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Abstract. This paper considers the stabilisation and destabilisa-
tion by a Brownian noise perturbation which preserves the equilib-
rium of the ordinary differential equation x′(t) = f(x(t)). In an ex-
tension of earlier work, we lift the restriction that f obeys a global
linear bound, and show that when f is locally Lipschitz, a function
g can always be found so that the noise perturbation g(X(t)) dB(t)
either stabilises an unstable equilibrium, or destabilises a stable
equilibrium. When the equilibrium of the deterministic equation
is non–hyperbolic, we show that a non–hyperbolic perturbation
suffices to change the stability properties of the solution.

1. Introduction

It is well known that noise can be used to stabilise a given unstable
system or to make a system even more stable when it is already sta-
ble. Stabilisation by deterministic periodic “noise” has been studied
a great deal by many authors, e.g. Bellman et al. [7], Kushner [14],
Meerkov [21], and Zhabko and Kharitonov [27]. Deterministic vibra-
tional stabilisation for delay systems was investigated in Lehman et
al. [15]. In the case of random noise, the pioneering work is due to
Hasminskii [11, p.229], who stabilised a system by using two white
noise sources. Later, Arnold et al. [6] showed, in particular, that the
system ẋ(t) = Ax(t) can be stabilised by zero mean stationary pa-
rameter noise if and only if trace A < 0. On the other hand, in the
nonlinear case, Scheutzow [24] provided some examples on stabilisa-
tion and destabilisation in the plane, and Mao [18] developed a general
theory on stabilisation and destabilisation by Brownian motion. Re-
cently, Appleby [1, 2], Appleby and Mao [4], and Appleby and Flynn [3]
have extended these results on stabilisation and destabilisation to func-
tional differential equations and Volterra equations. The stabilisation
of general scalar nonlinear stochastic difference equations has been ex-
amined in Appleby, Mao and Rodkina [5]. General rates of decay in
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stabilised nonlinear differential equations have been considered in a pa-
per of Caraballo, Garrido-Atienza and Real [8]. We should also men-
tioned that some results on stabilisation by random switching are given
in Verriest [25, 26] while stochastic stabilisation for partial differential
equations are given in Caraballo et al. [9, 10].

The present paper may be thought of as an extension of the work
of [18] to general nonlinear equations, and draws on some of the tech-
niques developed for nonlinear stochastic difference equations in [5].
In [18], Mao showed that a general finite dimensional ordinary differ-
ential equation

(1.1) ẋ(t) = f(x(t)), t > 0; x(0) = ξ ∈ R
d

could be stabilised (resp., destabilised) using a Brownian motion. More
precisely, he showed that the equilibrium solution of the SDE

(1.2) dX(t) = f(X(t)) dt + g(X(t)) dB(t)

is almost surely asymptotically stable (resp., unstable), for an appro-
priate choice of g. (For the general theory of SDEs we refer the reader
to [19, 22, 23].) In that paper, he assumes that f and g obey a global
linear bound of the form

(1.3) |f(x)| ∨ |g(x)| ≤ K0|x|, x ∈ R
d,

for some K0 > 0. Indeed, under some further conditions, (1.3) can be
weakened to a one–sided growth condition of the form

(1.4) 〈x, f(x)〉 +
1

2
|g(x)|2 ≤ K1|x|

2, x ∈ R
d

(see e.g. Mao et al. [20]). Although the condition (1.4) allows for a
wider class of SDEs to be studied than (1.3), and in particular, means
that we can study equations where neither f nor g obey a global linear
bound, many deterministic dynamical systems with equilibria at 0 are
still excluded. For example, consider the system (1.1) with

(1.5) f(x) = log(1 + x)x.

Clearly, a condition of the form (1.4) cannot hold, even though solutions
of (1.1) are well defined on (0,∞). In this work, we show that the
analysis can be extended to cover cases of this type.

It is also assumed in [18] that the stabilising noise is (essentially)
of the form ΣX(t) dB(t), or that the diffusion term in (1.2) does not
depart too much from linearity. Certainly, if the deterministic system
(1.1) at 0 is sublinear, such a perturbation suffices to stabilise the unsta-
ble deterministic equation. However, one may not need such a strong
noise perturbation in order to stabilise the solution. Therefore, we ask
here what the critical size of stochastic perturbation g(X(t)) dB(t) at
zero must be in order to stabilise the deterministic equation (1.1). On
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the other hand, if a system is asymptotically stable, but the equilib-
rium is non-hyperbolic, we may be able to destabilise using a relatively
weak noise perturbation.

A final feature distinguishes this analysis from that of [18]. There,
because f obeys either a global linear bound or a one–sided growth
condition, solutions of (1.1) cannot explode in finite time. However, if
such a restriction is lifted, solutions of (1.1) can explode in finite time.
As a concrete example, consider equation (1.1) where f obeys (1.5) and
once again f : [0,∞) → [0,∞). If f obeys

∫ ∞

1

du

uf(u1/2)
< ∞,

then the solution explodes in finite time; in fact

lim
t↑T

|x(t)| = ∞, where T =

∫ ∞

|x(0)|2

du

uf(u1/2)
.

In this paper, we show that stabilisation is still possible with such
functions f in (1.1).

The main results of the paper are the following. First, given an equa-
tion (1.1) where f is locally Lipschitz continuous, it is always possible
to design a noise perturbation g such that all solutions of (1.2) tend to
zero, almost surely. Necessary and sufficient conditions on g (in terms
of f) for which this is true are known in the scalar case. However, the
method presented here can be applied to a wider class of stochastic
dynamical systems (such as non–autonomous SDEs and even stochas-
tic functional differential equations). Moreover, the conditions given
recover both the earlier results in [18] and sharp sufficient conditions
supplied by the Feller explosion theory in R (see e.g. [12, p.348]).

We are also able to show that given an equation (1.1) with a (globally
or locally) asymptotically stable solution and where f is locally Lip-
schitz continuous, it is always possible to design a noise perturbation
g such that no solutions of (1.2) tends to zero, almost surely. Under
some other conditions, we can even show that solutions must tend to
infinity, a.s.

The structure of the paper is as follows: the next section introduces
notation, results required from the literature, and a precise statement of
the problem to be studied, and standing assumptions required. Section
3 deals with stabilisation by noise, and Section 4 with destabilisation
by noise when the system is of dimension two or higher. We show
that finite dimensional systems can always be stabilised, and that all
systems of dimension two or higher can be destabilised. However, we
cannot destabilise a globally asymptotically stable scalar system with
equilibrium preserving noise, and this result is the subject of Section 5.
The final section (Section 6) shows that the solution of the stochastic
differential equation cannot hit zero, the proof having been postponed
in Section 2.
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2. Preliminaries

2.1. Notation and required results. Throughout the paper, un-
less otherwise specified, we will employ the following notation. Let
(Ω,F , {F(t)}t≥0, P) be a complete probability space with a filtration
{F(t)}t≥0 satisfying the usual conditions (i.e., it is increasing and
right continuous while F(0) contains all P-null sets). Let B(t) =
(B1(t), · · · , Br(t))

∗, t ≥ 0, be an r-dimensional Brownian motion de-
fined on the probability space, where ∗ denotes the transpose of a vector
or matrix. If x, y are real numbers, then x ∨ y denotes the maximum
of x and y, and x ∧ y denotes the minimum of x and y. Let |x| be the
Euclidean norm of a vector x ∈ R

d and 〈x, y〉 be the inner product of
vectors x, y ∈ R

d, while, without any confusion, the notation 〈·〉 is used
for the quadratic variation of a martingale. Vectors x ∈ R

d are thought
as column ones so to get row vectors we use x∗. Let ei ∈ R

d denote the
i-th standard basis vector in R

d. The space of d× r matrices with real
entries is denoted by R

d×r. If A = (aij) is a d × r matrix, we denote
its Frobenius norm by

|A|2F =
d
∑

i=1

r
∑

j=1

a2
ij.

If A is a d × d matrix with entries aij = αi for i = j and aij = 0
otherwise, we write A = diag(α1, α2, . . . , αd).

The following result (see. e.g. [16, Theorem 7 on p.139]) will be of
great use in the paper. We introduce the notation {Z →} to denote
the set of all ω ∈ Ω for which the scalar process Z has the property
that lim

t→∞
Z(t) exists and is finite. We denote the limit in this case by

Z(∞).

Lemma 2.1. Let A1 and A2 be a.s. non-decreasing processes. Let also
Z be a non–negative semimartingale, with E(Z) < ∞ and

Z(t) = Z(0) + A1(t) − A2(t) + M(t), t ≥ 0

where M is a local martingale. Then

{ω : A1(∞) < ∞} ⊆ {Z →} ∩ {ω : A2(∞) < ∞} a.s.

2.2. Statement of the problem. We study the asymptotic behaviour
of solutions of the SDE (1.2). (For the advanced background on SDEs
we refer the reader to [19, 22, 23].) We denote the solution of this
initial value problem by X(·, ξ), or simply X. We now impose some
hypotheses on f and g that stand throughout the paper.

Assumption 2.2. Let f : R
d → R

d and g : R
d → R

d×r obey that

(2.1) f(0) = 0, g(0) = 0.
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This ensures that when ξ = 0, X(t, ξ) = 0 for all t ≥ 0 is a solu-
tion of the SDE (1.2). Therefore, the noise perturbation preserves the
equilibrium of the system.

We assume that f and g are locally Lipschitz continuous.

Assumption 2.3. For every integer n ≥ 1, there is Kn > 0 such that

(2.2) |f(x) − f(y)| ≤ Kn|x − y|, |g(x) − g(y)|F ≤ Kn|x − y|

for all x, y ∈ R
d with |x| ∨ |y| ≤ n.

By virtue of Assumption 2.3, we are guaranteed that there is a unique
continuous adapted process X (see e.g. [19, 22, 23]) such that
(2.3)

X(t∧ τk) = ξ +

∫ t∧τk

0

f(X(s)) ds+

∫ t∧τk

0

g(X(s)) dB(s), t ≥ 0, a.s.

where τk = inf{t > 0 : |X(t)| ≥ k}. The equation (1.2) has a global
solution if the explosion time τ ξ

e defined by

(2.4) τ ξ
e = lim

k→∞
τk = inf{t > 0 : |X(t, ξ)| 6∈ [0,∞)}.

obeys τ ξ
e = ∞, a.s.

Throughout the paper, it is important to show that solutions cannot
reach zero in finite time. To make our argument more concise, define

(2.5) ϑξ
0 = inf{t > 0 : |X(t, ξ)| = 0}.

Proposition 2.4. Suppose that f and g obey Assumptions 2.2 and 2.3.
Let X be the unique continuous adapted process that obeys (2.3). With

τ ξ
e and ϑξ

0 defined as in (2.4), (2.5), we have τ ξ
e ≤ ϑξ

0 a.s.

The proof of this result is relegated to the Appendix.

3. Stabilisation of (1.1)

In this section, we wish to give conditions on g which ensure that
solutions of (1.2) will tend to zero almost surely. It turns out that
assuming the following about f and g will suffice:

Assumption 3.1. There exists θ ∈ (0, 1) such that

(3.1) |x|2(2〈x, f(x)〉 + |g(x)|2F ) − (2 − θ)|x∗g(x)|2 ≤ 0, x ∈ R
d.

Assumption 3.2. For every L > 0,

(3.2) g(L) := min
|x|=L

|x∗g(x)| > 0.

Before we can discuss and prove asymptotic stability, it is first neces-
sary to ensure that the solutions are well defined on [0,∞), a.s. There-
fore, we need to prove first that τ ξ

e = ∞, where τ ξ
e is defined by (2.4).

Assumption 3.1 guarantees that there is a unique global strong solu-
tion of (1.2), and this Assumption turns out to be crucial in giving the
asymptotic stability of solutions.
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Proposition 3.3. Suppose that f and g obey Assumptions 2.2, 2.3,
and 3.1. Then there exists a unique continuous adapted process X
which is a solution of (1.2) such that τ ξ

e = ϑξ
0 = ∞, a.s.

The proof of this result is given in the Appendix. The statement
says that the solution does not explode, but also may not end up at
the equilibrium (0).

If Assumption 3.2 also holds, almost sure asymptotic stability is
guaranteed.

Theorem 3.4. Suppose that f and g obey Assumptions 2.2, 2.3, 3.1
and 3.2. Then there exists a unique continuous adapted process X
which is a global solution of (1.2) and which obeys

lim
t→∞

X(t, ξ) = 0, a.s.

The proof of this result is also deferred until later in the section.
We notice that this result also shows that when 0 is a globally asymp-

totically stable equilibrium of (1.1) when f(0) = 0, we can preserve this
global stability in (1.2). A sufficient condition for global asymptotic
stability of the zero solution of (1.2) is

〈x, f(x)〉 ≤ −F (|x|) ≤ 0, x ∈ R
d,

where F : [0,∞) → [0,∞) is continuous with F (x) = 0 only when
x = 0. Therefore, once g is so small that there exists θ′ ∈ (0, 1/2) such
that

F (|x|) ≥
1

2
|g(x)|2F − (1 − θ′)

|x∗g(x)|2

|x|2
, x ∈ R

d \ {0},

we have that (3.1) is satisfied (with θ = 2θ′), and so, if g also obeys
(3.2), we have that the solution of (1.2) obeys limt→∞ X(t, ξ) = 0 a.s.
for any ξ ∈ R

d.
Before giving examples of functions g which will satisfy these hy-

potheses, and proving the results stated above, we comment briefly on
the assumptions required in this section. In particular, we see that
both assumptions are analogues of conditions required in the scalar
case, and for this reason are difficult to relax significantly. When d = 1
and r = 1, Assumption 3.2 reduces to the condition that g(x) 6= 0 for
x 6= 0, which is the standard non–degeneracy assumption in the scalar
case, which also ensures that the equilibrium is unique. Also, when
d = 1 and r = 1, Assumption 3.1 reduces to the condition

sup
|x|>0

xf(x)

g2(x)
<

1

2
.
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However, this condition is not far from being necessary to ensure the
asymptotic stability of scalar autonomous stochastic differential equa-
tions. Indeed, if there exists L ∈ [−∞,∞] such that

L := lim
x→0

xf(x)

g2(x)
,

it is known (see e.g. [11, p.247]) that −∞ ≤ L < 1/2 ensures that
solutions tend to zero with (at least) positive probability, while L > 1/2
implies that

P[{ω : lim
t→∞

X(t, ω) = 0}] = 0.

3.1. Examples. We now show that the conditions of Theorem 3.4 are
satisfied for many functions g, and, in particular, that for every function
f (and therefore for every equation (1.1)), a function g can be chosen
to stabilise solutions of (1.1). This example is modelled on an example
in [18].

Example 3.5. Let γ : R
d → R be locally Lipschitz continuous with

γ(x) 6= 0 for x 6= 0. Suppose also that there exists c > 2 such that

γ2(x) > c
〈x, f(x)〉

|x|2
, x ∈ R

d \ {0}.

Now let g : R
d → R

d×r be given by

g(x) = γ(x)xv∗(x), x ∈ R
d,

where v : R
d → R

r is a locally Lipschitz continuous function such that
|v(x)| = 1 for all x ∈ R

d. It is easy to see that the positive definiteness
of γ2 ensures Assumption 3.2 is satisfied. Also, defining θ ∈ (0, 1) by
1 − θ = 2/c, we have Assumption 3.1.

By virtue of Example 3.5, the following corollary of Theorem 3.4
holds.

Corollary 3.6. Suppose that f : R
d → R

d is a locally Lipschitz con-
tinuous function with f(0) = 0, and that the zero solution of

ẋ(t) = f(x(t)), t > 0,

is unstable. Then this system can be stabilised by an equilibrium–
preserving noise perturbation, in the sense that there exists a locally
Lipschitz continuous function g : R

d → R
d×r with g(0) = 0 such that,

for every ξ ∈ R
d, the unique continuous adapted process X which obeys

X(t) = ξ +

∫ t

0

f(X(s)) ds +

∫ t

0

g(X(s)) dB(s), t ≥ 0, a.s.

obeys limt→∞ X(t) = 0, a.s.
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3.2. Proof of Theorem 3.4. By Propositions 2.4 and 3.3, we know
that the process |X|2 = {|X(t)|2; t ≥ 0} is well-defined and positive.
Itô’s formula gives

(3.3) |X(t)|2 = |ξ|2 +

∫ t

0

(

2〈X(s), f(X(s))〉 + |g(X(s))|2F
)

ds

+

∫ t

0

2〈X(s), g(X(s))dB(s)〉.

Let θ ∈ (0, 1) be the number in (3.1). Then, we may apply Itô’s rule
to the positive process |X|2, using the fact that |x|θ = (|x|2)θ/2 to get

|X(t)|θ = |ξ|θ +

∫ t

0

θ

2
|X(s)|θ−4q(X(s)) ds

+

∫ t

0

θ|X(s)|θ−2〈X(s), g(X(s))dB(s)〉,

where

(3.4) q(x) = |x|2(2〈x, f(x)〉 + |g(x)|2F ) + (θ − 2)|x∗g(x)|2.

Then, by (3.1), q(x) ≤ 0 for all x ∈ R
d \ {0}. Define A1(t) = 0, and

A2(t) = −

∫ t

0

θ

2
|X(s)|θ−4q(X(s)) ds.

Then A2 is a non-decreasing process. Letting M be the local martingale

M(t) =

∫ t

0

θ|X(s)|θ−2〈X(s), g(X(s))dB(s)〉, t ≥ 0,

whose quadratic variation is given by

〈M〉(t) =

∫ ∞

0

θ2|X(s)|2θ−4|X∗(s)g(X(s))|2 ds,

we see that

|X(t)|θ = |ξ|θ + A1(t) − A2(t) + M(t), t ≥ 0.

Applying Lemma 2.1 to the positive semimartingale Z = |X|θ we can
conclude that

lim
t→∞

|X(t)|θ and lim
t→∞

A2(t) exist and are finite, a.s.

Therefore limt→∞ M(t) exists and is finite, a.s. Hence limt→∞〈M〉(t)
exists and is finite, a.s., which reads as:

∫ ∞

0

θ2|X(s)|2θ−4|X∗(s)g(X(s))|2 ds < ∞, a.s.

Let Ω1 = {ω ∈ Ω : limt→∞ |X(t, ω)| = x̂(ω) > 0}, and suppose that
P[Ω1] > 0. Then on Ω1 we must have

∫ ∞

0

|X∗(s)g(X(s))|2 ds < ∞, a.s.
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By Assumption 3.2, we have for each ω ∈ Ω1 that

lim inf
t→∞

|X∗(s)g(X(s))|2(ω) ≥ g2(x̂(ω)) > 0.

Therefore, for each ω ∈ Ω1, we have that
(
∫ ∞

0

|X∗(s)g(X(s))|2 ds

)

(ω) = ∞,

which contradicts a consequence of the supposition that P[Ω1] > 0.
Hence P[Ω1] = 0. If we define Ω2 = {ω ∈ Ω : limt→∞ |X(t, ω)| = 0}, we
already know that P[Ω1 ∪ Ω2] = 1. Hence P[Ω2] = 1, as required.

4. Destabilisation of (1.1)

In this section, we wish to give conditions on g which ensure that
solutions of (1.2) cannot tend to zero with positive probability. It
transpires that assuming the following about f and g suffices.

Assumption 4.1. There exists θ ∈ (0, 1) such that

(4.1) |x|2(2〈x, f(x)〉+ |g(x)|2F )− (2 + θ)|x∗g(x)|2 ≥ 0, x ∈ R
d \ {0}.

Define Ω3 = {ω ∈ Ω : τ ξ
e (ω) < ∞}. Then, on Ω3, we have that

lim
t↑τξ

e

|X(t, ξ)| = ∞,

and X is not defined on [τ ξ
e ,∞). Clearly

Ω4 := {ω ∈ Ω : lim inf
t→τξ

e

|X(t)| > 0} ⊇ Ω3.

We now want to show whenever ω ∈ Ω3(:= Ω \ Ω3), we have ω ∈ Ω4.
This implies that Ω3 ⊆ Ω4, and hence that P[Ω4] = 1.

If Assumption 4.1 now holds, solutions cannot be asymptotically
stable with positive probability.

Theorem 4.2. Let ξ ∈ R
d \ {0} and suppose that f and g obey As-

sumptions 2.2, 2.3, and 4.1, and let τ ξ
e be defined by (2.4). Let X be

the unique continuous adapted process which is a solution of (1.2) on
[0, τ ξ

e ). Then X obeys

lim inf
t↑τξ

e

|X(t, ξ)| > 0, a.s.

The proof of this result is deferred until later in the section.
This result shows that when 0 is an unstable equilibrium of (1.1)

(where f(0) = 0), we can preserve this instability in (1.2). A sufficient
condition for the instability of the zero solution of (1.2) is

(4.2) 〈x, f(x)〉 ≥ F (|x|) ≥ 0, x ∈ R
d,
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where F : [0,∞) → [0,∞) is continuous with F (x) = 0 only when
x = 0. Therefore, once g is so small that there exists θ′ > 0 such that

F (|x|) ≥ (1 + θ′)
|x∗g(x)|2

|x|2
−

1

2
|g(x)|2F ≥ 0, x ∈ R

d \ {0},

then (4.1) is satisfied (with θ = 2θ′), and so the solution of (1.2) obeys
lim inft↑τξ

e
|X(t, ξ)| > 0, a.s. for any ξ ∈ R

d \ {0}, by Theorem 4.2.

Theorem 4.2 also shows that when 0 is a stable equilibrium of (1.1)
(where f(0) = 0), we can destabilise it by noise. Let us illustrate this
by examples.

4.1. Examples. We first study an example with dimension d ≥ 2,
which is modelled on an example in [18].

Example 4.3. Let d ≥ 2 and choose r = d. Let γ : R
d → R be locally

Lipschitz continuous with γ(x) 6= 0 for x 6= 0. Suppose also that there
is c > 6 such that

γ2(x) + c
〈x, f(x)〉

|x|2
≥ 0, x ∈ R

d \ {0}.

Now, using the convention that x = (x1, x2, . . . , xd), and xd+1 = x1,
define g : R

d → R
d×d by g(x) = γ(x)diag(x2, x3, ..., xd, xd+1), x ∈ R

d.
Then,

|x∗g(x)|2 = γ2(x)
d
∑

i=1

x2
i x

2
i+1

and|g(x)|2F = γ2(x)|x|2 for all x ∈ R
d. So for x ∈ R

d \ {0}

|x|2(2〈x, f(x)〉 + |g(x)|2F ) − (2 + θ)|x∗gi(x)|2

= 2|x|2〈x, f(x)〉 + γ2(x)

{

|x|4 − (2 + θ)
d
∑

i=1

x2
i x

2
i+1

}

.

Now, proceeding as in [18], we obtain the following sequence of inequal-
ities

d
∑

i=1

x2
i x

2
i+1 ≤

d
∑

i=1

1

2
(x4

i + x4
i+1) =

d
∑

i=1

x4
i .

Thus

3
d
∑

i=1

x2
i x

2
i+1 ≤ 2

d
∑

i=1

x2
i x

2
i+1 +

d
∑

i=1

x4
i ≤

(

d
∑

i=1

x2
i

)2

= |x|4.

Hence

|x|4 − (2 + θ)
d
∑

i=1

x2
i x

2
i+1 ≥

(

1 −
2 + θ

3

)

|x|4 =
1 − θ

3
|x|4,
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and so

|x|2(2〈x, f(x)〉 + |g(x)|2F ) − (2 + θ)|x∗gi(x)|2

≥ |x|4
(

2〈x, f(x)〉

|x|2
+ γ2(x)

1 − θ

3

)

≥ 0,

where we have chosen θ ∈ (0, 1) so that 1 − θ = 6/c. Hence Assump-
tion 4.1 is satisfied and Theorem 4.2 applies. Therefore, we can see
that it is possible to destabilise a globally stable solution (in the case
when 〈x, f(x)〉 < 0 for all x ∈ R

d).

Next, we consider an even-dimensional example, which once again is
inspired by an example in [18]. This example provides an alternative,
which allows r to be different from d, for the even-dimensional case
only.

Example 4.4. Let m ∈ N and d = 2m. Let γ : R
d → R be locally

Lipschitz continuous with γ(x) 6= 0 for x 6= 0. Suppose also that

γ2(x) + 2
〈x, f(x)〉

|x|2
≥ 0, x ∈ R

d \ {0}.

To design the destabilising perturbation g : R
d → R

d×r, let

J =

(

0 −1
1 0

)

,

and introduce the d × d matrix Σ by

Σ = diag(J, J, . . . , J).

Now, let
g(x) = γ(x)Σxv∗(x), x ∈ R

d,

where v : R
d → R

r is a locally Lipschitz continuous function such that
|v(x)| = 1 for all x ∈ R

d. Hence |x∗g(x)| = 0, |g(x)|2F = γ(x)2|x|2 for
all x ∈ R

d, and so for x ∈ R
d \ {0}

|x|2(2〈x, f(x)〉 + |g(x)|2F ) − (2 + θ)|x∗g(x)|2

= |x|2(2〈x, f(x)〉 + γ2(x)|x|2) ≥ 0.

Consequently, Assumption 4.1 is satisfied and Theorem 4.2 applies.
Therefore, we can see that it is possible to destabilise a globally stable
solution (in the case when 〈x, f(x)〉 < 0 for all x ∈ R

d) when the
dynamical system is even–dimensional.

Taking the results of Examples 4.3 and 4.4 together, we have the
following Corollary of Theorems 4.2.

Corollary 4.5. Let d ≥ 2. Suppose that f : R
d → R

d is a locally
Lipschitz continuous function with f(0) = 0, and that the zero solution
of

ẋ(t) = f(x(t)), t > 0
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is asymptotically stable. Then this system can be destabilised by an
equilibrium–preserving noise perturbation, in the sense that there exists
a locally Lipschitz continuous function g : R

d → R
d×r with g(0) = 0

(we may have to choose r = d when d is odd) such that, for every
ξ ∈ R

d, the unique continuous adapted process X which obeys

X(t) = ξ +

∫ t

0

f(X(s)) ds +

∫ t

0

g(X(s)) dB(s), t ≥ 0, a.s.

obeys lim inft↑τξ
e
X(t) > 0, a.s., where τ ξ

e = inf{t > 0 : |X(t, ξ)| 6∈

[0,∞)}.

4.2. Proof of Theorem 4.2. We see that it is necessary to prove only
that Ω3 ⊆ Ω4. Thus from here on, we work only on Ω3. We may assume
that Ω3 has positive probability, for if it does not, then P[Ω3] = 1, which
gives P[Ω4] = 1 automatically, and the result is proved.

On Ω3, we have (3.3). Therefore, by Proposition 2.4, using Itô’s rule,
we get

log |X(t)|2 = log |ξ|2 +

∫ t

0

|X(s)|−4r(X(s)) ds

+

∫ t

0

2〈X(s), g(X(s))dB(s)〉

|X(s)|2

where r(x) = |x|2(2〈x, f(x)〉 + |g(x)|2) − 2|x∗g(x)|2 ≥ θ|x∗g(x)|2, by
(4.1). Hence

log |X(t)|2 ≥ log |ξ|2 + θ

∫ t

0

|X∗(s)g(X(s))|2

|X(s)|4
ds

+

∫ t

0

2〈X(s), g(X(s))dB(s)〉

|X(s)|2
,

or, with the local martingale M defined by

M(t) =

∫ t

0

2〈X(s), g(X(s))dB(s)〉

|X(s)|2
,

we have

(4.3) log |X(t)|2 ≥ log |ξ|2 +
θ

4
〈M〉(t) + M(t).

There are two cases to consider. Define

Ω5 = {ω ∈ Ω3 : lim
t→∞

〈M〉(t, ω) < ∞}

and so Ω5 = {ω ∈ Ω3 : limt→∞〈M〉(t, ω) = ∞}.
By the definition of the quadratic variation of a continuous local

martingale (see e.g. [16, 12]),

M̄(t) := M2(t) − 〈M〉(t)
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is a continuous local martingale. Writing this as

M2(t) = M̄(t) + 〈M〉(t)

and then applying Lemma 2.1, we see that for almost all ω ∈ Ω5,
limt→∞ M2(t, ω), whence limt→∞ M(t, ω) exists and is finite almost
surely, since M(t) is continuous. Hence, by (4.3) lim inft→∞ log |X(t)|2

is bounded below by a finite random variable a.s. on Ω5, and so
lim inft→∞ |X(t)| > 0, a.s. on Ω5.

On the other hand, on Ω5, the law of large numbers for martingales
gives that

lim
t→∞

M(t)

〈M〉(t)
= 0, a.s. on Ω5.

Therefore, by (4.3), we may conclude that

lim inf
t→∞

log |X(t)|2

〈M〉(t)
≥

θ

4
, a.s. on Ω5.

Hence limt→∞ |X(t)| = ∞, a.s. on Ω5.
Since Ω3 = Ω5 ∪ Ω5, we have that lim inft→∞ |X(t)| > 0, a.s. on Ω3,

completing the proof.

5. Non–destabilisation of scalar equation

In the last section, we saw that genuinely finite–dimensional equa-
tions can be destabilised by a Brownian noise which preserves equi-
librium stability. In this section, we show that such an equilibrium–
preserving destabilisation is impossible for scalar equations, if noise
perturbations are restricted to the class g(X(t)) dB(t).

Consider a scalar deterministic differential equation

(5.1) ẋ(t) = f(x(t)), t > 0; x(0) = ξ

which has a globally asymptotically stable equilibrium at 0. We require
that solutions be unique. Suitable hypotheses on f which ensure this
are

(5.2) f(0) = 0, f is locally Lipschitz continuous.

We now claim that the hypothesis of global stability forces f to obey

(5.3) xf(x) < 0, x 6= 0.

Lemma 5.1. Suppose that the zero solution of (5.1) is globally asymp-
totically stable, and that f obeys (5.2). Then f must also obey (5.3).

The proof is easy and given in the Appendix.
Suppose now that g : R → R

1×r is any function such that

(5.4) g(0) = 0, g is locally Lipschitz continuous,

and consider the stochastic differential equation

(5.5) dX(t) = f(X(t)) dt + g(X(t)) dB(t)
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with X(0) = ξ 6= 0.
With a perturbation of this type, solutions of the stochastic equation

are also (almost surely) globally asymptotically stable.

Theorem 5.2. Suppose that the zero equilibrium of (5.1) is globally
asymptotically stable, and that f obeys (5.2). Then, for any function
g : R → R which obeys (5.4), there is a unique continuous adapted
process X which is a global solution of (5.5) and moreover obeys

lim
t→∞

X(t, ξ) = 0, a.s.

Proof. By the local Lipschitz restrictions on f and g, it follows from
Proposition 2.4 that ϑξ

0 > τ ξ
e , a.s. Moreover, because |g(x)|2 ≥ 0,

and f obeys (5.3), the condition (3.1) in Assumption 3.1 is satisfied.
Therefore, by Proposition 3.3, X is a global solution of (5.5), i.e., τ ξ

e =
∞, a.s. Let us assume, without loss of generality, that ξ > 0. Then
X(t, ξ) > 0 for all t ≥ 0, a.s. Scrutiny of the proof of Theorem 3.4
(without requiring Assumption 3.2) reveals that we must have

lim
t→∞

X(t, ξ) ∈ [0,∞) exists a.s. and is a.s. finite.

Now, remember from the proof of Theorem 3.4 that

(5.6) X(t)θ = ξθ +

∫ t

0

p(X(s)) ds + M(t)

where

p(x) =
θ

2
xθ−2[2xf(x) − (1 − θ)|g(x)|2] ≤ 0

and M is the local martingale

M(t) =

∫ t

0

θX(s)θ−1g(X(s)) dB(s).

By Lemma 2.1, limt→∞

∫ t

0
p(s)ds is finite a.s. Suppose now that P[Ω1] >

0, where Ω1 = {ω ∈ Ω : limt→∞ X(t, ω) = x̂(ω) > 0}. By the continuity
of p, for all ω ∈ Ω1

lim
t→∞

p(X(t, ω)) = p(x̂(ω)).

Notice that because x̂(ω) > 0, (5.3) implies that p(x̂(ω)) < 0. There-
fore, for ω ∈ Ω1,

lim
t→∞

∫ t

0

p(X(s, ω))ds = −∞

which is a contradiction. �
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Appendix

Proof of Proposition 2.4

Let Aξ = {ω : X(t, ξ)(ω) = 0 for some t ∈ [0, τ ξ
e (ω))}, and suppose

that there exists ζ ∈ R
d such that P[Aζ ] > 0. Then, there exists T > 0

such that P[Aζ(T )] > 0, where

Aζ(T ) = {ω : X(t, ζ)(ω) = 0 for some t ∈ [0, τ ζ
e (ω) ∧ T ]}.

Next, let θ > 1 and define

Cθ = {ω : |X(t, ζ)(ω)| ≤ θ − 1 for all t ∈ [0, τ ζ
e (ω) ∧ T ]} ∩ Aζ(T ).

Noting that for every ω ∈ Aζ(T ), the sample path X(t, ζ)(ω) for t ∈
[0, τ ζ

e (ω)∧ T ] is bounded, we observe that limθ→∞ Cθ = Aζ(T ). Hence,
we can find a number θ̄ > 1 such that P[Cθ] > 0 for all θ > θ̄. Next,
we introduce ε > 0 and the stopping time

τε = inf{t ∈ [0, τ ζ
e ) : |X(t, ζ)| ≤ ε or |X(t, ζ)| ≥ θ}.

We consider the case for general r ≥ 1. By Itô’s rule, we get

|X(T ∧ τε)|
2 = |ζ|2 +

∫ T∧τε

0

(

2〈X(s), f(X(s))〉 + |g(X(s))|2F
)

ds

+
r
∑

j=1

∫ T∧τε

0

d
∑

i=1

2Xi(s)gij(X(s)) dBj(s),

where we use the convention that Xi(t) = 〈X(t), ei〉. For x > 0, define
V0(x) = x−1/2. Then applying Itô’s rule in the scalar case gives

(A.1) V0(|X(T ∧ τε)|
2) = V0(|ζ|

2) +

∫ T∧τε

0

V ′
0(|X(s)|2) d|X(s)|2

+
1

2

∫ T∧τε

0

V ′′
0 (|X(s)|2)

r
∑

j=1

(

d
∑

i=1

2Xi(s)gij(X(s))

)2

ds.

For x ∈ R
d \ {0}, define the functions V (x) = 1/|x|,

m(x) = −
〈x, f(x)〉

|x|2
−

|g(x)|2F
2|x|2

+
3

8|x|4

r
∑

j=1

(

d
∑

i=1

2xigij(x)

)2

,

and

mj(x) = −
1

|x|2

r
∑

j=1

d
∑

i=1

xigij(x)
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for j = 1, . . . , r. Here we have adopted the usual notational convention
xi = 〈x, ei〉. With these functions defined, we may write (A.1) as

V (X(T ∧ τε)) = V (ζ) +

∫ T∧τε

0

V (X(s))m(X(s)) ds

+
r
∑

j=1

∫ T∧τε

0

V (X(s))mj(X(s)) dBj(s).

Since f(0) = 0, g(0) = 0 and f and g are locally Lipschitz continuous,
it is easy to see that

max
|x|≤θ

m(x) =: µθ < ∞.

Hence, using this inequality and the optional sampling theorem (see
e.g. [16, 12]), we get

E[V (X(T ∧ τε))] ≤ V (ζ) + µθE

∫ T∧τε

0

V (X(s)) ds.

Since V is positive, we have
∫ τε∧T

0

V (X(s)) ds ≤

∫ T

0

V (X(s ∧ τε)) ds,

and so we arrive at

E[V (X(T ∧ τε))] ≤ V (ζ) + µθ

∫ T

0

E[V (X(s ∧ τε))] ds.

By Gronwall’s inequality,

E

[

1

|X(T ∧ τε)|

]

≤
1

|ζ|
eµθT .

Therefore, because |X(T ∧ τε)| > 0, we have

E

[

1

|X(T ∧ τε)|
1Cθ

]

≤ E

[

1

|X(T ∧ τε)|

]

≤
1

|ζ|
eµθT .

Now, let ω ∈ Cθ. Then, as |X(t)| ≤ θ − 1 for t ∈ [0, τ ζ
e ), X(τε) = ε. If

T ∧ τε = T , then τε ≥ T . But the definition of Cθ means that X(t) = 0
for some t < T . Therefore, by continuity of t 7→ X(t), we have that
τε ≤ T . Hence on Cθ, X(T ∧ τε) = ε. Thus

E

[

1

|X(T ∧ τε)|
1Cθ

]

≥ P[Cθ]
1

ε
.

Thus P[Cθ] ≤ ε|ζ|−1eµθT . Letting ε → 0+ gives P[Cθ] = 0, a contradic-
tion. Thus P[Aξ] = 0 for all ξ ∈ R

d \ {0}.

Proof of Proposition 3.3

We start by defining the sequence of stopping times τ ξ
k = inf{t ∈

[0, τ ξ
e ) : |X(t, ξ)| = k}. Thus, as τ ξ

k is increasing, we may define τ ξ
∞ =

limk→∞ τ ξ
k . Clearly, τ ξ

∞ = τ ξ
e . Suppose that τ ξ

∞ = ∞ a.s. is false. That
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is τ ζ
∞ < ∞ for some ζ ∈ R

d with positive probability. Thus, there is
T > 0, ε ∈ (0, 1) such that

P[τ ζ
k ≤ T ] ≥ ε, ∀k ≥ k0

for k0 ∈ N sufficiently large. Let Ck = {τ ζ
k ≤ T}.

Because |X(t)| > 0 for all t ∈ [0, τ ζ
k ], we may apply Itô’s rule to get

|X(T ∧ τ ζ
k )|2 = |ζ|2 +

∫ T∧τζ
k

0

(

2〈X(s), f(X(s))〉 + |g(X(s))|2F
)

ds

+

∫ T∧τζ
k

0

2〈X(s), g(X(s))dB(s)〉.

Let θ ∈ (0, 1) be the number in (3.1). Then, we may apply Itô’s rule
to the positive process |X|2, using the fact that |x|θ = (|x|2)θ/2, to get

|X(T ∧ τ ζ
k )|θ = |ζ|θ +

∫ T∧τζ
k

0

θ

2
|X(s)|θ−4q(X(s)) ds

+

∫ T∧τζ
k

0

θ|X(s)|θ−2〈X(s), g(X(s))dB(s)〉,

where q is as defined in (3.4). Because q(x) ≤ 0 for |x| 6= 0, we have

|X(T ∧ τ ζ
k )|θ ≤ |ζ|θ +

∫ T∧τζ
k

0

θ|X(s)|θ−2〈X(s), g(X(s))dB(s)〉.

Using the optional sampling theorem (see e.g. [16, 12]), we get E[|X(T∧

τ ζ
k )|θ] ≤ |ζ|θ. Now,

|ζ|θ ≥ E[|X(T ∧ τ ζ
k )|θ] ≥ E[|X(T ∧ τ ζ

k )|θ1Ck
].

If ω ∈ Ck, then τ ζ
k ≤ T , so T ∧ τ ζ

k = τ ζ
k . Thus |X(T ∧ τ ζ

k )|θ = kθ, and
so

E[|X(T ∧ τ ζ
k )|θ1Ck

] = kθ
E[1Ck

] = kθ
P[Ck] ≥ kθε.

Thus |ζ|θ ≥ kθε. Letting k → ∞ yields a contradiction, so we must
have τ ξ

∞ = ∞ a.s. for each ξ ∈ R
d. Hence τ ξ

e = ∞ a.s. for each ξ ∈ R
d,

as required.

Proof of Lemma 5.1

Suppose to the contrary that x 7→ xf(x) is not negative on R \ {0}.
This means that there exists x1 6= 0 such that x1f(x1) ≥ 0. Without
loss of generality, let x1 > 0, so that f(x1) ≥ 0. Consider ξ > x1. By
the hypothesis of global asymptotic stability of 0, we must have

lim
t→∞

x(t, ξ) = 0.

However, we will now show that lim inft→∞ x(t, ξ) ≥ x1 > 0, which
contradicts the assumption that such an x1 exists.

Consider first the case when f(x1) = 0. Suppose now that there ex-
ists t1 > 0 such that x(t1) = x1. (If this is not true, then x(t, ξ) > x1 for
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all t ≥ 0, and lim inft→∞ x(t, ξ) ≥ x1 automatically.) Then, by unique-
ness of solutions, x(t) = x1 for all t ≥ t1, and so lim inft→∞ x(t, ξ) = x1.

Consider now the case when f(x1) > 0. Suppose that there exists
t0 > 0 such that x(t0, ξ) < x1. Then there must exist a t1 < t0 such
that x(t1, ξ) = x1, and ẋ(t1, ξ) ≤ 0. However, ẋ(t1) = f(x1) > 0, a
contradiction.
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