtained:





˙̄x(t) = (Ā+ B̄K̄)  
:= Ǎ

x̄(t)+(B1 + B̄K̄D̄21)  
:= B̌

w̄(t),

z̄(t) = (C1 +D12K̄)  
:= Č

x̄(t)+(D11 +D12K̄D̄21)  
:= Ď

w̄(t),
(5.53)
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where Ǎ ∈ R10n×10n, B̌ ∈ R10n×6n, Č ∈ R7n×10n, Ď ∈ R7n×6n are as follows:

Ǎ =




Ã+ B̃K 0 0 0

BTK AT 0 0

BUK 0 AU 0

BE 0 0 AE




, B̌ =




B̃K −B̃K

BTK −BTK

BUK −BUK

BE −BE




,

Č =




DTK CT 0 0

DUK 0 CU 0

DE 0 0 CE


 , Ď =




DTK −DTK

DUK −DUK

DE −DE


 .

(5.54)

With the input w̄(t) and output z̄(t) defined in (5.44), the state-space model above is a state-space

representation of the transfer function matrix N(s) in Figure 5.6. On the other hand, the transfer

function matrix N(s) of the closed-loop system is derived from (5.53) as follows:

N(s) = Č(sI − Ǎ)−1B̌+ Ď. (5.55)

Problem 5.2.1. Design the state-feedback controller u(t) = Ke(t) as defined in (5.52) so that

the system (5.53) is asymptotically stable, while its H∞ norm satisfies ∥N(s)∥∞ ≤ 1. At the

same time, K must obtain a block-diagonal structure K = diag(K1, . . . ,Kn), where Ki is a

state-feedback controller of an inverter i.

5.3 H∞ performance controller design based on LMI optimization

In this section, based on the H∞ norm condition (5.28) and the state-space representation of

N(s) derived above, an LMI optimization problem is proposed. By solving the LMI problem,

resulting inverter controllers will guarantee the robust stability of the system and the robust

performance of inverter output voltages.

For the proof of the theorem derived in this section, the following lemma is provided.

Lemma 5.3. For any µ > 0 and any symmetric positive definite matrix X,

− 1

µ
XX ≤ I − 2X

√
µ

. (5.56)

Proof. A product of a matrix with its transpose is a positive semidefinite matrix. Hence,


X
√
µ
− I

T
X
√
µ
− I


≥ 0, (5.57)

which immediately leads to (5.56).
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Recall the following relation between inverse matrices of positive definite matrices.

Lemma 5.4. [147, Corollary 7.7.4] If A, B ∈ Rn×n are symmetric positive definite matrices,

then A≥ B if and only if B−1 ≥A−1.

The proof of Lemma 5.4 can be found in [147]. Based on the two lemmas above, the following

lemma is introduced and proved, whose result will be used in the proof of the main theorem.

Lemma 5.5. Let A, B, D1, D2 be matrices with appropriate sizes, which satisfy the following:


A B
BT D2


< 0, and D1 ≤D2 < 0, (5.58)

where D1 and D2 are symmetric negative definite matrices with the same size. Then, the

following holds:

A B
BT D1


< 0. (5.59)

Proof. According to Lemma 5.4, the following is inferred:

D1 ≤D2 < 0,

⇔ −D1 ≥−D2 > 0,

⇔ (−D2)
−1 ≥ (−D1)

−1 > 0.

(5.60a)

(5.60b)

(5.60c)

By pre- and post-multiplying both sides of the last inequality by a matrix B with an appropriate

size, the following is inferred:

B(−D2)
−1BT ≥ B(−D1)

−1BT ,

⇔ −B(D2)
−1BT ≥−B(D1)

−1BT ,

⇔ A−B(D2)
−1BT ≥A−B(D1)

−1BT .

(5.61a)

(5.61b)

(5.61c)

According to the Schur complement in (3.24), the following conditions are equivalent:


A B
BT D2


< 0 ⇔


D2 < 0,

A−B(D2)
−1BT < 0.

(5.62)

The right-hand side of (5.62) and (5.61c) imply that A−B(D1)
−1BT < 0, where D1 < 0.

According to the Schur complement in (3.24), this is equivalent to


A B
BT D1


< 0. (5.63)
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The following theorem gives a sufficient stability condition to design the controller K as formu-

lated in Problem 5.2.1. By restricting ∥N(s)∥∞ ≤ 1, i.e., the robust performance condition

(5.28) is satisfied, the robust stability and robust performance of the system in Figure 5.6 are

guaranteed for all ∥∆∥∞ < 1.

Theorem 5.6. Consider the system (5.53) with the transfer function matrix (5.55). Let Pii ∈
R3×3, i = 1, . . . ,n, and PW ∈ R7n×7n be symmetric positive definite matrices, where n is the

number of inverters in the system. Define P̄ = diag(P11, . . . ,Pnn,PW) ∈ R10n×10n. Let γP > 0 be

an optimization variable. Define the following LMI variables:

X̄ = diag(X11, . . . ,Xnn,XW) = P̄−1,

Ȳ = [Y 02n×2n 02n×2n 02n×3n] = K̄P̄−1, Y = diag(Y11, . . . ,Ynn),
(5.64)

where XW ∈ R7n×7n, Ȳ ∈ R2n×10n, and Xii ∈ R3×3, Yii ∈ R2×3, i = 1, . . . ,n.

Then ||N(s)||∞ < γP and Ǎ = (Ā+ B̄K̄) is Hurwitz if the following LMI optimization problem is

feasible: 


F̄ L̄1 L̄2 L̄3

L̄T
1 −µ1I 0 0

L̄T
2 0 −µ2I 0

L̄T
3 0 0 I − 2X̄√

µ1+µ2



< 0, (5.65)

where µ1 > 0,µ2 > 0 are design parameters, and L̄1, L̄2, L̄3, F̄ are defined as follows:

F̄=




ĀX̄+ B̄Ȳ+(ĀX̄+ B̄Ȳ)T B1 (C1X̄+D12Ȳ)T

BT
1 −γPI DT

11

C1X̄+D12Ȳ D11 −γPI


, L̄1=




B̄Ȳ

0

0


, L̄2=




0

0

D12Ȳ


, L̄3=




0

D̄T
21

0


 .

(5.66)

Proof. The proof of Theorem 5.6 is based on the Bounded Real Lemma (4.57). By applying

the Bounded Real Lemma to the transfer function matrix N(s) in (5.55), ||N(s)||∞ < γP and

Ǎ = (Ā+ B̄K̄) is Hurwitz if there exists a solution P̄ = P̄T > 0 to the following matrix inequality:




ǍT P̄+ P̄Ǎ P̄B̌ ČT

B̌T P̄ −γPI ĎT

Č Ď −γPI


< 0. (5.67)

Note that because P̄ is defined to be block-diagonal, (5.67) is a sufficient condition.

Define the variables X̄ = P̄−1, Ȳ = K̄P̄−1 as in (5.64). By pre- and post-multiplying (5.67) by

a symmetric positive definite matrix diag(P̄−1, I, I), where P̄ is a block-diagonal matrix, the
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following equivalent matrix inequality is derived:




ĀX̄+ B̄Ȳ+(ĀX̄+ B̄Ȳ)T B1 + B̄K̄D̄21 (C1X̄+D12Ȳ)T

(B1 + B̄K̄D̄21)
T −γPI (D11 +D12K̄D̄21)

T

C1X̄+D12Ȳ D11 +D12K̄D̄21 −γPI


< 0. (5.68)

With the notations in (5.66), the matrix inequality (5.68) can be decomposed as follows:




ĀX̄+ B̄Ȳ+(ĀX̄+ B̄Ȳ)T B1 (C1X̄+D12Ȳ)T

BT
1 −γPI DT

11

C1X̄+D12Ȳ D11 −γPI




  
= F̄

+




0 B̄ȲX̄
−1

D̄21 0

0 0 0

0 0 0




  
= L̄1X̄

−1L̄T
3

+




0 0 0

(B̄ȲX̄
−1

D̄21)
T 0 0

0 0 0




  
= L̄3X̄

−1L̄T
1

+




0 0 0

0 0 0

0 D12ȲX̄
−1

D̄21 0




  
= L̄2X̄

−1L̄T
3

+




0 0 0

0 0 (D12ȲX̄
−1

D̄21)
T

0 0 0




  
= L̄3X̄

−1L̄T
2

= F̄ + L̄1X̄
−1L̄T

3 + L̄3X̄
−1L̄T

1 + L̄2X̄
−1L̄T

3 + L̄3X̄
−1L̄T

2 < 0. (5.69)

A product of a matrix with its transpose is a positive semidefinite matrix, thus


1

√
µ1

L̄1 −
√
µ1L̄3X̄

−1


1
√
µ1

L̄1 −
√
µ1L̄3X̄

−1
T

≥ 0

⇔ 1

µ1
L̄1L̄T

1 +µ1L̄3X̄
−1

X̄
−1L̄T

3 −L̄1X̄
−1L̄T

3 −L̄3X̄
−1L̄T

1 ≥ 0

⇔ 1

µ1
L̄1L̄T

1 +µ1L̄3X̄
−1

X̄
−1L̄T

3 ≥ L̄1X̄
−1L̄T

3 + L̄3X̄
−1L̄T

1 .

(5.70)

Similarly, the following can be achieved:

1

µ2
L̄2L̄T

2 +µ2L̄3X̄
−1

X̄
−1L̄T

3 ≥ L̄2X̄
−1L̄T

3 + L̄3X̄
−1L̄T

2 . (5.71)

By using the inequalities (5.70) and (5.71), the following upper bound of the matrix inequality

(5.69) is derived:

F̄ + L̄1X̄
−1L̄T

3 + L̄3X̄
−1L̄T

1 + L̄2X̄
−1L̄T

3 + L̄3X̄
−1L̄T

2

≤ F̄ +
1

µ1
L̄1L̄T

1 +µ1L̄3X̄
−1

X̄
−1L̄T

3 +
1

µ2
L̄2L̄T

2 +µ2L̄3X̄
−1

X̄
−1L̄T

3 .
(5.72)
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Hence, by forcing the above upper bound of (5.69) to be negative definite, a sufficient condition

for (5.69) is derived as follows:

F̄ +
1

µ1
L̄1L̄T

1 +µ1L̄3X̄
−1

X̄
−1L̄T

3 +
1

µ2
L̄2L̄T

2 +µ2L̄3X̄
−1

X̄
−1L̄T

3 < 0. (5.73)

According to the Schur complement (3.24), the following is derived equivalently from (5.73):




F̄ L̄1 L̄2 L̄3

L̄T
1 −µ1I 0 0

L̄T
2 0 −µ2I 0

L̄T
3 0 0 − 1

µ1+µ2
X̄X̄



< 0. (5.74)

Based on the inequality (5.56), it holds that:

− 1

µ1 +µ2
X̄X̄ ≤ I − 2X̄√

µ1 +µ2
. (5.75)

According to Lemma 5.5, where D1 = − 1
µ1+µ2

X̄X̄, D2 = I − 2X̄√
µ1+µ2

, the matrix inequality

(5.74) and the relation (5.75) yield the following sufficient condition for (5.74):




F̄ L̄1 L̄2 L̄3

L̄T
1 −µ1I 0 0

L̄T
2 0 −µ2I 0 0

L̄T
3 0 0 I − 2X̄√

µ1+µ2



< 0. (5.76)

Note that by the virtue of the Schur complement, the feasibility of the LMI (5.65) simultaneously

implies that the matrix


I − 2X̄√
µ1+µ2


in (5.75) is negative definite. This completes the proof.

The asymptotic stability of the inverters should be noted here. If the LMI (5.65) is feasible,

Ǎ = (Ā+ B̄K̄) is Hurwitz. Thus,

Ǎ = Ā+ B̄K̄ =




Ã 0 0 0

0 AT 0 0

0 0 AU 0

BE 0 0 AE



+




B̃

BT

BU

0





K 0 0 0


=




Ã+ B̃K 0 0 0

BTK AT 0 0

BUK 0 AU 0

BE 0 0 AE




.

(5.77)

It is inferred from (5.77) that eigenvalues of (Ã+ B̃K) are also the eigenvalues of matrix Ǎ. If Ǎ

is a Hurwitz matrix, (Ã+ B̃K) is also a Hurwitz matrix. Hence, the feasibility of the LMI (5.65)

guarantees the asymptotic stability of the nominal closed-loop inverter part.
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Moreover, if the LMI (5.65) is feasible with γP ≤ 1, ∥N(s)∥∞ < γP ≤ 1 and the condition (5.28)

is satisfied. Consequently, the robust stability and robust performance of the system are assured

with ∥∆∥∞ ≤ 1. The LMI optimization problem for robust stability and robust performance is

formulated as follows:

minimize γP such that





LMI (5.65) is feasible over X̄ and Ȳ,

X̄ and Ȳ are defined as in (5.64),

X̄ > 0,

µ1,µ2 > 0,

0 < γP ≤ 1.

(5.78)

Remark 5.3.1. µ1,µ2 > 0 are introduced to add two more degrees of freedom to solve the LMI

problem (5.78). µ1,µ2 > 0 are set in advance. If the LMI problem is infeasible for some µ1,µ2,

different values for µ1,µ2 can be taken. Thus, µ1,µ2 > 0 allow to create an iterative algorithm

to solve the LMI problem (5.78) until a feasible result is derived. However, this issue is not

further investigated in the thesis. For the simulation example in this chapter, constant µ1,µ2 > 0

are set in advance.

Remark 5.3.2. By implementing the H∞ control technique, a system model includes additional

weight functions in itself. Therefore, when designing optimal output feedback controllers,

resulting controllers generally obtain a higher order. In this case, the system model (5.48)

has a higher order than the model (5.5) of inverters. However, by defining in advance the

structures of the LMI variables as in (5.64), resulting controller K̄ obtains a defined structure

K̄ = [K 0 0 0], where K = diag(K1, . . . ,Kn) is the controller for the inverters. No high-order

controller is synthesized.

Depending on particular cases, the LMI optimization problem (5.78) can be conservative and

even infeasible with γP ≤ 1. In case of infeasibility, the constraint on γP can be modified as the

following with γmax
P > 1:

0 < γP < γmax
P , (5.79)

so that the LMI optimization problem (5.78) obtains feasible solutions. In this case, the nominal

asymptotic stability is still guaranteed as shown in (5.77). However, performance specifications

are violated as ∥N(s)∥∞ < 1 is not guaranteed. Nevertheless, as the feasibility of the LMI

(5.65) guarantees that ∥N(s)∥∞ < γP, by minimizing γP while solving the LMI problem (5.78)

(even with γmax
P > γP > 1), ∥N(s)∥∞ is still decreased. Smaller ∥N(s)∥∞ implies smaller

amplification of the disturbance inputs Ud(s) and W(s), when they pass through the system.

Furthermore, with resulting controllers (where γP > 1), robust stability and robust performance

properties can still be checked by the norm conditions (5.21) and (5.24), respectively. That is:
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• If ∥M(s)∥∞ ≤ 1, the robust stability of the closed-loop system is guaranteed.

• If ∥Fu(N,∆)∥∞ ≤ 1 and ∥M(s)∥∞ ≤ 1, the robust stability and the robust performance

of the system are guaranteed.

5.4 Simulation study

In this section, a simulation study is provided to show the effectiveness of the system modeling

and the controller design technique based on the LMI problem (5.78). The test system in the

simulation study of Chapter 3 is considered once again with two additional impedances Z12 and

Z22 as shown in Figure 5.11. Z12 and Z22 are added to illustrate larger load changes (model

uncertainty). Parameters of the test system with additional details are provided in Table 5.1.

ZL

Z11 Z12 Z21 Z22

Inverter 1 Inverter 2ZL ZL1 2

FIGURE 5.11: Test system with two inverters and impedance loads.

TABLE 5.1: Test system parameters and chosen weight functions

Voltages and V10
= 1029[V] δ10

= 0.000[rad]
phase angles V20

= 1030+1.3i[V] δ20
= 0.0013[rad]

Active and P̃10
= 10.75[kW] P̃20

= 15.62[kW]

reactive powers Q̃10
= 3.56[kVar] Q̃20

= 8.06[kVar]
Base values Sbase = 108[kVA] Vbase = 1030[V]

Zbase = 9.823[Ω] δbase = 1[rad]
Load Z11 = 108+ i10.8[Ω] Z21 = 45+ i28[Ω]

impedances Z12 = 69+ i15[Ω] Z22 = 60+ i19[Ω]
Line impedances ZL1 = 0.4+ i0.4[Ω] ZL = 0.8+ i0.42[Ω]

ZL2 = 0.4+ i0.3[Ω]
Nominal frequency ωnom = 2π50[rad/s]

Filter parameter τ1 = 0.0265[s] τ2 = 0.0265[s]
Reference changes P̃r

10
= 10[kW] Q̃r

10
= 5[kVar]

P̃r
20
= 5[kW] Q̃r

20
= 8[kVar]

Wui1(s) = Wui2(s) rω0i
= rV

0i
= 2.3 τω

i = τV
i = 1e−2[s]

i = 1,2 rω∞i
= rV

∞i
= 5.9

Wt(s) rt
0 = 5.1, rt

∞ = 0.1 τ t = 1e−3[s]
We(s) re

0 = 0.2, re
∞ = 0.02 τ t = 1e−2[s]

The system model (5.48) and the LMI problem (5.78) are constructed with the parameters in

Table 5.1. Nominal load and line impedances are Z11, Z21, ZL1 and ZL2 , respectively. In order to

include admittance uncertainties, load impedances are changed down to 50% of their nominal

values. Line impedances are slightly varied around nominal values. Accordingly, different
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model uncertainties and a matching WT(s) are derived as shown in Figure 5.8. Note that for this

example, κ1 = κ2 = 1 are chosen in advance. By solving the LMI optimization problem (5.78)

with µ1 = µ2 = 1e−7, the following performance controllers are obtained with γP = 0.319:

Kp
1 =


−1.5 ·10−5 10−8 −10−8

−10−9 0 0


, (5.80)

Kp
2 =


−1.5 ·10−5 10−8 −10−8

−2.2 ·10−8 0 0


, (5.81)

where their equivalences in actual quantities are:

Kp
1 =


−1.5 ·10−5[ 1

s ] 10−10[ rad
skW ] −10−10[ rad

skVar ]

−10−6[ V
rad ] 0[ V

kW ] 0[ V
kVar ]


 ,

Kp
2 =


 −1.5 ·10−5[ 1

s ] 10−10[ rad
skW ] −10−10[ rad

skVar ]

−2.2 ·10−5[ V
rad ] 0[ V

kW ] 0[ V
kVar ]


 .

(5.82)

The performance controllers Kp
1 and Kp

2 return ∥N(s)∥∞ = 0.283. Hence, with ∥N(s)∥∞ =

0.283 < 1, the robust performance condition (5.28) is satisfied. Therefore, the robust stability

of the system as well as the robust performance of the control input are guaranteed with respect

to the chosen weight functions WU(s), WE(s) and WT(s). The maximum singular value of the

frequency response N(jω) with the performance controllers Kp
1 and Kp

2 is shown in Figure 5.12.
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FIGURE 5.12: σ̄(N(jω)) of the test system with the performance controllers (5.82).

For comparison purpose, a simulation of the test system in Figure 5.11 is conducted in Matlab

with two pairs of controllers:

• Robust performance controllers (5.82) with the power control loop in Figure 5.1,

• Nominal controllers (3.31) with the power control loop in Figure 3.1, which are designed

in Chapter 3.

It should be mentioned that the nominal inverter controllers (3.31) do not guarantee the robust

stability of the system and the robust performance of voltages. However, it will be shown via

this particular simulation that the controllers (3.31) with the power control loop in Figure 3.1

still coincidentally stabilize the system despite uncertainties.
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A sequence of discrete events separated by ten-second intervals is included in the simulation

according to the following scenario: initially, Z11 and Z21 are connected to the system, then

Z12 and Z22 are successively added in the written order; finally, reference changes (by applying

P̃i0 := P̃i0 + P̃r
i0

, Q̃i0 := Q̃i0 + Q̃r
i0

to the power control loops in Figure 3.1 and Figure 5.1) are

included in the simulation. The simulation results are presented in Figure 5.13. The graphs

denoted by "p" are achieved by the performance controllers Kp
1 and Kp

2 , while the other graphs

are obtained by the nominal controllers K1 and K2 in (3.31).

It is seen in Figure 5.13 that the system is robustly stabilized by both pairs of controllers despite

load changes. With both controller pairs, inverter output frequencies converge to the nominal

value and inverter output voltages vary around their nominal values to modify output power.

When a load is connected, both inverters react and generate more power to supply the load

demand. After load changes, new equilibrium points are reached, which are different from

previous equilibrium points.

Regarding the voltage performance, it should be mentioned that the magnitude deviations of

voltages derived in the simulation are relatively small and can be unrealistic. This is because

of the simplicity of the test microgrid as well as ideal conditions of the simulation. With the

nominal controllers, it is seen that the additional loads Z12 and Z22 cause steady-state magnitude

deviations of voltages. The purpose of the power reference changes at t = 30[s] and t = 40[s] is to

reduce power mismatches between generated output power and their references. Consequently,

deviations of V1 and V2 from their nominal values are reduced.

It is also seen in Figure 5.13 that with the robust performance controllers Kp
1 and Kp

2 , magnitude

deviations of voltages are significantly reduced, compared to the case with the nominal control-

lers. Steady-state magnitude deviations of voltages caused by Kp
1 and Kp

2 are too small to be

noticed in Figure 5.13. Moreover, it is seen from the simulation results that the performance

controllers reduce frequency deviations during transients, compared to the case with the nominal

controllers.

Regarding the higher-frequency components in voltages, it is noteworthy that the simulation

above is performed with ideal voltage sources with controllable voltage magnitude and phase

angle, but not with VSIs. Therefore, voltages obtain ideal sinusoidal form and no claim could

be made about the THD of voltages. If the same simulation is accomplished with VSIs with the

three-level control hierarchy presented in Figure 2.4, it is expected that inverter output voltages

will obtain higher-frequency components (because of inverter switching, nonlinear loads, etc.).

Remark 5.4.1. It is seen in the simulation above that there is a sort of power sharing between

inverters as both inverters react to load changes and inject power to supply load demand. It will

be shown in the next chapter that the power sharing performance can be improved by adjusting
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FIGURE 5.13: Transfer processes of the test system with both controller pairs.

the controller gains appropriately. This procedure is done without causing system instability and

performance problem to voltages.

5.5 Summary

Using the H∞ control technique, robust stability and robust performance of voltages against

uncertainties in a microgrid were studied. As the considered H∞ control framework requires

asymptotically stable model uncertainties for robust stability analysis, a modification of the

inverter power control loop was proposed. With the modification, the integrator in Figure 3.1
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was replaced by an asymptotically stable subordinate control loop (see Figure 5.1). With the

modified power control loop, the resulting additive model uncertainty of a microgrid (caused

by uncertain admittances) is asymptotically stable. Then, a generalized plant model of an

inverter-based microgrid with possible uncertainties and weight functions was introduced. Based

on an H∞ norm condition for robust performance, an LMI optimization problem was proposed

to design inverter controllers. Resulting controllers guarantee the robust stability of a microgrid,

zero steady-state frequency deviations as well as the robust performance of voltages against

uncertainties.

As the H∞ norm condition (5.24) for robust performance property is a sufficient condition,

the proposed LMI problem (5.78) based on this H∞ norm condition can be conservative. In

addition, inappropriate choices of weight functions can drastically increase the conservatism of

the LMI problem.

In order to validate the effectiveness of the proposed robust controller design method, a Matlab

simulation of a simple microgrid was provided. Simulation results have shown that the robust

stability of the system and the robust performance of inverter output voltages with respect to

uncertainties are achieved.

A particular strength of H∞ control is that it allows to design dynamic controllers, e.g. propor-

tional-integral controllers. In case some renewable source inverters should maximally inject

their available power into a microgrid to increase system operating efficiency, proportional-

integral controllers will allow these inverters to track their maximal power references. Thus, it

is possible with the H∞ framework to simultaneously design proportional-integral controllers

for several inverters and proportional controllers for remaining inverters, which then collectively

guarantee the system robust performance.

Another key strength of H∞ control is that extra model uncertainties and disturbance inputs,

e.g., measurement noise, output disturbances, multiplicative uncertainties, can be additionally

included in the proposed robust stability and robust performance analysis of microgrids. For

instance, if there exist measurement noise or output disturbances to the nominal plant output

Y(s) in Figure 5.4, these signal uncertainties can be included in the presented framework for

robust stability and robust performance analysis without any difficulty. H∞ control allows to

simultaneously consider different uncertain sources within a single control problem.

In the next chapter, based on the power control loop in Figure 5.1 and Theorem 5.6, a design

of droop-based power sharing controllers for inverters is proposed. This is done by introducing

particular structures to the LMI variables of the LMI problem (5.65). Thereby, an advantage of

the proposed control approach in this chapter becomes clear. Power sharing controllers must be

designed so that, on one hand power sharing performance is improved, and on the other hand,

the system robust stability and robust voltage performance are guaranteed.



Chapter 6

Power sharing between inverters

Due to environmental and economic factors amongst others, it is preferable that inverters are able

to form a desired power flow within a microgrid. Considering power flows within a microgrid,

the interconnection between inverter nodes is directly addressed, which is a disturbance source

for the stability of inverters (see Remark 3.1.2). In general, power flow strategies should be

accomplished by decentralized power controllers of inverters [11, 19, 20, 22, 38]. Although

being the main goal at the power control level of a microgrid, power flow strategies can be

pursued only when the system stability is assured.

Power flow strategy in inverter-based microgrids will be discussed in the sense of power sharing.

Power sharing is commonly understood as an ability of generation units in a power system, in

which all generation units share an increase of system load by predefined ratios [5, 20]. For

inverter-based microgrids, power sharing plays an important role since by sharing total system

load between inverters, overload of particular inverters is avoided. It should be noted that small

overcurrent over several cycles (due to, e.g., connecting a load) can lead to total damage of such

power electronic devices like IGBT inverters.

The simulation in Chapter 5 has shown that with the power control loop in Figure 5.1, all

inverters react to load changes at different system nodes, i.e., power sharing between inverters is

accomplished. In this chapter, it will be shown that by integrating the idea of the droop control

to the power control loop in Figure 5.1, power sharing performance can be improved. Note that

unlike the classical droop control in (2.20), an angle droop control for active power sharing will

be investigated together with the well-known voltage droop control for reactive power sharing.

Droop gains in inverter controllers will be defined. Inverter controllers will be designed by

solving the LMI optimization problem (5.65) with additional variable constraints. By forcing

particular structures to the LMI variables, phase angle and voltage droop controllers for inverters

will be derived as results of the LMI problem. Moreover, power sharing ratios between inverters

103
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can also be set by adding a constraint to the LMI variables. Inverter controllers will then

obtain desired ratios between droop gains to share the system load without causing stability

and voltage performance problems. Nevertheless, additional constraints on LMI variables will

add conservatism to the LMI problem (5.65). It is noteworthy that an improvement of power

sharing performance will be shown by a simulation. However, an exactly as desired power

sharing is neither proved nor obtained in the simulation.

6.1 Power sharing gains in a decentralized controller

Power sharing is usually understood as an ability of inverters to share any increase in system

load. In this chapter, power sharing control is investigated for the control loop proposed in

Figure 5.1. The reason is that load changes lead to model uncertainty of a microgrid, which is

discussed in chapter 5. Thus, power sharing controllers will be designed by implementing the

LMI problem (5.65).

The design of power sharing controllers presented hereafter can be similarly applied to the

control loop in Figure 3.1, where inverter controllers can be computed by solving the LMI

problem (3.27). However, it should be noted that the LMI problem (3.27) does not robustly

guarantee the system stability under load changes, which actually should be shared among

inverters. This is the main reason for choosing the control loop in Figure 5.1 for the power

sharing purpose.

A controller of an overall microgrid with the control loop proposed in Figure 5.1 has a form

K = diag(K1, . . . ,Kn), where Ki ∈ R2×3 is a controller of an inverter i, i = 1, . . . ,n. In order

to include the power sharing capability in inverter controllers, the idea of the droop control is

implemented. That is, by modifying phase angles and magnitudes of inverter output voltages,

output active and reactive power is modified [33]. As mentioned above, an angle droop control

is implemented for active power sharing and a voltage droop control is responsible for reactive

power sharing. Consider a controller Ki in Figure 5.1, the control law is expressed as follows:

ui(t) = Kixi(t) ⇔


ui1

Vi −Vi0


=


Ki,11 Ki,12 Ki,13

Ki,21 Ki,22 Ki,23





δi − δi0

P̃i − P̃i0

Q̃i − Q̃i0


 . (6.1)

As droop controllers for inverters will be designed, particular matrix elements of a controller

Ki ∈ R2×3 are forced to be zero. It will be shown later that by solving the LMI problem (5.65),

the following structure of Ki ∈ R2×3 can be derived, if the LMI variables are forced to obtain
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particular structures:

ui(t) = Kixi(t) ⇔


ui1

Vi −Vi0


=


0 Ki,12 0

0 0 Ki,23





δi − δi0

P̃i − P̃i0

Q̃i − Q̃i0


 . (6.2)

where Ki,12 and Ki,23 are active and reactive power droop gains of Ki, respectively.

Moreover, from the inverter model (5.3) the following is obtained:

∆ωi = δ̇i =−κi(δi − δi0)+κiui1 , κi ∈ R, κi > 0. (6.3)

Substituting (6.3) into (6.2) yields the following:

∆ωi =−κi (δi − δi0)  
∆δi

+κi ·Ki,12 (P̃i − P̃i0)  
∆P̃i

,

Vi −Vi0  
∆Vi

= Ki,23 (Q̃i − Q̃i0)  
∆Q̃i

.

(6.4a)

(6.4b)

Without loss of generality, it is assumed that κi = 1, i = 1, . . . ,n, in the following part of this

chapter. For the active power sharing mechanism, an assumption of the classical droop control is

adopted, (see e.g., [17, 21, 33, 42, 148]). Suppose that frequency deviations at different inverter

nodes are identical. Accordingly, the following is derived from (6.4a):

∆ωi =−∆δi +Ki,12∆P̃i =∆ωk =−∆δk +Kk,12∆P̃k, i,k = 1, . . . ,n. (6.5)

Note that at steady-state, limt→∞∆ωi(t) = limt→∞∆ωk(t) = 0, i,k = 1, . . . ,n. Hence, the above

equation becomes as follows in steady-state:

−∆δi +Ki,12∆P̃i =−∆δk +Kk,12∆P̃k = 0, i,k = 1, . . . ,n. (6.6)

According to the phase angle calculation in (3.2) together with the assumption of identical

network frequency, the following can be inferred from (6.6):

∆δi =∆δk = Ki,12∆P̃i = Kk,12∆P̃k, i,k = 1, . . . ,n. (6.7)

Equation (6.7) indicates that the amount of active power picked up by each inverter depends on

relations between droop gains Ki,12, i = 1, . . . ,n.
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Remark 6.1.1. It is commonly assumed that frequency deviation is identical at different buses

and nodes in a power system [33]. Thus, Equation (6.5) is relatively accurate and widely

accepted in microgrid communities. This in turn implies the accuracy of Equation (6.7) as

well as good active power sharing performance.

For the case of reactive power sharing, it is assumed that voltage deviations at different nodes of

a microgrids are identical. Thus, the following is derived from (6.4b):

∆Vi = Ki,23∆Q̃i =∆Vk = Kk,23∆Q̃k, i,k = 1, . . . ,n. (6.8)

Similarly, the amount of reactive power generated by each inverter depends on relations between

droop gains Ki,23, i = 1, . . . ,n.

Remark 6.1.2. It is noteworthy that the reactive power sharing law (6.8) serves as a mimic of

the active power sharing in (6.7). This approach is often used by microgrid researchers and can

be found in number of publications, e.g. [8, 15, 26, 38, 39, 42, 72, 74]. However, because of

voltage drops over power lines (because of line impedances)1, deviations of voltage magnitudes

at different points in a power system are, in essence, not equal to each other. Thus, the voltage

relation in (6.8) is less accurate. Accordingly, it is expected that performance of the reactive

power sharing is relatively modest (see [85, 149] for more details on the relation between voltage

deviations and reactive power sharing performance in microgrids).

Remark 6.1.3. Note that in this chapter a straightforward method is proposed to improve the

power sharing performance. In general, a desired power sharing performance is not derived. To

the best of my knowledge there still does not exist any analytical solution to precisely obtain a

desired power sharing in communicationless inverter-based microgrids with arbitrary R/X ratios

of connecting lines.

Remark 6.1.4. Ratios between droop gains of different inverters specify power portions injected

by inverters. For instance, ratios between droop gains can be chosen depending on capacities of

generation units so that DERs with larger capacities inject more power than DERs with smaller

capacities. That is [27],

K1,12 ·Prated
1 = K2,12 ·Prated

2 = · · ·= Kn,12 ·Prated
n ,

K1,23 ·Qrated
1 = K2,23 ·Qrated

2 = · · ·= Kn,23 ·Qrated
n .

(6.9a)

(6.9b)

where Prated
i and Qrated

i , i = 1, . . . ,n, are rated active and reactive power of an inverter i, which

are known beforehand.

1Steady-state voltage drop over a power line is a product of the line impedance and the current flow over it
[33, 36].
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In the next section, additional constraints are introduced for LMI variables, so that by solving

the LMI problem (5.65), resulting inverter controllers obtain the form as presented in (6.2).

Simultaneously, it will be shown that desired power sharing ratios described by the relations in

(6.7) and (6.8) can also be set by a constraint on the LMI variables.

6.2 Design of power sharing controllers

An additive uncertainty ∆̃(s) caused by load changes can be obtained as in Section 5.1. Suppose

∆̃(s) can be rewritten as ∆(s)WT(s), ∥∆∥∞ < 1 as in (5.15). The power sharing is considered

for load changes within this bound so that the robust stability of the system and the robust

performance of voltages are always guaranteed.

In this section, additional constraints on LMI variables are introduced to the LMI problem

(5.65) in Theorem 5.6 so that resulting inverter controllers obtain the form presented in (6.2).

Moreover, by adding a constraint on LMI variables, desired power sharing ratios between

inverters can also be set.

Consider the LMI optimization problem (5.65) in Theorem 5.6. According to the variable

definition in (5.64), a controller Ki of an inverter i can be calculated as follows:

Ki = YiiX
−1
ii , i = 1, . . . ,n. (6.10)

For Ki to obtain the form in (6.2), the following structure constraints for LMI variables are

introduced:

Yii =


0 Yii,12 0

0 0 Yii,23


, Xii =




Xii,11 0 0

0 Xii,22 0

0 0 Xii,33


 , i = 1, . . . ,n. (6.11)

If the LMI optimization problem (5.65) is feasible with the variable constraint above, a resulting

X̄ = diag(X11, . . . ,Xnn,XW) is symmetric positive definite. Thus, Xii, i = 1 . . . ,n, is also positive

definite and there exists an inverse matrix of Xii. A resulting inverter controller can be calculated

as follows:

Ki = YiiX
−1
ii =


0 Yii,12 0

0 0 Yii,23






1

Xii,11
0 0

0
1

Xii,22
0

0 0
1

Xii,33




  
= X−1

ii

=




0
Yii,12

Xii,22
0

0 0
Yii,23

Xii,33


 . (6.12)
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The droop gains defined in (6.2) are computed as follows:

Ki,12 =
Yii,12

Xii,22
, Ki,23 =

Yii,23

Xii,33
, i = 1, . . . ,n. (6.13)

In order to set power sharing ratios between inverters as described in (6.7), the following

constraints are introduced to the LMI variables:





Xii,22 = Xkk,22,

Xii,33 = Xkk,33,

Ykk,12

Yii,12
=

Kk,12

Ki,12
=

∆Pi

∆Pk
,

Ykk,23

Yii,23
=

Kk,23

Ki,23
=

∆Qi

∆Qk
,

i,k = 1, . . . ,n. (6.14)

The first two constraints in (6.14) indicate that ratios between droop gains can be set by adjusting

ratios between Yii,12 and Ykk,12 as well as between Yii,23 and Ykk,23, respectively, where i,k =

1, . . . ,n. Consequently, based on the power sharing control laws (6.7), (6.8) and (6.13), the latter

two constraints for power sharing ratio are obtained.

Remark 6.2.1. While using Yalmip toolbox [97] and SeDuMi solver [98] in Matlab to solve the

LMI problem (5.65), the constraints (6.11) and (6.14) can be easily added in advance to the LMI

variables.

The constraints (6.11) and (6.14) make the LMI problem (5.65) more conservative. It is compre-

hensible as resulting inverter controllers are required to simultaneously satisfy several control

goals: robust stability, robust performance of a microgrid and a desired power sharing between

inverters. In the next section, a simulation is provided to exhibit these specifications of inverter

controllers.

Remark 6.2.2. The power sharing mechanism is based on the assumptions on frequency and

voltage deviations in (6.7) and (6.8). Thus, the power sharing performance depends on the

accuracy of these assumptions, which is mentioned in Remarks 6.1.1 and 6.1.2. From the other

hand, the power sharing performance can be improved by increasing droop gains as suggested by

[1, 150]. In fact, an increase of the controller gains Ki,12 and Ki,23, i = 1, . . . ,n, can improve the

accuracy of the assumptions (6.7) and (6.8). An explanation is given as follows. By considering

Equation (6.7), it is apparent that with a small controller gain Ki,12, a deviation of active power

∆Pi at node i yields small ∆δk as it is assumed that ∆δk =∆δi = Ki,12∆Pi. As a result, a small

control gain Kk,12 and a small phase angle deviation ∆δk lead to small deviation ∆Pk at node

k, i.e. poor performance of active power sharing. This explanation can also be applied for the

case of reactive power sharing with a voltage droop control in (6.8). Hence, small controller

gains Ki,12 and Ki,23, i = 1, . . . ,n, lead to poor power sharing performance. Therefore, in order
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to improve the performance of the presented power sharing approach, it is necessary to increase

the controller gains Ki,12 and Ki,23, i = 1, . . . ,n.

As seen in (6.13), an increase of the droop gains Ki,12 and Ki,23 can be realized by reducing

Xii,22 > 0 and Xii,33 > 0, respectively. As most LMI solvers only accept one minimization

objective, the reduction of Xii,22, Xii,33 > 0 should be formulated as one minimization objective.

There are two direct options as follows. The first option supposes a constraint Xii,22 = Xii,33 >

0, where Xii,22 = Xkk,22 and Xii,33 = Xkk,33, i,k = 1, . . . ,n, as introduced in (6.14). Then, by

minimizing Xii,22 > 0 while solving the LMI problem (5.65), an increase of the droop gains

can be achieved. However, this option adds more conservatism to the LMI problem, which is

already conservative. In order to avoid an extra constraint on LMI variables, the second option is

proposed, which is the minimization of the sum (Xii,22+Xii,33)> 0. This minimization objective

can be implemented to increase the controller gains Ki,12 and Ki,23.

Hence, the first minimization objective mentioned above increases the droop gains at the cost of

additional conservatism of the LMI optimization problem. The second option does not suppose

any additional variable constraint. However, with the second minimization objective, one cannot

be sure that a resulting Xii,22 or Xii,33 gets the smallest possible value. In the following LMI

problem the second option will be employed as additional conservatism is not desired.

The LMI optimization problem to design power sharing controllers for inverters is recast as

follows:

minimize (Xii,22 +Xii,33) such that





LMI (5.65) is feasible over X̄ and Ȳ,

X̄ and Ȳ are defined as in (5.64),

where submatrices Xii and Yii, i = 1, . . . ,n,

have the structures as in (6.11),

Xii and Yii, i = 1, . . . ,n, satisfy the

constraint (6.14),

X̄ > 0,

µ1,µ2 > 0,

0 < γP ≤ 1.

(6.15)

6.3 Simulation study

In this section, a simulation is provided to demonstrate the power sharing capability of inverters

with controllers designed by the LMI problem (6.15). The test system in Chapter 5 presented in

Figure 5.11 is repeated. Parameters of the test system can be found in Table 5.1. By solving the

LMI problem (6.15) with an intention to obtain an equal power sharing between inverters, the
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droop gains K1,12 = K2,12 = −1.9·10−3[ rad
skW ] and K1,23 = K2,23 = −3.1[ V

kVar ] are derived. The

simulation results showing the power sharing effect are displayed in Figure 6.1. Simulation

results of the microgrid with the power sharing controllers are presented, compared to the

simulation with the performance controllers Kp
1 and Kp

2 given in (5.82). The graphs denoted

by "share" are derived by the power sharing controllers, while the index "p" is associated to the

performance controllers.
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FIGURE 6.1: Power sharing simulation - equal power sharing.

As seen in Figure 6.1, the robust stability of the system against the considered load changes

is achieved with the power sharing controllers. Variations of frequencies and phase angles of

the two inverters are much alike and yield a good performance of active power sharing. At
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t = 10[s], an additional load is connected to node 1 and each inverter injects approximately the

same amount of active power (∆P̃1
∼= 6.6[kW], ∆P̃2

∼= 7.5[kW]) to supply the load change.

The same power sharing mechanism is seen at t = 20[s], when a load is connected to node 2

(∆P̃1
∼= 8.1[kW], ∆P̃2

∼= 6.7[kW]). However, an intended exact equal active power sharing is

not derived.

Opposed to that, the simulation shows a local behaviour of voltages, which leads to a poor

performance of reactive power sharing as well as unequal magnitude deviations of inverter

output voltages. Power sharing controllers result in larger variations of voltage magnitudes,

compared to Kp
1 and Kp

2 . Based on Equation (6.8), it is seen that a larger droop gain Ki,23 causes

larger steady-state deviation of voltage magnitude. Fortunately, Ki,12 and Ki,23 are designed by

the LMI optimization problem (6.15), where voltage performance is considered. Therefore, the

voltage magnitudes deviate within an acceptable limit (< 1% of the nominal value).

Remark 6.3.1. It is well-known and documented in a number of publications, see e.g. [41,

150], that if droop gains are increased, good power sharing performance can be achieved at

the expense of degrading voltage performance (in the sense of both magnitude and frequency

deviations). For the case of frequency and voltage droop control, a limit of circa 2% is usually

set for frequency and voltage deviations. In the power sharing approach investigated here,

instead of a frequency droop control an angle droop control is employed, where inverter output

frequencies always converge to a nominal value. Thus, it is only necessary to set a limit for

voltage magnitude deviations.

In order to demonstrate another power sharing ratio between the two inverters, the LMI problem

(6.15) is solved with an intention to derive a (1 : 2) power sharing ratio between the two inverters.

The droop gains in actual quantities K1,12 = −3.5 · 10−3[ rad
skW ], K1,23 = −2.1[ V

kVar ] and K2,12 =

−1.76 ·10−3[ rad
skW ], K2,23 =−1.02[ V

kVar ] are derived for the two inverters, respectively.

The same simulation scenario as above is repeated. The simulation results are presented in

Figure 6.2, which show a sufficient performance of voltages and frequencies. Deviations of

phase angles of the two inverters are similar and yield a good performance of active power

sharing. With the load change at t = 10[s], ∆P̃2 = 8.6[kW] = 1.54∆P̃1. With the load change

at t = 20[s], ∆P̃2 = 9.7[kW] = 1.98∆P̃1. Although an exact (1 : 2) power sharing ratio is not

derived, the simulation indicates that the actual power sharing ratio corresponds to the predefined

ratio. Opposed to that, voltage deviations (caused by load changes) at outputs of the two inverters

are not equal. Consequently, a poor performance of reactive power sharing is derived.
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FIGURE 6.2: Power sharing simulation - (1:2) power sharing ratio.

6.4 Summary

In this chapter, the power sharing between inverters in a microgrid has been considered. An

angle droop control was proposed for active power sharing between inverters. A classical

voltage droop control was implemented for reactive power sharing. Several variable constraints

were introduced to the LMI optimization problem in Theorem 5.6 so that droop controllers are

derived for the active and reactive power sharing mechanism. Power sharing performance can

be improved by increasing droop gains. The increase of droop gains in inverter controllers was

formulated as an optimization objective for the LMI problem.
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Although a desired power sharing is not analytically proved, resulting droop controllers in fact

increase power exchange between system nodes as illustrated in a simulation. The simulation

also showed that the active power sharing is better than the case of reactive power sharing.

With arbitrary R/X ratios of connecting lines between inverters, power sharing is accomplished

without causing stability and voltage performance problems to microgrids.





Chapter 7

Conclusion and outlook

7.1 Conclusion

The thesis has investigated several key control challenges associated to a stable, reliable and

beneficial operation of inverter-based microgrids. The control of power flows within a microgrid

was defined as the main control goal at the power control level. However, since a control loop

is introduced, the closed-loop stability as well as the performance of voltages and frequencies

were defined as the essential requirements for a normal operation of microgrids. Accordingly,

for studying the robust stability and robust performance (in the sense of voltage and frequency

deviations) of microgrids, several LTI state-space models have been proposed, which include

interconnected inverters, load dynamics and different uncertainties. A decentralized power

control loop for each inverter was presented. The (robust) stabilizing control approach is decen-

tralized as there is no communication and control interconnection between inverters. A global

time signal is required for the clock synchronization between inverters, but no other commu-

nication link between inverters is needed. With respect to different system models and different

control goals, e.g. nominal stability, robust stability and robust performance of inverter output

voltages, different LMI optimization problems were formulated to achieve the related control

goals. Regarding the power sharing, based on the idea of the classical droop control, additional

constraints on LMI variables were introduced so that by solving a single LMI problem, resulting

droop controllers for inverters are derived, which simultaneously satisfy several control goals:

robust stability, robust performance and power sharing. As shown in a simulation, resulting

controllers noticeably improve the active power sharing performance.

All the presented theories were validated via simulations, which showed that the control goals:

the robust stability of microgrids against load dynamics or a model uncertainty as well as the

robust performance of voltages and frequencies under a model uncertainty and reference changes

(by a higher control level) and the power sharing between inverters were achieved.

115
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7.2 Outlook

As validated by simulations, the intended control goals were achieved by the proposed power

control loops and the associated LMI stability conditions, respectively. However, as linear

models of naturally nonlinear microgrids were considered, dynamics caused by system non-

linearities were therefore neglected. This leads to the fact that the proposed system models

may be inaccurate for particular cases. Accordingly, for future work it is necessary to consider

nonlinear models of microgrids for the stability and performance analysis.

Regarding the weight functions in Chapter 5, without knowledge and experience working with

real microgrids, it is nontrivial to state how to select the most appropriate weight functions

for particular microgrid cases. This lack of knowledge may create problems for the robust

controller design procedure, while solving the proposed LMI problem. Therefore, the issue with

weight functions must be thoroughly studied in future work. Additionally, the robust controller

design presented in Chapter 5 neglects structure of model uncertainties. This structural aspect

of uncertainties should be investigated in future work to reduce conservatism of the controller

design.

Another interesting question is the reactive power sharing. As shown via the simulation in

Chapter 6, the performance of reactive power sharing is modest. So far, droop-based control

approaches may not be suitable for reactive power sharing, or the proposed modeling of micro-

grids is not accurate enough for this purpose. For this control goal, a novel control approach and

a novel system modeling must be investigated.

For a realistic plug-and-play operation of microgrids, a synchronization procedure for inverters

should be investigated. Regarding the synchronization problem, an inverter can be connected

to a microgrid only in the case the inverter output voltage is exactly the same as the voltage of

the connection point on the microgrid side (the same magnitude, phase angle, frequency, phase

sequence). This condition is required so that when an inverter is connected to a microgrid,

the inverter does not inject any power into the system. A smooth connection of an inverter to

a microgrid does not result in large oscillations of system variables. Furthermore, due to the

plug-and-play operation, a microgrid is inherently a switched system. A microgrid should be

modelled as a switched system and its robust stability against switching events must be studied.

Last but not least, inverter control algorithms are usually run on microcontrollers or program-

mable logic controllers (PLC), whose sample time is not infinitely small to be considered as

continuous. Therefore, a discretized version of inverter controllers should be studied.

As stated in the beginning of the thesis, the most important question is: How to make microgrids

work? It is hoped that the thesis has brought several useful contributions into the microgrid

research field. The proposed theories should be verified for real microgrids.
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A.1 Power flow equations

From the admittance matrix (2.8), I⃗i is obtained as follows:

I⃗i =
n

k=1

V⃗kYik. (A.1)

Moreover, the total power injection at node i is calculated as follows [33]:

S⃗i = V⃗i⃗I∗i , (A.2)

where I⃗∗i denotes the complex conjugate of I⃗i.

V⃗k can be presented in phasor form as V⃗k = Vkejδk . Similarly, Yik = |Yik|(cosφik + jsinφik) =

|Yik|ejφik . By plugging the above expression of I⃗i into the expression of S⃗i, the following is

derived:

S⃗i = V⃗i · I⃗∗i = V⃗i ·
n

k=1

V⃗∗
k Y∗

ik =
n

k=1

Viejδi ·Vke−jδk ·Y∗
ik

=
n

k=1

ViVkej(δi−δk)Y∗
ik =

n

i=1

ViVkej(δi−δk)|Yik|e−jφik

=
n

i=1

ViVk|Yik|ej(δi−δk−φik) =
n

i=1

ViVk|Yik|(cos(δi − δk −φik)+ jsin(δi − δk −φik)) .

(A.3)

By separating the right-hand side of the equation above in real and imaginary parts, Pi and Qi in

(2.9) are obtained.
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A.2 Active and reactive power control loops

Recall that:

|Yik|=
1

R2
ik +X2

ik

, cosφik =
Rik

R2
ik +X2

ik

, sinφik =
Xik

R2
ik +X2

ik

. (A.4)

Pi =
n

k=1

ViVk|Yik|cos(δi − δk −φik) = V2
i |Yii|cosφii +

n

k=1,k ̸=i

ViVk|Yik|cos(δi − δk −φik)

= V2
i

Rii

R2
ii +X2

ii

+
n

k=1,k ̸=i

ViVk
1

R2
ik +X2

ik


cos(δi − δk)cosφik + sin(δi − δk)sinφik



= V2
i

Rii

R2
ii +X2

ii

+
n

k=1,k ̸=i

ViVk


cos(δi − δk)
Rik

R2
ik +X2

ik

+ sin(δi − δk)
Xik

R2
ik +X2

ik



= V2
i Gii +

n

k=1,k ̸=i

ViVk


cos(δi − δk)Gik − sin(δi − δk)Bik

.

(A.5)

Qi =
n

k=1

ViVk|Yik|sin(δi − δk −φik) =−V2
i |Yii|sinφii +

n

k=1,k ̸=i

ViVk|Yik|sin(δi − δk −φik)

=−V2
i

Xii

R2
ii +X2

ii

+
n

k=1,k ̸=i

ViVk
1

R2
ik +X2

ik


sin(δi − δk)cosφik − cos(δi − δk)sinφik



=−V2
i

Rii

R2
ii +X2

ii

+
n

k=1,k ̸=i

ViVk


sin(δi − δk)
Rik

R2
ik +X2

ik

− cos(δi − δk)
Xik

R2
ik +X2

ik



= V2
i Bii +

n

k=1,k ̸=i

ViVk


sin(δi − δk)Gik + cos(δi − δk)Bik

.

(A.6)

A.3 Linearization of the power flow equations

Recall the power flow equations of each inverter i:

Pi =
n

k=1

ViVk|Yik|cos(δi − δk −φik),

Qi =
n

k=1

ViVk|Yik|sin(δi − δk −φik),

(A.7)
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and the equilibrium point:

xi0 = [δi0 , P̃i0 , Q̃i0 ]
T , ui10

= 0, ui20
= Vi0 . (A.8)

∂Pi

∂δi


0

=−
n

k=1

Vi0Vk0
|Yik|sin(δi0 − δk0

−φik). (A.9)

∂Pi

∂Vi


0

= 2Vi0 |Yii|cos(φii)+
n

k=1,k ̸=i

Vk0
|Yik|cos(δi0 − δk0

−φik). (A.10)

∂Pi

∂δk


0

=
n

k=1

Vi0Vk0
|Yik|sin(δi0 − δk0

−φik), where k ̸= i. (A.11)

∂Pi

∂Vk


0

=
n

k=1,k ̸=i

Vi0 |Yik|cos(δi0 − δk0
−φik), where k ̸= i. (A.12)

∂Qi

∂δi


0

=
n

k=1

Vi0Vk0
|Yik|cos(δi0 − δk0

−φik). (A.13)

∂Qi

∂Vi


0

=−2Vi0 |Yii|sin(φii)+
n

k=1,k ̸=i

Vk0
|Yik|sin(δi0 − δk0

−φik). (A.14)

∂Qi

∂δk


0

=−
n

k=1

Vi0Vk0
|Yik|cos(δi0 − δk0

−φik), where k ̸= i. (A.15)

∂Qi

∂Vk


0

=
n

k=1

Vi0 |Yik|sin(δi0 − δk0
−φik), where k ̸= i. (A.16)

A.4 Linearization of a microgrid using Matlab Simulink

Create an m-file in Matlab microgrid_sfcn.m, where the states and control inputs of the inverters

are renamed as follows:

δ1 − δ10
= x1, P̃1 − P̃10

= x2, Q̃1 − Q̃10
= x3,

δ2 − δ20
= x4, P̃2 − P̃20

= x5, Q̃2 − Q̃20
= x6,

∆ω1 = u1, V1 −V10
= u2, ∆ω2 = u3, V2 −V20

= u4.

(A.17)

function [sys,x0] = microgrid_sfcn(t,x,u,flag)

if abs(flag) == 1

% inputs

u1 = u(1);

u2 = u(2);
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u3 = u(3);

u4 = u(4);

% states

x1 = x(1);

x2 = x(2);

x3 = x(3);

x4 = x(4);

x5 = x(5);

x6 = x(6);

% parameters

Y_11=0.1696 - 0.2309i;

Y_12=0.0988 - 0.1365i;

Y_21=-0.0988 - 0.1365i;

Y_22= 0.2612 - 0.2338i;

phi_11=-0.9374;

phi_12=-0.9442;

phi_21=-0.9442;

phi_22=-0.7301;

tau_1=1/37.7;

tau_2=1/37.7;

% math model

P_1=u2*u2*abs(Y_11)*cos(phi_11) + u2*u4*abs(Y_12)*cos(x1-x4-phi_12);

Q_1=-u2*u2*abs(Y_11)*sin(phi_11) + u2*u4*abs(Y_12)*sin(x1-x4-phi_12);

P_2=u4*u4*abs(Y_22)*cos(phi_22) + u2*u4*abs(Y_21)*cos(x4-x1-phi_21);

Q_2=-u4*u4*abs(Y_22)*sin(phi_11) + u2*u4*abs(Y_21)*sin(x4-x1-phi_21);

dx1=u1;

dx2=(-x2 + P_1)/tau_1;

dx3=(-x3 + Q_1)/tau_1;

dx4=u3;

dx5=(-x5 + P_2)/tau_2;

dx6=(-x6 + Q_2)/tau_2;

sys = [dx1 dx2 dx3 dx4 dx5 dx6];

elseif flag == 3

sys = [x(1) x(2) x(3) x(4) x(5) x(6)];

elseif flag == 0

% initial condition

S_base = 40e+6;
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delta_10 = 0 ;

P_10 = 10750/S_base;

Q_10 = 3560/S_base;

delta_20 = 0.0013;

P_20 = 15620/S_base;

Q_20 = 8060/S_base;

sys = [6 0 6 4 0 0];

x0 = [delta_10 P_10 Q_10 delta_20 P_20 Q_20];

elseif flag == 9

sys =[];

end

Create a simulink model microgrid_sys.mdl as presented in Figure A.1.

FIGURE A.1: Simulink model for linearization of a microgrid.

A run file run_microgrid.m is constructed as follows:

clear all; clc;

S_base = 40e+6;

V_base = 1030;

delta_10 = 0 ;

P_10 = 10750/S_base;

Q_10 = 3560/S_base;

delta_20 = 0.0013;

P_20 = 15620/S_base;

Q_20 = 8060/S_base;

u1 = 0;

u2 = 1029/V_base;

u3 = 0;

u4 = abs(1030+1.3i)/V_base;
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u = [u1; u2; u3; u4];

x = [delta_10 P_10 Q_10 delta_20 P_20 Q_20];

[A,B,C,D] = linmod(’microgrid_sys’, x,u)

A.5 Linearization of an overall microgrid with dynamic loads

Similar to the linearization in Appendix A.4, three matlab files were created for the linearization

of a microgrid with a dynamic load (an induction machine):

• Simulink file microgrid_sysload.mdl.

• Matlab file microgrid_sfcnload.m, which is a S-function in the Simulink model microgrid_sy

sload.mdl.

• Matlab executing file run_microgridload.m, which specifies the operating point, where

the system is linearized.

The Simulink file microgrid_sysload.mdl is presented in Figure A.2.

FIGURE A.2: Simulink model for linearization of a microgrid with a dynamic load.

The matlab file microgrid_sfcnload.m is as follows:

function [sys,x0] = microgrid_sfcn(t,x,u,flag)

if abs(flag) == 1

% inputs

u1 = u(1);
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u2 = u(2);

u3 = u(3);

u4 = u(4);

% states

x1 = x(1);

x2 = x(2);

x3 = x(3);

x4 = x(4);

x5 = x(5);

x6 = x(6);

x7 = x(7);

x8 = x(8);

x9 = x(9);

% enter parameters of the test system

% calculate admittance matrix

Y1=[1/Z_L11, -(1/Z_L11 + 1/Z_L1 + 1/Z_L2 + 1/Z_L22),

-(1/Z_L11 + 1/Z_11), -(1/Z_L11 + 1/Z_L1 + 1/Z_L2 + 1/Z_21),

-(1/Z_L11 + 1/Z_L1 + 1/Z_s);

0, 1/Z_L22, -(1/Z_L22 + 1/Z_L2 + 1/Z_L1 + 1/Z_11),

-(1/Z_L22 + 1/Z_21), -(1/Z_L22 + 1/Z_L2 + 1/Z_s);

0, 0, 1/Z_11, -(1/Z_11 + 1/Z_L1 + 1/Z_L2 + 1/Z_21),

-(1/Z_11 + 1/Z_L1 + 1/Z_L2 + 1/Z_s);

0, 0, 0 ,1/Z_21, -(1/Z_21 + 1/Z_L2 + 1/Z_s);

0, 0, 0, 0, 1/Z_s];

Y1(2,1)=Y1(1,2);

Y1(3,1)=Y1(1,3);

Y1(3,2)=Y1(2,3);

Y1(4,1)=Y1(1,4);

Y1(4,2)=Y1(2,4);

Y1(4,3)=Y1(3,4);

Y1(5,1)=Y1(1,5);

Y1(5,2)=Y1(2,5);

Y1(5,3)=Y1(3,5);

Y1(5,4)=Y1(4,5);

Y3=zeros(4,4);

Y3(1,1)=Y1(1,1) - Y1(1,5)*Y1(5,1)/Y1(5,5);
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Y3(1,2)=Y1(1,2) - Y1(1,5)*Y1(5,2)/Y1(5,5);

Y3(1,3)=Y1(1,3) - Y1(1,5)*Y1(5,3)/Y1(5,5);

Y3(1,4)=Y1(1,4) - Y1(1,5)*Y1(5,4)/Y1(5,5);

Y3(2,1)=Y1(2,1) - Y1(2,5)*Y1(5,1)/Y1(5,5);

Y3(2,2)=Y1(2,2) - Y1(2,5)*Y1(5,2)/Y1(5,5);

Y3(2,3)=Y1(2,3) - Y1(2,5)*Y1(5,3)/Y1(5,5);

Y3(2,4)=Y1(2,4) - Y1(2,5)*Y1(5,4)/Y1(5,5);

Y3(3,1)=Y1(3,1) - Y1(3,5)*Y1(5,1)/Y1(5,5);

Y3(3,2)=Y1(3,2) - Y1(3,5)*Y1(5,2)/Y1(5,5);

Y3(3,3)=Y1(3,3) - Y1(3,5)*Y1(5,3)/Y1(5,5);

Y3(3,4)=Y1(3,4) - Y1(3,5)*Y1(5,4)/Y1(5,5);

Y3(4,1)=Y1(4,1) - Y1(4,5)*Y1(5,1)/Y1(5,5);

Y3(4,2)=Y1(4,2) - Y1(4,5)*Y1(5,2)/Y1(5,5);

Y3(4,3)=Y1(4,3) - Y1(4,5)*Y1(5,3)/Y1(5,5);

Y3(4,4)=Y1(4,4) - Y1(4,5)*Y1(5,4)/Y1(5,5);

Y4=zeros(3,3);

Y4(1,1)=Y3(1,1) - Y3(1,4)*Y3(4,1)/Y3(4,4);

Y4(1,2)=Y3(1,2) - Y3(1,4)*Y3(4,2)/Y3(4,4);

Y4(1,3)=Y3(1,3) - Y3(1,4)*Y3(4,3)/Y3(4,4);

Y4(2,1)=Y3(2,1) - Y3(2,4)*Y3(4,1)/Y3(4,4);

Y4(2,2)=Y3(2,2) - Y3(2,4)*Y3(4,2)/Y3(4,4);

Y4(2,3)=Y3(2,3) - Y3(2,4)*Y3(4,3)/Y3(4,4);

Y4(3,1)=Y3(3,1) - Y3(3,4)*Y3(4,1)/Y3(4,4);

Y4(3,2)=Y3(3,2) - Y3(3,4)*Y3(4,2)/Y3(4,4);

Y4(3,3)=Y3(3,3) - Y3(3,4)*Y3(4,3)/Y3(4,4);

Y_admittance=Y4;

Y_11=Y_admittance(1,1);

Y_12=Y_admittance(1,2);

Y_13=Y_admittance(1,3);

Y_21=Y_admittance(2,1);

Y_22=Y_admittance(2,2);

Y_23=Y_admittance(2,3);
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Y_31=Y_admittance(3,1);

Y_32=Y_admittance(3,2);

Y_33=Y_admittance(3,3);

phi_11=atan(imag(Y_11)/real(Y_11));

phi_12=atan(imag(Y_12)/real(Y_12));

phi_13=atan(imag(Y_13)/real(Y_13));

phi_21=atan(imag(Y_21)/real(Y_21));

phi_22=atan(imag(Y_22)/real(Y_22));

phi_23=atan(imag(Y_23)/real(Y_23));

phi_31=atan(imag(Y_31)/real(Y_31));

phi_32=atan(imag(Y_32)/real(Y_32));

phi_33=atan(imag(Y_33)/real(Y_33));

% math model

delta_s_prime_tilde = (x1*H1 + x4*H2)/(H1+H2);

ws=(u3*H2 + u1*H1)/(H1+H2);

Vs=sqrt(x7*x7 + x8*x8);

delta_s_prime=atan(x8/x7);

i_ds=-x7*abs(Y_33)*cos(phi_33) + x8*abs(Y_33)*sin(phi_33)

- u2*abs(Y_31)*cos(delta_s_prime_tilde-x1-phi_31-delta_s_prime)

- u4*abs(Y_32)*cos(delta_s_prime_tilde-x4-phi_32-delta_s_prime);

i_qs=-x8*abs(Y_33)*cos(phi_33) - x7*abs(Y_33)*sin(phi_33)

+ u2*abs(Y_31)*sin(delta_s_prime_tilde-x1-phi_31-delta_s_prime)

+ u4*abs(Y_32)*sin(delta_s_prime_tilde-x4-phi_32-delta_s_prime);

Ts=(x7*i_ds + x8*i_qs)/ws;

Tm=Tm0*(ar*(x9*x9)/(ws*ws) + br*x9/ws + cr);

P_1=u2*u2*abs(Y_11)*cos(phi_11) + u2*u4*abs(Y_12)*cos(x1-x4-phi_12) +

u2*Vs*abs(Y_13)*cos(x1-delta_s_prime_tilde-phi_13);

Q_1=-u2*u2*abs(Y_11)*sin(phi_11) + u2*u4*abs(Y_12)*sin(x1-x4-phi_12) +

u2*Vs*abs(Y_13)*sin(x1-delta_s_prime_tilde-phi_13);

P_2=u4*u4*abs(Y_22)*cos(phi_22) + u2*u4*abs(Y_21)*cos(x4-x1-phi_21) +

u4*Vs*abs(Y_23)*cos(x4-delta_s_prime_tilde-phi_23);

Q_2=-u4*u4*abs(Y_22)*sin(phi_11) + u2*u4*abs(Y_21)*sin(x4-x1-phi_21) +

u4*Vs*abs(Y_23)*sin(x4-delta_s_prime_tilde-phi_23);

dx1=u1;
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dx2=(-x2 + P_1)/tau_1;

dx3=(-x3 + Q_1)/tau_1;

dx4=u3;

dx5=(-x5 + P_2)/tau_2;

dx6=(-x6 + Q_2)/tau_2;

dx7=(-1/T0)*x7 + (-1/T0)*(Xs-Xs_prime)*i_qs + (ws-x9)/ws;

dx8=(-1/T0)*x8 + (1/T0)*(Xs-Xs_prime)*i_ds - (ws-x9)/ws;

dx9=(ws/(2*Hs))*(Ts-Tm);

sys = [dx1 dx2 dx3 dx4 dx5 dx6 dx7 dx8 dx9];

elseif flag == 3

sys = [x(1) x(2) x(3) x(4) x(5) x(6) x(7) x(8) x(9)];

elseif flag == 0

% enter initial condition

sys = [9 0 9 4 0 0];

x0 = [delta_10 P_10 Q_10 delta_20 P_20 Q_20 v_ds_0 v_qs_0 omega_r_0];

elseif flag == 9

sys =[];

end

The executing file run_microgridload.m is as follows:

u = [u1; u2; u3; u4];

x = [delta_10 P_10 Q_10 delta_20 P_20 Q_20 v_ds_0 v_qs_0 omega_r_0];

[A,B,C,D] = linmod(’microgrid_sysload.mdl’, x, u);

As = A([7 8 9], [7 8 9]);

Bs = B([7 8 9], [1 2 3 4]);

Cs = eye(3);

Ainv = A([1 2 3 4 5 6], [1 2 3 4 5 6]);

Binv = B([1 2 3 4 5 6], [1 2 3 4]);

T=A([1 2 3 4 5 6],[7 8 9]);

Ts=A([7 8 9],[1 2 3 4 5 6]);
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